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Degeneration of families of projective hypersurfaces and Hodge

conjecture

Johann Bouali

January 7, 2024

Abstract

We prove by induction on dimension the Hodge conjecture for smooth complex projective varieties.
Let X be a smooth complex projective variety. Then X is birational to a possibly singular projective
hypersurface, hence to a smooth projective variety E0 which is a component of a normal crossing
divisor E = ∪

r

i=0Ei ⊂ Y which is the singular fiber of a pencil f : Y → A1 of smooth projective
hypersurfaces. Using the smooth hypersurface case ([5] theorem 1), the nearby cycle functor on mixed
Hodge module with rational de Rham factor, and the induction hypothesis, we prove that an Hodge
class of E0 is absolute Hodge, more precisely the locus of Hodge classes inside the algebraic vector
bundle given the De Rham cohomology the rational deformation of E0 is defined over Q. By [4]
theorem 4, we get the Hodge conjecture for E0. By the induction hypothesis we also have the Hodge
conjecture for X.
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1 Introduction

The main result of this article is an inductive proof of the Hodge conjecture using the results of [4]
and [5]. More precisely, assuming the Hodge conjecture for smooth projective varieties of dimension
less or equal to d − 1, the property of satisfying the Hodge conjecture for connected smooth projective
varieties of dimension d is a birational invariant (proposition 1). On the other hand, if X is a connected
smooth projective variety of dimension d, there exists (see proposition 2) a family of smooth projective
hypersurfaces fX : Y → A1

C with

• Y a smooth complex algebraic variety, fX flat projective,

• Ys := f−1
X (s) ⊂ Pd+1

C for s ∈ A1
C\0 are smooth projective hypersurfaces,

• E := f−1
X (0) = ∪r

i=0Ei ⊂ Y is a normal crossing divisor and E0 is birational to X .
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Assuming the Hodge conjecture for smooth projective varieties of dimension less or equal to d − 1, we
then prove the Hodge conjecture for the Ei, more specifically for E0 as follows : We consider its canonical
rational deformation f̃X : Y → A1

Q × S with

• Y a smooth algebraic variety over Q, S ⊂ As
Q an open subset, f̃X flat projective

• Y = f̃−1
X (A1

Q × {t}), fX = f̃X ×S {t}, with t ∈ S(C)

• E = ∪r
i=0Ei := f̃−1

X ({0} × S) ⊂ Y is a normal crossing divisor, f̃X,0 : EI := ∩i∈IEi → S smooth
projective for each I ⊂ [0, . . . , r], EC,t = E,

• f̃X ×A1 (A1\0)Yo → A1
Q\0 has fibers which are smooth projective hypersurfaces.

We then have the exact sequence of geometric mixed Hodge module over S (in fact of geometric variation
of mixed Hodge structures over S)

⊕r
(i,j)⊂[1,...,r]E

2p−2
Hdg (Eij/S)

(iJi!)
−−−→ ⊕r

i=0E
2p
Hdg(Ei/S)

(SpEi/f̃X
)0≤i≤r

−−−−−−−−−−→ H2pΦ0EHdg(Y
o/((A1

Q\0)× S)).

whose de Rham part are morphism of filtered vector bundle over S with Gauss-Manin connexion defined
over Q. Since for 0 ≤ i ≤ r, E2p

Hdg(Ei/S) is a geometric variation of pure Hodge structures, this exact
sequence split, in particular

E2p
Hdg(E0,C/SC) = l0j!(⊕

r
j=0E

2p−2
Hdg (E0j,C/SC))⊕ SpE0/f̃X

(E2p
Hdg(E0,C/SC)).

Let λ ∈ F pH2p(Ean
0 ,Q), where we recall E0 = E0,C,t. Then,

λ = λK + λG ∈ F pH2p(Ean
0 ,Q), λK ∈ ⊕J∈Ri0j!F

p−1H2p−2(Ean
0j,C,Q), λG ∈ SpE0/fX (F pH2p(Ean

0 ,Q)).

