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Degeneration of families of projective hypersurfaces and Hodge

conjecture

Johann Bouali

October 7, 2024

Abstract

We prove by induction on dimension the Hodge conjecture for smooth complex projective varieties.
Let X be a smooth complex projective variety. Then X is birational to a possibly singular projective
hypersurface, hence to a smooth projective variety E0 which is a component of a normal crossing
divisor E = ∪

r

i=0Ei ⊂ Y which is the singular fiber of a pencil f : Y → A1 of smooth projective
hypersurfaces. Using the smooth hypersurface case ([5] theorem 1), the nearby cycle functor on mixed
Hodge module with rational de Rham factor and the induction hypothesis, we prove that a Hodge
class of E0 is absolute Hodge, more precisely the locus of Hodge classes inside the algebraic vector
bundle given the De Rham cohomology of the rational deformation of E0 is defined over Q. By [4]
theorem 4, we get the Hodge conjecture for E0. By the induction hypothesis we also have the Hodge
conjecture for X.
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1 Introduction

The main result of this article is an inductive proof of the Hodge conjecture using the results of [4] and [5].
More precisely, assuming the Hodge conjecture for smooth complex projective varieties of dimension less
or equal to d−1, the property of satisfying the Hodge conjecture for connected smooth complex projective
varieties of dimension d is a birational invariant (proposition 1). Let X be a connected smooth complex
projective variety of dimension d. then X is birational to a possibly singular hypersurface Y0X ⊂ Pd+1

C of
degree lX := deg(C(X)/C(x1, · · · , xd)). Consider

f : Y ′
C = V (f̃) ⊂ Pd+1

C × P(lX) → P(lX)

the universal family of projective hypersurfaces of degree lX , and 0X ∈ P(lX) the point corresponding to
Y0X . Denote ∆ ⊂ P(lX) the discriminant locus parametrizing the hypersurfaces which are singular. Let

S̄ := 0̄X
Q
⊂ P(lX) the Q̄-Zariski closure of 0X inside P(lX). If Y0X is smooth, then X satisfy the hodge

conjecture since Y0X satisfy the Hodge conjecture by [5] and X is birational to Y0X , using the induction
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hypothesis. Hence, we may assume that Y0X is singular, that is 0X ∈ ∆. Then, S̄ ⊂ ∆ since ∆ ⊂ P(lX)
is defined over Q. Let T̄ ⊂ P(lX) be an irreducible closed subvariety of dimension dim(S̄) + 1 defined
over Q̄ such that

S̄ ⊂ T̄ and T := T̄ ∩ (P(lX)\∆) 6= ∅.

We take for T̄ = V (f1, · · · , fs) ⊂ P(lX) an irreducible complete intersection defined over Q̄ which intersect
∆ properly and such that

• V (f1) ⊃ sing(∆) ∪ S̄

• for each r ∈ [1, · · · , s], V (f1, · · · , fr) ⊃ sing(V (f1, · · · , fr−1)∩∆)∪S̄ contain inductively the singular
locus of the intersection with ∆ and S̄.

Then by the weak Lefchetz hyperplane theorem for homotopy groups, T ⊂ P(lX)\∆ is not contained in
a weakly special subvariety since

iT∗ : π1(TC) → π1(P(lX)\∆), (∆ = ∆C)

is an isomorphism if dim T̄ ≥ 2 (i.e. dim S̄ ≥ 1) and surjective if dim T̄ = 1 (i.e. dim S̄ = 0). We have
then T̄ ∩∆ = S̄∪ S̄′, where S̄′ ⊂ T̄ is a divisor. We then consider the family of algebraic varieties defined
over Q̄

f̃X : YT̄ o
ǫ
−→ Y ′

T̄ o

f×P(lX )T̄
o

−−−−−−−→ T̄ o

where

• f̃X : Y
ǫ
−→ Y ′

T̄

f×P(lX )T̄
−−−−−−→ T̄ with ǫ : (Y, E ′) → (Y ′

T̄
,Y ′

S̄
∪ Y ′

S̄′) is a desingularization over Q, in

particular E ′ = E ∪ E ′′ with E = ∪ri=0Ei := f̃−1
X (S̄) ⊂ Y which is a normal crossing divisor, in

particular YT = Y ′
T ,

• S ⊂ S̄ is the open subset such that S is smooth and f̃X ×T̄ S : EI := ∩i∈IEi → S is smooth
projective for each I ⊂ [0, . . . , r], T̄ o ⊂ T̄ is an open subset such that T̄ o∩∆ = S and T o := T̄ o∩T
is smooth, for simplicity we denote again E for the open subset ES := f̃−1

X (S) ⊂ E ,

• t ∈ S(C) is the point such that Y ′
C,t = Y0X and ǫt : E0 := E0,C,t → Y0X is surjective (there is at

least one component of E dominant over Y0X since E is dominant over Y0X as E is dominant over
Y ′
S̄

), in particular E0 is birational to Y0X , hence E0 is birational to X . We denote Ei := Ei,C,t for
each 0 ≤ i ≤ r and E := EC,t = ∪ri=0Ei.

Using [4] and [5], assuming the Hodge conjecture for smooth projective varieties of dimension less or
equal to d − 1, we then prove the Hodge conjecture for the Ei, more specifically for E0 as follows : Let
p ∈ Z. By the hard Lefchetz theorem on H∗(E0), we may assume that 2p ≤ d. We then consider (see
section 2.4) the morphism of mixed Hodge module over S (in fact of geometric variation of mixed Hodge
structures over S) given by the specialization map

SpE/f̃X : E2p
Hdg(E/S) → H2pψSEHdg(YT o/T o) = ψSE

2p
Hdg(YT o/T o),

whose de Rham part are morphism of filtered vector bundle over S with Gauss-Manin connexion defined
over Q̄. Moreover, we have, see lemma 1, an isomorphism of variation of mixed Hodge structures over S

cE := H2p−1(f̃X ◦ iE)∗c(Q
Hdg
E ) ◦ cV : E2p−1

Hdg,E(YT̄ o/T̄ o)
∼
−→

φSE
2p−1
Hdg,E(YT o/T o)

∼
−→ ker(SpE/f̃X : E2p

Hdg(E/S) → ψSE
2p
Hdg(YT o/T o)).

Consider the exact sequence of variation of mixed Hodge structure over S

0 →W2p−1E
2p
Hdg(E/S) → E2p

Hdg(E/S)
(i∗i )0≤i≤r:=q
−−−−−−−−→ ⊕ri=0E

2p
Hdg(Ei/S) → 0.
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It induces the exact sequence of presheaves on SanC ,

HL2p,p(EC/SC)
q
−→ ⊕ri=0HL

2p,p(Ei,C/SC)
e
−→

J(W2p−1E
2p
Hdg(EC/SC)) := Ext1(QHdgS ,W2p−1E

2p
Hdg(EC/SC))

ι
−→ Ext1(QHdgS , E2p

Hdg(EC/SC))

where HL2p,p(EC/SC) ⊂ E2p
DR(EC/SC), HL2p,p(Ei,C/SC) ⊂ E2p

DR(Ei,C/SC) are the locus of Hodge classes.

