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Evaluating 2D vs 3D Neural Network Efficacy in Sow Posture Detection With Synthetic Data

This paper presents a novel method for classifying postural behaviour in sows using synthetic data from Unreal Engine 5 and UnrealGT combined with a 3D neural network. Traditional 2D CNNs, like YOLO, are not designed to use depth information, and are sensitive to camera angles and lighting variations. These issues can compromise accuracy in diverse environments such as animal farms. Our approach overcomes these by using depth information and generating synthetic data with variation of scene parameters. We employed the Samsung Labs TR3D Network for object detection due to its proven capabilities in 3D object detection with the SUNRGB-D Dataset. Our findings highlight the benefits of synthetic data and the potential of 3D neural networks in complex environments, setting a direction for future research.

Introduction

The postural behaviour of sows offers a comprehensive window into their welfare and health. Sows' body positions and movements can be influenced by environmental conditions, health issues, or physiological processes such as parturition [START_REF] Bonde | Associations between lying-down behaviour problems and body condition, limb disorders and skin lesions of lactating sows housed in farrowing crates in commercial sow herds[END_REF][START_REF] Damm | Long-stemmed straw as an additional nesting material in modified schmid pens in a commercial breeding unit: Effects on sow behaviour, and on piglet mortality and growth[END_REF][START_REF] Grégoire | Assessment of lameness in sows using gait, footprints, postural behaviour, and foot lesion analysis[END_REF][START_REF] Huynh | Effects of increasing temperatures on physiological changes in pigs at different relative humidities[END_REF][START_REF] Larsen | Does the presence of shoulder ulcers affect the behaviour of sows?[END_REF][START_REF] Oczak | Classification of nest-building behaviour in non-crated farrowing sows on the basis of accelerometer data[END_REF][START_REF] Spoolder | Group housing of sows in early pregnancy: A review of success and risk factors[END_REF]. For instance, variations in ambient temperature can cause postural changes, with sows extending their limbs when temperatures are high and minimizing contact with the floor at lower temperatures. Lameness, a prevalent health and welfare concern, manifests in distinct postural changes. Other indicators, such as shoulder sores, can be associated with prolonged lying, leading to behavioural changes [START_REF] Larsen | Does the presence of shoulder ulcers affect the behaviour of sows?[END_REF].

Beyond the individual sow's welfare and health, the analysis of postural behaviour plays a pivotal role in productivity in pig farming. Specific postural transitions and movement changes are major causes of piglet crushing, a principal cause of piglet mortality in indoor housing systems [START_REF] Oczak | Classification of nest-building behaviour in non-crated farrowing sows on the basis of accelerometer data[END_REF]. As such, accurately determining sow postures is of immense importance to the industry, offering the potential to improve the welfare of sows and piglets, increase productivity, and decrease economic losses.

However, classifying a sow's postural behavior presents significant challenges. Traditional human observation of animals is time-consuming, often subjective, and may induce stress in the animals. The development and application of computer vision methods offer a more efficient, objective, and non-intrusive approach to this issue [START_REF] Nicolaisen | Automatic detection of sow postures from top view camera images by a convolutional neural network[END_REF]. Nevertheless, these methods are not without their drawbacks. Current techniques, such as 2D Convolutional Neural Networks (CNNs) like You Only Look Once (YOLO), struggle to distinguish between complex postures, adapt to variations in lighting and angle, and accurately classify postures in cluttered environments [START_REF] Nicolaisen | Automatic detection of sow postures from top view camera images by a convolutional neural network[END_REF].

Additionally, these drawbacks are underscored by the misclassification observed in our network, with further details provided in the supplementary data.

This paper proposes an innovative approach to tackling these challenges, using synthetic data generated through Unreal Engine 5 and UnrealGT combined with a 3D neural network [3,[START_REF] Pollok | Unrealgt: Using unreal engine to generate ground truth datasets[END_REF]. By incorporating depth information into the network, this approach aims to increase network robustness, thereby addressing the limitations of 2D CNNs. Further, the flexibility afforded by synthetic data allows for scenario manipulation, making it possible to tailor the conditions under which postural behaviour is classified, including pose, lighting, and camera pose [START_REF] Tremblay | Training deep networks with synthetic data: Bridging the reality gap by domain randomization[END_REF].

