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Convolution and square in abelian groups III

1 Introduction

Critical values

This paper is the sequel of [START_REF] Benoist | Convolution and square in abelian groups I[END_REF] in which we introduced the notion of critical values. Let us first recall this notion. Let G be a finite abelian group of odd order d. Denote by F G the space of complex valued functions on G. For λ ∈ C, we denote by F λ = F G,λ the set:

F λ := {f : G → C | f * f (2k) = λ f (k) 2 for all k in G} (1.1)
A value λ for which such a non-zero function f exists is called a "critical value on G", or a "d-critical value" when G is the cyclic group Z/dZ. The non-zero elements of F λ are called λ-critical functions. We denote by C G the set of critical values on G and simply by C d the set of d-critical values.

According to [1, Prop. 2.1], the set C G is finite and all the elements λ of C G are odd algebraic integers, i.e. the numbers λ-1 2 are algebraic integers.

The main result [START_REF] Benoist | Convolution and square in abelian groups I[END_REF]Thm 2.3] of this first paper is the following. 

Fourier transform

In the present paper we still focus on the cyclic group G = Z/dZ and we want to study the action of the Fourier transform on the λ-critical functions. We recall that the Fourier transform f → f on F G is given by, for all k ∈ G,

f (k) = 1 √ d ℓ∈G e -2iπkℓ/d f (ℓ). (1.2) 
See for instance [START_REF] Terras | Fourier analysis on finite groups and applications[END_REF]. The Fourier transform f → f sends F λ onto F d/λ . One also defines the conjugate Fourier transform f → f on F G by

f (k) = 1 √ d ℓ∈G
e 2iπkℓ/d f (ℓ). (1.3) This map f → f is an antilinear involution of F G , i.e. one has the equivalence g = f ⇐⇒ f = g, for all f , g in F G . (1.4) When studying experimentally in [START_REF] Benoist | Convolution and square in abelian groups I[END_REF] the d-critical values, it seemed that the most interesting ones are those which have absolute value |λ| = √ d.

Moreover, for all λ with |λ| = √ d, this map f → f preserves the variety F λ of λ-critical functions. Therefore it is natural to introduce the subsets

B o d := {λ ∈ C d | there exists f = 0 in F λ such that f = f }, and (1.5) 
B d := {λ ∈ C d | there exist q ∈ (Z/dZ) * , f = 0 in F λ with f = f q }, (1.6)
where f q is the function

f q : k → f (qk)
We begin by a few preliminary remarks on these two finite sets :

Remark 1.2. It is equivalent in (1.6) to require that there exists a λ-critical function h on G such that h = αh q for some scalar α ∈ C. Indeed, by (1.4), this scalar α must have absolute value |α| = 1. Therefore writing α = β/β with β in C, the function f := βh will satisfy f = f q .

Remark 1. The proof of Theorem 1.8 does not rely on [START_REF] Benoist | Convolution and square in abelian groups I[END_REF] nor on [START_REF] Benoist | Convolution and square in abelian groups II[END_REF]. In particular, it gives a new proof of Proposition 1.1. As in [START_REF] Benoist | Convolution and square in abelian groups I[END_REF], the proof of this elementary statement relies on elliptic curves with complex multiplication and on the modularity properties of their theta functions. The main surprise is the fact that the function f z introduced in Proposition 2.3 satisfies Equation (2.1). And also that the analogous functions f 0,z and f 1,z introduced in Proposition 3.5 satisfy Equations (3.8) and (3.9).

Other surprising aspects of the Fourier transform on cyclic groups can be found in [START_REF] Björck | New classes of finite unimodular sequences with unimodular Fourier transforms[END_REF], [START_REF] Tao | An uncertainty principle for cyclic groups of prime order[END_REF], [START_REF] Haagerup | Cyclic p-roots of prime lengths p and related complex Hadamard matrices[END_REF] and [START_REF] Führ | On biunimodular vectors for unitary matrices[END_REF]. 

Examples

⋆ d = 3 B o 3 = {±i √ 3} and B 3 = B o 3 . ⋆ d = 5 B o 5 = { √ 5 , 1±2i} and B 5 = B o 5 ∪ {- √ 5}. ⋆ d = 7 B o 7 = {±i √ 7 , ±2±i √ 3} and B 7 = B o 7 . ⋆ d = 9 B o 9 = {3 , ± √ 5±2i , ±1±2i √ 2} and B 9 = B o 9 . ⋆ d = 11 B o 11 = {±i √ 11, 2±i √ 7, ±2 √ 2±i √ 3, ±(1+ε √ 5) ± i 5-2ε √ 5 for ε = ±1} and B 11 = B o 11 . ⋆ d = 13 B o 13 ⊃ { √ 13, ±3±2i, √ 5±2i √ 2, ±1±2i √ 3} and B 13 ⊃ B o 13 ∪ {- √ 13, - √ 5 ± 2i √ 2}.
Here are a few comments on this list : -One notices that the values -1 ± 2i , - 

λ = - √ 5 ±2i, -1 ±2i √ 2, -2 √ 2 ±i √ 3, one can construct explicitely symmetric λ-critical functions f which satisfy f = f . -For the d-critical values λ = - √ 5 ± 2i √ 2, one can construct explicitely symmetric λ-critical functions that satisfy f (k) = f (2k) for all k in Z/13Z.
But there exist no symmetric λ-critical functions that satisfy f = f . -For d = 13 the above inclusions are probably equalities.