Since the monodromy of R2pf̃X∗Q
an
YTo,C

is irreducible as iT o∗ : π1(T oC) → π1(TC) → π1(P(lX)\∆) is
surjective, we have

SpE/f̃X (ker q) := SpE/f̃X (W2p−1E
2p
DR(E/S)) = 0, (1)

using the fact that there exists a neighborhood VS̄∪S̄′ ⊂ T̄C of S̄C ∪ S̄′
C in T̄C for the usual complex

topology such that the inclusion iS̄C∪S̄
′
C

: S̄C∪ S̄′
C →֒ VS̄∪S̄′ admits a retraction r : VS̄∪S̄′ → S̄C∪ S̄′

C which

is an homotopy equivalence. On the other hand, since f̃X ◦ i0 : E0 → S is a smooth projective morphism,
E2p
Hdg(E0/S) is a variation of pure Hodge structure over S polarized by Poincare duality < −,− >. In

particular, by the proof of Deligne semi-simplicity theorem using Schimdt results, we have a splitting of
variation of pure Hodge structure over S

E2p
Hdg(E0/S) = q(kerSpE/f̃X ) ⊕ q(kerSpE/f̃X )⊥,<−,−>, πK : E2p

Hdg(E0/S) → q(kerSpE/f̃X ). (2)

Let λ ∈ F pH2p(Ean0 ,Q), where we recall E0 = E0,C,t and E = EC,t = ∪ri=0Ei. Consider then λ̃ ∈

H2p(Ean,Q), such that q(λ̃) = λ, and

SpE/f̃X (λ̃) ∈ SpE/fX (H2p(Ean,Q)) ⊂ i∗tψSR
2pf̃X∗QYan

To,C
.

By (2), we have

λ = λK + λL ∈ F pH2p(Ean0 ,Q), λK ∈ i∗tF
pq(kerSpE/f̃X )Q, λ

L ∈ i∗tF
pq(kerSpE/f̃X )⊥Q .

By (1), if λ ∈ i∗tF
pq(kerSpE/f̃X )⊥Q , the locus of Hodge classes passing through λ

V
p
S(λ) := VS(λ) ∩ F pE2p

DR(E0,C/SC) ⊂ E2p
DR(E0,C/SC),

inside the De Rham vector bundle of f̃X ◦ iE0 : E0 → S satisfy

V
p
S(λ) = q(Sp−1

E/f̃X
(VpS(SpE/f̃X (λ̃)))) ∩ π−1

K (0) ⊂ E2p
DR(E0,C/SC), (3)

where

• VS(λ) ⊂ E2p
DR(E0,C/SC), VS(SpE/f̃X (λ̃)) ⊂ E2p

DR,VS
(YT o,C/T

o
C), are the flat leaves, e.g. VS(λ) :=

πS(λ × S̃anC ) where πS : H2p(Ean,C) × S̃anC → E2p,an
DR (EC/SC) is the morphism induced by the

universal covering πS : S̃anC → SanC ,

• q := q ⊗ C : E2p
DR(EC/SC) → E2p

DR(E0,C/SC) is the quotient map.

• SpE/f̃X := SpE/f̃X ⊗ C : E2p
DR(EC/SC) → i∗modS E2p

DR,VS
(YT o,C/T

o
C).

Now,

• If SpE/f̃X (λ̃) = 0, we have by lemma 1 applied to f̃X : YT̄ o → T̄ o, λ̃ = cE(λ̃) with λ̃ ∈

F pH2p−1
E (YanC,C ,Q), where C ⊂ T̄ oC is a smooth transversal slice of SC at t in particular dim(C) = 1,

C ∩ SC = {t} and YC is smooth, and

V
p
S(λ̃) = cE(VpS(λ̃)), VpS(λ̃) ⊂ E2p−1

DR,EC
(YT̄ o,C/T̄

o
C),
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with
cE : (E2p−1

DR,EC
(YT̄ o,C/T̄

o
C), F,W ) → (E2p

DR(EC/SC), F,W ).

We have for each t′ ∈ S(C), the isomorphism

⊕cardI=2F
pH2p(EanIC,t′ ,Q) = F p GrW2p H

2p−2(( ¯YC,C′\Et′)
an,Q)

c(Z(YC,C′\Et′ ))
−−−−−−−−−−→ F p GrW2p H

2p−1
E ( ¯YanC,C′ ,Q),

where C′ ⊂ T̄ oC is a smooth transversal slice of S at t′ (hence YC′ is smooth) and ȲC′ is a smooth
compactification of YC′ . Hence, assuming the Hodge conjecture for smooth projective varieties of
dimension less or equal to d− 1,

V
p
S(λ) ⊂ GrW2p E

2p−1
DR,EC

(YT̄ o,C/T̄
o
C), VpS(λ) = cE(VpS(λ)) ⊂ E2p

DR(E0C/SC) ⊂ GrW2p E
2p
DR(EC/SC)

are defined over Q̄ and its Galois conjugates are also components of the locus of Hodge classes,
since dim(EIC,t′) = d− 1 for I ⊂ [0, · · · , r] such that cardI = 2 and t′ ∈ S(C).

• Consider now the case where λ ∈ i∗tF
pq(kerSpE/f̃X )⊥Q . By [5] theorem 1, the Hodge conjecture

holds for projective hypersurfaces, hence

V
p
S(SpE/f̃X (λ̃)) = V

p
T o(SpE/f̃X (λ̃)) ∩ p−1(SC) ⊂ E2p

DR,VS
(YT o,C/T

o
C),

where p := p⊗C : E2p
DR,V0

(YT o,C/T
o
C) → T̄ oC is the projection, is an algebraic subvariety defined over

Q̄ and its Galois conjugates are also components of the locus of Hodge classes, where the equality
follows from [6] lemma 2.11. Hence, using (3),

V
p
S(λ) = q(Sp−1

E/f̃X
(VpS(SpE/f̃X (λ̃)))) ∩ π−1

K (0) ⊂ E2p
DR(E0C/SC)

is an algebraic subvariety defined over Q̄ and its Galois conjugates are also components of the locus
of Hodge classes.

Hence,

• V
p
S(λK) ⊂ E2p

DR(E0C/SC) is an algebraic subvariety defined over Q̄ and its Galois conjugates are
also components of the locus of Hodge classes gives, thus by [4] theorem 4,

λK = [ZK ] ∈ H2p(Ean0 ,Q), ZK ∈ Zp(E0),

• V
p
S(λS) ⊂ E2p

DR(E0C/SC) is an algebraic subvariety defined over Q̄ and its Galois conjugates are also
components of the locus of Hodge classes, thus by [4] theorem 4,

λL = [ZL] ∈ H2p(Ean0 ,Q), ZL ∈ Zp(E0).

We recall the key point is that since V
p
S(λL) ⊂ E2p

DR(E0C/SC) is an algebraic subvariety defined
over Q̄ and its Galois conjugate are also components of the locus of Hodge classes, we have for each
θ ∈ Aut(C/Q),

θ(λL) ∈ Gal(Q̄/Q)(VpS(λL)θ) ⊂ E2p
DR(E0C,θ/SC,θ),

which implies that θ(λL) ∈ H2p(Ean0,θ,Q) ⊂ H2p(Ean0,θ,C), that is λL ∈ H2p(Ean0 ,Q) is absolute
Hodge and we apply [4] corollary 1.