This study aims to demonstrate the effectiveness of this new approach in improving sow posture classification and to provide a comparison with traditional methods. The findings of this research could contribute to developing more sophisticated and accurate monitoring systems in animal husbandry, thereby improving sow welfare and productivity in pig farming.

Methodology

This section presents the data used and describes how it is structured. It also provides details regarding the architecture of the models, synthetic data generation process, and the training process. One experiment was conducted in a Linux environment on the cloud from Lambdalabs, equipped with an NVIDIA RTX A6000 GPU. In contrast, the others were performed on a Linux environment with an NVIDIA RTX 3090 GPU.

Synthetic Data Generation

Synthetic data generation was divided into two distinct phases, resulting in two sets: an 'easy' dataset and a 'hard' dataset. Each group contained approximately 10,000 images for training and an additional 8,000 images for validation. The collected data included depth images, segmentation maps, RGB images, and the camera pose, all generated using Unreal Engine 5 and Unreal GT.

Unreal Engine 5 is an advanced game engine developed by Epic Games. It is well recognized for its ability to create photorealistic dynamic and complex 3D environments with high resolution. Similarly, UnrealGT is a plugin for Unreal Engine designed to create ground truth data for computer vision tasks. This tool provided the capability to generate RGB and depth images and was modified to create instance, semantic segmentation, and camera pose.

This dataset generation was employed using the models from the animal variety pack, which included skeletal meshes and animations of pigs for games. These were used to create realistic 3D pig models in different poses: pigon-belly, pig resting on its side, pig sitting, and pig standing idly. These models were placed in various environment settings under varying lighting conditions and viewed from multiple angles.

To label our dataset, we used the UnrealGT plugin to produce pixel-wise segmentation maps. This uses the Unreal Engine 5 shader system, where each static mesh within the scene is assigned a unique colour. This feature was employed for our project to label the pig mesh in all images. The resulting segmentation maps served as our ground truth for the 3D object detection task, offering a precise and detailed label for the show. Each posture was processed separately to ensure distinct labels for different postures.

Alongside the segmentation maps, depth maps were generated using UnrealGT's access to Unreal Engine 5's depth buffer. The depth buffer carries data concerning the distance of each pixel from the camera in a given scene. This information is extracted and translated into grayscale depth images. In these images, the grayscale gradient represents the distance from the camera, with lighter shades indicating proximity and darker shades indicating farther areas. These depth maps provide the necessary depth data for training our 3D object detection models.

Our synthetic datasets, labelled 'easy' and 'hard', were designed to assess the models' robustness against variations in camera poses and their ability to generalize across diverse viewing angles for distinct sow postures. The 'easy' dataset ensured consistent camera poses during the training and validation phases. This approach was chosen to evaluate the models in scenarios where the viewing perspectives remained relatively stable between training and testing. Consequently, this configuration gauged the models' proficiency in object detection within familiar visual environments. Figure 2. shows the difference in camera perspective between the 'easy' and 'hard' datasets for both training and validation sets. The supplementary data provides the camera pose splines used for generating the datasets. Additionally, the datasets are available on request for further research and validation.

The importance of testing robustness against camera pose variations and the ability to generalize across diverse viewing angles cannot be overstated. In real-world scenarios, camera angles can vary significantly due to factors such as camera placement and movement of the pigs within the pen, e.g. crowding, or environmental conditions. A model that can effectively handle these variations is more versatile and reliable. Furthermore, distinct sow postures can appear very similar when viewed from certain angles, (e.g. pig laterally versus pig sternally), making accurate detection even more challenging. Therefore, a model's ability to differentiate between these postures from various perspectives is crucial for its overall performance.