As explained in [1, §1.2], one might look at Equation (1.1) on locally compact abelian groups G. When the group is G = R or G = Z, the only L2 -solutions that I know are gaussian functions f (t) = e at 2 +bt+c where a, b, c ∈ C, Re(a) < 0, together with, when G = Z, their restrictions to subgroups. When the group is G = R/Z, the only L 2 -solutions that I know are proportional to a characters χ n : t → e 2iπnt with n ∈ Z.

Organization

In Section 2 we prove Theorem 1.8. In Section 3 we give a new proof of Proposition 1.1. In Section 4, we explain in more detail the above preliminary remarks.

Theta functions as critical functions

In this Chapter we prove Theorem 1.8 and the more precise Corollary 2.4 taking for granted Proposition 2.1.

Theta functions

We recall the definition of the Jacobi theta function: 

f z : ℓ → θ(λ 0 z+ d+1 2d ℓ, τ 0 ) on G satisfies f z = λ 0 √ d e 4iπd 2 z 2 f z . (2.1)
Note that the function on the left-hand side is indexed by the complex conjugate z. Note also that, when a, b are not assumed to be integers, even when z = 0, this function f z is not always λ 0 -critical.

Theorem 1.8 follows from the following corollary of Proposition 2.3 which tells us that, when z = r is real, with the precise factors λ 0 and d+1 2 as above, the λ 0 -critical functions f r are proportional to their image f r . 

:= √ a+i √ b, τ 0 := λ 2 0 -d 2 4d 2 . When r is real, the λ 0 -critical function f r : ℓ → θ(λ 0 r+ d+1 2d ℓ, τ 0 ) on G satisfies f r = λ 0 √ d e 4iπd 2 r 2 f r . (2.2)

Preliminary formulas

To prove Proposition 2.3 we need the following two classical formulas. The first formula computes the Fourier transform of the theta function. The second formula is the transformation formula due to Hecke that deals with an element σ = α β γ δ ∈ SL(2, Z).

Lemma 2.6. If σ ≡ 1 mod 2, and γ > 0, then, for all w in C and τ in H,

θ( w γτ +δ , στ ) = i δ-1 2 ( γ δ ) (γτ +δ) 1 2 e iπ γw 2 γτ +δ θ(w, τ ). (2.4)
In this formula, the SL(2, Z) action on the upper half plane H is the standard action στ = ατ +β γτ +δ , the number z 1 2 is the square root with positive real part of the complex number z ∈ H, and the symbol ( γ δ ) = ±1 is the Jacobi symbol.

Proof. See for instance [10, p.32], [9, p.148] or [START_REF] Polishchuk | Abelian varieties, theta functions and the Fourier transform[END_REF]Chap. 5].

Proof of Proposition 2.3

We begin by a Corollary of Lemma 2.6. 

0 := λ 2 0 -d 2 4d 2 .
Then, for all z in C, one has

θ(dλ 0 z, -d 2 τ 0 ) = λ 0 d e 4iπd 2 z 2 θ(λ 0 z, τ 0 ) (2.5)
Proof of Corollary 2.7. We apply Lemma 2.6 with the matrix

σ 0 = d 2 d 2 -1 4 4 1 ≡ 1 mod 2,
with τ = τ 0 and with w = λ 0 z. This matrix σ 0 has been chosen so that one has the equality

σ 0 τ 0 = -d 2 τ 0 . (2.6) 
We note that λ 0 λ 0 = d and that 1/(4τ 0 + 1) = λ 2 0 so that Formula (2.5) directly follows from Formula (2.4).

Proof of Proposition 2.3. For k in Z/dZ, we compute replacing ℓ by 2ℓ in Formula (1.2), and using Lemma 2.5 with w = λ 0 z and with k replaced by 4k,

f z (2k) = 1 √ d ℓ∈Z/dZ e -8iπkℓ/d θ(λ 0 z+ℓ/d, τ 0 ) = √ d e 16iπk 2 τ 0 e 8iπkλ 0 z θ(dλ 0 z + 4dkτ 0 , d 2 τ 0 )
Applying the complex conjugation to this equality, remembering that the theta functions are 1-periodic, and using the equalities

4dkτ 0 + dk = dk/λ 2 0 = λ 0 k/λ 0 , one gets (2.7) f z (2k) = √ d e -16iπk 2 τ 0 e -8iπkλ 0 z θ(dλ 0 (z+ k λ 0 d ), -d 2 τ 0 )
. We now apply Corollary 2.7 where z is replaced by z+ k λ 0 d and we get

f z (2k) = λ 0 √ d e -16iπk 2 τ 0 e -8iπkλ 0 z e 4iπd 2 (z+ k λ 0 d ) 2
θ(λ 0 z+k/d, τ 0 ).