Thus,
λ = λK + λL = [Z] ∈ H2p(Ean0 ,Q), Z := ZK + ZL ∈ Zp(E0).

Since p ∈ Z and λ ∈ F pH2p(Ean0 ,Q) are arbitrary, this proves the Hodge conjecture for E0. Since X is
birational to E0, the Hodge conjecture for E0 and the induction hypothesis implies the Hodge conjecture
for X .

I am grateful to professor F.Mokrane for help and support during this work.
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2 Preliminaries and notations

2.1 Notations

• Denote by Top the category of topological spaces and RTop the category of ringed spaces.

• Denote by Cat the category of small categories and RCat the category of ringed topos.

• For S ∈ Cat and X ∈ S, we denote S/X ∈ Cat the category whose objects are Y/X := (Y, f) with
Y ∈ S and f : Y → X is a morphism in S, and whose morphisms Hom((Y ′, f ′), (Y, f)) consists of
g : Y ′ → Y in S such that f ◦ g = f ′.

• Let (S, OS) ∈ RCat a ringed topos with topology τ . For F ∈ COS (S), we denote by k : F → Eτ (F )
the canonical flasque resolution in COS (S) (see [3]). In particular for X ∈ S, H∗(X,Eτ (F ))

∼
−→

H∗
τ (X,F ).

• For f : S ′ → S a morphism with S,S ′ ∈ RCat, endowed with topology τ and τ ′ respectively, we
denote for F ∈ COS (S) and each j ∈ Z,

– f∗ := HjΓ(S, k ◦ ad(f∗, f∗)(F )) : Hj(S, F ) → Hj(S ′, f∗F ),

– f∗ := HjΓ(S, k ◦ ad(f∗mod, f∗)(F )) : Hj(S, F ) → Hj(S ′, f∗modF ),

the canonical maps.

• For m : A → B, A,B ∈ C(A), A an additive category, we denote c(A) : Cone(m : A → B) → A[1]
and c(B) : B → Cone(m : A→ B) the canonical maps.

• Denote by Sch ⊂ RTop the subcategory of schemes (the morphisms are the morphisms of locally
ringed spaces). We denote by PSch ⊂ Sch the full subcategory of proper schemes. For a field k, we
consider Sch /k := Sch / Spec k the category of schemes over Spec k. The objects are X := (X, aX)
with X ∈ Sch and aX : X → Spec k a morphism and the morphisms are the morphisms of schemes
f : X ′ → X such that f ◦ aX′ = aX . We then denote by

– Var(k) = Schft /k ⊂ Sch /k the full subcategory consisting of algebraic varieties over k, i.e.
schemes of finite type over k,

– PVar(k) ⊂ QPVar(k) ⊂ Var(k) the full subcategories consisting of quasi-projective varieties
and projective varieties respectively,

– PSmVar(k) ⊂ SmVar(k) ⊂ Var(k), PSmVar(k) := PVar(k) ∩ SmVar(k), the full subcategories
consisting of smooth varieties and smooth projective varieties respectively.

• Denote by AnSp(C) ⊂ RTop the subcategory of analytic spaces over C, and by AnSm(C) ⊂ AnSp(C)
the full subcategory of smooth analytic spaces (i.e. complex analytic manifold).

• For X ∈ Var(k) and X = ∪i∈IXi with ii : Xi →֒ X closed embeddings, we denote X• ∈
Fun(∆,Var(k)) the associated simplicial space, with for J ⊂ I, iIJ : XI := ∩i∈IXi →֒ XJ := ∩i∈JXi

the closed embedding.

• Let (X,OX) ∈ RTop. We consider its De Rham complex Ω•
X := DR(X)(OX).

– Let X ∈ Sch. Considering its De Rham complex Ω•
X := DR(X)(OX), we have for j ∈ Z its

De Rham cohomology Hj
DR(X) := Hj(X,Ω•

X).

– Let X ∈ Var(k). Considering its De Rham complex Ω•
X := Ω•

X/k := DR(X/k)(OX), we have

for j ∈ Z its De Rham cohomology Hj
DR(X) := Hj(X,Ω•

X). The differentials of Ω•
X := Ω•

X/k

are by definition k-linear, thus Hj
DR(X) := Hj(X,Ω•

X) has a structure of a k vector space.
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– Let X ∈ AnSp(C). Considering its De Rham complex Ω•
X := DR(X)(OX), we have for j ∈ Z

its De Rham cohomology Hj
DR(X) := Hj(X,Ω•

X).

• For Y ∈ Var(Q) and X = V (I) = V (f1, . . . , fr) ⊂ YC, we consider X = V (Ĩ) = V (f̃1, . . . , f̃r) ⊂
Y × AsQ the canonical rational deformation, where

if f =
∑

I⊂[1,...,d]n

aIx
n1
1 · · ·xnn

n ∈ C[x1, . . . , xn],

f̃ =
∑

I⊂[1,...,d]n

aIx
n1
1 · · ·xnn

n ∈ Q[(aI)I⊂[1,...,d]n , x1, . . . , xn].

• For X ∈ AnSp(C), we denote α(X) : CX →֒ Ω•
X the embedding in C(X). For X ∈ AnSm(C),

α(X) : CX →֒ Ω•
X is an equivalence usu local by Poincare lemma.

• We denote In := [0, 1]n ∈ Diff(R) (with boundary). For X ∈ Top and R a ring, we consider its
singular cochain complex

C∗
sing(X,R) := (ZHomTop(I∗, X)∨) ⊗R

and for l ∈ Z its singular cohomology H l
sing(X,R) := HnC∗

sing(X,R). For f : X ′ → X a continuous
map with X,X ′ ∈ Top, we have the canonical map of complexes

f∗ : C∗
sing(X,R) → C∗

sing(X,R), σ 7→ f∗σ := (γ 7→ σ(f ◦ γ)).

In particular, we get by functoriality the complex

C∗
X,R sing ∈ CR(X), (U ⊂ X) 7→ C∗

sing(U,R)

We recall that

– For X ∈ Top locally contractible, e.g. X ∈ CW, and R a ring, the inclusion in CR(X)
cX : RX → C∗

X,R sing is by definition an equivalence top local and that we get by the small

chain theorem, for all l ∈ Z, an isomorphism H lcX : H l(X,RX)
∼
−→ H l

sing(X,R).

– For X ∈ Diff(R), the restriction map

rX : ZHomDiff(R)(I
∗, X)∨ → C∗

sing(X,R), w 7→ w : (φ 7→ w(φ))

is a quasi-isomorphism by Whitney approximation theorem.

• Let S ∈ AnSm(C) and L ∈ Shv(S) a local system. Consider E := L ⊗ OS ∈ VectD(S) the
corresponding holomorphic vector bundle with integrable connection ∇. Let πS : S̃ → S be the
universal covering. Consider the canonical fiber

L0 := Γ(S̃, π∗
SL) = Γ(S̃, π∗mod

S E)∇.

For λ ∈ L0, we will consider the flat leaf

VS(λ) := πS(λ× S̃) ⊂ E, πS : L0 × S̃ → E, πS(ν, z) := (ν(z), πS(z)).