The locus of Hodge classes passing through λ (see [6])

V
p
S(λ) := πS(λ× S̃C) ∩ F pE2p

DR(E0C/SC) = V
p
S(λ

K) ∩ V
p
S(λ

G) ⊂ E2p
DR(E0C/SC)

is the intersection of two complex algebraic subvariety of the De Rham vector bundle, where πS :
H2p(Ean

0 ,C)× S̃an
C → E2p,an

DR (E0C/SC) is the morphism given by the universal covering πS : S̃an
C → San

C .
Now,

• by [5] theorem 1, the Hodge conjecture holds for projective hypersurfaces, hence

SpE0/f̃X
(Vp

S(λ
G)) = V

p
(A1\0)×S(SpE0/fX (λG)) ∩ p−1(0× SC) ⊂ E2p

DR,V0
(YC/(A

1
C × SC))

is defined over Q,

• assuming the Hodge conjecture for smooth projective varieties of dimension less or equal to d− 1

V
p
S(λ

K) = i0J!(V
p
S(λ

K)) ⊂ E2p
DR(E0C/SC)

is defined over Q.

Hence, Vp
S(λ) ⊂ E2p

DR(E0C/SC) is defined over Q. By [4] theorem 4, we get

λ = [Z] ∈ H2p(Ean
0 ,Q), Z ∈ Zp(E0).

Since p ∈ Z and λ ∈ F pH2p(Ean
0 ,Q) are arbitrary, this proves the Hodge conjecture for E0. Since X is

birational to E0, the Hodge conjecture for E0 and the induction hypothesis implies the Hodge conjecture
for X .

I am grateful to professor F.Mokrane for help and support during this work.
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2 Preliminaries and notations

2.1 Notations

• Denote by Top the category of topological spaces and RTop the category of ringed spaces.

• Denote by Cat the category of small categories and RCat the category of ringed topos.

• For S ∈ Cat and X ∈ S, we denote S/X ∈ Cat the category whose objects are Y/X := (Y, f) with
Y ∈ S and f : Y → X is a morphism in S, and whose morphisms Hom((Y ′, f ′), (Y, f)) consists of
g : Y ′ → Y in S such that f ◦ g = f ′.

• Let (S, OS) ∈ RCat a ringed topos with topology τ . For F ∈ COS (S), we denote by k : F → Eτ (F )
the canonical flasque resolution in COS (S) (see [3]). In particular for X ∈ S, H∗(X,Eτ (F ))

∼
−→

H∗
τ (X,F ).

• For f : S ′ → S a morphism with S,S ′ ∈ RCat, endowed with topology τ and τ ′ respectively, we
denote for F ∈ COS (S) and each j ∈ Z,

– f∗ := HjΓ(S, k ◦ ad(f∗, f∗)(F )) : Hj(S, F ) → Hj(S ′, f∗F ),

– f∗ := HjΓ(S, k ◦ ad(f∗mod, f∗)(F )) : Hj(S, F ) → Hj(S ′, f∗modF ),

the canonical maps.

• For m : A → B, A,B ∈ C(A), A an additive category, we denote c(A) : Cone(m : A → B) → A[1]
and c(B) : B → Cone(m : A → B) the canonical maps.

• Denote by Sch ⊂ RTop the subcategory of schemes (the morphisms are the morphisms of locally
ringed spaces). We denote by PSch ⊂ Sch the full subcategory of proper schemes. For a field k, we
consider Sch /k := Sch / Spec k the category of schemes over Spec k. The objects are X := (X, aX)
with X ∈ Sch and aX : X → Spec k a morphism and the morphisms are the morphisms of schemes
f : X ′ → X such that f ◦ aX′ = aX . We then denote by

– Var(k) = Schft /k ⊂ Sch /k the full subcategory consisting of algebraic varieties over k, i.e.
schemes of finite type over k,

– PVar(k) ⊂ QPVar(k) ⊂ Var(k) the full subcategories consisting of quasi-projective varieties
and projective varieties respectively,

– PSmVar(k) ⊂ SmVar(k) ⊂ Var(k), PSmVar(k) := PVar(k) ∩ SmVar(k), the full subcategories
consisting of smooth varieties and smooth projective varieties respectively.

• Denote by AnSp(C) ⊂ RTop the subcategory of analytic spaces overC, and by AnSm(C) ⊂ AnSp(C)
the full subcategory of smooth analytic spaces (i.e. complex analytic manifold).

