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Abstract—Mobile crowdsensing is a powerful paradigm that
takes advantage of low-cost sensors and population density. It
allows for large-scale deployments and collection of extensive
data, offering a great advantage in multiple fields such as air
pollution monitoring, which is a major concern worldwide. Given
the mobile nature of the crowd, mobile crowdsensing platforms
need to implement adequate route selection/planning solutions to
better guide the crowd through the area of interest and maximize
the quality of monitoring. In this paper, we propose two route
selection algorithms that take into consideration the low accuracy
of low-cost sensors in order to find the most informative routes.
The similarity-based route selection algorithm aims to maximize
spatial coverage by reducing overlaps between participant routes.
The cluster-based route selection takes advantage of hierarchical
clustering to build groups of similar points of the map according
to explanatory variables. We compare the proposed solutions to
baseline route selection algorithms, and the results show that
our solutions allow for a better estimation while being efficient
in terms of travel distance.

Index Terms—Route selection, participatory sensing, low-cost
sensors, air quality monitoring.

I. INTRODUCTION

Mobile crowdsensing [1] is an emerging and powerful
paradigm which has recently received a great deal of attention,
due to rapidly emerging sensing platforms and their growing
needs in terms of both quantity and quality of data. This
paradigm has become an appealing solution to collect data
without making large investments, especially with the emer-
gence and widespread use of low-cost wireless sensors. Mobile
crowdsensing highly involves citizens in the sensing process
and has been adopted in numerous solutions such as environ-
mental monitoring [2], [3], healthcare [4], [5], transportation
[6], [7], etc. Participants in mobile crowdsensing use sensors
embedded on their smart devices (smartphones, smartwatches,
etc.) or autonomous nodes to accomplish sensing tasks.

Given the mobile nature of the crowd, mobile crowdsensing
platforms need to implement adequate route planning/selection
solutions to better guide the crowd through the area of interest
and maximize the quality of monitoring. Route planning and

This work has been supported by the ”LABEX IMU” (ANR- 10-LABX-
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route selection are of great importance in mobile crowd-
sensing and smart cities applications [8]–[10]. On one side,
participants in route planning delegate the construction of
their routes to the monitoring platform, which will drive their
movements by leading them through specific points of interest.
On the other side, in route selection, each participant can
have multiple pre-computed routes, and the role of the system
is to select the most appropriate one regarding the needs
of the task. It is clear that the second method considerably
limits the degree of freedom of sensing platforms as they are
restricted to choose from already built candidate routes that
may inevitably overlap, thus limiting coverage and increasing
data redundancy.

One of the applications that greatly benefits from mobile
crowdsensing is air quality monitoring, due to its major
importance, the complexity of deploying expensive monitoring
stations (especially in dense urban areas), the large number
of potential participants, etc. In fact, several million deaths
are attributable to air pollution each year [11]. Air pollution
consists of chemical and particles in the atmosphere mainly
caused by human activities, such as energy production and fuel
combustion. This human-generated pollution is prevalent in
urban areas [12] due to high population and building densities,
which result in an increasing risk of exposure to pollutants,
leading to serious health problems such as cancer, respiratory
distress, etc.

In our previous research work, we have designed a low-cost
participatory air quality monitoring system that features small,
portable sensing nodes equipped with three low-cost sensing
probes for monitoring NO2, PM1, PM2.5, PM10, temperature,
and relative humidity [3]. The sensor nodes have been eval-
uated against reference sensors and have been involved in
multiple mobile sensing campaigns in Lyon city since 2019
[3]. Besides the mapping of air quality, the collected data also
served to understand the relationship between the sampling
rate, the energy consumption, and the mapping quality. The
capacity of mapping approaches was also investigated, and
the results revealed some heterogeneity in mapping quality
between different areas, due to the fact that some of them
were covered by multiple sensors, while others were not [13].
This led to questions related to the movement of the crowd
and how it could be organized in order to maximize the



overall monitoring quality while taking into consideration the
constraints of the participants.

In this paper, we address the route selection problem in
participatory sensing, while focusing on the application of
air quality monitoring to validate our proposal. We present
two route selection algorithms, where the first one computes
the similarity between the different possible routes, while the
second algorithm takes advantage of the similarity between the
points of the map through clustering. We evaluate the perfor-
mance of the proposed algorithms and compare them to other
baseline route selection algorithms. Furthermore, we show
through the results that our clustering-based routing improves
the estimation quality while being efficient regarding the travel
distance. The reminder of this paper is organized as follows,
Section II discusses related works. Section III describes the
scenario and the objective of this paper. Section IV presents
the baseline route selection algorithms and explains the two
proposed route selection solutions. The validation use case of
our proposed algorithms is introduced in Section V. Section VI
discusses the obtained results. Finally, Section VII concludes
this paper.