Note that for t ∈ S, VS(λ) ∩ p−1
S (t) = π1(S, t)(λ) is the orbit of λ under the monodromy action,

where pS : E → S is the projection.
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2.2 Birational projective varieties and Hodge conjecture

In this subsection, we recall that assuming the Hodge conjecture for smooth projective varieties of di-
mension less or equal to d − 1, the property of satisfying the Hodge conjecture for connected smooth
projective varieties of dimension d is a birational invariant :

Proposition 1. (i) Let X ∈ PSmVar(C) connected of dimension d. Let ǫ : X̃Z → X be the blow up of
X along a smooth closed subvariety Z ⊂ X. Assume the Hodge conjecture hold for smooth complex
projective varieties of dimension less or equal to d − 1. Then the Hodge conjecture hold for X if
and only if it hold for X̃Z .

(ii) Let X,X ′ ∈ PSmVar(C) connected of dimension d. Assume the Hodge conjecture hold for smooth
complex projective varieties of dimension less or equal to d − 1. If X is birational to X ′, then the
Hodge conjecture hold for X if and only if it hold for X ′

Proof. (i): Follows from the fact that

(ǫ∗,⊕cl=1iE∗((−).hl−1)) : Hk(X,Q) ⊕⊕cl=1H
k−2l(E,Q) → Hk(X̃Z ,Q)

is an isomorphism of Hodge structures for each k ∈ Z, where c = codim(Z,X), iE : E →֒ X̃Z is the closed
embedding, ǫ|E : E → Z being a projective vector bundle.
(ii):Follows from (i) since if π : Xo → X ′ is a birational map, Xo ⊂ X being an open subset, then X is
connected to X ′ by a sequence of blow up of smooth projective varieties with smooth center by [1].

2.3 A family of smooth projective hypersurfaces associated to a smooth pro-

jective variety

In this subsection, we recall that given a smooth complex projective variety X , there exists a family
of smooth complex projective hypersurfaces which degenerates into a normal crossing divisor with one
irreducible component birational to X .

Proposition 2. Let X ∈ PSmVar(C) connected of dimension d. Then there exists a family of smooth
projective hypersurfaces fX : Y → A1

C with

• Y ∈ SmVar(C), fX flat projective,

• Ys := f−1
X (s) ⊂ Pd+1

C for s ∈ A1
C\0 are smooth projective hypersurfaces,

• E := f−1
X (0) = ∪ri=0Ei = ǫ−1(Y0) ⊂ Y is a normal crossing divisor, where Y0 ⊂ Pd+1

C is a
possibly singular hypersurface birationnal to X, ǫ : (Y,E) → (Y ′, Y0) a desingularization, and E0 is
birational to X,

Proof. See [2] lemma 1.5.8 . It use the fact that X is birational to a possibly singular projective hyper-
surface Y0 and consider the desingularization of a generic pencil f ′

X : Y ′ = V (f) ⊂ Pd+1
C × A1

C → A1
C

passing through Y0 and fX = f ′
X ◦ ǫ.

2.4 The nearby cycle functor and the specialization map

Recall from [3] that for k ⊂ C a subfield and S ∈ Var(k) quasi-projective, and l : S →֒ S̃ a closed
embedding with S̃ ∈ SmVar(k), we have the full subcategory

ι : MHMk,gm(S) →֒ PShDfil,S(S̃) ×I P (SanC )

consisting of geometric mixed Hodge module whose De Rham part is defined over k, where, using the
fact that the V -filtration is defined over k, PShD(1,0)fil,S(S̃) ×I Pfil(SanC ) is the category
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• whose objects are ((M,F,W ), (K,W ), α) where (M,F,W ) is a filtered DS̃ module supported on S,

where l : S →֒ S̃ is a closed embedding and S̃ ∈ SmVar(k), (K,W ) is a filtered Perverse sheaf on
SanC , and α : l∗(K,W ) ⊗ C → DR(S̃)((M,W )an) is an isomorphism in Dfil(S̃

an
C ).

• whose morphism between ((M,F,W ), (K,W ), α) and ((M ′, F,W ), (K ′,W ), α′), are couples of mor-
phisms (φ : (M,F,W ) → (M ′, F,W ), ψ : (K,W ) → (K ′,W )) such that φ ◦ α = α′ ◦ ψ.

Then, by [3], we get for S ∈ Var(k) quasi-projective and l : S →֒ S̃ is a closed embedding with S̃ ∈
SmVar(k) an embedding

ι : D(MHMk,gm(S)) →֒ DDfil,S(S̃) ×I D(SanC )

consisting of mixed Hodge module whose De Rham part is defined over k, where DD(1,0)fil,S(S̃) ×I
Dfil,c(S

an
C ) is the category

• whose objects are ((M,F,W ), (K,W ), α) where (M,F,W ) is a complex of filtered DS̃ module sup-
ported on S, (K,W ) is a filtered complex of presheaves on SanC whose cohomology are constructible
sheaves, and α : l∗(K,W ) ⊗ C → DR(S̃)((M,W )an) is an isomorphism in Dfil(S̃

an
C ).

• whose morphism are given in [3],

We have then the six functors formalism :

D(MHMk,gm(−)) : Var(k) 7→ TriCat, S 7→ D(MHMk,gm(S)), (f : T → S) 7→

(f∗, f∗) : D(MHMk,gm(S)) → D(MHMk,gm(T )), (f!, f
!) : D(MHMk,gm(T )) → D(MHMk,gm(S))

and for D ⊂ S a (Cartier) divisor the nearby cycle functor

ψD : D(MHMk,gm(S)) → D(MHMk,gm(D)),

ψD((M,F,W ), (K,W ), α) := (ψD(M,F,W ), ψD(K,W ), ψD(α)).

For T ∈ Var(k) and ǫ• : T• → T a desingularization with T• ∈ Fun(∆, SmVar(k)), we have

Z
Hdg
T := a∗HdgT ZHdg = (ǫ•∗Ezar(OT• , F,W ), ǫ•∗Eusu(ZTan

•
,W ), α(T•))

For f : X → S a projective morphism with X,S ∈ SmVar(k), we denote

EHdg(X/S) := f∗Z
Hdg
X := (

∫
f

(OX , Fb), Rf∗ZXan
C
, f∗α(X)) ∈ D(MHMk,gm(S))

and EjHdg(X/S) := HjEHdg(X/S) for j ∈ Z. If moreover Z ⊂ X is a closed subset, we denote

EHdg,Z(X/S) := f∗ΓHdgZ Z
Hdg
X := (

∫
f

ΓHdgZ (OX , Fb), Rf∗RΓZZXan
C
, f∗ΓZα(X)) ∈ D(MHMk,gm(S))

and EjHdg,Z(X/S) := HjEHdg,Z(X/S) for j ∈ Z. For f : X →֒ PN × S
p
−→ S a projective morphism with

X,S ∈ Var(k), S smooth, we denote

EHdg(X/S) := f∗Z
Hdg
X := (

∫
p

Γ∨,Hdg
X (OPN×S , F ), Rf∗ZXan

C
, f∗α(X)) ∈ D(MHMk,gm(S))

and EjHdg(X/S) := HjEHdg(X/S) for j ∈ Z. In the particular case where EjHdg(X/S) is a variation of
mixed Hodge structure, the first factor of

EjHdg(X/S) := (EjDR(X/S), Rjf∗ZXan
C
, Hjf∗α(X)) ∈MHMk,gm(S)

is a vector bundle.
We then have the specialization map :
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Definition-Proposition 1. Let k ⊂ C be a subfield.