• For X ∈ Var(k) and X = ∪i∈IXi with ii : Xi →֒ X closed embeddings, we denote X• ∈
Fun(∆,Var(k)) the associated simplicial space, with for J ⊂ I, iIJ : XI := ∩i∈IXi →֒ XJ := ∩i∈JXi

the closed embedding.

• Let (X,OX) ∈ RTop. We consider its De Rham complex Ω•
X := DR(X)(OX).

– Let X ∈ Sch. Considering its De Rham complex Ω•
X := DR(X)(OX), we have for j ∈ Z its

De Rham cohomology Hj
DR(X) := Hj(X,Ω•

X).

– Let X ∈ Var(k). Considering its De Rham complex Ω•
X := Ω•

X/k := DR(X/k)(OX), we have

for j ∈ Z its De Rham cohomology Hj
DR(X) := Hj(X,Ω•

X). The differentials of Ω•
X := Ω•

X/k

are by definition k-linear, thus Hj
DR(X) := Hj(X,Ω•

X) has a structure of a k vector space.
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– Let X ∈ AnSp(C). Considering its De Rham complex Ω•
X := DR(X)(OX), we have for j ∈ Z

its De Rham cohomology Hj
DR(X) := Hj(X,Ω•

X).

• For X ∈ AnSp(C), we denote α(X) : CX →֒ Ω•
X the embedding in C(X). For X ∈ AnSm(C),

α(X) : CX →֒ Ω•
X is an equivalence usu local by Poincare lemma.

• We denote In := [0, 1]n ∈ Diff(R) (with boundary). For X ∈ Top and R a ring, we consider its
singular cochain complex

C∗
sing(X,R) := (ZHomTop(I

∗, X)∨)⊗R

and for l ∈ Z its singular cohomology H l
sing(X,R) := HnC∗

sing(X,R). For f : X ′ → X a continuous
map with X,X ′ ∈ Top, we have the canonical map of complexes

f∗ : C∗
sing(X,R) → C∗

sing(X,R), σ 7→ f∗σ := (γ 7→ σ(f ◦ γ)).

In particular, we get by functoriality the complex

C∗
X,R sing ∈ CR(X), (U ⊂ X) 7→ C∗

sing(U,R)

We recall that

– For X ∈ Top locally contractible, e.g. X ∈ CW, and R a ring, the inclusion in CR(X)
cX : RX → C∗

X,R sing is by definition an equivalence top local and that we get by the small

chain theorem, for all l ∈ Z, an isomorphism H lcX : H l(X,RX)
∼
−→ H l

sing(X,R).

– For X ∈ Diff(R), the restriction map

rX : ZHomDiff(R)(I
∗, X)∨ → C∗

sing(X,R), w 7→ w : (φ 7→ w(φ))

is a quasi-isomorphism by Whitney approximation theorem.

2.2 Birational projective varieties and Hodge conjecture

In this subsection, we recall that assuming the Hodge conjecture for smooth projective varieties of di-
mension less or equal to d − 1, the property of satisfying the Hodge conjecture for connected smooth
projective varieties of dimension d is a birational invariant :

Proposition 1. (i) Let X ∈ PSmVar(C) connected of dimension d. Let ǫ : X̃Z → X be the blow up of
X along a smooth closed subvariety Z ⊂ X. Assume the Hodge conjecture hold for smooth complex
projective varieties of dimension less or equal to d − 1. Then the Hodge conjecture hold for X if
and only if it hold for X̃Z .

(ii) Let X,X ′ ∈ PSmVar(C) connected of dimension d. Assume the Hodge conjecture hold for smooth
complex projective varieties of dimension less or equal to d − 1. If X is birational to X ′, then the
Hodge conjecture hold for X if and only if it hold for X ′

Proof. (i): Follows from the fact that

(ǫ∗,⊕c
l=1iE∗((−).hl−1)) : Hk(X,Q)⊕⊕c

l=1H
k−2l(E,Q) → Hk(X̃Z ,Q)

is an isomorphism of Hodge structures for each k ∈ Z, where c = codim(Z,X), iE : E →֒ X̃Z is the closed
embedding, ǫ|E : E → Z being a projective vector bundle.
(ii):Follows from (i) since if π : Xo → X ′ is a birational map, Xo ⊂ X being an open subset, then X is
connected to X ′ by a sequence of blow up of smooth projective varieties with smooth center by [1].