II. RELATED WORKS

Mobile crowdsensing have raised questions regarding the
movement of the crowd and how to maximize coverage while
taking into consideration the constraints of the participants and
the addressed application. This has opened the door for new
research studies that harness citizen’s mobility to improve the
mapping of environmental phenomena.

Synthetic measurements were used in [14] to predict a map
of NO2 concentrations in the city of Marseille, France, while
considering up to 4500 bike-tracks randomly generated. The
simulated concentrations were generated using a numerical
model with a spatial resolution of 25 × 25km2. Fictive bike
tracks were constructed using a cyclist route planner API. The
resulting dataset served to train and compare the performance
of three estimation models, namely ordinary kriging, multi-
layer perceptron neural network, and a generalized additive
model (GAM).

In multiple crowdsensing applications, the system owner
pays the participants for their collected data. In these use
cases, the participants often perform sensing tasks at spe-
cific locations rather than continuous sampling. The price is
generally related to the number of accomplished tasks, their
priority, the quality of the data, etc. In this context, given a
budget, the system owner optimizes the mobility of the crowd
in order to maximize the number of completed tasks or the
coverage of the study area, while satisfying the constraints of
the participants.

The work in [15] addresses the coverage problem in vehicu-
lar crowdsensing by incentivizing participants to deviate from
their original path to improve the overall spatial coverage. The
authors take advantage of game theory in which vehicles are
the participants and their new routes are their strategies. In
the proposed solution, all participants are assumed to start at
the same time and the reward for a participant A depends on

the number of deviations made to the original path and the
diversity of the new route. This diversity metric is computed
using the Fréchet distance between the path of A and the
routes of all other participants. The goal then is to find the
set of deviations to be made to participant routes, such that
the coverage is maximized.

A three-phase routing algorithm is proposed in [8] in a task
assignment context. A task is characterized by its location
and its added value to the system. In the first phase, the
algorithm iteratively constructs the route from the origin to
the destination, by considering at each step the task that has
the largest added value. The task is assigned to the user if his
device’s energy is enough to travel from the current location
to the target task, then to the destination point. The second
phase of the algorithm performs the construction backwards
(i.e., from the destination point to the starting point of the
participant). The final part of the solution is the selection of the
route with the highest added value. This solution is appropriate
if we consider specific sensing locations.

Instead of suggesting a whole route to a participant, the
work in [16] takes a different approach to maximize the
coverage quality while avoiding redundant data. The study
proposes a reverse greedy algorithm that selects only a subset
of segments from the participant’s route, based on the cost of
the task and the available budget. The selected segments are
those along which the participant performs the task. Thus, the
participant will be rewarded according to the selected segments
instead of the whole journey. To achieve such result, the
algorithm eliminates redundant segments. Two segments are
considered redundant if the distance separating their respective
endpoints is less than a predefined distance. After each round
of trimming, if the total cost is greater than the available
budget, a new round starts with a larger threshold distance
to further reduce the number of selected segments.

Gong et al. [17] addressed the path planning problem to
maximize the total task quality in a scenario where users
and tasks arrive dynamically. Each user has a limited distance
budget and has to register his starting and destination points
upon arrival. One of the proposed algorithms in this work
selects the tasks that lead to the largest gain-cost ratio, one
by one in a greedy manner, as long as they satisfy the travel
distance budget of the user. An alternative solution tends to
guide users to task-dense areas to maximize the cost-gain ratio.
In addition to that, the authors designed an algorithm that
takes into account the impact of a candidate task on the travel
distance budget, in order to leverage tasks with low impact on
the available budget. Given a candidate task, this algorithm
evaluates the possibilities of the next step by computing the
distance from this task to the others. The task that does not
distract the participant from the rest of the tasks is selected.
This algorithm yielded better performance compared to the
other two solutions.

In [18], the goal is to maximize the sub-profit in each time
slot to approximately approach the maximum profit of all slots
for a given task. A task is represented as a number of sensing
locations during a certain period, the area of interest is divided



into N cells, and the task duration into M time slots with
the same length. Each participant in this scenario is guided
to move along the shortest path. However, to avoid similar
routes and maintain a stable dispersed distribution, the authors
use 2D entropy to guide participant distribution. The more
decentralized the participants, the higher the entropy value.
The solution first randomly selects a number of cells and
compute the entropy, then repeats the selection process for
multiple iterations. At last, the participant distribution with
the largest entropy is selected as an approximately optimal
solution.