(i) Let f ′ : X ′ → T be a projective morphism with X ′, T ∈ SmVar(k). Assume that

– fo := f ⊗T T : Xo → T o is smooth, T o ⊂ T is an open subset,

– X ′
S := f−1(S) ⊂ X ′, S := T \T o. We have by definition Xo = X ′\X ′

S.

We have then, see [3], the distinguished triangles in D(MHMk,gm(XS)),

Z
Hdg
X′

S
:= i∗X′

S
Z
Hdg
X′

SpX′
S

/X′

−−−−−−→ ψX′
S
Z
Hdg
Xo := (ψX′

S
(OX′ , F ), ψX′

S
ZXo , ψX′

S
α(X ′))

c(ψX′
S
Z
Hdg
Xo )

−−−−−−−−→ φX′
S
Z
Hdg
Xo := Cone(SpX′/XS

)
c(ZHdg

X′
S

)

−−−−−→ Z
Hdg
X′

S
[1].

Applying the functor (f ′◦iX′
S
)∗, we obtain the generalized distinguished triangle in D(MHMk,gm(S))

EHdg(X
′
S/S)

spX′
S

/f :=(f◦iX′
S
)∗SpX′

S
/X′

−−−−−−−−−−−−−−−−−−→

(f ′ ◦ iX′
S

)∗(ψX′
S
Z
Hdg
Xo ) = ψ0EHdg(X

o/T o)
(f ′◦iX′

S
)∗c(ΦX0Z

Hdg
Xo )

−−−−−−−−−−−−−−→

(f ′ ◦ iX′
S

)∗(φXSZ
Hdg
Xo ) = φSEHdg(Xo/T o)

(f ′◦iX′
S
)∗c(Z

Hdg

X′ )

−−−−−−−−−−−→ EHdg(X ′
S/S)[1]

(ii) Let f : X → T be a projective morphism with X,T ∈ SmVar(k). Assume that

– fo := f ⊗T T o : Xo → T o is smooth, T o ⊂ T an open subset

– S := T \T o, E := f−1(S) = ∪ri=0Ei ⊂ X is a normal crossing divisor and that for I ⊂ [0, . . . r],
f0,I := f|EI

: EI := ∩i∈IEi → S are smooth. We have by definition Xo = X\E.

Denote for I ⊂ J ⊂ [0, . . . r], iJI : EJ →֒ EI and iI : EI →֒ E, iE : E →֒ X the closed embeddings.
In this particular case, c.f. [8], the distinguished triangle in D(MHMk,gm(E)) given in (i) become

Z
Hdg
E := i∗EZ

Hdg
X = ((i•∗Ω•

E• , F,W ), (ZE• ,W ), α(E•))
SpE/X
−−−−→

ψEZ
Hdg
Xo = ((i∗modE Ω•

X/T (logE), F,W ), ψEZXo , ψEα(X))
c(ψEZ

Hdg
Xo )

−−−−−−−→

φEZ
Hdg
Xo := Cone(SpE/X)

c(ZHdg
E )

−−−−−→ Z
Hdg
E [1].

Recall the map SpE/X is the defined as the factorization

Z
Hdg
X

ad(i∗E ,iE∗)(Z
Hdg
X )

−−−−−−−−−−−→ Z
Hdg
E

SpE/X
−−−−→ ψEZ

Hdg
Xo .

Applying the functor (f ◦ iE)∗, we obtain the generalized distinguished triangle in D(MHMk,gm(S))

EHdg(E/S)
SpE/f :=(f◦iE)∗SpE/X
−−−−−−−−−−−−−−−→ (f ◦ iE)∗(ψEZ

Hdg
Xo ) = ψSEHdg(Xo/T o)

(f◦iE)∗c(ψEZ
Hdg
Xo )

−−−−−−−−−−−−→ (f ◦ iE)∗(φEZ
Hdg
Xo ) = φSEHdg(Xo/T o)

(f◦iE)∗c(Z
Hdg
E )

−−−−−−−−−−→ EHdg(E/S)[1].

If f = f ′ ◦ ǫ where ǫ : (X,E) → (X,XS) is a desingularization, we have SpXS/f ′ = SpE/f ◦ ǫ
∗.

Proof. See [8].

Lemma 1. Let k ⊂ C be a subfield. Let f : X → T be a projective morphism with X,T ∈ SmVar(k).
Assume that
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• fo := f ⊗T T o : Xo → T o is smooth of relative dimension n, T o ⊂ T an open subset

• S := T \T o = V (s) ⊂ T is a divisor, E := f−1(S) = ∪ri=0Ei ⊂ X is a normal crossing divisor
and that for I ⊂ [0, . . . r], f0,I := f|EI

: EI := ∩i∈IEi → S are smooth. We have by definition
Xo = X\E.

Denote j0 : Eo0 := E0\ ∪
r
i=1 Ei

j′0−→ E0
i0−→ E the embedding.

(i) We have, for each k ∈ Z, a canonical map in MHMk,gm(S)

cE : Ek−1
Hdg,E(X/T )

cV−−→ φSE
k−1
Hdg(X

o/T o)
Hk−1(f◦iE)∗c(Q

Hdg
E )

−−−−−−−−−−−−−−→ EkHdg(E/S).

(ii) If H2p−1(Xt,Q) = H2p−2(Xt,Q) = 0 for t ∈ T \S, then

cE : Ek−1
Hdg,E(X/T )

cV−−→ φSE
k−1
Hdg(X

o/T o)

Hk−1(f◦iE)∗c(Q
Hdg
E )

−−−−−−−−−−−−−−→ ker(spE/f : EkHdg(E/S) → ψSE
k
Hdg(X

o/T o)).

is an isomorphism.

Proof. (i):See [8] for the definition of the map cV . Recall that V ar = DR(S)(s).
(ii):Follows from the exact sequences in MHMk,gm(S)

· · · → ψSE
k−2
Hdg(X

o/T o) → Ek−1
Hdg,E(X/T )

cV−−→ φSE
k−1
Hdg(Xo/T o)

V
−→ ψSE

k−1
Hdg(X

o/T o) → · · · ,

· · · → ψSE
k−1
Hdg(Xo/T o)

Hk−1(f◦iE)∗c(ψEQ
Hdg
Xo )

−−−−−−−−−−−−−−−−→

φSE
k−1
Hdg(X

o/T o)
Hk−1(f◦iE)∗c(Q

Hdg
E )

−−−−−−−−−−−−−−→ EkHdg(E/S)
SpE/f
−−−−→ ψSE

k
Hdg(Xo/T o) → · · · ,

given in [8] for the first one.

3 Hodge conjecture for smooth projective varieties

Theorem 1. Let X ∈ PSmVar(C). Then Hodge conjecture hold for X. That is, if p ∈ Z and λ ∈
F pH2p(Xan,Q), λ = [Z] with Z ∈ Zp(X).