4



2.3 A family of smooth projective hypersurfaces associated to a smooth pro-

jective variety

In this subsection, we recall that given a smooth complex projective variety X , there exists a family
of smooth complex projective hypersurfaces which degenerates into a normal crossing divisor with one
irreducible component birational to X .

Proposition 2. Let X ∈ PSmVar(C) connected. Then there exists a family of smooth projective hyper-
surfaces fX : Y → A1

C with

• Y ∈ SmVar(C), fX flat projective,

• Ys := f−1
X (s) ⊂ Pd+1

C for s ∈ A1
C\0 are smooth projective hypersurfaces,

• E := f−1
X (0) = ∪r

i=0Ei ⊂ Y is a normal crossing divisor and E0 is birational to X,

Proof. See [2] lemma . It use the fact that X is birational to a possibly singular projective hypersurface
Y and consider the desingularization of a generic pencil passing through Y .

2.4 The nearby cycle functor and the specialization map

Recall from [3] that for k ⊂ C a subfield and S ∈ Var(k) quasi-projective, and l : S →֒ S̃ a closed
embedding with S̃ ∈ SmVar(k), we have the full subcategory

ι : MHMk,gm(S) →֒ PShDfil,S(S̃)×I P (San
C )

consisting of geometric mixed Hodge module whose De Rham part is defined over k, where PShD(1,0)fil,S(S̃)×I

Pfil(S
an
C ) is the category

• whose objects are ((M,F,W ), (K,W ), α) where (M,F,W ) is a filtered DS̃ module supported on S,

where l : S →֒ S̃ is a closed embedding and S̃ ∈ SmVar(k), (K,W ) is a filtered Perverse sheaf on
San
C , and α : l∗(K,W )⊗ C → DR(S̃)((M,W )an) is an isomorphism in Dfil(S̃

an
C ).

• whose morphism are,

using the fact that the V -filtration is defined over k. Then, by [3] theorem , we get for S ∈ Var(k)
quasi-projective and l : S →֒ S̃ is a closed embedding with S̃ ∈ SmVar(k) an embedding

ι : D(MHMk,gm(S)) →֒ DDfil,S(S̃)×I D(San
C )

consisting of mixed Hodge module whose De Rham part is defined over k, where DD(1,0)fil,S(S̃) ×I

Dfil,c(S
an
C ) is the category

• whose objects are ((M,F,W ), (K,W ), α) where (M,F,W ) is a complex of filtered DS̃ module sup-
ported on S, (K,W ) is a filtered complex of presheaves on San

C whose cohomology are constructible
sheaves, and α : l∗(K,W )⊗ C → DR(S̃)((M,W )an) is an isomorphism in Dfil(S̃

an
C ).

• whose morphism are,

and the six functor formalisms :

D(MHMk,gm(−)) : Var(k) 7→ TriCat, S 7→ D(MHMk,gm(S)), (f : T → S) 7→

(f∗, f∗) : D(MHMk,gm(S)) → D(MHMk,gm(T )), (f!, f
!) : D(MHMk,gm(T )) → D(MHMk,gm(S))

and for D ⊂ S a (Cartier) divisor the nearby cycle functor

ΦD : D(MHMk,gm(S)) → D(MHMk,gm(D)),

ΦD((M,F,W ), (K,W ), α) := (ΦD(M,F,W ),ΦD(K,W ),ΦD(α)).
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For f : X → S a projective morphism with X,S ∈ SmVar(k), we denote

EHdg(X/S) := f∗Z
Hdg
X := (

∫
f(OX , F ), Rf∗ZXan

C
, f∗α(X)) ∈ D(MHMk,gm(S)).

We then have the specialization map :

Definition-Proposition 1. Let k be field of characteristic zero. Let f : X → A1
k × S be a projective

morphism with X,S ∈ SmVar(k). Assume that

• fo := f ⊗A1 (A1\0) : Xo → (A1\0)× S is smooth

• E := f−1(0 × S) = ∪r
i=0Ei ⊂ X is a normal crossing divisor and that for I ⊂ [0, . . . r], f0,I :=

f|EI
: EI := ∩i∈IEi → S are smooth. We have by definition Xo = X\E.