Although the aforementioned works explore mobile crowd-
sensing capabilities to accomplish sensing tasks, the majority
of them focus more on specific sensing locations rather than
sensing the entire zone. This prevents performing continu-
ous sampling which considerably limits the potential of the
crowdsensing and significantly reduces the spatial resolution,
especially in air quality monitoring applications where there is
no sensing range as explained in [19]. Furthermore, most air
quality monitoring platforms are based on low-cost sensors,
as in [3] [20] [21]. However, the majority do not take into
consideration the inaccuracies of these sensors, which is
one of the main challenges when it comes to predicting air
pollution using low-cost environmental sensors. In addition, in
participatory sensing, participants may use embedded sensors
on their smartphones, adding a new challenge which is sensor
heterogeneity. Therefore, taking into consideration sensing
errors during the participant recruitment phase and the route
planning process should be of utmost importance.

III. PROBLEM STATEMENT

In this section, we describe the scenario we focus on as
well as the global objective we aim at. Afterwards, we give a
mathematical formulation of the problem to solve it.

A. Scenario Description

In this work, we focus on a scenario in which multiple
participants are equipped with heterogeneous low-cost envi-
ronmental sensors to measure a specific phenomenon in a
delimited area. Without loss of generality, we consider air
quality mapping as use case. Each participant has a starting
point and wants to get a path to reach his destination using a
routing service. The participant is also willing to take a path
that contributes to the knowledge of the studied phenomenon,
without deviating too much from the optimal path.

B. Objective

Our global mission, in this context, is to suggest to each
participant a route that might not necessarily be the optimal
(shortest) path in terms of distance/duration, but does improve
the estimation while being acceptable in terms of journey dis-
tance/duration. This implies taking into consideration not only
the length of the participant’s routes and their relationships
with other participant routes, but also the accuracy level of his
sensor. In other words, our goal is to find the best combination
of routes that allows the system to reduce the overall mapping

estimation error while still satisfying participants’ constraints
in terms of trip distance/duration. The assumptions upon which
we build our solution are as follows:

• The duration of the sampling is considerably short (neg-
ligible)

• Each route can be divided into smaller segments and
routes may overlap along a certain distance (i.e., have
segments in common)

C. Mathematical notation

Let U = [u1, u2, ..., un] be the set of participants, S =
[s1, s2, ..., sn] the set of their respective sensors, σk the stan-
dard error of the k-th sensor, and Pk = [pk1, pk2, ..., pkq] the
set of possible paths for the k-th participant. The goal is to
select for each participant uk a path pkj from his q possible
routes, knowing that he is equipped with a sensor sk which
has a standard error σk.

A brute force solution would be to test all the possible
combinations (i.e., qn combinations). However, as the space of
solutions grows exponentially with the number of participants,
the implementation of such solution in a real life scenario is
impractical. To cope with that, we rely on heuristics that are
not optimal, but have smaller solution spaces, hence running
much faster than the exhaustive search.

IV. ROUTE SELECTION SOLUTIONS

Through this contribution, we address route selection in
the context of participatory air quality sensing. The objective
is to maximize the quality of the prediction where there
are no measurements, using a spatial interpolation method
and an efficient route selection algorithm. First, we briefly
review three traditional solutions that that could be utilized
for comparison purposes. We then introduce two algorithms
that take into consideration sensing errors and the relationship
between participant routes.

A. Traditional route selection algorithms

Generally, route planning services always offer either the
shortest path or q possible paths, while taking into consider-
ation multiple parameters (e.g., traffic condition, waypoints,
type of path, etc.). Route selection consists of choosing for
each participant a path among the q proposed ones. This is a
key element as it determines the geographical zones that will
be sampled, which highly impacts the estimation quality. We
consider in this part three traditional routing approaches as
baseline:

• Shortest-path-based routing (SPR): This algorithm prior-
itizes participant comfort by reducing the travel distance
for all participants, through suggesting the shortest route
among the q paths. In SPR, all route selections are
performed independently for each participant.

• Longest-path-based routing (LPR) : In contrast to SPR,
this approach aims at maximizing the set of points to visit.
It suggests to all participants the longest route possible
among the q suggested routes. It is to be noted that in
this contribution, we consider the longest path within



a predefined stretch factor with respect to the shortest
path. Suggesting the longest-path for all participants
will intuitively expand the set of collected measures,
and hence, improve the estimation quality. However, the
correlation between paths is not considered, which means
that this method does not always maximize the quality of
the spatial mapping.

• Random routing (RR): For each participant, randomly
select a route among the q possible ones without taking
into consideration its length, the already selected routes
for previous participants, or the accuracy level of the
sensors.

All three algorithms cited above are easy to implement,
but their downside is that they do not take into consideration
the correlations between participant routes or the accuracy
levels of the sensors. In fact, the routes can pass through
similar points or even different points that provide redundant
information (points with similar characteristics). These obser-
vations feed the need for more sophisticated techniques, that
will efficiently attribute routes to the participants that are not
necessarily the longest or the shortest ones, but bring as much
diversity in the dataset as possible. This can be achieved by
introducing metrics and techniques that help to choose the
most distinct routes possible and thus bring more information.

B. First proposition: Similarity-based route selection

The level of accuracy differs from a sensor to another,
even between sensors of the same type. Therefore, to offer
a good estimation, platforms should have an efficient routing
approach that also takes into consideration the heterogeneity
of sensing quality. In this regard, given a pool of participants
sorted according to their sensors’ accuracy, the similarity-
based algorithm operates in a greedy manner by considering
the q possible routes of the first participant (q routes satisfying
a given distance threshold between the shortest and the longest
path) and selects the longest one. After that, the algorithm
iterates over the next participants in the pool and chooses
for each one the route that has the lowest similarity with the
already selected routes from the previous participants. Every
time a route is selected for a participant, the latter is removed
from the pool and the algorithm moves to the participant with
the next best sensor, in a greedy manner, until the pool is
empty. This process is illustrated by Algorithm 1.

The calculation of the similarity percentage between routes
has a major role in finding the most distinct routes possible,
and can be computed in multiple ways. Without loss of
generality, we have mainly explored a commonly used metric
in image segmentation, namely the Sørensen–Dice coefficient
(also known as Dice Similarity Coefficient or DSC) [22].
Considering two participant routes A and B, the formula for
this coefficient is given as follows:

DSCA,B =
2× |A ∩B|
|A|+ |B|

(1)

Algorithm 1 Similarity-based route selection
Input: U {the set of users}
Output: P {the set of selected paths}

1: P ← ∅ {initialize the set of selected paths}
2: U ← order(U, descending accuracy) {order the set of

users based on the accuracy of their sensors}
3: P ← longest path(u0) {select the longest path for the

first user in U}
4: for u ∈ U with u ̸= u0 do
5:

s path← argmin
p∈Paths(u)

Similarity(p, P )

6: P ← P ∪ s path
7: end for
8: return P

Where |A| and |B| are the areas of route A and route B,
respectively, and |A∩B| the area of the intersection between
both routes (i.e., area of overlapping).

C. Second proposition: Cluster-based route selection

Instead of computing the similarity between participant
routes in terms of overlapping, this approach focuses on the
similarity between the points of the map. The main idea is
to regroup the points of the map, not based on the spatial
distance separating them, but on explanatory (also called
independent) variables related to surrounding conditions (such
as distance to routes, meteorology, land-use data, etc.). Indeed,
this design is guided by the fact that air quality mapping often
make use of explanatory (independent) variables to predict
response (dependent) variable in unmeasured points (pollution
concentrations in our case) based on available samples of the
same variables in measured points. To achieve our goal, we
have opted for the agglomerative hierarchical clustering, which
is a widely used technique of hierarchical clustering [23], in
order to create groups of similar points that might be spatially
far from each other, but present similar properties. First, each
point of the map is assigned to an individual cluster, and
we calculate the distance between the clusters based on the
independent variables. Then, clusters are merged successively
while minimizing the sum of squared differences between the
clusters being merged. As a result, all points of the map are
classified into c clusters. Then, for each route, we calculate
the number of clusters it traverses. The main idea of this
route selection approach is to choose for each participant the
route that passes through the largest number of clusters (see
Algorithm 2). It is worth mentioning that the performance
of this approach depends on the set of explanatory variables
collected, and the preprocessing applied to filter out those with
low correlation (with the dependent variable) or redundant
information.

V. VALIDATION

In order to validate our proposal, we followed the method-
ology presented in Fig 1. We give here an overview of the



Algorithm 2 Cluster-based route selection
Input: U {the set of users}
Output: P {the set of selected paths}

1: P ← ∅ {initialize the set of selected paths}
2: C ← ∅ {the set of visited clusters}
3: U ← order(U, descending accuracy) {order the set of

users based on the accuracy of their sensors}
4: for u ∈ U do
5: {select the path visiting more new clusters}

s path← argmax
p∈Paths(u)

NbClusters(p, C)

6: C ← C ∪ Clusters(s path)
7: P ← P ∪ s path
8: end for
9: return P

validation approach while more details are given in next sub-
sections. As shown in Fig 1, we consider simulated pollution
concentrations as a reference map of the studied area. We
first start with a pool of participants, each with a starting and
destination points. Each participant has a pollution sensor with
its own standard error σk. Instead of constructing the different
routes for each user, we rely on a routing service that provides
us with several alternative paths whose length is within a
predefined stretch factor of the shortest path. After that comes
the route selection phase, during which the algorithm suggests
a path for each participant based on the reliability of the
sensors and the relationship between the routes. Following
that, for each location l visited by a participant’s route, a
synthetic measurement is generated using a normal distribution
of mean yl and variance σ2

k, with yl being the reference
concentration at the location l. Finally, the generated synthetic
observations are passed to spatial interpolation methods in
order to produce a predicted pollution concentrations map. The
latter is then compared against the reference map to evaluate
the impact and performance of the route selection approaches.

Fig. 1. The general methodology used in validation

A. Interpolation methods

The use of spatial interpolation methods is a common
practice in air quality monitoring field, since there are often
fewer sensors to measure every single point of a map, even
with a mobile crowd. These techniques give an estimation
at unmeasured points based on available samples of the
same studied variable [24]. In addition, to better explain the
phenomenon, estimation models often need extra information
about the surrounding environment. These characteristics may
include, but are not limited to, meteorological parameters (e.g.,
temperature, wind speed, etc.), land-use data (e.g., number of
buildings, etc.). Without loss of generality, we have selected
three models: Multiple Linear Regression (MLR), K-Nearest
Neighbors (KNN) Regression, and eXtreme Gradient Boosting
(Xgboost).

Multiple linear regression is an extended version of the
simple linear regression that uses just one explanatory variable.
MLR aims to model a linear relationship between the studied
phenomenon and a number of explanatory variables to predict
the concentration values at points where no data was collected
[24], [25].

K-Nearest Neighbors is a popular algorithm usually used
for classification. The general idea behind it consists of
considering the K nearest samples or observations to the point
to be predicted based on a distance metric. In regression, the
algorithm uses “feature similarity” to identify the k closest
points and then assigns the average of their observations to
the point of interest. The similarity between the target point
and its neighbors is obtained by applying a distance metric to
the explanatory variables. The size of the neighborhood (i.e.,
the value of k) is an important part of this algorithm. On
one hand, a small neighborhood reduces the number of points
used in the regression and leads to overfitting problems. On
the other hand, a large value of k means including more points
in the estimation causing high sensibility to noise [26], [27].

Xgboost is a fast and powerful ensemble learning method
that assumes taking lots of small steps in the right direction
results in a better prediction [26]. It implements the gradient
boosting decision tree algorithm in which new decision trees
are iteratively built to correct the errors of the previous ones,
indeed each new tree boosts the attributes that led to estimation
errors of the previous trees of the model [28]. Xgboost
has shown a good performance in estimating air pollution
concentrations in [27].

B. Study area and reference map

In this paper, we consider the agglomeration of Lyon, which
is located in the region of “Auvergne-Rhône-Alpes” in the
southeast of France. Our work mainly focuses on a 5 × 5
km2 area, corresponding to the center of the Lyon city and its
immediate vicinity (see Fig 2).

In order to build a reference map of pollution concentra-
tions, we consider NO2 pollutant and simulations generated by
a numerical model called SIRANE [29] [30] [31]. This model
is designed for urban areas and is widely adopted by certified
air quality monitoring agencies in France. The simulated data



Fig. 2. Map view of the area of interest

correspond to concentrations of NO2 in Lyon city in 2008 (see
Fig 3) with a spatial resolution of 20m × 20m, resulting in
63.000 points of measure. In addition to that, we use more than
40 explanatory variables for each point on the map, ranging
from meteorological data to traffic information and land-use
characteristics [27].

Fig. 3. Reference heatmap of NO2 concentrations (simulated data)

C. Generation of participant routes and sensor measurements

In our use case, a participant is represented as a triple
consisting of his starting point, his destination, and the ac-
curacy level of the sensor he carries. First, we generate 200
random participants with a distance between the starting and
destination ranging from 1km to 5km. To match a realistic
scenario in which participants have heterogeneous sensors, the
accuracy of participant sensors varied between 1µg/m3 and
20µg/m3. Then, we use an existing routing service to generate

a minimum of 5 alternative routes for each participant to meet
a realistic scenario and to have a substantial search space.
Furthermore, to avoid ending up with very long alternative
routes, we only consider routes that are at most 30% longer
than the shortest path.

In the second step, synthetic sensor measurements are
generated using the standard errors of the sensors and a normal
distribution at each point of the map that a participant’s route
passes through.

D. Computing the similarity

In order to implement the similarity-based algorithm, we
need to compute the similarity metric between the different
routes. This metric should consider segments that do not
necessarily overlap but are very close to each other. This
may happen when two participants pass by the same road but
in opposite directions or parallel sidewalks. For this reason,
we build a buffer around each segment of a route, and then
compute the similarity between the buffers. The size of the
buffer highly influences the similarity metric. Indeed, the
larger the buffer is, the higher the similarity value. This size
should also be adapted to the spatial resolution of the available
data. For the following validation tests, we choose a buffer size
of 60 meters around the segment (i.e., 30 meters from each
side of the segment).

E. Clusters construction

The construction of clusters is a crucial phase in the cluster-
based route selection approach. It represents the foundation
upon which the whole algorithm is built. Therefore, the choice
of the optimal number of clusters to construct has a great
importance. On one hand, choosing few clusters lowers the
similarity threshold. As a result, more points are clustered
together without showing much resemblance. On the other
hand, a large number of clusters seeks very similar points.
Hence, the clusters may gather very few points.

In order to choose an adequate number of clusters in our
context, we have evaluated the MAE of the estimation while
varying the number of clusters from 250 to 1500 with a step of
250 clusters and 20 iterations for each step. Results depicted
in Table I show that the lowest MAE value is reached with
1250 clusters.

TABLE I
MAE VS THE NUMBER OF CLUSTERS WITH 40 PARTICIPANTS

Number of
clusters 250 500 750 1000 1250 1500

MAE
(µg/m3) 5.19 5.08 5.13 5.11 4.97 5.16

VI. PERFORMANCE EVALUATION AND DISCUSSION

To evaluate the performance of our proposal, we first
compare multiple spatial interpolation models using the same
route selection strategy in order to get insights on which
model performs better in estimating NO2 concentrations. The
best model is then used in the second part, which compares



TABLE II
AVERAGE EXECUTION TIME OF 1 ITERATION FOR KNN, MULTIPLE

LINEAR REGRESSION, AND XGBOOST

Estimation method KNN MLR XGBoost
Average Execution

time (seconds) 12.95 0.31 0.73

our proposed route selection strategies with the previously
presented baseline approaches, in terms of estimation error
and travel distance.

A. Comparison of the performance of MLR, KNN, and Xg-
boost

In order to get an insight on which statistical model gives
better results, we conducted multiple simulations with the
MLR, KNN, and XGBoost, using the similarity-based route
selection approach, while increasing the number of participants
from 15 to 40 and randomly generating sensor errors between
1µg/m3 to 10µg/m3. The number of selected neighbors did
not show a significant impact on the performance of KNN.
Therefore, we chose k = 5 in our simulations. Fig. 4 depicts
the results of the average MAE in function of the number
of participants, obtained after 20 iterations. We observe that
as the number of participants increases, the prediction error
decreases for all three models. XGBoost outperforms KNN
by around 30% and MLR by nearly 42% in terms of MAE.
Moreover, we present in Table II the average execution time of
the three models for one iteration. The table shows that MLR
is the fastest model, while KNN is the slowest among the
three. The reason that KNN is much slower is that the dataset
used to perform the prediction is large in this study, which
makes the prediction step computationally intensive for KNN,
because it needs to loop over the entire dataset to find the
closest points to each unsampled one. The observations from
Fig. 4 along with those of Table II give hints about which
model is more suitable for a real life scenario. In our case, we
chose XGBoost for the upcoming evaluations.

Fig. 4. MAE vs number of participants

B. Comparison of route selection algorithms

With the aim of evaluating the impact of route selection
strategies on the estimation of NO2 concentrations, we carried
out multiple tests considering the shortest-path-based routing,
the longest-path-based routing, and the two proposed route
selection algorithms, i.e., the similarity-based routing, and
the cluster-based routing. The two proposed solutions have
the same goal, that is, offering the most informative routes
possible, while taking into account the correlations between
them. However, the difference lies in the evaluation of the
relationship between the routes. The similarity-based routing
computes the similarity between participant routes and tries to
reduce the overlapping between the selected routes, while the
cluster-based routing takes advantage of hierarchical clustering
to form groups of similar points and then tries to maximize
the set of visited groups.

The performance of the four route selection algorithms are
evaluated using XGBoost, based on the observations from the
previous test. Fig. 5 depicts the MAE of estimation in function
of the number of participants. The experiments are performed
with a number of participants increasing from 15 to 40 and
repeated 20 times. At each iteration, we randomly select a
new set of participants with sensor errors between 1µg/m3 to
20µg/m3. Results clearly show that increasing the number of
users helps decreasing the estimation error due to the presence
of more routes and hence a larger area being covered. An
interesting observation is that while the shortest-path-based
routing has the worst performance in terms of MAE of the
estimation, the similarity-based and the cluster-based solutions
outperforms the longest-path-based routing. This means that
choosing the longest path is not always a good decision
to improve the estimation. Indeed, the similarity-based route
selection performs up to 15.42% better than the shortest-
path-based algorithm and 3.49% better than the longest-path-
based solution, while the cluster-based solution surpasses the
shortest-path-based and the longest-path-based by 16.84% and
5.22%, respectively.

Fig. 5. MAE vs number of participants

In addition, we investigate the impact of the different route



selection approaches on the travel distance of participants. For
this purpose, we calculate the total traveling distance for each
route selection solution. Fig 6 shows the total travel distance
accumulated for all participants. As expected, the shortest-
path-based algorithm offers the shortest distance by definition
and hence outperforms all the other solutions. Nonetheless,
results reveal that our proposed solutions are also more ef-
ficient than the longest-path selection in terms of traveled
distance. Indeed, the similarity-based algorithm improves the
travel distance by nearly 15.27% compared to the longest-
path-based algorithm and 10.18% compared to the cluster-
based solution. These promising results state that our proposed
solutions give the lowest error while offering shorter routes
compared to the best of baseline algorithms.

Fig. 6. Total travel distance for the different route selection algorithms

Finally, to give an idea of the final result, we perform simu-
lations to estimate NO2 concentrations with two configurations
of sensing errors. For the first simulation, sensing errors are
randomly generated between 1µg/m3 and 5µg/m3, while in
the second one, sensing errors vary between 1µg/m3 and
20µg/m3. Both simulations are executed 20 times using 40
participants and the similarity-based route selection algorithm.
The results are depicted in Fig 7 and Fig 8, respectively. It
is shown that although capturing most of the highly polluted
zones, the use of sensors with large errors leads to an overall
noisy and poor estimation.

VII. CONCLUSION

Air pollution has become a major threat to human health
in recent years. Public and government authorities are making
considerable efforts to help reduce air pollution around the
world. Today, traditional air pollution monitoring stations are
clearly not sufficient to assess local exposure to pollutants,
which is why mobile crowdsensing, powered by recent de-
velopments in sensing probes and communication protocols,
has gained a lot of attention. In this work, we address the
problem of route selection in participatory sensing with low-
cost sensors. We propose two route selection algorithms that
take into consideration the characteristics of low-cost sensors
in the decision process. The similarity-based routing algorithm

Fig. 7. Heatmap of estimated NO2 concentrations using XGBoost, achieved
with 40 participants and sensor errors varying between 1µg/m3 and 5µg/m3

Fig. 8. Heatmap of estimated NO2 concentrations using XGBoost, achieved
with 40 participants and sensor errors varying between 1µg/m3 and
20µg/m3

aims to give spatially dispersed routes to maximize coverage
using the Sørensen-Dice coefficient, a commonly used metric
in image segmentation. The cluster-based routing algorithm
makes use of hierarchical clustering to build groups of similar
points, then tries to visit as many groups as possible to increase
the diversity of the collected information. Both algorithms per-
form in a greedy manner by suggesting at each iteration a route
for the user with the most accurate sensor. We compare our so-
lutions to two baseline route selection algorithms, namely the
longest-path-based and the shortest-path-based algorithms. We
also show through multiple simulations that our route selection
approaches can obtain comparable results to the longest-path-
based approach or even outperform it, while being efficient
regarding the travel distance. Our algorithms are adapted to
a scenario in which participants do not necessarily arrive at
the same time. Moreover, the idea behind the clustering-based
approach can be adapted to other use cases, such as reducing



the individual exposure of citizens to air pollution, by reducing
the number of highly polluted clusters to be visited.
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[14] C. Bertero, J.-F. Léon, G. Trédan, M. Roy, and A. Armengaud, “Urban-
scale no2 prediction with sensors aboard bicycles: A comparison of
statistical methods using synthetic observations,” Atmosphere, vol. 11,
no. 9, p. 1014, 2020.