In the exponent the terms that are linear in k are equal to 8iπkz (d/λ 0 -λ 0 ) = 0, and the terms that are quadratic in k are equal to 4iπk 2 (1/λ 2 0 -4τ 0 ) = 4iπk 2 ∈ 2iπZ. Both of them disappear, and one gets 

f z (2k) = λ 0 √ d e 4iπd 2 z 2 θ(λ 0 z+k/d, τ 0 ) = λ 0 √ d e 4iπd 2 z 2 f z (2k), for all k in Z/dZ.
0 := √ a + i √ b is in B o d .
Moreover, by choosing the parameter r to be 0 in Corollary 2.4, the function f satisfying (1.5) with λ = λ 0 can be chosen to be symmetric i.e. such that f (k) = f (-k) for all k in Z/dZ.

Therefore the complex conjugate function f which is λ 0 -critical also satisfies (1.5) with λ = λ 0 . This prove that λ 0 is also in B o d .

3 Theta functions with characteristic .

In this chapter, we give a new proof of Proposition 2.1 by applying the same calculation as above to theta functions with characteristic. Most of the calculation relies only on the assumption that a and b are positive real numbers with a+b = d. The integrality condition is only needed at the end.

Reinterpreting the convolution equation

The starting point is the following Lemma 3.1 which gives a reinterpretation of the conditions in (1.5) thanks to the square F = f 2 of the function f . Lemma 3.1. Let d be an odd integer, λ, α be complex numbers, f be a functions on G = Z/dZ such that f (t) = α f (t) and let F = f 2 . Then the following conditions are equivalent

f * f (2t) = λ f 2 (t) ⇐⇒ F (2t) = α 2 λ √ d F (t) (3.1)
In these equalities one must interpret t as a variable describing G.

Proof of Lemma 3.1. We recall the formula which is valid for any function f

F = 1 √ d f * f . (3.2)
Since our function f satisfies f = α f , this proves the claim (3.1).

This lemma tells us that we need to compute the finite Fourier transform of the square F z of the theta functions f z . This will be the aim of the next four sections.

Square of theta functions

We need to introduce the theta functions with characteristic

θ [0] (z, τ ) = θ 0 0 (2z, 2τ ) := m even e iπ τ 2 m 2 e 2iπmz θ [1] (z, τ ) = θ 1/2 0 (2z, 2τ ) := m odd e iπ τ 2 m 2 e 2iπmz .
Note that one has the equalities:

θ [0] (z, τ ) = θ(2z, 2τ ) and θ [1] (z, τ ) = e iπτ /2 e 2iπz θ [0] (z+τ /2, τ ). (3.3)
We first recall that the square of the theta function is a linear combination of two theta functions with characteristic. Lemma 3.2. For all z in C, τ ∈ H, one has

θ(z, τ ) 2 = θ [0] (0, τ )θ [0] (z, τ ) + θ [1] (0, τ )θ [1] (z, τ ).
(3.4)

Proof. Just write the left-hand side as a double sum over m, n in Z and split this double sum according to the parity of m-n.

The following calculation of the finite Fourier transform for these functions θ [0] and θ [START_REF] Benoist | Convolution and square in abelian groups I[END_REF] , is an analogue of Lemma 2.5.

Lemma 3.3. For w ∈ C, τ ∈ H, d > 0 odd integer and k ∈ Z/dZ, one has ℓ∈Z/dZ e -4iπkℓ/d θ [0] (w+ℓ/d, τ ) = d e 2iπk 2 τ e 4iπkw θ [0] (dw + dkτ, d 2 τ ), ℓ∈Z/dZ e -4iπkℓ/d θ [1] (w+ℓ/d, τ ) = d e 2iπk 2 τ e 4iπkw θ [1] (dw + dkτ, d 2 τ ).
Proof. The proof is the same as for Lemma 2.5, except that we have to restrict the sum to even integers m for the first formula, and to odd integers m for the second formula. Here are the details that prove the first formula

LHS = ℓ∈Z/dZ,m even e iπ τ 2 m 2 e 2iπmw e 2iπℓ(m-2k)/d = d
n even e iπ τ 2 (2k+dn) 2 e 2iπ(2k+dn)w = RHS.

And similarly for the second formula.

More transformation formulas

We go on with an analog of Corollary 2.7.

Corollary 3.4. Let d be an odd integer, a,b be positive real numbers with a+b = d. Let λ 0 := √ a+i √ b, and τ 0 :=

λ 2 0 -d 2 4d 2 .
Then, for all z in C, one has

θ [0] (dλ 0 z, -d 2 τ 0 ) = λ 0 d e 8iπd 2 z 2 θ [0] (λ 0 z, τ 0 ), (3.5) 
(-1)

d 2 -1 8 θ [1] (dλ 0 z, -d 2 τ 0 ) = λ 0 d e 8iπd 2 z 2 θ [1] (λ 0 z, τ 0 ). (3.6)
Proof of Corollary 3.4. We first prove (3.5). We apply Lemma 2.6 with the matrix

σ 1 = d 2 d 2 -1 2 2 1 ≡ 1 mod 2,
with w = 2λ 0 z and with τ 1 := 2τ 0 . This matrix σ 1 has been chosen so that one has the equality σ 1 τ 1 = -d 2 τ 1 . Remembering that λ 0 λ 0 = d and that 1/(2τ 1 +1) = λ 2 0 , this gives the equality θ(2dλ 0 z, -2d 2 τ 0 ) = λ 0 d e 8iπd 2 z 2 θ(2λ 0 z, 2τ 0 ), which is nothing but (3.5).