Denote for I ⊂ J ⊂ [0, . . . r], iJI : EJ →֒ EI and iI : EI →֒ E the closed embeddings. We have then the
generalized distinguished triangle in D(MHMk,gm(E)), where R := [1, . . . , r],

iR∗i
!
RΦEZ

Hdg
Xo = iR∗Z

Hdg
ER

(−r)[−2r]
(ad(i∗RJ ,iRJi∗)(iJ!i

!
JΦEZ

Hdg
Xo ))

−−−−−−−−−−−−−−−−−−−→ · · ·

⊕(i,j)⊂Riij∗i
!
ijΦEZ

Hdg
Xo = ⊕(i,j)⊂Riij∗Z

Hdg
Eij

(−1)[−2]
(ad(iJi!,iJi)(ii∗i

∗
i ΦEZ

Hdg
Xo ))

−−−−−−−−−−−−−−−−−−→

⊕r
i=0ii∗i

!
iΦEZ

Hdg
Xo = ⊕r

i=0ii∗ΦEi\(Ei∩(∪j∈R\iEj))Z
Hdg
Ei

= ⊕r
i=0ii∗Z

Hdg
Ei

(ad(ii!,i
!
i)(ΦEZ

Hdg
Xo ))0≤1≤r

−−−−−−−−−−−−−−−−−→ ΦEZ
Hdg
Xo

c(iR∗i
!
RΦEZ

Hdg
Xo )

−−−−−−−−−−−→ iR∗i
!
RΦEZ

Hdg
Xo [1]

where the second equalities follows from the fact that EI are smooth. Applying the functor (f ◦ iE)∗, we
obtain the generalized distinguished triangle in D(MHMk,gm(S))

EHdg(ER/S)(−r)[−2r] → · · · ⊕(i,j)⊂R EHdg(Eij/S)(−1)[−2]
((f◦iE)∗ ad(iJi!,iJi)(ii∗i

∗
i ΦEZ

Hdg
Xo ))

−−−−−−−−−−−−−−−−−−−−−−−→ · · ·

⊕r
i=0EHdg(Ei/S)

(spf,Ei
:=(f◦iE)∗ ad(ii!,i

!
i)(ΦEZ

Hdg
Xo ))0≤1≤r

−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ (f ◦ iE)∗(ΦEZ
Hdg
Xo ) = Φ0EHdg(X

o/((A1\0)× S))

(f◦iE)∗c(iR∗i
!
RΦEZ

Hdg
Xo )

−−−−−−−−−−−−−−−−→ EHdg(ER/S)(−r)[1− 2r]

Proof. Follows from the six functors formalism, and the simplicial descent for the morphism i• : E• → E
in Fun(∆,Var(C)), with E• ∈ Fun(∆, SmVar(C)) (see [8]), noting that

Φ0EHdg(X
o/((A1\0)× S)) = ((f ◦ iE)∗Ezar(i

∗mod
E Ω•

X/A1×S(logE)),Φ0Rf∗ZXan
C
,Φ0f∗α(X

o)).

3 Hodge conjecture for smooth projective varieties

Theorem 1. Let X ∈ PSmVar(C). Then Hodge conjecture hold for X. That is, if p ∈ Z and λ ∈
F pH2p(Xan,Q), λ = [Z] with Z ∈ Zp(X).

Proof. Up to split X into its connected components, we may assume that X is connected of dimension
d. The Hodge conjecture is true for curves and surfaces. Assume that the Hodge conjecture is true for
smooth projective varieties of dimension less or equal to d − 1. Consider by proposition 2 a family of
smooth projective hypersurfaces fX : Y → A1

C with

• Y ∈ SmVar(C), fX flat projective,

• Ys := f−1
X (s) ⊂ Pd+1

C for s ∈ A1
C\0 are smooth projective hypersurfaces

6



• E := f−1
X (0) = ∪r

i=0Ei ⊂ Y is a normal crossing divisor and E0 is birational to X ,

and its canonical rational deformation f̃X : Y → A1
Q × S with

• Y ∈ SmVar(Q), S ⊂ As
Q an open subset, f̃X flat projective

• Y = f̃−1
X (A1

Q × {t}), fX = f̃X ×S {t}, with t ∈ S(C)

• E = ∪r
i=0Ei := f̃−1

X ({0} × S) ⊂ Y is a normal crossing divisor, f̃X,0 : EI := ∩i∈IEi → S smooth
projective for each I ⊂ [0, . . . , r], EC,t = E,

• f̃X ×A1 (A1\0)Yo → A1
Q\0 has fibers which are smooth projective hypersurfaces.