As such, the 'hard' dataset provided a much more challenging environment. Here, the camera poses during validation differed vastly from those during training. This scenario was designed to mimic real-world conditions where the model might encounter viewpoints during inference that it hadn't seen during training. As such, this dataset served as a more demanding test of the model's ability to generalize learning to new perspectives. 

Automatic Bounding Box Computations

From the provided segmentation image, extracting a 2D bounding box involves identifying the minimum and maximum coordinates encompassing the object of interest in the 2D image. Further details are provided in the supplementary data.

For the extraction of the 3D bounding box, the oriented bounding box is calculated using both the segmentation and depth images; additional details can be found in the supplementary data.

Model Architecture of TR3D and YOLOv8

YOLOv8

We employed YOLOv8 for 2D sow posture behavior recognition due to its outstanding performance on the COCO dataset [START_REF] Jocher | Yolo by ultralytics (version 8.0.0[END_REF]. YOLOv8's structure is akin to that of YOLOv5, focusing on feature extraction through convolutional layers [START_REF] Terven | A comprehensive review of yolo: From yolov1 to yolov8 and beyond[END_REF]. The model introduces the C2f module and adopts an anchor-free approach for bounding box predictions. Notably, YOLOv8 employs the Complete Intersection over Union (CIoU) as its bounding box loss. For mathematical representations and a detailed breakdown of these features, please refer to the supplementary data.

TR3D

We applied Towards Real-time Indoor 3D Object Detection (TR3D) for 3D sow posture behavior recognition, which is recognized for its performance on the SUNRGBD dataset [START_REF] Rukhovich | Tr3d: Towards real-time indoor 3d object detection[END_REF][START_REF] Song | Sun rgb-d: A rgb-d scene understanding benchmark suite[END_REF]. The TR3D architecture comprises three components: a backbone, which uses sparse 3D convolutions; a neck; and an anchor-free head. The head outputs classification probabilities, bounding box parameters, and centerness values.

Distinctively, TR3D uses an anchor-free approach for bounding box predictions and offers two parametrizations: axis-aligned bounding boxes (AABB) and oriented bounding boxes (OBB). Detailed discussions on these parametrizations, especially the Mobius OBB designed for rotation considerations, are provided in the supplementary data.

During training, TR3D employs unique strategies for output location assignments and center sampling. Further insights, including its loss function, DIOU, are also elaborated upon in the supplementary data.

Results

Our evaluation metrics, derived from the validation set, indicate the model's performance across different datasets and confidence thresholds. The network exhibited variations in average precision (mAP) and average recall (mAR), both influenced by the dataset and confidence thresholds. For the 3D network, the evaluation was limited to average precision (AP), average recall (AR), and loss calculations from the training metrics. This limitation stems from the computational complexity and data sparsity inherent to Figure 3. Final metrics for the 'hard' dataset derived from the TR3D network: focusing on average precision (mAP) and average recall (mAR) at 25% and 50% confidence thresholds across seven epochs. 3D object detection, complicating the computation of additional metrics. These scores provide insights into the model's robustness and its ability to generalize across various scenarios.

In our experiments, we evaluated the model's performance on both 'hard' and 'easy' datasets. As depicted in Figure 3, the model's performance on the 'hard' dataset yielded average precision (mAP) and average recall (mAR) metrics that warrant discussion. Notably, the network achieved an mAP of 0.62 at a 25% confidence threshold and 0.44 at a 50% confidence threshold. In terms of recall, the network began with a higher score in the initial epoch but eventually stabilized to scores of 0.95 at 25% confidence and 0.66 at 50% confidence over the seven epochs.

In contrast, Figure 4 showcases the model's more robust performance on the 'easy' dataset. It achieved an impressive mAP of 0.957 at a 25% confidence threshold and maintained a perfect score of 1 across all three epochs. At a stricter 50% confidence level, the model still scored a commendable mAP of 0.89 and a high recall score of 0.953.

Further analysis of the model's performance on the 'hard' dataset is illustrated in Figure 5, presenting the Precision-Recall curve for the YOLOv8 network. The curve's trajectory highlights the model's challenges in identifying a broader range of positive instances, evidenced by a sharp decline in precision as recall increases. This trend is substantiated by an mAP@50 value of 0.375 across all classes.