We now explain how to deduce (3.6) from (3.5). We compute the lefthand side of (3.6) up to multiplicative factors M 1 , M 2 and M 3 whose values are given below.

LHS = (-1) d 2 -1 8 θ [1] (dλ 0 z, -d 2 τ 0 ) = M 1 θ [0] (dλ 0 z -d 2 τ 0 2 , -d 2 τ 0 ) by (3.3) = M 1 θ [0] (dλ 0 (z + τ 0 2λ 0 ), -d 2 τ 0 ) by (3.7) = M 1 M 2 θ [0] (λ 0 (z + τ 0 2λ 0 ), τ 0 ) by (3.5) = M 1 M 2 M 3 θ [1] (λ 0 z, τ 0 ). by (3.3)
Note that in the third line of this computation, we used the periodicity of the function θ [0] and the fact that the sum

d 2 τ 0 2 + λ 2 0 τ 0 2 = 1-d 2 8 (3.7)
is an integer. The factors are given by

M 1 = e iπ 1-d 2 8 e -iπd 2 τ 0 2 e 2iπdλ 0 z , M 2 = λ 0 d e 8iπd 2 (z+ τ 0 2λ 0 ) 2 , M 3 = e -iπ τ 0 2 e -2iπλ 0 z .
In the exponent of the product M 1 M 2 M 3 the constant terms are equal to

iπ 2 ( 1-d 2 4 -d 2 τ 0 + 4λ 2 0 τ 2 0 -τ 0 ) = iπτ 0 2 (λ 2 0 + 4λ 2 0 τ 0 -1) = 0,
and the terms that are linear in k are equal to 2iπλ 0 z (λ

2 0 + 4λ 2 0 τ 0 -1) = 0.
Both of them disappear, and one gets LHS = λ 0 d e 8iπd 2 z 2 θ [1] (λ 0 z, τ 0 ).

More Fourier transform of theta functions

We begin by an analog of Proposition 2.3. 

(i) the function f 0,z : ℓ → θ [0] (λ 0 z+ d+1 2d ℓ, τ 0 ) on G satisfies, for all k in G, f 0,z (2k) = λ 0 √ d e 8iπd 2 z 2 f 0,z (k). (3.8) (ii) the function f 1,z : ℓ → θ [1] (λ 0 z+ d+1 2d ℓ, τ 0 ) on G satisfies, for all k in G, ( -1) 
d 2 -1 8 f 1,z (2k) = λ 0 √ d e 8iπd 2 z 2 f 1,z (k). (3.9)
Proof of Proposition 3.5. The proof is the same as for Proposition 2.3. We first prove (3.8). For k in Z/dZ, we compute using Lemma 3.3

f 0,z (4k) = 1 √ d ℓ∈Z/dZ e -16iπkℓ/d θ [0] (λ 0 z +ℓ/d, τ 0 ) = √ d e 32iπk 2 τ 0 e 16iπkλ 0 z θ [0] (dλ 0 z + 4dkτ 0 , d 2 τ 0 ).
And hence, applying first Equation (2.7) and then Corollary 3.4, one gets

f 0,z (4k) = √ d e -32iπk 2 τ 0 e -16iπkλ 0 z θ [0] (dλ 0 (z+ k λ 0 d ), -d 2 τ 0 ) = λ 0 √ d e -32iπk 2 τ 0 e -16iπkλ 0 z e 8iπd 2 (z+ k λ 0 d ) 2 θ [0] (λ 0 z+k/d, τ 0 ).
In the exponent the terms that are linear in k are equal to 16iπkz (d/λ 0 -λ 0 ) = 0, and the terms that are quadratic in k are equal to

8iπk 2 (1/λ 2 0 -4τ 0 ) = 8iπk 2 ∈ 2iπZ.
Both of them disappear, and one gets f 0,z (4k) = λ 0 √ d e 8iπd 2 z 2 f 0,z (2k). The proof of (3.9) is similar, the sign (-1)

d 2 -1 8 
sign coming from (3.6).

Fourier transform of squares of theta functions

We have not yet assumed that the positive real number a is an integer equal to (d+1) 2 4 modulo 4. This condition will be crucial in the next Lemma 3.7. 

:= √ a+i √ b, τ 0 := λ 2 0 -d 2 4d 2 . The square function F z : ℓ → θ(λ 0 z+ d+1 2d ℓ, τ 0 ) 2 on G satisfies, for all k in G, F z (2k) = λ 3 0 d √ d e 8iπd 2 z 2 F z (k). (3.10)
The following lemma will be useful. 

:= √ a+i √ b, τ 0 := λ 2 0 -d 2 4d 2 .
Then, one has

λ 0 θ [0] (0, -τ 0 ) = λ 0 θ [0] (0, τ 0 ) (3.11) (-1) d 2 -1 8 λ 0 θ [1] (0, -τ 0 ) = λ 0 θ [1] (0, τ 0 ). (3.12)
Assertion (3.11) means that λ 0 θ [0] (0, τ 0 ) is real. Assertion (3.12) means that λ 0 θ [START_REF] Benoist | Convolution and square in abelian groups I[END_REF] (0, τ 0 ) is real when d ≡ ±1 mod 8 and imaginary otherwise.

Proof of Lemma 3.7. The congruence assumption on a tells us that

d 2 τ 0 + d 2 τ 0 = a-b-d 2 2 belongs to d 2 -1 4 +4Z. (3.13)
Combining this with the equality θ [0] (0, τ + 2) = θ [0] (0, τ ) and using twice Formula (3.5) one gets

λ 0 d θ [0] (0, -τ 0 ) = θ [0] (0, d 2 τ 0 ) = θ [0] (0, -d 2 τ 0 ) = λ 0 d θ [0] (0, τ 0 )
which proves (3.11).

Similarly with (3.13) and the equality θ [START_REF] Benoist | Convolution and square in abelian groups I[END_REF] (0, τ + 2) = -θ [START_REF] Benoist | Convolution and square in abelian groups I[END_REF] (0, τ ), one has the following computation in which we use twice Formula (3.6), (-1)

d 2 -1 8 λ 0 d θ [1] (0, -τ 0 ) = θ [1] (0, d 2 τ 0 ) = (-1) d 2 -1 8 θ [1] (0, -d 2 τ 0 ) = λ 0 d θ [1] (0, τ 0 )
which proves (3.12).

Proof of Proposition 3.6. According to Lemma 3.2, one has, for k in G,

F z (k) = θ [0] (0, τ 0 ) f 0,z (k) + θ [1] (0, τ 0 ) f 1,z (k). (3.14)
Therefore we compute the conjugate Fourier transform

F z (2k) = θ [0] (0, -τ 0 ) f 0,z (2k) + θ [1] (0, -τ 0 ) f 1,z (2k) = λ 2 0 d θ [0] (0, τ 0 ) f 0,z (2k) + (-1) d 2 -1 8 θ [1] (0, τ 0 ) f 1,z (2k) = λ 3 0 d √ d e 8iπd 2 z 2 θ [0] (0, τ 0 )f 0,z (k) + θ [1] (0, τ 0 )f 1,z (k) = λ 3 0 d √ d e 8iπd 2 z 2 F z (k).
where we used Formulas (3.11) and (3.12), and Formulas (3.8) and (3.9).

Another proof of Proposition 2.1

Proof. By Propositions 2.3 and 3.6, we know that, for all k in G,

f z (k) = α f z (k) with α := λ 0 √ d e 4iπd 2 z 2 , F z (2k) = β F z (k) with β := λ 3 0 d √ d e 8iπd 2 z 2 .
Therefore, by Formula (3.2), we get, for all k in G,

f z * f z (2k) = λ f 2 z (k) with λ = β √ d α 2 = λ 0 .
This says that the function f z is λ 0 -critical.

Properties of the elements of B d

In this last chapter, we explain the relationship between the set B o d , the Gaussian functions, the Dirichlet characters, the Jacobi sums and the Weil numbers. We also update in section 4.4 the list of critical values for d ≤ 17 that is given in [START_REF] Benoist | Convolution and square in abelian groups I[END_REF]. We will see in Section 4.5 that this updated list for d = 17 contains elements λ ∈ B o d that are not Weil numbers. For u ∈ (Z/dZ) * , v ∈ Z/dZ we introduce the Gaussian function on Z/dZ

Gaussian functions

f u,v (k) = η -u(k-v) 2 .
The conjugate of its Fourier transform is given by Proof.

f u,v = ( 2u d ) g d √ d f u -1 ,uv (4.1) 
For f = f u,v , one computes f * f (2k) = λ f 2 (k) with λ = ( u d ) g d .
This says that the function f is λ 0 -critical with λ 0 = ( u d ) g d . a) When u = 1 and v = 0, one has λ 0 = g d , and Equation (4.1), tells us that the λ 0 -critical function f : k → η -k 2 is proportional to its conjugate Fourier transform f . b) When u ∈ Z/dZ is not a square and v = 0, one has λ 0 = -g d , and the function f : k → η -uk 2 is λ 0 -critical. Equation (4.1), tells us that the conjugate Fourier transform f is proportional to k → f (u -1 k). c) When d ≡ 3 mod 4 and u = -1, one has λ 0 = -i √ d, and Equation (4.1), tells us that the λ 0 -critical function f : k → η k 2 is proportional to its conjugate Fourier transform f . Remark 4.2. For d = 5 the critical value λ 0 = -√ 5 does not belong to B o d . Indeed a direct calculation shows that, up to scalar, there are exactly 10 λ 0 -critical functions. These are the gaussian functions f u,v , with u = ±2 and v ∈ Z/5Z. By (4.1), none of them is proportional to its conjugate Fourier transform.

Dirichlet characters and Jacobi sums

We refer to [8, §3.5] and to [START_REF] Conrad | Gauss and Jacobi sums of finite fields and Z/mZ[END_REF] for the results of this section.

We recall that a Dirichlet character χ : Z/dZ → C is a multiplicative character on the multiplicative group (Z/dZ) ⋆ which is extended by 0 on the set of zero divisors of Z/dZ. The group of Dirichlet characters is isomorphic to (Z/dZ) ⋆ . Its order is given by the Euler function ϕ(d). A Dirichlet character of Z/dZ is said to be primitive if does not come from a Dirichlet character of Z/d ′ Z for a proper divisor d ′ of d. The number N(d) of primitive Dirichlet characters can be easily computed by the formulas: To Dirichlet characters χ, χ 1 , χ 2 one associates the Gauss sum

N(d 1 d 2 ) = N(d 1 )N(d 2 ) when d 1 is coprime to d 2 . N(p) = p-2 and N(p r ) = (p -1)
G(χ) = k e 2iπk/d χ(k)
and the Jacobi sum Proof. The Fourier transform of a primitive Dirichlet character χ is proportional to the conjugate Dirichlet character

J(χ 1 , χ 2 ) = k χ 1 (k)χ 2 (1 -k).
χ(k) = 1 √ d k e -2iπkℓ/d χ(ℓ) = χ(-1) √ d G(χ) χ(k).
Hence, since both χ and χ 2 are primitive on Z/dZ, one has

χ(k) = α χ(k) with α := 1 √ d G(χ), χ 2 (2k) = β χ 2 (k) with β := χ(4) √ d G(χ 2 ).
Therefore, by Formula (3.2), we get, for all k in G,

χ * χ(2k) = λ χ 2 (k) with λ = β √ d α 2 = dχ(4) G(χ 2 ) G(χ) 2 = χ(4) G(χ) 2 G(χ 2 ) . (4.2) 
This says that the function χ is λ-critical and that λ belongs to B o d . Evaluating Formula (4.2) at k = 1 also gives the equality λ = χ(4) J(χ, χ). 

Weil numbers

We focus on the arithmetic properties of critical values. Let d be an odd integer and G = Z/dZ. We recall that a d-Weil number is an algebraic integer all of whose Galois conjugates have absolute value √ d. All the elements of B d we have constructed so far belong to a cyclotomic field. This is not always the case. Indeed, one can check that the element λ = 1+ √ 5 + i 9-2 √ 5 belongs to B 15 . We may ask, for any odd integer d, Is every λ ∈ B d a d-Weil number?

We will give a very partial positive answer to this question in Lemma 4.5 but we will exhibit an example of λ in B o d which is not a Weil numbers in Section 4.5. In this example, one has d = 17.

Let G be a finite abelian group of odd order d. For any symmetric non degenerate pairing e(., .) :

G × G → S 1 , where S 1 := {z ∈ C | |z| = 1}, one can define the conjugate Fourier transform f → f on F G by, for all x ∈ G, f (x) = 1 √ d y∈G f (y) e(x, y).
Since the pairing is symmetric and non-degenerate, this map f → f is again an antilinear involution of F G . Moreover for all λ with |λ| = √ d the conjugate Fourier transform preserves the variety F λ of λ-critical functions.

Therefore it is also natural to introduce the following finite set of numbers By definition, a CM-field is a totally complex quadratic extension of a totally real number field.

Proof. (i) We first recall that, by [1, Prop. 2.1], all the critical numbers λ ∈ C G are algebraic integers. On the one hand, for each choice of symmetric non-degenerate pairing e(., .), the conjugate Fourier transform f → f is an isometry of F G endowed with the L 2 -norm. Therefore all the numbers λ in B G have absolute value equal to √ d. On the other hand for λ in a CMnumber field, all the Galois conjugates of λ have the same absolute value. This proves that λ is a d-Weil number.

(ii) Let λ ′ be a Galois conjugate of λ. Let K ⊂ C be a CM number field containing not only λ and the d th -roots of unity but also the coefficients of a function f satisfying (1.5). We can assume that the extension K/Q is Galois. Let σ ∈ Gal(K/Q) be an automorphism of K such that λ ′ = σ(λ).

Since K is a CM number field, this element σ commutes with the complex conjugation. There exists an integer m coprime to d such that, for all d throot of unity ζ, one has σ(ζ) = ζ m . We then introduce the symmetric non-degenerate pairing on G e m (x, y) = e(x, y) m = e(mx, y) = e(x, my) = σ(e(x, y))

By assumption there exists a non-zero λ-critical function f on G and a constant α such that, for all x ∈ G, y∈G f (y) e(x, y) = αf (x) Since σ commutes with the complex conjugation, applying σ to this equality, one gets, with the function g := f σ which is λ σ -critical, the equality y∈G g(y) e m (x, y) = α σ g(x)

This proves that λ σ belongs to B G .

List of critical values for small d

The following lists of d-critical values rely on numerical experiments using the Buchberger's algorithm for computing Groebner basis (see [START_REF] Cox | Ideals, varieties, and algorithms[END_REF]Chap. 2]). Implementing the algorithm modulo many prime numbers allowed us to improve the lists given in [START_REF] Benoist | Convolution and square in abelian groups I[END_REF]. Proof. We choose λ to be one of the 20 critical values λ given by (4.3). These values λ are not Weil numbers. Indeed, among these 20 Galois conjugates, only 8 have absolute value equal to √ 17. Those for which c is real and belongs to the interval [-√ 17, √ 17]. Using again Buchberger's algorithm for computing Groebner basis, one can list, for each such λ, all the antisymmetric λ-critical functions f with f (1) = 1. There are 8 of them. One can then check that, for a well-chosen λ approximately equal to 3.942 + 1.209 i, one of these λ-critical functions f is proportional to its conjugate Fourier transform f . Such a critical value λ belongs to B o d .