We have by definition the commutative diagram in SmVar(Q)

Yo

f̃o
X

��

j
// Y

f̃X
��

E

f̃X,0

��

iEoo

A1
Q\ {0} × S

j×IS // A1
Q × S {0} × S

i0×ISoo

whose squares are cartesian, j the open embedding and iE the closed embedding. Denote for I ⊂ [0, . . . , r],
iI : EI →֒ E and for I ⊂ J ⊂ [0, . . . , r], iJI : EJ → EI the closed embeddings. Then, definition-proposition
1 applied to f̃X : Y → A1

Q×S gives the generalized distinguish inD(MHMQ,gm(S)), where R := [1, . . . , r],

EHdg(ER/S)(r)[−2r] → · · · ⊕(i,j)∈R EHdg(Eij/S)(−1)[−2]
(iJi!:=(f̃X◦iE)∗(ad(iJi!,i

!
Ji)(ZEi

)))J=(i,j)⊂R
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

⊕r
i=0EHdg(Ei/S)

(SpEi/f̃X
:=(f̃X◦iE )∗ ad(ii!,i

!
i)(ΦE,f̃X

))0≤i≤r

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Φ0EHdg(Y
o/((A1

Q\0)× S))

(f̃X◦iE )∗c(iR!i
!
RΦEZYo )

−−−−−−−−−−−−−−−→ EHdg(ER/S)(r)[−2r + 1]

given in definition-proposition 1. Let p ∈ Z. Taking the cohomology to this distinguish triangle, we get
in particular the exact sequence in MHMQ,gm(S)

⊕r
(i,j)⊂RE

2p−2
Hdg (Eij/S)

(iJi!)
−−−→ ⊕r

i=0E
2p
Hdg(Ei/S)

(SpEi/f̃X
)0≤i≤r

−−−−−−−−−−→ H2pΦ0EHdg(Y
o/((A1

Q\0)× S)).

Since H2pEHdg(E0/S) ∈ MHMQ,gm(S) is a geometric variation of pure Hodge structure, and since the
category of polarized variation of pure Hodge structure is semi-simple ([7]), this exact sequence split in
MHM(SC), in particular we get for i = 0, the splitting in MHM(SC)

H2pEHdg(E0,C/SC) = iJ0!(⊕j∈RH
2p−2EHdg(E0j,C/SC))⊕ SpE0/f̃X

(H2pEHdg(E0,C/SC)).

For λ ∈ H2p(Ean
0,C,t′ ,Q), t′ ∈ S(C), we consider πS : S̃an

C → San
C the universal covering in AnSm(C) and

VS(λ) := πS(λ) ⊂ E2p,an
DR (E0,C/SC)

with πS : S̃an
C ×H2p(Ean

0,t′ ,C) → E2p,an
DR (E0,C/SC) the universal covering and

V
p
S(λ) := VS(λ) ∩ F pE2p

DR(E0,C/SC) ⊂ E2p
DR(E0,C/SC),

which is a algebraic subvariety by [6]. We have

H2pEHdg(Y
o/((A1

Q\0)× S)) = ((E2p
DR(Y

o/((A1
Q\0)× S)), F ), R2pf̃X∗ZYo , f̃X∗α(Y

o)) ∈ MHMQ,gm(S)
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By [8], the filtered vector bundle

(E2p
DR(Y

o/((A1
Q\0)× S)), F ) = H2pf̃X∗Ezar(Ω

•
Yo/(A1

Q
\0)×S) ∈ VectDfil(S)

extend to a filtered vector bundle

(E2p
DR,V0

(Y/(A1
Q × S)), F ) = H2pf̃X∗Ezar(Ω

•
Y/A1

Q
×S(log E) ∈ VectDfil(S)

such that

H2pΦ0EHdg(Y
o/((A1

Q\0)× S)) = (i∗mod
0 (E2p

DR,V0
(Y/(A1

Q × S)), F ), (Φ0R
2pf̃X∗ZYo ,W ),Φ0f̃X∗α(Y

o)).