Lastly, Figure 6 delves into the Precision-Recall curve for the 'easy' dataset. The model maintains high precision up to approximately 0.58 recall, experiencing a more pronounced drop nearing full recall. Despite this, the mAP@50 value of 0.985 underscores the model's robust performance on this dataset, indicating its ability to detect a significant portion of instances with accuracy.

Discussion

In our effort to enhance sow posture detection, we concentrated on the benefits of 3D data over the conventional 2D CNN approach. Firstly, 3D data encapsulates spatial information, especially depth, which is instrumental in differentiating postures. Secondly, while 2D images primarily capture the sow's external contour and shading, 3D data offers a representation that encompasses both the volume and intricate structure of the sow. This aspect can mitigate challenges in 2D where postures might intersect or be concealed by other objects.

It's important to note that our results are biased, as we utilized the validation dataset to fine-tune the hyperparameters. Nevertheless, the experiment is a valid comparison between the 2D and 3D networks, as both were trained in the same way. We explicitly chose not to contrast synthetic and real data, as the core focus of this paper isn't on the nature of the data but rather on the methodologies applied. A significant advantage of employing synthetic data in this research is its versatility: it enables the generation of any required data each network demands, all sourced from the same simulation. This ensures a fair comparison between networks, as opposed to the effect of different types of cameras.

The reason for not testing on real videos was twofold: (i) we suspect our synthetic data might not yet be sufficiently photorealistic, and (ii) our primary objective is to use synthetic data to test the differences between 2D and 3D networks. This approach aims to elucidate the value of 3D data and highlight challenges associated with the current 3D networks. Note that synthetic data isn't the central theme of this paper; it simply serves as a tool that allows an effective comparison between 3D and 2D networks.

In our comparison between the TR3D and YOLOv8 networks for sow posture detection on a challenging dataset, distinct performance variations were observed across different classes. For the "Lying Sternally" class, TR3D achieved a mAP@50 score of 0.1937, while YOLOv8 improved significantly with a score of 0.478. This indicates that YOLOv8 was more consistent in detecting this particular posture, showcasing a clear advantage over TR3D.

For the "Laterally" class, TR3D still held a substantial lead with a mAP@50 score of 0.8122, but YOLOv8's performance increased to 0.492. Despite the improvement, TR3D's 3D convolutional approach seems to provide an advantage in detecting lateral postures, possibly capturing depth information more effectively than YOLOv8.

Regarding the "Standing" and "Sitting" classes, YOLOv8's scores were 0.252 and 0.276, respectively, showcasing a decrease compared to TR3D's scores of 0.4667 and 0.3211. These results emphasize that while TR3D might have advantages in certain postures due to its 3D data processing, YOLOv8's updated scores present a more competitive edge in some postures. Nonetheless, when considering the overall mAP@50 scores across all classes, YOLOv8 achieved an average of 0.375, reflecting its balanced performance across varied postures. The TR3D model operates within a 3D domain, inherently capturing depth information. This depth is pivotal for discerning postures from various angles, a fact evident in the 'hard' dataset. Representing objects in 3D can introduce ambiguities, particularly when using voxel representations. This representation brings its own set of mathematical complexities, especially when computing metrics in 3D. For in- 

IoU 3D = Volume of Intersection Volume of Union (1) 
Its 2D counterpart computes the area-based ratio:

IoU 2D = Area of Intersection Area of Union (2) 
Furthermore, the Distance Intersection over Union (DIoU) in 3D involves computing distances considering the x, y, and z coordinates, leading to a more complex distance metric:

Distance 3D = (x centerA -x centerB ) 2 + (y centerA -y centerB ) 2 + (z centerA -z centerB ) 2 (3) 
On the contrary, the YOLOv8 model operates in a 2D space. Without depth, it relies on the discernible features from a fixed angle. The mathematical task for the Distance Intersection over Union (DIoU) in 2D involves the simpler distance metric:

Distance2D = (x centerA -x centerB ) 2 + (y centerA -y centerB ) 2
(4) While the YOLOv8 model employs the CIOU, which goes beyond simple distance metrics by also considering the aspect ratio and size of bounding boxes, the underlying computations are still fundamentally constrained to the 2D space. This complexity is further amplified when considering CIOU in 3D, which would have to account for additional dimensional intricacies.