Proposition 1 . 1 . 4 mod 4 .

 1144 Let G = Z/dZ with d odd, a, b be positive integers with a+b = d and a ≡ (d+1) 2 The values λ 0 := √ a ± i √ b are d-critical.
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 3141844 According to the previous discussion, all the elements λ of B d have absolute value |λ| = √ d. When λ is in B d then its complex conjugate λ is also in B d . When λ is in B o d with a symmetric function f , then λ is also in B o d . Remark 1.5. The simplest element of B o d is λ = √ d for d ≡ 1 mod 4 and is λ = ±i √ d for d ≡ 3 mod 4. The corresponding λ-critical function is the Gaussian function h := k → η ±k 2 where η = -e iπd . This will be explained with more details in Lemma 4.1. Remark 1.6. The second simplest elements of B o d are λ = χ(4) J(χ, χ) where χ is a Dirichlet character modulo d whose square χ 2 is primitive and J(χ, χ) its Jacobi sum. The corresponding λ-critical function is the Dirichlet character χ. This will be explained with more details in Lemma 4.3. Remark 1.7. We will see in Section 4.1 that when d = 1 mod 4 the d-critical value λ 0 = -√ d is in B d . For d = 5, one can check that this value is not in B o d . This example explains why it is natural to introduce both B o d and B d . The main result of this short paper is to prove that the d-critical values introduced in [1] belong to B o d . Let G = Z/dZ with d odd, a, b be positive integers with a+b = d and a ≡ (d+1) 2 Then both values √ a ± i √ b belong to B o d

  Relying on the numerical experiments of Section 4.4, one can describe the sets B o d and B d for small values of d. Here is the result for d ≤ 13.

4 mod 4 . 2 0 -d 2 4d 2

 44222 θ τ (z) = θ(z, τ ) := m∈Z e iπτ m 2 e 2iπmz , for z ∈ C and τ ∈ H, where H is the upper half plane H = {τ ∈ C | Im(τ ) > 0}. This function is 1-periodic: θ τ (z +1) = θ τ (z). We can now recall the construction of λ-critical functions on Z/dZ from [1, Prop. 3.2]. Proposition 2.1. Let G = Z/dZ with d odd, a,b be positive integers with a+b = d and a ≡ (d+1) 2 Let λ 0 := √ a+i √ b, τ 0 := λ and z ∈ C. Then the function f z : ℓ → θ(λ 0 z+ d+1 2d ℓ, τ 0 ) is λ 0 -critical on G. A new proof of Proposition 2.1 will be given in Chapter 3. Note that we have omitted the dependence on τ 0 in the notation f z . Remark 2.2. In [1, Prop. 3.2] one deals with the function ℓ → θ(z + ℓ d , τ 0 ) where the factor λ 0 and the factor d+1

2. 2 2 0 -d 2 4d 2

 2222 Theta functions and Fourier transformIn Proposition 2.3 the real numbers a and b are not assumed to be integers. Proposition 2.3. Let G = Z/dZ with d odd, a,b be positive real numbers with a+b = d. Let λ 0 := √ a+i √ b, τ 0 := λ and z ∈ C. Then the function

Corollary 2 . 4 . 4 mod 4 .

 2444 Let G = Z/dZ with d odd, a,b be positive integers with a+b = d and a ≡ (d+1) 2 Let λ 0

Lemma 2 . 5 .

 25 For w ∈ C, τ ∈ H, d positive integer and k ∈ Z/dZ, one has ℓ∈Z/dZ e -2iπkℓ/d θ(w+ℓ/d, τ ) = d e iπk 2 τ e 2iπkw θ(dw + dkτ, d 2 τ ) (2.3) Proof. Just write the left-hand sides as a double sum over m in Z and ℓ in Z/dZ and notice that ℓ∈Z/dZ e 2iπℓ(m-k)/d is equal to d when d divides m-k and is equal to 0 otherwise to obtain the right-hand side. Here are the details LHS = ℓ∈Z/dZ,m∈Z e iπτ m 2 e 2iπmw e 2iπℓ(m-k)/d = d n∈Z e iπτ (k+dn) 2 e 2iπ(k+dn)w = RHS that prove (2.3).

Corollary 2 . 7 .

 27 Let d be an odd integer, a,b be positive real numbers with a+b = d. Let λ 0 := √ a+i √ b, and τ

Proposition 3 . 5 . 2 0 -d 2 4d 2

 35222 Let G = Z/dZ with d odd, a,b be positive real numbers with a+b = d. Let λ 0 := √ a+i √ b, τ 0 := λ and z ∈ C. Then

Proposition 3 . 6 . 4 mod 4 .

 3644 Let G = Z/dZ with d odd, a,b be positive integers with a+b = d and a ≡ (d+1) 2 Let λ 0

Lemma 3 . 7 . 4 mod 4 .