For
α ∈ H2p(Yan

(s,t′),Q) = H2p(Ean
t′ ,Φ0Rf̃X∗QYo), (s, t′) ∈ (A1

C\0)× SC

we consider

• πS,Gm = πS × πGm : G̃m × S̃an
C → (A1

C\0)× San
C the universal covering in AnSm(C) and

V(A1\0)×S(α) := πS,Gm(α) ⊂ E2p,an
DR (Yo

C/(A
1
C\0)× SC)

with πS,Gm : S̃an
C × G̃m ×H2p(Yan

(s,t′),C) → E2p,an
DR (Yo

C/SC) and

V
p
(A1\0)×S(α) := V(A1\0)×S(α) ∩ F pE2p

DR(Y
o
C/(A

1
C\0)× SC) ⊂ E2p

DR(Y
o
C/(A

1
C\0)× SC)

which is a algebraic subvariety by [6],

• πS : S̃an
C → San

C the universal covering in AnSm(C) and

VS(α) := πS(α) ⊂ H2pΦ0EDR(Y
o
C/((A

1
C\0)× SC))

an

with πS : S̃an
C ×H2p(Yan

(s,t′),C) → H2pΦ0EDR(Y
o
C/((A

1
C\0)× SC))

an and

V
p
S(α) := VS(α) ∩ F pH2pΦ0EDR(Y

o
C/((A

1
C\0)× SC))

an ⊂ H2pΦ0EDR(Y
o
C/((A

1
C\0)× SC))

an.

Let λ ∈ F pH2p(Ean
0 ,Q), where we recall E0 = E0,C,t. Then,

λ = λK + λG ∈ F pH2p(Ean
0 ,Q), λK ∈ ⊕J∈Ri0j!(F

p−1H2p−2(Ean
0j ,Q)), λG ∈ SpE0/fX (F pH2p(Ean

0 ,Q))

and
V

p
S(λ) = V

p
S(λ

K) ∩ V
p
S(λ

G) ⊂ E2p
DR(E0C/SC).

Now,

• we have, by [6],

SpE0/f̃X
(Vp

S(λ
G)) = V

p
S(SpE0/fX (λG)) = V

p
(A1\0)×S(SpE0/fX (λG)) ∩ p−1(0× SC)

⊂ E2p
DR,V0

(YC/(A
1
C × SC))

where p : E2p
DR,V0

(YC/(A
1
C × SC)) → A1

C × SC is the projection (the first equality is obvious since
spE0/f̃X

is a morphism of variation of mixed Hodge structures over S, for the second equality, the

inclusion ⊂ is obvious, whereas the inclusion ⊃ follows from [6] lemma 2.11 and the invariant cycle
theorem of a geometric variation of Hodge structures by strictness of the Hodge filtration), but by
[5] theorem 1, the Hodge conjecture holds for projective hypersurfaces hence

V
p
(A1\0)×S(Sp(λ

G)) ⊂ E2p
DR(Y

o
C/((A

1
C\0)× SC))

is defined over Q, hence V
p
S(λ

G) ⊂ E2p
DR(E0,C/SC) is defined over Q,

8



• since the Hodge conjecture is true for smooth projective varieties of dimension less or equal to d−1
by induction hypothesis

V
p
S(λ

K) = i0J!(V
p
S(λ

K)) ⊂ E2p
DR(E0C/SC)

is defined over Q.

Hence V
p
S(λ) ⊂ E2p

DR(E0C/SC) is defined over Q. Thus, by [4] theorem 4,

λ = [Z] ∈ H2p(Ean
0 ,Q), withZ ∈ Zp(E0).

Since p ∈ Z and λ ∈ F pH2p(Ean
0 ,Q) are arbitrary, the Hodge conjecture holds for E0. Proposition 1(ii)

and the fact that the Hodge conjecture is true for smooth projective varieties of dimension less or equal
to d − 1 by induction hypothesis then implies that Hodge conjecture holds for X , since X is birational
to E0 and X,E0 ∈ PSmVar(C) are connected of dimension d.
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