This streamlined approach becomes evident in the 'easy' dataset, where the consistent orientation of the camera aligns well with the training conditions, facilitating YOLOv8's feature extraction capability. However, the adaptability of this model faces challenges in the 'hard' dataset, where varying camera angles can obfuscate or alter the appearance of these crucial features.

Conclusion

Using a distinct validation set is essential to ensure an unbiased assessment of a model's generalization abilities, particularly in complex tasks like posture detection. Without this separation, models may become overfitted, resulting in deceptively high performance metrics that don't demonstrate true comprehension.

Our findings underscore the potential of TR3D, due to its depth-processing that provides insights into sow postures. While YOLOv8 dominates in more straightforward scenarios, it struggles with the 'hard' dataset.The performance difference between the two models is minimal, with only a 7% disparity in mAP. This suggests that while TR3D has certain advantages, both models could benefit from further enhancements.

YOLOv8 surpassed TR3D on the 'easy' dataset, but we should treat such high scores with skepticism. High metrics on this dataset don't necessarily imply a deep understanding. For both models, these results could mask real deficiencies, emphasizing the necessity for rigorous evaluation in various situations. We must keep in mind that although YOLOv8 thrives in more predictable settings, true model competence is tested in diverse and challenging circumstances.

In conclusion, while TR3D offers depth-focused benefits, making it a flexible option across datasets, its comparable performance to YOLOv8 highlights the need for ongoing refinement. Our analysis reminds us that choosing models shouldn't rely solely on overarching metrics but should also consider their specific strengths and weaknesses in different real-world situations.
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Figure 1 .

 1 Figure 1. Synthetic Data Generation Using Unreal Engine 5 and UnrealGT for a Sow Sitting [4]. (a) RGB Image: An example showcasing the visual representation of the sow. (b) Semantic Segmentation Image: Provides pixel-wise classification, isolating the sow from the background. (c) Depth image: Represents the depth information of the scene.

Figure 2 .

 2 Figure 2. Comparative Analysis of Camera Pose Variations in Hard and Easy Datasets. (a) Hard Dataset: Demonstrates substantial variations in camera poses between training and validation images to assess model generalization in unseen scenarios. (b) Easy Dataset: Shows relatively similar camera poses between training and validation images to evaluate model performance in familiar conditions.

Figure 4 .

 4 Figure 4. Performance metrics for the 'easy' dataset derived from the TR3D network: displaying mAP and mAR at 25% and 50% confidence thresholds across three epochs.

Figure 5 .

 5 Figure 5. Precision-Recall curve for the YOLOv8 network evaluated on the 'HardDataset', illustrating the challenges in capturing a broader range of positive instances.

Figure 6 .

 6 Figure 6. Precision-Recall curve for the YOLOv8 network evaluated on the 'EasierDataset'.

Table 1 .

 1 Comparison of mAP@50 scores between TR3D and YOLOv8 on the 'hard' dataset.

	Class	TR3D YOLOv8
	sternally	0.1937	0.478
	laterally	0.8122	0.492
	standing	0.4667	0.252
	sitting	0.3211	0.276
	Overall mAP@50 0.4484	0.375

Table 2 .

 2 Comparison of mAP@50 scores between TR3D and YOLOv8 on the 'easy' dataset.

	Class	TR3D YOLOv8
	sternally	0.7839	0.975
	laterally	0.9497	0.995
	standing	0.8361	0.978
	sitting	0.8923	0.985
	Overall mAP@50 0.8923	0.985
	stance, the Intersection over Union (IoU) in 3D, which is
	calculated as the volume of the intersection divided by the
	volume of the union, is given by: