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 Abstract 

 

An asymptotic reduction method is introduced to construct a curved rod theory for a general 

anisotropic linearized elastic material. For the sake of simplicity, the cross section is assumed to 

be circular. The starting point is Taylor expansions about the mean-line in curvilinear coordinates, 

and the goal is to eliminate the two spatial variables in the cross section in a pointwise manner in 

order to obtain a closed system for the displacement coefficients. We achieve this by using a 

Fourier series for the lateral traction condition together with the use of cylindrical coordinates in 

the cross section and by considering exact tridimensional equilibrium equation. We get a closed 

differential system of ten vector unknowns, and after a reduction process we obtain a differential 

system of the vector of the mean line displacement and twist angle. Six boundary conditions at 

each edge are obtained from the edge term in the tridimensional virtual work principle, and a 

unidimensional virtual work principle is also deduced from the weak forms of the rod equations.  

Through one example, we show that our theory gives more accurate results than the ones of 

both classical Euler-Bernoulli rod theory and Timoshenko rod theory. The displacement 

field is computed for two types of material symmetry : isotropy and transverse isotropy.  

Keywords 

curved rod theory, reduction method, anisotropic linearized elasticity, rod variational formulation, 

Fourier series, classical rod theories. 

 

1. Introduction 

 

Rods are very important engineering structures. For straight or curved rods, the dimension of the 

cross section is much smaller than the third one, its length. Due to this relative smallness, one 

may model the behaviours of these thin structures by one-dimensional rod theory through certain 

dimensional reduction processes. The most popular approach is to introduce some kinematic 

assumptions such that the displacement has certain particular forms. Classical rod theories, such 

as Euler-Bernoulli rod theory, Timoshenko rod theory and Reddy’s third-order rod theory (Reddy, 

2006) are obtained in this way. Due to its simplicity, Carrera and Giunta (2010) and Carrera and 

Petrolo (2012) use various forms of this approach. But if one substitutes the assumed 

displacement form into the equilibrium equation and traction condition, some contradictions will 

arise. Another approach is to expand the displacement in terms of a series of basis functions and 

to truncate the potential energy Pruchnicki and Dai (2019). It is interesting to note that this 

method gives an error estimation between the exact three dimensional plate problem and the 

approximate bidimensional one (Schneider and Kienzler 2020). Only for isotropic material, the 

number of main unknowns can be reduced by using the pseudo-reduction method (Schneider et 

al., 2014) and then a plate (symmetric transverse loading) model with three (due to considered 

symmetry) boundary conditions (for transverse shear, twisting moment and bending moment) can 

be constructed.   

Another theory is introduced by Ciarlet and Destuynder (1979) for plate through use of 

asymptotic expansions in variational formulation. This theory was adapted by Bermudez and 

Viano (1984) for rods; for further works on rods in this direction see Trabucho and Viano (1996). 

Another approach is through the use of asymptotic expansion in the minimization of potential 
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energy. The method was first introduced by Pantz (2000) for homogeneous plates, and by 

Meunier (2008) and Marigo and Meunier (2006) for rods and extended by Pruchnicki(2009); 

(2011) for heterogeneous plates. This problem is also addressed through the use of a rigorous 

Gamma convergence tool, which generates one-dimensional models when the small transverse 

dimension goes to zero (Giovanna Mora and Müller, 2003). Different scalings lead to a hierarchy 

of different models, but those approaches do not yield a single one dimensional model which 

contains extension, bending and torsion effects together. Also, a priori scalings adopted, assumes 

that the loads depend on the thickness but in reality applied loads are external and thus are not 

linked to the geometry of the thin structure. Moreover it is difficult to apply this method to obtain 

error estimates.  

To overcome these drawbacks, Dai and Song (2014); Song and Dai (2016 a,b); Wang et al. 

(2019); Yu et al. (2020) introduced for plate a novel method of dimension reduction deduced 

from  tridimensional equilibrium equation and boundary condition on the upper and lower face of 

the plate. This approach was used in Chen et al. (2018) to obtain a plane-stress rod model for a 

linearized isotropic elastic material with pointwise error estimates. In this way Pruchnicki (2018) 

obtains a unidimensional model for a rod with rectangular cross section.  

Obtention of a rod theory is more complicated than plate or shell ones. For rod with circular cross 

section, we present a one dimensional model as already done in a previous work for straight rod 

(Chen et al. (2020)).  

The paper is arranged as follows. We first give specific used notation in section 2. Then in 

section 3, we define the mean line of the rod (Subsection 3.1) and for the rod the curvilinear 

coordinate and covariant and contravariant basis (Subsection 3.2). Then, we start the derivation 

process. In section 4, we give the three-dimensional equilibrium equations together with 

boundary conditions in both rectangular and curvilinear coordinates. In section 5, we derive a 

system of differential equations for the rod. In order to do, we begin with Taylor expansions in 

curvilinear coordinates for displacement, strain and Cauchy stress, together with the relations 

among their coefficients. Next the Fourier series is used to represent the given traction on the 

lateral surface, and the expansion for the Cauchy stress is represented in terms of polar 

coordinates. Then, we carefully truncate the traction conditions on the lateral boundary in order 

to keep bending and twisting terms. After considering three dimensional equilibrium equation in 

a pointwise manner, a calculation leads to a closed ten equations with ten unknown vectors. In 

section 6 a number of refinements based on truncation of equations at the same order of 

magnitude, leads to asymptotically-consistent four scalar rod equations with four unknowns (the 

three components of the mean line displacement and the averaged twist angle). In section 7, rod 

boundary conditions are derived from the edge term of the tridimensional virtual work principle 

and then the rod virtual work principle is deduced from the weak forms of the rod equations. In 

the appendix, we give an example for a straight rod with two clamped ends and loaded by a 

uniform line force at the top of lateral surface along the negative y1-axis. We compare the 

obtained system of differential equations with Euler-Bernoulli rod theory and Timoshenko 

rod theory and we see that our theory gives refined results. Finally, the displacement field is 

computed with Mathematica software for two types of material symmetry: isotropy and 

transverse isotropy.  In section 8, we conclude and give perspective.  

 

2. Notation 

 

Boldface letters represent vector-valued functions, tensors or spaces. Let (e1, e2 , e3) denotes an 
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orthonormal basis of the space . (a1, a2 ,a3)  is the local orthonormal covariant basis. Also, we 

adopt Einstein convention summation for repeated indices. The Euclidean scalar product, vector 

product and tensorial product of vectors a,b are denoted by a .b , a∧band a⊗b  respectively. 

The double dot product of two tensors is A:B. The latin index take value 1, 2 and 3. Greek index 

take value 1, 2. Bij  (respectively ) is the component of a second order tensor B with respect to 

ei ⊗ e j  (respectively ai ⊗ a j ), this notation also holds for a general k-th order tensor.  

 

3. The curved rod  

 

3.1. The mean line  of the rod 

 

We begin by defining a general (not necessary plane) curve  parametrized by its curvilinear 

measures s in the reference configuration and its running point in this configuration will be 

denoted by OG = r(s), where O is the chosen origin. If L is the length of this curve in the 

reference configuration, we have s ∈ 0, L[ ]. The orthonormal Frenet frame at a point G is denoted 

by a1, a2 , a3( ) :  

a3 = r, s ,                    (1) 

a1 =
a3, s

k
, 

a2 = a3 ∧ a1.                                                                                  

where a1
is the unit vector tangent to  and k(s) = a3, s s( )  is the curvature at point G.  

The variation of a1, a2, a3( ) is described the Frenet-Serret formulae : 

a1, s = −k a3 + τ a2 ,
                               

(2)

a2, s = −τ a1,                                                     
(3) 

a 3, s = k a1.                                     
(4)

 
where τ (s) = a2, s s( )  

denotes the torsion of the curve  at point G. 

 

 3.2. Geometric and kinematic formulae for rod 

 

In a neighbourhood of , the geometric points will be defined by the position vector X 

depending on the curvilinear coordinates y = (y1, y2 , y3)
 (Sanchez-Hubert and Sanchez-Palencia 

1999): 

X(y) = r y3 = s( ) + y1 a1 y3 = s( ) + y2 a2 y3 = s( ),                                                        (5)    

The mapping X is injective for sufficiently small y1, y2
.  

For the sake of simplicity, we assume that the cross section Σ  (curvilinear parametrization) of 

the rod is circular with radius R0  : 

Σ = {y ' = y1, y2( ), y1

2 + y2

2 < R0

2 }.  
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Indeed the rod is defined by the set of points such that: 

 

in which B = Σ × 0, L] [ .
  

Next we record a number of formulae pertaining to the geometry of the curved rod and to the 

kinematics of the material in a three-dimensional neighbourhood of the mean line.  

At each point of the rod, we define the covariant basis gi = X, i
as well as the contravariant basis 

gi  ( where are the Kronecker symbols).  

From formulae (4)-(5), we easily obtain: 
g1 = a1,                       (6) 

g2 = a2 ,                     (7) 

g3 = 1− k y1( )a3 − τ y2 a1 + τ y1 a2 ,                                                   (8) 

g
1 = a1 + τ y2

1− k y1

a3,

                    

(9) 

g
2 = a2 − τ y1

1− k y1

a3.

                          

(10) 

g
3 = 1

1− k y1

a3,

                    

(11) 

We note that gi 0,0, s( ) = gi 0,0, s( ) = ai .  

The determinant of the metric tensor of components gij = gi .g j  is: 

g = 1− k y1( )2
.                   

(12)
 

From (12), we see that the volume element of the rod is given in terms of curvilinear coordinates 

by: 

                               
(13)

Also we can observe that the boundary  of the rod  is composed of the cross sections at 

s = 0  denoted by , s = L  denoted by , and the lateral boundary (the boundaries of all 

cross sections =X( Σ )) . 