 3744 Let G = Z/dZ with d odd, a,b be positive integers with a+b = d and a ≡ (d+1) 2 Let λ 0

Let d be an

  odd integer, ζ := e 2iπ/d and η := -e iπ/d , so that η 2 = ζ. Set g d to be the classical Gauss sum g d := k ζ k 2 . So that one has g d = √ d when d ≡ 1 mod 4, and g d = i √ d when d ≡ 3 mod 4.

Lemma 4 . 1 .

 41 a) For d odd, the classical Gauss sum λ 0 = g d belongs to B o d . b) When d ≡ 1 mod 4, the opposite value λ 0 = -√ d also belongs to B d . c) When d ≡ 3 mod 4, the opposite value λ 0 = -i √ d also belongs to B o d .

Lemma 4 . 3 .

 43 For all Dirichlet character χ whose square χ 2 is primitive, the value λ χ := χ(4) J(χ, χ) belongs to B o d . Moreover the Dirichlet character χ is a λ χ -critical function on Z/dZ which is proportionnal to χ. Remark 4.4. The number N 0 (d) of Dirichlet characters whose square is primitive can be easily computed by the formulas: N 0 (d 1 d 2 ) = N 0 (d 1 )N 0 (d 2 ) when d 1 is coprime to d 2 . N 0 (p) = p-3 and N 0 (p r ) = (p -1) 2 p r-2 when p is an odd prime, and r ≥ 2. In particular, for d odd, Dirichlet characters with primitive square exist if only if and only if d ≡ ±3 mod 9.

  Here are the values λ χ obtained when d ≤ 17. Note that two different Dirichlet characters χ may have the same λ χ . ⋆ d = 5. N 0 (d) = 2 and λ χ = 1±2i. ⋆ d = 7. N 0 (d) = 4 and λ χ = ±2±i √ 3. ⋆ d = 9. N 0 (d) = 4 and λ χ = 3. ⋆ d = 11. N 0 (d) = 8 and λ χ = ±(1+ε √ 5) ± i 5-2ε √ 5 with ε = ±1. ⋆ d = 13. N 0 (d) = 10 and λ χ = ±3±2i and -1±2i √ 3. ⋆ d = 17. N 0 (d) = 14 and λ χ = 3±2i √ 2 and -1±4i and λ χ = -1+2ε √ 2 ± 2i 2+ε √ 2 with ε = ±1.

B

  G : = {λ ∈ C | there exists a symmetric non-degenerate pairing on G and a λ-critical function f on G such that f = f }. By definition, when G = Z/dZ, we have B d = B G . Lemma 4.5 below gives some very partial insight on the set B G . Lemma 4.5. Let G be a finite abelian group of odd order d. (i) If λ ∈ B G belongs to a CM-field then λ is a d-Weil number.(ii) Moreover if the function f satisfying (1.5) can also be chosen in a CMfield then all the Galois conjugates of λ belong to B G .

For 3 ≤ 7 , 5 ) 2 , 3 .√ 5 ±√ 3 ,

 3752353 d ≤ 11 here are the complete lists of d-critical values. For d = 13, the list below of d-critical values is also probably completeFor d = 3 λ = 1, 3, ±i √ 3. For d = 5 λ = 1, 5, ± √ 5, 1 ± 2i. For d = 7 λ = 1, 7, ±i √ ± i 5-2ε √ 5 with ε = ±1. For d = 13 λ = 1 , 13, 5 ± 2 √ 3, λ = ± √ 13, ±3 ± 2i, ± √ 5 ± 2i √ ±1 ± 2i √ For d =15 , here is the complete list of d-critical values associated with a symmetric critical function. ⋆ λ = product of a 3-critical and a 5-critical value, λ = 6 i 5 -2ε √ 5 with ε = ±1, ⋆ λ is a root of the equation λ 2 -4bλ + 15 = 0 where either b 3 -2b 2 -2 = 0 or b 3 -b 2 -b -1 = 0 or b 10 -b 9 -10b 8 +10b 7 +34b 6 -38b 5 -43b 4 +65b 3 +8b 2 -40b+16 = 0.For d = 17 , here is a list of d-critical values that contains all those associated with an antisymmetric critical function.⋆ λ = 1 , 17, 7 ± 4 ±1 ± 4i, ⋆ λ = ±(1 + 2ε √ 2) ± 2i 2 -ε √ 2 with ε = ±1, ⋆ λis a root of the equation λ 2 -2cλ + 17 = 0 where (4.3) c 10 -6c 9 -15c 8 +136c 7 -62c 6 -628c 5 +586c 4 +232c 3 +733c 2 -246c+293 = 0. 4.5 A critical value which is not a Weil number Example 4.6. For d = 17, there exists a critical value λ ∈ B o d which is not a Weil number.

  This proves (2.1). of Theorem 1.8. It follows from Corollary 2.4, that the d-critical value λ

	Proof

  2 p r-2 when p is prime and r ≥ 2. In particular primitive Dirichlet characters exist if only if and only if d ≡ 2 mod 4.

do not occur. Note that, since d is odd, the factor d+1 2 is nothing than the inverse of 2 in the group Z/dZ. Introducing these factors does not change the conclusion of Proposition 2.1 but will be crucial for the validity of Proposition 2.3.