Proof. The Hodge conjecture is true for curves and surfaces. Assume that the Hodge conjecture is true
for smooth projective varieties of dimension less or equal to d− 1. Let X ∈ PSmVar(C) of dimension d.
Up to split X into its connected components, we may assume that X is connected of dimension d. Then
X is birational to a possibly singular hypersurface Y0X ⊂ Pd+1

C of degree lX := deg(C(X)/C(x1, · · · , xd)).
Consider

f : Y ′
C = V (f̃) ⊂ Pd+1

C × P(lX) → P(lX)

the universal family of projective hypersurfaces of degree lX , and 0X ∈ P(lX) the point corresponding
to Y0X . Denote ∆ ⊂ P(lX) the discriminant locus parametrizing the hypersurfaces which are singular.

Let S̄ := 0̄X
Q̄
⊂ P(lX) be the Q̄-Zariski closure of 0X inside P(lX). If Y0X is smooth, then X satisfy the

hodge conjecture since Y0X satisfy the Hodge conjecture ([5]) and by proposition 1(ii) and the induction
hypothesis since X is birational to Y0X . Hence, we may assume that Y0X is singular, that is 0X ∈ ∆.
Then, S̄ ⊂ ∆ since ∆ ⊂ P(lX) is defined over Q̄. Let T̄ ⊂ P(lX) be an irreducible closed subvariety of
dimension dim(S̄) + 1 defined over Q̄ such that

S̄ ⊂ T̄ and T := T̄ ∩ (P(lX)\∆) 6= ∅.

We take for T̄ = V (f1, · · · , fs) ⊂ P(lX) an irreducible complete intersection defined over Q̄ which intersect
∆ properly and such that
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• V (f1) ⊃ sing(∆) ∪ S̄

• for each r ∈ [1, · · · , s], V (f1, · · · , fr) ⊃ sing(V (f1, · · · , fr−1)∩∆)∪S̄ contain inductively the singular
locus of the intersection with ∆ and S̄.

Then by the weak Lefchetz hyperplane theorem for homotopy groups, T ⊂ P(lX)\∆ is not contained in
a weakly special subvariety since

iT∗ : π1(TC) → π1(P(lX)\∆)

is an isomorphism if dim T̄ ≥ 2 and surjective if dim T̄ = 1. We have then T̄ ∩∆ = S̄ ∪ S̄′, where S̄′ ⊂ T̄
is a divisor. We then consider the family of algebraic varieties defined over Q

f̃X : YT̄ o
ǫ
−→ Y ′

T̄ o

f×P(lX )T̄
o

−−−−−−−→ T̄ o

where

• f̃X : Y
ǫ
−→ Y ′

T̄

f×P(lX )T̄
−−−−−−→ T̄ with ǫ : (Y, E ′) → (Y ′

T̄
,Y ′

S̄
∪ Y ′

S̄′) is a desingularization over Q, in

particular E ′ = E ∪ E ′′ with E = ∪ri=0Ei := f̃−1
X (S̄) ⊂ Y which is a normal crossing divisor, in

particular YT = Y ′
T ,

• S ⊂ S̄ is the open subset such that S is smooth and f̃X ×T̄ S : EI := ∩i∈IEi → S is smooth
projective for each I ⊂ [0, . . . , r], T̄ o ⊂ T̄ is an open subset such that T̄ o∩∆ = S and T o := T̄ o∩T
is smooth, for simplicity we denote again E for the open subset ES := f̃−1

X (S) ⊂ E ,

• t ∈ S(C) is the point such that Y ′
C,t = Y0X and ǫt : E0 := E0,C,t → Y0X is surjective (there is at

least one component of E dominant over Y0X since E is dominant over Y0X as E is dominant over
Y ′
S̄

), in particular E0 is birational to Y0X ,hence E0 is birational to X . We denote Ei := Ei,C,t for
each 0 ≤ i ≤ r and E := EC,t = ∪ri=0Ei.

We then prove, assuming the Hodge conjecture for smooth projective varieties of dimension less or equal
to d− 1, the Hodge conjecture for the Ei, more specifically for E0. Denote for I ⊂ [0, . . . , s], iI : EI →֒ E
and for I ⊂ J ⊂ [0, . . . , s], iJI : EJ → EI the closed embeddings. Then, i• : E• → E in Fun(∆,Var(Q)) is
a simplicial resolution with E• ∈ Fun(∆, SmVar(Q)). We have then

EHdg(E/S) := (f̃X ◦ i•∗Ezar(Ω
•
E•/S

, Fb,W ), (f̃X ◦ i•∗Eusu(QEan
•,C
,W )), f̃ ◦ i•∗α(E•)) ∈ D(MHMQ,gm(S))

Then, definition-proposition 1 applied to fT = f ×P(lX) T̄
o : Y ′

T̄ o → T̄ o gives the distinguish in
D(MHMQ,gm(S)),

EHdg(Y
′
S/S)

SpY′
S
/fT

:=(fT ◦iY′
S
)∗SpYS/Y′

T̄o

−−−−−−−−−−−−−−−−−−−−−→ ψSEHdg(Y ′
T o/T o)

(fT ◦iY′
S
)∗c(ψY′

S
Z
Hdg
YTo

)

−−−−−−−−−−−−−−−→ φSEHdg(Y
′
T o/T o)

(fT ◦iY′
S
)∗c(Z

Hdg

Y′
S
)

−−−−−−−−−−−→ EHdg(Y ′
S/S)[1]

and definition-proposition 1 applied to f̃X : YT̄ o → T̄ o gives the distinguish in D(MHMQ,gm(S)),

EHdg(E/S)
SpE/f̃X

:=(f̃X◦iE )∗SpE/Y

−−−−−−−−−−−−−−−−→ ψSEHdg(YT o/T o)

(f̃X◦iE )c(ψEZ
Hdg
YTo

)

−−−−−−−−−−−−→ φSEHdg(YT o/T o)
(f̃X◦iE )∗c(Z

Hdg
E)

−−−−−−−−−−→ EHdg(E/S)[1]

and SpE/f̃X ◦ ǫ∗ = SpYT̄o/fT . Let p ∈ Z. By the hard Lefchetz theorem on H∗(E0), we may assume that
2p ≤ d. Taking the cohomology to this distinguish triangle, we get in particular, for each p ∈ Z, the
maps in MHMQ,gm(S)

• SpY′
S/fT

: E2p
Hdg(Y

′
S/S) → H2pψSEHdg(YT o/T o)
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• SpE/f̃X : E2p
Hdg(E/S) → H2pψSEHdg(YT o/T o).

Moreover, we have, see lemma 1, an isomorphism of variation of mixed Hodge structures over S

cE := H2p−1(f̃X ◦ iE)∗c(Q
Hdg
E ) ◦ cV : E2p−1

Hdg,E(YT̄ o/T̄ o)
∼
−→

φSE
2p−1
Hdg,E(YT o/T o)

∼
−→ ker(SpE/f̃X : E2p

Hdg(E/S) → ψSE
2p
Hdg(YT o/T o)).