 

4. The three-dimensional formulation 

 

It is supposed that the rod is composed of a general linearized anisotropic elastic material, for 

which the constitutive relation in cartesian coordinate is given by :  

                                                                 (14) 

in which  is the Cauchy stress tensor,  is the fourth-order elastic modulus tensor and  is 

the linearized Green-Lagrange strain tensor and  is the displacement vector in cartesian 

coordinates. 
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The modulus tensor  in cartesian coordinates ( ei ⊗ e j ⊗ ek ⊗ el , i, j, k and l =1, 2, 3)  possesses 

the symmetry relations : 

 

thus there are at most twenty one free components in . 

It is well-known that the three-dimensional field equations together with boundary conditions 

are : 

       in         ,   (15) 

           on                                          ,                                                                   

(16) 

               on   ,                        (17) 

= ,                    on                                          ,                                                                   (18) 

in which (respectively ) is the unit outward normal vector on the boundary 

(respectively ),  (respectively ) is the prescribed traction on the lateral boundary  

(respectively ), at the edges the displacement  is imposed and finally  is the volumic 

force. 

Now we want to work in curvilinear coordinates y, we introduce the components of the 

displacement field as follows: 

.                           (19) 

From formula (19), we see that (14) can be written as follows : 

                                          (20) 

in which
 
by using chain rule and formulas (2)-(4),

 
we see that  

grad u( ) = u, l y( ) ⊗ gl = grad u( )
ij

ai ⊗ a j ,                                                                                    
(21) 

with ui = u.ai
, gl

m = gm .al , u
1 3

= u1,3 − τ u2 + k u3, 
u

2 3
= u2,3 + τ u1,  u

3 3
= u3,3 − k u1 and σ ij = Eijkl grad u( )

kl
ai ⊗ a j . 

From formulae (20)-(21), we see that : 

  

                                         

                                             

= Ei j k lgrad u( )
k l

ai ⊗ a j ,
   

   

                                                 

(22)

 where  

Then we can write the three-dimensional field equations together with boundary conditions (17)

in curvilinear coordinates : 

        in             B ,  

            on                  Γ lat = [0, L]× ∂Σ , 

,               on                 ΣL
,                                                                                            (23) 

u = u ,                   on                  Σ0
, 
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in which , 

with = σ ij ,α g j

α + σ ij , 3 + σ1 j τ δ i2 − kδ i 3( ) −τ δ i1σ2 j + kδ i1σ 3 j( )g j

3 +  

      −k g3

3 +τ g2

3( )σ i1 + −τ σ i2 + kσ i 3( )g1

3, 

and .  

 

5. The one-dimensional rod equations  

 

Based on the tridimensional formulation given in section 4, we intend to establish a rod theory 

which eliminates the cross-section variables y ' . This will be achieved through Taylor series 

expansions in terms of the curvilinear coordinates y ' , while on the lateral surface the polar 

coordinates will be used. We shall assume sufficient smoothness such that the displacement field 

u(y) defined by (19) has the following expansion:  

u y( ) = u(k , n−k )

k! n − k( )!k=0

n

∑ y3( ) y1

k
y2

n−k

n=0

5

∑ + O R0

6( ),
    

                         (24) 

in which u
(k , n−k )

y3( ) = ∂n u

∂y1

k ∂y2

n−k
0,0, y3( ). 

 

                                                          (25)

 

This approach provides under regularity assumption, the order of the  remainder in every 

equations. This is the least order expansion such that rod equations are of leading order 

correctness.  

If we assume that k y1 < k R0 << 1, we can write the Taylor-Young expansion of the contravariant 

basis: 

g1 y( ) = a1 y3( ) + g
1 n( ) y3( ) y1

n−1y2

n=1

4

∑ + O R0

5( ),
 

                                                                    (26) 

g2 y( ) = a2 y3( ) + g
2 n( ) y3( ) y1

n

n=1

4

∑ + O R0

5( ),
 

                                                                    (27) 

g3 y( ) = a3 y3( ) + g
3 n( ) y3( ) y1

n

n=1

4

∑ + O R0

5( ),
 

                                                                    (28)  

in which  

g
1 n( ) = τ kn−1 a3, g

2 n( ) = −τ k n−1 a3, g
3 n( ) = kn a3 , for 1 ≤ n ≤ 4 .             (29) 

From (21), (24)-(28), we obtain the expansion of the gradient of the displacement field (24): 

grad u y( )( ) =
grad u( )(k , n−k )

k! n − k( )!k=0

n

∑ y3( ) y1

k
y2

n−k

n=0

4

∑ + O R0

5( ),
     

            

                      

(30)

 
in which

 

grad u( ) k , n−k( ) = grad u( )
ij

k , n−k( )
ai ⊗ a j ,

 
where grad u( )

ij

k , n−k( ) = ui

k+1, n−k( )δ1 j + ui

k+1− p, n−k−1( )
g j

1 p( ) +
p=1

k+1

∑ ui

k , n−k+1( ) δ 2 j + ui

k− p, n−k+1( )
g j

2 p( ) +
p=1

k

∑
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u
i 3

k , n−k( ) δ 3 j + u
i 3

k− p, n−k( )
g j

3 p( ),
p=1

k

∑
                                                                               

with

 

u
1 3

(l , m ) = u1,3

(l , m ) − τ u2

(l , m ) + k u3

(l , m ), u
2 3

(l ,m) = u2,3

(l ,m) +τ u1

(l ,m ), u
3 3

(l , m) = u3,3

(l, m) − k u1

(l , m ),
 
for l ≥ 0 and 

m ≥ 0 .

 The expansion of the stress tensor is obtainable from (26) and (30) : 

                

(31)

 
where 

   

                    
= Eijlm grad u( )

lm

k , n−k( )
ai ⊗ a j ,   

       
               

(32) 

We point out that the stress coefficients (32) for n = 4 is not needed for the end results so in the 

above equation we take 0 ≤ n ≤ 3. An observation is that depends linearly on higher-order 

coefficients ui

k+1, n−k( )
, ui

k− p, n−k+1( )
 for p = 0, k and on  lower order coefficients ui

k+1− p, n−k−1( )
for p = 

1,  

k +1. For this reason the dimension reduction procedure works as in the similar approach for 

plate and shell theories. 

To satisfy the lateral traction condition in a pointwise manner, we use Fourier series expansion 

for the applied traction 
 
(polar coordinate is used on ∂Σ :

y1 = R0 cosθa
,  y2 = R0 sinθa  and  is the azimuthal angle on y1y2

-plane), then 

we assume that is a sufficiently regular function of θa
to ensure that the Fourier series 

expansion is convergent : 

 

            (33)

 

where  , and 

. 

Since nlat = cos(θa )a1 + sin(θa )a2
, we obtain : 

 

   

                  O(R0

4 cosθa , R0

4 sinθa , R0

4 cos 3θa , R0

4 sin 3θa ) +    

                  O(R0

5 , R0

5 cos2θa , R0

5 sin2θa , R0

5 cos 4θa , R0

5 sin 4θa ).                                                   (34)                                               

Then, from equations (23)2, (33) and (34), by setting equal the coefficients of cos(mθa ), 

sin(mθa )for 1 ≤ m ≤  3 on both sides, one can obtain seven equations (in vector form) for the 

stress coefficients. However, since equation (34) is not exact, for the coefficients of cos(mθa )(0 
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≤ m ≤ 1) and sin(θa ), all terms are kept, while for other coefficients only leading-order terms are 

kept (Chen et al. (2020)). So we obtain : 

  

 

                       
(35) 

 

 

 

 

By using (32), we see that the fifteen unknown coefficients of the expansion of the displacement 

field (24) intervenes in the seven equations (35). Next considering equilibrium equations, it is 

possible to obtain a closed system of ten equations with ten unknown coefficients of the 

displacement field (24). 

 By using expansion of stress tensor (31) and expansions  (26)-(28) for the contravariant basis 

vectors, equilibrium equation (23)1 truncated at order R0

3
 involves six vectorial equation: 

   
for n = 0, 1, 2 and k = 0, n,           (36)

 in which the volumic force f is assumed to have expansion of the type

 

(24) of which the vector 

coefficient are f
k , n−k( )  and

  

 

 

 

 

 

                   

 

                         
 

in which from formulae (2)-(4) and (22)2, we obtain: 
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(37)
 

in which   

 

   

               
with

 

u
1 33

l , m( ) = u1, 33

(l ,m ) − τ ,3 u2

(l , m ) + τ u2,3

(l , m )( ) + k,3 u3

(l , m ) + k u3,3

(l , m ), u
2 33

(l , m) = u2,33

(l ,m ) +τ ,3 u1

(l , m) + τ u1,3

(l ,m ),
 

u
3 33

(l , m ) = u3,33

(l , m) − k,3 u1

(l , m ) + ku1,3

(l , m)( ),
 
for l ≥ 0 and m ≥ 0 .

 Next we modify equations (35)-(36) in order to obtain a system of ten vectors equations with ten 

vectors displacement field unknows. By considering (36) (for (k, n) = (0, 0), (2,0), (0,2)), we can 

eliminate and  from (35)1 : 

 

                      

(38) 

Finally equations (35)2-7, (36) (for (k, n) = (0, 0), (1,0), (0,1))) and (38) is a system of ten vector 

equations  with ten unknown vectors u(k , n) (for (k, n) = (0,0), (1,0), (0,1), (2,0), (1,1), (0,2), (3,0), 

(2,1), (1,2), (0,3)). However, the errors in different equations are not of the same order of 

magnitude. Equations (38) and (35)2-3 are truncated at O R0

4( )  while equations (35)4-7 are 

truncated  at O R0

2( ) . Therefore in what follows, we shall perform a number of refinements. 

6. Reduction process. 

  

The method of section 5 presents a number of undesirable features. There are too many 

unknowns (ten vector unknowns). It would be better if the rod equations contains only terms with 

clear physical meanings (stretching, bending and twisting). This system of ten vector equations 

requires in total twenty four scalar boundary conditions which cannot be imposed physically. 

Indeed, for a force edge, one can only know six scalar boundary conditions given by the 

components of the torsor resultant. In this section, we reduce the number of  main unknows to 

four which represent stretching, two bendings and twisting. 

By considering linear elastic relation (32), one can see that (35)4,5 and (36) (for k = 0, n = 0) 

provide 3 linear algebraic vectorial equations for 3 unknown vectors u(k , l )  (for (k, l) = (2,0), 

(1,1), (0,2))  and we obtain:   
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u
2, 0( )

u
1, 1( )

u
0, 2( )



















= K −1

−A
1,3( )

u
3

(1, 0)

−A
2,3( )

u
3

(1, 0)

−A
3, 1( )

u, 3

(1, 0) − A
1, 3( )

u
3

(1, 0)





















+

A
2,3( )

u
3

(0, 1)

−A
1,3( )

u
3

(0, 1)

−A
3, 2( )

u, 3

(0, 1) − A
2 3( )

u
3

(0, 1)













































+   

    K
−1

2

R0

ˆ
Tc2 + O R0

2( )
2

R0

ˆ
Ts2 + O R0

2( )
−A

3, 3( )
u

33

(0, 0) − f
0, 0( )



























−
A

1,3,1( )

A
2,3,1( )

A
3( )



















u
3

(0,0) −
A

1,2,1( )

A
2,2,1( )

A
2( )



















u
0,1( ) −

0

0

A
1( )

















u
1,0( )































,      (39)

where  

K =
A

1, 1( )
A

1, 2( ) − A
2, 1( ) −A

2, 2( )

A
2, 1( )

A
1, 1( ) + A

2, 2( )
A

1, 2( )

A
1, 1( )

A
1, 2( ) + A

2, 1( )
A

2, 2( )



















,  

 

        ,  

A
i, j( ) = E

oipj
a

o
⊗ a

p
,  A

i, j,k( ) = E
oipn

g
n

j k( ) a
o

⊗ a
p
.
 

We recall that we keep O R0

2( )  terms in (38) and (35)2 3 for two reasons: they may give bending 

or torsion effects and they may become leading-order terms. If the first term on the right hand 

side of  (38) can be eliminated, then the O R0

2( )  term becomes the leading one. Based on this 

argument, we multiply (38) by a1
 and then add it to the derivative (with respect to y3) of (35)2 

multiplied by a3
. Then we take into account of (2), (3), (29) and (36) for k = 0 and n = 1 to 

obtain one scalar equation: 

                   
               

 

   (40) 

By deriving with respect to y3 equation (36) for k = 1 and n = 1, we substitute a new expression 

for   in (40) to obtain: 
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                  (41) 

in which  (see formulae (2)-(4) and (37)) : 

   
 

  

                                                                                                         

                                                   
                     (42) 

 where 
 

                                      

with
 

 

                                 

                      
and

 

u
1 333

m, n( ) = u1,333

(m,n ) − τ , 33 u2

(m, n ) + 2τ ,3 u2,3

(m, n) + τ u2,33

(m, n)( ) + k,33 u3

(m, n ) + 2 k,3 u3,3

(m , n ) + k u3,33

(m, n),
 

u
2 333

(m,n) = u2,333

(m,n) + τ ,33 u1

(m,n) + 2τ ,3 u1,3

(m,n ) + τ u1,33

(m,n),
 

u
3 333

(m, n) = u3,333

(m, n) − k,33 u1

(m, n) + 2k,3 u1,3

(m, n) + k u1,33

(m, n)( ),
 
for l ≥ 0 and m ≥ 0 . 

As for straight rod (Chen et al. 2018), the term linked to bending along y2
( in the 

right hand side of (41)) may be the leading-order term when k and τ  are sufficiently small (due to 

presence of term ).  

In the same way, by taking into account of (2), (3), (29) and (36) for k = 0 and n = 1, then we 

multiply (38) by a2  and add it to the derivative (with respect to y3) of (35)3 multiplied by a3
 to 

obtain one scalar equation : 
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                (43) 

 

By deriving with respect to y3 equation (36) for k = 0 and n = 1, we substitute a new expression 

for  in (43) and we obtain : 

 

   

                                         

                                                  (44) 

As for straight rod (Chen et al. 2018), the term linked to bending along y1
 (  

in the right hand side of (44)) may be the leading order term when the torsion curvature  can be 

small ( in the right hand side of (44)) . 