[15] H. Chintakunta, X. Wang, and L. G. Jaimes, “Improving sensing
coverage in vehicular crowdsensing using location diversity,” in 2022
International Conference on Connected Vehicle and Expo (ICCVE).
IEEE, 2022, pp. 1–6.

[16] Y. Chen, P. Lv, D. Guo, T. Zhou, and M. Xu, “Trajectory segment
selection with limited budget in mobile crowd sensing,” Pervasive and
Mobile Computing, vol. 40, pp. 123–138, 2017.

[17] W. Gong, B. Zhang, and C. Li, “Location-based online task assignment
and path planning for mobile crowdsensing,” IEEE Transactions on
Vehicular Technology, vol. 68, no. 2, pp. 1772–1783, 2018.

[18] Y. Chen, D. Guo, and M. Xu, “Prosc+: Profit-driven online participant
selection in compressive mobile crowdsensing,” in 2018 IEEE/ACM 26th
International Symposium on Quality of Service (IWQoS). IEEE, 2018,
pp. 1–6.

[19] A. Boubrima, W. Bechkit, and H. Rivano, “On the deployment of
wireless sensor networks for air quality mapping: Optimization models
and algorithms,” IEEE/ACM Transactions on Networking, vol. 27, no. 4,
pp. 1629–1642, 2019.

[20] D. Hasenfratz, O. Saukh, C. Walser, C. Hueglin, M. Fierz, and L. Thiele,
“Pushing the spatio-temporal resolution limit of urban air pollution
maps,” in 2014 IEEE International Conference on Pervasive Computing
and Communications (PerCom). IEEE, 2014, pp. 69–77.

[21] A. Anjomshoaa, F. Duarte, D. Rennings, T. J. Matarazzo, P. deSouza,
and C. Ratti, “City scanner: Building and scheduling a mobile sensing
platform for smart city services,” IEEE Internet of things Journal, vol. 5,
no. 6, pp. 4567–4579, 2018.

[22] T. S. Mathai, L. Jin, V. Gorantla, and J. Galeotti, “Fast vessel seg-
mentation and tracking in ultra high-frequency ultrasound images,” in
International Conference on Medical Image Computing and Computer-
Assisted Intervention. Springer, 2018, pp. 746–754.

[23] B. S. Everitt, S. Landau, M. Leese, and D. Stahl, “Hierarchical cluster-
ing,” Cluster analysis, vol. 5, pp. 71–110, 2011.

[24] X. Xie, I. Semanjski, S. Gautama, E. Tsiligianni, N. Deligiannis, R. T.
Rajan, F. Pasveer, and W. Philips, “A review of urban air pollution
monitoring and exposure assessment methods,” ISPRS International
Journal of Geo-Information, vol. 6, no. 12, p. 389, 2017.

[25] A. Larkin, J. A. Geddes, R. V. Martin, Q. Xiao, Y. Liu, J. D. Marshall,
M. Brauer, and P. Hystad, “Global land use regression model for nitrogen
dioxide air pollution,” Environmental science & technology, vol. 51,
no. 12, pp. 6957–6964, 2017.

[26] X. Ren, Z. Mi, and P. G. Georgopoulos, “Comparison of machine
learning and land use regression for fine scale spatiotemporal estimation
of ambient air pollution: Modeling ozone concentrations across the con-
tiguous united states,” Environment International, vol. 142, p. 105827,
2020.

[27] M. A. Fekih, I. Mokhtari, W. Bechkit, Y. Belbaki, and H. Rivano, “On
the regression and assimilation for air quality mapping using dense
low-cost wsn,” in International Conference on Advanced Information
Networking and Applications. Springer, 2020, pp. 566–578.

[28] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in Proceedings of the 22nd acm sigkdd international conference on
knowledge discovery and data mining, 2016, pp. 785–794.

[29] L. Soulhac, P. Salizzoni, F.-X. Cierco, and R. Perkins, “The model sirane
for atmospheric urban pollutant dispersion; part i, presentation of the
model,” Atmospheric environment, vol. 45, no. 39, pp. 7379–7395, 2011.

[30] L. Soulhac, P. Salizzoni, P. Mejean, D. Didier, and I. Rios, “The model
sirane for atmospheric urban pollutant dispersion; part ii, validation of
the model on a real case study,” Atmospheric environment, vol. 49, pp.
320–337, 2012.

[31] L. Soulhac, C. V. Nguyen, P. Volta, and P. Salizzoni, “The model sirane
for atmospheric urban pollutant dispersion. part iii: Validation against
no2 yearly concentration measurements in a large urban agglomeration,”
Atmospheric environment, vol. 167, pp. 377–388, 2017.