For λ ∈ H2p(Ean0,C,t′ ,Q), t′ ∈ S(C), we consider πS : S̃anC → SanC the universal covering in AnSm(C) and

VS(λ) := πS(λ× S̃anC ) ⊂ E2p,an
DR (E0,C/SC)

the flat leaf induced by the universal covering (see section 2.1) and

V
p
S(λ) := VS(λ) ∩ F pE2p

DR(E0,C/SC) ⊂ E2p
DR(E0,C/SC),

which is an algebraic variety by [6] (finite over S). Note that V
p
S(λ) ⊂ HLp,2p(E0,C/SC) is the union of

the irreducible components passing through λ. Similarly, for η ∈ H2p(EanC,t′ ,Q), t′ ∈ S(C), we consider

πS : S̃anC → SanC the universal covering in AnSm(C) and

VS(η) := πS(η × S̃anC ) ⊂ E2p,an
DR (EC/SC)

the flat leaf induced by the universal covering (see section 2.1) and

V
p
S(η) := VS(η) ∩ F pE2p

DR(EC/SC) ⊂ E2p
DR(EC/SC).

We have

H2pEHdg(YT o/T o) = ((E2p
DR(YT o/T o), F ), R2pf̃X∗QYan

To,C
, f̃X∗α(YT o )) ∈MHMQ,gm(T o)

By [8], the filtered vector bundle

(E2p
DR(YT o/T o), F ) = H2pf̃X∗Ezar(Ω

•
YTo/T o , Fb) ∈ VectDfil(T

o)

extend to a filtered vector bundle

(E2p
DR,VS

(YT o/T o), F ) := H2pf̃X∗Ezar(Ω
•
YTo/T o(log E), Fb) ∈ VectDfil(T̄

o)

such that

H2pψSEHdg(YT o/T o) = (i∗modS (E2p
DR,VS

(YT o/T o), F,W ), (ψSR
2pf̃X∗QYan

To,C
,W ), ψS f̃X∗α(YT o))

and

SpE/f̃X := (SpE/f̃X , SpE/f̃X ) : ((E2p
DR(E/S), F,W ), (R2p(f̃X ◦ i•)∗QEan

•,C
,W ), (f̃X ◦ i•)∗α(E•))

→ (i∗modS (E2p
DR,VS

(YT o/T o), F,W ) = ((E2p
DR,VS

(YT o/T o) ∩ p−1(S), F ),W ),

(ψSR
2pf̃X∗QYan

To,C
,W ), ψS f̃X∗α(YT o))

where p : E2p
DR,VS

(YT o/T o) → T̄ o is the projection. For

α ∈ H2p(Yant′′ ,Q) = i∗t′ψSR
2pf̃X∗QYan

To,C
, t′ ∈ SC, t

′′ ∈ T o(C),

we consider
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• πT o : T̃ o,an → T o,anC the universal covering in AnSm(C), the factorization

πS : S̃anC → ˜̄T o,anC

πT̄ o

−−→ T̄ o,anC

and
VT o(α) := πT o(α× T̃ o,anC ) ⊂ E2p,an

DR (YT o,C/T
o
C)

the flat leaf (see section 2.1) and

V
p
T o(α) := VT o(α) ∩ F pE2p

DR(YT o,C/T
o
C) ⊂ E2p

DR(YT oC/T
o
C),

which is an algebraic subvariety (finite over T o) by [6],

• πS : S̃anC → SanC the universal covering in AnSm(C) and

VS(α) := πS(α× S̃anC ) ⊂ H2pψSEDR(YT o,C/T
o
C)an = i∗modS (E2p

DR,VS
(YT o,C/T

o
C))an

the flat leaf (see section 2.1) and

V
p
S(α) := VS(α) ∩ F pH2pψSEDR(YT o,C/T

o
C)an ⊂ H2pψSEDR(Y

/
T oCT

o
C)an.

Consider the exact sequence of variation of mixed Hodge structure over S

0 →W2p−1E
2p
Hdg(E/S) → E2p

Hdg(E/S)
(i∗i )0≤i≤r:=q
−−−−−−−−→ ⊕ri=0E

2p
Hdg(Ei/S) → 0.

It induces the exact sequence of vector bundles over S

0 →W2p−1E
2p
DR(E/S) → E2p

DR(E/S)
(i∗i )0≤i≤r :=q
−−−−−−−−→ ⊕ri=0E

2p
DR(Ei/S) → 0,

and the exact sequence of presheaves on SanC ,

HL2p,p(EC/SC)
q
−→ ⊕ri=0HL

2p,p(Ei,C/SC)
e
−→

J(W2p−1E
2p
Hdg(EC/SC)) := Ext1(QHdgS ,W2p−1E

2p
Hdg(EC/SC)),

ι
−→ Ext1(QHdgS ,W2p−1E

2p
Hdg(EC/SC))

where HL2p,p(EC/SC) ⊂ E2p
DR(EC/SC), HL2p,p(Ei,C/SC) ⊂ E2p

DR(Ei,C/SC) are the locus of Hodge classes.

Since the monodromy of R2pf̃X∗Q
an
YTo,C

is irreducible by Picard Lefchetz theory as iT o∗ : π1(T oC) →

π1(TC)
∼
−→ π1(P(lX)\∆) is surjective, we have

SpE/f̃X (ker q) := SpE/f̃X (W2p−1E
2p
DR(E/S)) = 0, (4)

using the fact that there exists a neighborhood VS̄∪S̄′ ⊂ T̄C of S̄C ∪ S̄′
C in T̄C for the usual complex

topology such that the inclusion iS̄C∪S̄
′
C

: S̄C∪ S̄′
C →֒ VS̄∪S̄′ admits a retraction r : VS̄∪S̄′ → S̄C∪ S̄′

C which

is an homotopy equivalence. On the other hand, since f̃X ◦ i0 : E0 → S is a smooth projective morphism,
E2p
Hdg(E0/S) is a variation of pure Hodge structure over S polarized by Poincare duality

< −,− >:= (< −,− >,< −,− >) : ((E2p
DR(E0/S), F ), R2pf̃X∗ ◦ iE0∗QEan

0C
, α(E0))⊗2 → Q

Hdg
S

In particular, by the proof of Deligne semi-simplicity theorem using Schimdt results, we have a splitting
of variation of pure Hodge structure over S

E2p
Hdg(E0/S) = q(kerSpE/f̃X ) ⊕ q(kerSpE/f̃X )⊥,<−,−>, πK : E2p

Hdg(E0/S) → q(kerSpE/f̃X ) (5)

Note that since

F pq(kerSpE/f̃X )⊥C := F p(q(kerSpE/f̃X )⊥C ) = (F pq(kerSpE/f̃X )C)
⊥,<,>

|FpE
2p
DR

(E0C/SC)

and F pE2p
DR(E0C/SC) = F pq(kerSpE/f̃X )C ⊕ F pq(kerSpE/f̃X )⊥C
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by the proof of Deligne semi-simplicity theorem, we have

F pq(kerSpE/f̃X )⊥ := F p(q(kerSpE/f̃X )⊥) = (F pq(kerSpE/f̃X ))
⊥,<,>

|FpE
2p
DR

(E0/S)

and F pE2p
DR(E0/S) = F pq(kerSpE/f̃X ) ⊕ F pq(kerSpE/f̃X )⊥.