We show that we can simplify equations (41) and (44). Firstly, in formula (41), we observe that 

 and 
 
(respectively )

 
are (respectively 

is) smaller than (respectively

 

) and therefore these terms can be 

neglected.  

Secondly, by neglecting the last lines of the right hand side of formulae (41) and (44) (for 

consistency similar terms will be neglected below and lead to formulas (48)-(50)) and by dividing 

by R0

2 / 4 , we obtain: 

 

             

        

      
            

 (45) 

 

   

                                               (46)    

By taking into account of (29) and (36) for (k , n) = (0, 1) and (1, 1) then we multiply (35)2 by a2   
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and substract (35)3 multiplied by a1
, finally we divide by R0

2 / 4  and obtain the scalar equation: 

 

                                                  
 
(47) 

We observe that in (47), the torsion term  is the part of the 

leading order term. 

By considering (39) and dropping the error O R0

2( ) , we see that (45)-(47) forms three scalar 

vector equations with nine unknows which are the components of the displacement field vectors 

u
0, 0( )

,u
1, 0( )

 and u 0, 1( ) . So it remains to find six scalar equations.  

Equation (38) projected on a3 has not yet been used so we keep only the relativeO R0

2( )terms into 

the remainder to obtain the scalar equation : 

                                    

(48)

 
Now we put into the remainders the O R0

2( ) terms for equations (35)2 multiplied by a1 and a3 

respectively and also for equations (35)3 multiplied by a2 and a3 respectively :  

                      
(49) 

                   
(50)

Finally, we add (35)2 multiplied by a2  and substract (35)3 multiplied by a1  then we take into 

account of (29) and (36) for  (k , n) = (0, 1) and (1, 1) and finally we put into the remainders the 

O R0

2( ) terms to obtain the scalar equation : 

               (51) 

From Ciarlet (1998), it is easy to see that the asymmetric part of the displacement gradient is 

 and then becomes on the mean line  ( y ' = 0) : 

.                            (52) 

By taking into account of (2)-(3), equation (52) shows that the twist angle at ( y ' = 0) is : 

θ = 1

2
u2

1, 0( ) − u1

0, 1( )( ).                                  (53) 

By inserting the rod constitutive relation (32) for (k , n) = (0, 0) into (49)-(51) and by considering 

(53), we see that we have six linear algebraic equations from which the six components of u
1,0( )

and u
0, 1( )  can be expressed in terms of u

0,0( ) and θ : 
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          (54) 

in which G =
a

1, 1( )
a

1, 2( )
a

1, 3( )
a

2, 2( )
a

2, 3( )
a2

b
1, 1( )

b
1, 2( )

b
1, 3( )

b
2, 2( )

b
2, 3( ) −a1















T

,   

with a
i, j( ) = Eijo1a0 ,

 
b

i, j( ) = Eijo2ao, c
i, j( ) = Eijo3 ao. 

By substituting the rod constitutive relation (32) for (k, n) = (0, 0), (0, 1), (1, 1) (with the use of 

recursive relations (39) and (54)) into equation (45)-(48) after dropping the O R0

2( ),
 
we obtain 

four scalar rod equations for the leading order coefficient u
0,0( )  (the displacement vector on the 

mean line  ) and the twist angle   

                                                

(55)

 

 

                            

                                                             (56) 

 

   

                                                           (57) 

              

(58)  

For the ease of variational formulation of  (55)-(58), we rewrite them by using formula of product 

of derivative and formulae (2)-(4) (for (60), we use the fact that  and  

are smaller than  and can be neglected): 
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(59) 

 

                 

   

          (60) 

 

 

                         
             

(61) 

 

            

(62) 

The above system consists of two second order equations for u3

0,0( )
and θ  ((59), (62)) and two 

fourth-order equations for u1

0,0( )
, u2

0,0( )
((60)-(61)). Then at each rod edge six boundary conditions 

are needed, which will be addressed in the next section. 

7. Boundary conditions and unidimensional rod virtual work principle 

 

Now, we shall derive the rod boundary conditions and unidimensional rod virtual work principle. 

By using Green’s theorem and strong formulation (15)-(18), we obtain the tridimensional virtual 

work : 

                    (63) 

in which the test function  vanishes on . 
 

In order to write variational formulation (63), we define the element surface of the lateral 

boundary of the rod . Let slat
 measure the arc length of the boundary (denoted by ) of a 

cross section  (for s ∈ 0, L[ ]), and suppose that the unit tangent to  is given by:

 
                                                      

(64) 

We assume that the cross section of the rod is uniform, and then its lateral boundary is a 

collection of curve  defined by position vector points X given by (5) such that s ∈ 0, L[ ] and y '  

is constant. Consequently, the oriented differential surface area induced by the parametrization 

(slat , s)  of  is . Then by considering equations (8) and (64), we 
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obtain: 

                          (65) 

where ,  

with Clat 1 y1, y3( ) = − k y3( ) y1 , .           

 By inserting formula (13) and (65) into variational formulation (64), we obtain : 

         
(66) 

in which the test function  is such that w*(y) = 0on Σ0
( y3 = 0). 

 
To obtain the rod boundary conditions from (66), we need to specialize  and v to the one 

dimensional case by using Taylor expansions for them. Due to equilibrium equation (36), the first 

term of (66) is automatically satisfied up to O R0

5( ) . Due to (35), the second term of (66) is 

automatically satisfied up to O R0

4( ) . Then only the last edge integral is left and boundary 

conditions will be derived from it. 

If we take v to be arbitrary, from (66) we deduce the tridimensional boundary condition on ΣL
 

which cannot be satisfied for a rod theory obviously. Therefore, we need to specialize the test 

displacement field w*  at y3 = L  and the criterion is that the applied force and torque should 

generate the virtual work. According to this criterion, we take: 

                                                                     (67)  

Then expansion of the stress tensor (31) and the specially chosen test displacement w*
 are taken 

into the third integral of (66), as this term vanishes, we have : 

  

                                                                                          (68) 

where  

 

t̂i = tiΣL
∫ dy ', t

i
= t .a

i
, m̂1 = y2ΣL

∫ t3 dy ', m̂2 = − y1ΣL
∫ t3 dy ', m̂3 = y1t2 − y2t1( )

ΣL
∫ dy '.

 

For
 
L3

, we neglect as already done for establishing equation (48) .  

Now we show that Lk
 in (68) can be simplified. Firstly for L1

, from (35)2, we see that : 

           
(69) 

Then applying  relation (69) to (68) to replace , together with the use of the 

equilibrium equation (36) for (k, n) = (1,1) leads to : 
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               (70) 

Secondly for L2
, from (35)3, we see that : 

                                
(71) 

Then applying relation (71) to (68) to replace , together with the use of the 

equilibrium equation (36) for (k, n) = (0,1) leads to: 

               (72) 

Finally, by taking L1
and L2

 back to (68) and equating the coefficients of v*
, v1, 3

*
, v2, 3

*
and θ * on 

both sides of (68), we get the rod boundary conditions at the traction edge at y3 = L : 

L = t̂                         (73) 

= m̂1
,                  (74) 

= m̂2
,                 (75) 

= m̂3
,                (76) 

where the vector force resultant t̂ and the torque resultant m̂ = m̂i ai
 are supposed to be 

prescribed. 

In the variational formulation
 
(68), we see that the virtual vectors v*(0,0)

 and the virtual scalar 

functions v1,3

*(0,0)
, v2,3

*(0,0)
and θ * vanish at y3 = 0(which is center of gravity of Σ0

). Thus the boundary 

conditions at y3 = 0 , are : 

u
0,0( ) = u

0,0( )
,  u1,3

0,0( ) = α1, u2,3

0,0( ) = α 2,θ = θ .               (77) 

As a consequence, the vector displacement u
0,0( )

, the two rotation angles α1, α 2
 and the twist 

angleθ  are prescribed values for respectively the vector displacement u
0,0( ) and the scalar 

functions u1,3

0,0( )
, u2,3

0,0( )
 andθ . 

We derive the unidimensional rod virtual work principle. Firstly, we multiply each components 

of the virtual test vectors vi

*
 ( for i = 3, 1, 2) and the virtual twist angle to equations (59)-(62) 

respectively and we integrate each side of these equalities between 0 and L. Secondly, we 

integrate by parts  and we take into account of Neumann type boundary conditions (73)-(76) at

y3 = L (the virtual scalar functions v*
, v1,3

*
, v2,3

*
and θ * vanish at y3 = 0 ):  
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= t̂1v1

*

y3=L
+ m̂2v1,3

*

y3=L
,
 

= t̂2v2

*

y3=L
− m̂1v2,3

*

y3=L
,
                        

(78)
 

= m̂3θ *

y3=L
,
 

with   

 
 

 

     

 and 

 

            
It is easy to see that all the edge terms on the right hand side represent the virtual work done by 

the force resultant and torque resultant. This weak formulation provides a framework for 

implementing finite-element schemes.  

 

8. Conclusion and discussion 

 

The main purpose of this work is to provide a new asymptotic reduction method for constructing 

a consistent curved rod theory for linearized anisotropic elastic material. The starting point of our 

derivation is a Taylor–Young expansion of the displacement field. Then we consider the 

corresponding expansion of the deformation gradient and the stress tensor and make some 

development which are needed for the success of our procedure. More precisely we summarize 

the main idea. To write lateral boundary condition we use polar coordinates in cross section 

together with Fourier series expansion. This leads to seven equations with fifteen unknown 

coefficients displacement field. Equilibrium equations gives supplementary relations between 

stress coefficients and we show that it is possible to obtain a closed system of ten equations with 

ten unknows. The linear dependence with respect to three second order displacement coefficients 

is used to eliminate them. Elaborated calculations furnish bending and torsion terms and also lead 

to asymptotically-consistent closed three vector equations with three unknwons. By introducing 

the twist angle as a new unknown, it is possible to eliminate the two first-order displacement 

coefficients and we obtain four scalar equations with the three components of the mean line 

displacement and the twist angle as unknows. From the boundary term of the tridimensional 

variational formulation, we derive six physical and natural boundary conditions at each edge. 
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Then we formulate the unidimensional rod virtual work principle. By considering a specific 

example, comparison with classical Euler-Bernoulli rod theory and Timoshenko rod theory 

shows that our theory gives refined results. The method developed here appears to be general, 

and we think that it would be applicable to other rod problems : dynamic, double symmetric cross 

section, geometric and/or material non linearity, incompressible material, multilayered rod. 

 

Appendix: Two case studies  for respectively isotropic and transversely isotropic material. 

 

For the sake of simplicity, we consider a rod with constant curvature k(s) = k  and without 

torsion curvature of the mean line   and the volumic force f vanishes. The rod 

equilibrium equations (59)-(62) become :  

 

 

                                             

 

  

     

              (A1) 

 
 

                                         

 

One can see the parameter k brings about the coupling between the stress components. When        

k = 0, equations (A.1) degenerate to equations (27) in the paper Chen et al. 2018, which are : 

 

 

                                             

 

−σ 33,33

1, 0( )   

−σ 33,33

0, 1( )

                                                                      

(A2) 

 σ 13,3

0, 1( ) −σ 23,3

1, 0( )

 

Further, to compare with the classical beam theories (Euler-Bernoulli beam theory and 

Timoshenko rod theory), consider the isotropic material with Young’s modulus E and Poisson’s 

ratio ν, and a line force loading at the top of lateral surface along the negative y1-axis, its value 

per unit length is represented as q(y3). Then the rod equations from equations (A.2) are obtained 

by applying the recursive relations (39) and (54) as well as the constitutive relations (32), which 

are : 
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−E I u1, 3333

(0,0) = q + O(R0

2
),                (A.3) 

E I u2, 3333

(0,0) = 0,  

G I θ, 33 = 0,  

where G = E

2 1+ν( )  is the shear modulus, is the planar second moment of the cross-

section,  and  are respectively the circumference and area of the cross section. 

One can see our theory actually recover the results of the classical rod theories.  

We compare (A.3) with two classical rod theories Euler-Bernoulli rod theory and Timoshenko 

rod theory. From (A.3), one can see for deflection u1

(0,0)
 to the leading order, our theory recover 

the result of both classical theories. On the other hand, for displacement u3

(0,0)
, Euler-Bernoulli 

rod theory assumes it to be zero and Timoshenko’s theory assumes it to be zero to the leading 

order, and our results show that it depends on the derivative of the loading q(y3). Both classical 

theories assume u2

(0,0)
 to be zero while in our rod theory, it depends on the external loadings at  

two ends. The two classical theories do not give the equation for θ  explicitly. We conclude that, 

compared with the two classical rod theories, our rod theory is refined and capable of capturing 

the rod deformation with higher level accuracy and is also applicable in a much wider range of 

loadings. 

In the following, we give two examples for isotropic material and transversely isotropic material. 

First we give the loading conditions and the material parameters. Consider a straight rod 

subjected to a uniform line force ( q(y3)  is a constant) along the negative y1-axis with two 

clamped ends. 

 

The line force is represented as  where δ  is the Kronecker delta function. Since 

 taking it into , we have the Fourier coefficients of  as 

  m=1, 2, 3…….           (A.4) 

And the boundary conditions from formula (77) are : 

u
0,0( ) = 0, u1,3

0,0( ) = 0, u2,3

0,0( ) = 0, θ = 0   at y3
= 0, L.            (A.5) 

For the materials, we consider the isotropic material with parameter E and ν  (Young’s modulus 

and Poisson’s ratio), and the transversely isotropic material with five parameters E1
 , E3

, ν21
, ν31 

and G13
. These parameters are interpreted as E j =

normalstressσ jj

normalstrainε jj causedbyσ jj
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 and Gij =
shearingstressσ ij

shearingstrain2ε ij causedbyσ ij

. 

For the isotropic material, from equation (A.3) (specifying q(y3)= q ) and equations (A.5), the 

displacement components scaled by the quantity q/E (L/R0)4 are obtained as (denoted by ui
) 

 

 

 

 

                    (A.6) 

 

where yi = yi / R0
, (i = 1, 2), s = s / L  and ε = R0 / L . The twist angle is θ = 0.  

For the transversely isotropic material, we have the rod equations similar to equations (A.3), and 

the differences are E, G in equations (A.3) being replaced by E3 and G13 respectively. The 

solutions for the displacement components scaled by q/E (L/R0)
4 are 

 

         

         

 

               (A.7) 

 

and the twist angle is stillθ = 0.  
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