Let λ ∈ F pH2p(Ean0 ,Q), where we recall E0 = E0,C,t and E = EC,t = ∪ri=0Ei. Consider then λ̃ ∈

H2p(Ean,Q), such that q(λ̃) = λ, and

SpE/f̃X (λ̃) ∈ SpE/fX (H2p(Ean,Q)) ⊂ i∗tψSR
2pf̃X∗QYan

To,C
.

By (2), we have

λ = λK + λL ∈ F pH2p(Ean0 ,Q), λK ∈ i∗tF
pq(kerSpE/f̃X )Q, λ

L ∈ i∗tF
pq(kerSpE/f̃X )⊥Q .

By (1), if λ ∈ i∗tF
pq(kerSpE/f̃X )⊥Q , the locus of Hodge classes passing through λ

V
p
S(λ) := VS(λ) ∩ F pE2p

DR(E0,C/SC) ⊂ E2p
DR(E0,C/SC),

inside the De Rham vector bundle of f̃X ◦ iE0 : E0 → S satisfy

V
p
S(λ) = q(Sp−1

E/f̃X
(VpS(SpE/f̃X (λ̃)))) ∩ π−1

K (0) ⊂ E2p
DR(E0C/SC), (6)

where

• VS(λ) ⊂ E2p
DR(E0,C/SC), VS(SpE/f̃X (λ̃)) ⊂ E2p

DR,VS
(YT o,C/T

o
C), are the flat leaves, e.g. VS(λ) :=

πS(λ × S̃anC ) where πS : H2p(Ean,C) × S̃anC → E2p,an
DR (EC/SC) is the morphism induced by the

universal covering πS : S̃anC → SanC ,

• q := q ⊗ C : E2p
DR(EC/SC) → E2p

DR(E0,C/SC) is the quotient map.

• SpE/f̃X := SpE/f̃X ⊗ C : E2p
DR(EC/SC) → i∗modS E2p

DR,VS
(YT o,C/T

o
C).

Indeed, by (4), we have a factorization

SpE/f̃X : E2p
Hdg(E/S)

q
−→ E2p

Hdg(E0/S)
Gr2pW SpE/f̃X−−−−−−−−→ ψSE

2p
Hdg(YT o/T o),

hence, by (5), for t′ ∈ S(C), λt′ ∈ F pH2p(E0C,t) if and only if SpE,f̃X (λ̃t′) ∈ F pψSEDR(YT o/T o)t′ . Now,

• If SpE/f̃X (λ̃) = 0, we have by lemma 1 applied to f̃X : YT̄ o → T̄ o, λ̃ = cE(λ̃) with λ̃ ∈

F pH2p−1
E (YanC,C ,Q) where C ⊂ T̄ oC is a smooth transversal slice, hence dim(C) = 1 and YC is

smooth, such that C ∩ SC = {t} and

V
p
S(λ̃) = cE(VpS(λ̃)), VpS(λ̃) ⊂ E2p−1

DR,EC
(YT̄ o,C/T̄

o
C)

with

cE = (cE , cE) : ((E2p−1
DR,E(YT̄ o/T̄ o), F,W ), (R2p−1f̃X∗ ◦ ΓEQYan

T̄o,C
,W ), α(YT̄ o ))

→ ((E2p
DR(E/S), F,W ), (R2p(f̃X ◦ iE)∗QEan

C
,W ), α(E•))

We have for each t′ ∈ S(C), the isomorphism

⊕cardI=2F
pH2p(EanIC,t′ ,Q) = F p GrW2p H

2p−2(( ¯YC,C′\E)an,Q)
c(Z(YC\E

C,t′ ))
−−−−−−−−−→

F p GrW2p H
2p−1
E ( ¯YanC,C′ ,Q) = F p GrW2p H

2p−1
E (YanC,C′ ,Q)
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where C ⊂ T̄ oC is a smooth transversal slice, hence dim(C′) = 1 and YC′ is smooth, such that
C′ ∩SC = {t′} and ȲC′ ∈ PSmVar(C) is a smooth compactification of YC′ , the last equality follows
from excision (note that E is proper). Hence, assuming the Hodge conjecture for smooth projective
varieties of dimension less or equal to d− 1,

V
p
S(λ) ⊂ GrW2p E

2p−1
DR,EC

(YT̄ o,C/T̄
o
C), VpS(λ) = cE(VpS(λ)) ⊂ E2p

DR(E0C/SC) ⊂ GrW2p E
2p
DR(EC/SC)

are defined over Q̄ and its Galois conjugates are also components of the locus of Hodge classes,
since dim(EI) = d− 1 for I ⊂ [0, · · · , r] such that cardI = 2.

• Consider now the case where λ ∈ i∗tF
pq(kerSpE/f̃X )⊥Q . We have the key equality

V
p
S(SpE/f̃X (λ̃)) = V

p
T o(SpE/f̃X (λ̃)) ∩ p−1(SC) ⊂ E2p

DR,VS
(YT o,C/T

o
C)

where p := p ⊗ C : E2p
DR,VS

(YT o,C/T
o
C) → T̄ oC is the projection, the inclusion ⊂ is obvious whereas

the inclusion ⊃ follows from [6] lemma 2.11 which state the invariance of λ̃ under the monodromy

Im(π1(p(VpT o(λ̃)) ∩D∗) → π1(D∗)), (D,D∗) → (T̄ o,anC , T̄ o,anC \SanC ).

But by [5] theorem 1, the Hodge conjecture holds for projective hypersurfaces hence

V
p
T o(SpE/f̃X (λ̃)) ⊂ E2p

DR(YT o,C/T
o
C)

is an algebraic subvariety defined over Q̄ and its Galois conjugates are also components of the locus
of Hodge classes. Hence, using (6)

V
p
S(λ) = q(Sp−1

E/f̃X
(VpS(SpE/f̃X (λ̃)))) ∩ π−1

K (0) ⊂ E2p
DR(E0C/SC)

is an algebraic subvariety defined over Q̄ and its Galois conjugates are also components of the locus
of Hodge classes.

Hence,

• V
p
S(λK) ⊂ E2p

DR(E0C/SC) is an algebraic subvariety defined over Q̄ and its Galois conjugates are
also components of the locus of Hodge classes gives, thus by [4] theorem 4,

λK = [ZK ] ∈ H2p(Ean0 ,Q), ZK ∈ Zp(E0),

• V
p
S(λS) ⊂ E2p

DR(E0C/SC) is an algebraic subvariety defined over Q̄ and its Galois conjugates are also
components of the locus of Hodge classes, thus by [4] theorem 4,

λL = [ZL] ∈ H2p(Ean0 ,Q), ZL ∈ Zp(E0).

Hence,
λ = λK + λL = [Z] ∈ H2p(Ean0 ,Q), Z := ZK + ZL ∈ Zp(E0).

Since p ∈ Z and λ ∈ F pH2p(Ean0 ,Q) are arbitrary, the Hodge conjecture holds for E0. Proposition 1(ii)
and the fact that the Hodge conjecture is true for smooth complex projective varieties of dimension less
or equal to d − 1 by induction hypothesis then implies that Hodge conjecture holds for X , since X is
birational to E0 and X,E0 ∈ PSmVar(C) are connected of dimension d.
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