Supplementary Material

Deriving Cool Flame Propagation Speeds by Means of an Ozone-Seeded, Stagnation Plate Burner Configuration

Thomas Panaget^{*a,b,e*}, Pierre Bragança^{*c*}, Bertrand Lecordier^{*d*}, Amaury Lahccen^{*e*}, Christophe Cuvier^{*c*}, Sébastien Batut^{*e*}, Yann Fenard^{*e*}, Guillaume Vanhove^{*e*} and Laure Pillier^{*e*,*}

^a Univ. Lille, Inserm, CHU Lille, Institut Pasteur Lille, U1167 – RID-AGE – Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000 Lille, France

^bJunia, Health and Environment, Laboratory of Sustainable Chemistry and Health, F-59000 Lille, France

^cUniv. Lille, CNRS, ONERA, Arts et Métiers Institute of Technology, Centrale Lille, UMR 9014 - LMFL - Laboratoire de Mécanique des Fluides de Lille - Kampé de Fériet, F-59000 Lille, France

^dNormandie Univ., UNIROUEN, INSA Rouen, CNRS, CORIA, 76000 Rouen, France

^eUniv. Lille, CNRS, UMR 8522 - PC2A - Physicochimie des Processus de Combustion et de l'Atmosphère, F-59000 Lille, France

Figure S1. Direct comparison between the conventional PIV image processing and the image processing developed in this study. Both flames conditions are $\phi = 0.4$, $x_{O3} = 1.9\%$, with inlet velocities respectively equal to 0.75 m.s⁻¹ and 1.10 m.s⁻¹.

Figure S2. Evolution of the standard deviation on the determination of the reference axial velocity $S_{u,ref}$ depending on the number of grid points used in the simulation of the axial velocity profile. Simulations are performed with the O₃-submechanism from Jian et al [1].

Figure S3. Experimental (open diamonds) PIV measurement of the axial velocity profile for the cool flame at $\phi = 0.5$, $x_{O3} = 1.5\%$, and simulated (continuous lines) profiles with different domain sizes *l*. Simulations are performed with the O₃-submechanism from Jian et al [1].

Figure S4. Evolution of the standard deviation on the determination of the value of $S_{u,ref}$ (a) and its position (b) depending on the size of the simulated domain. Simulations are performed with the O₃-submechanism from Jian et al [1].

Figure S5. Comparison between experimental axial velocity profiles measured by PIV (\Box) and simulated ones with different O₃ submechanisms, respectively from Jian et al. [1], Halter et al. [2] and Zhao et al. [3], for the cool flame at $\phi = 0.4$, $x_{O3} = 1.7\%$, at different strain rates.

Figure S6. Comparison between experimental axial velocity profiles measured by PIV (\Box) and simulated ones with different O₃ submechanisms, respectively from Jian et al. [1], Halter et al. [2] and Zhao et al. [3], for the cool flame at $\phi = 0.4$, $x_{O3} = 1.9\%$, at different strain rates.

Figure S7. Comparison between experimental axial velocity profiles measured by PIV (\Box) and simulated ones with different O₃ submechanisms, respectively from Jian et al. [1], Halter et al. [2] and Zhao et al. [3], for the cool flame at $\phi = 0.45$, $x_{O3} = 1.7\%$, at different strain rates.

Figure S8. Comparison between simulated axial velocity profiles with O₃-submechanism from Jian et al. [1] and from Jian et al. with O₃+M reactions from Halter et al. [2], for the cool flame at $\phi = 0.5$, $x_{O3} = 1.5\%$ and strain rate of 127 s⁻¹.

Table T1 : Cool flame conditions

Table T2. Reactions and rate constant parameters for the three O3-submechanisms used in the current study

Figure S1. Direct comparison between the conventional PIV image processing and the image processing developed in this study. Both flames conditions are $\phi = 0.4$, $x_{O3} = 1.9\%$, with inlet velocities respectively equal to 0.75 m.s⁻¹ and 1.10 m.s⁻¹.

The image processing with an IWS of 32 x 32 pixels results in 64 points axial velocity profiles, while the present methodology allows the determination of the axial velocity profiles with 241 points. It results in a more accurate determination of the reference velocity $S_{u,ref}$.

Figure S2. Evolution of the standard deviation on the determination of the reference axial velocity $S_{u,ref}$ depending on the number of grid points used in the simulation of the axial velocity profile. Simulations are performed with the O₃-submechanism from Jian et al [1].

Figure S3. Experimental (open diamonds) PIV measurement of the axial velocity profile for the cool flame at $\phi = 0.5$, $x_{O3} = 1.5\%$, and simulated (continuous lines) profiles with different domain sizes *l*. Simulations are performed with the O₃-submechanism from Jian et al [1].

Figure S4. Evolution of the standard deviation on the determination of the value of $S_{u,ref}$ (a) and its position (b) depending on the size of the simulated domain. Simulations are performed with the O₃-submechanism from Jian et al [1].

Figure S5. Comparison between experimental axial velocity profiles measured by PIV (\Box) and simulated ones with different O₃ submechanisms, respectively from Jian et al. [1], Halter et al. [2] and Zhao et al. [3], for the cool flame at $\phi = 0.4$, $x_{O3} = 1.7\%$, at different strain rates.

Figure S6. Comparison between experimental axial velocity profiles measured by PIV (\Box) and simulated ones with different O₃ submechanisms, respectively from Jian et al. [1], Halter et al. [2] and Zhao et al. [3], for the cool flame at $\phi = 0.4$, $x_{O3} = 1.9\%$, at different strain rates.

Figure S7. Comparison between experimental axial velocity profiles measured by PIV (\Box) and simulated ones with different O₃ submechanisms, respectively from Jian et al. [1], Halter et al. [2] and Zhao et al. [3], for the cool flame at $\phi = 0.45$, $x_{O3} = 1.7\%$, at different strain rates.

Figure S8. Comparison between simulated axial velocity profiles with O₃-submechanism from Jian et al. [1] and from Jian et al. with O₃+M reactions from Halter et al. [2], for the cool flame at $\phi = 0.5$, $x_{O3} = 1.5\%$ and strain rate of 127 s⁻¹.

 Table T1 : Cool flame conditions

Conditions	Size of the domain for the axial velocity profiles simulation (Pre-Mixed Burner Stagnation Flame module) / cm	Inlet velocity / cm.s ⁻¹	Imposed radial strain rate / s ⁻¹	Measured* flame speed / cm.s ⁻¹
$\phi = 0.5$	0.42	39.9	50.5	16.6
$x_{O3} = 1.5\%$	0.41	40.3	55.6	16.8
$(x_{DME} = 0.144)$	0.4	40.8	59.4	17.0
$x_{02} = 0.841$	0.39	42.5	61.6	17.0
$x_{03} = 0.015)$	0.37	41.0	63.7	17.3
4-04	0.40	41.3	50.6	17.8
$\psi = 0.4$	0.42	41.3	53.9	17.9
$x_{03} = 1.770$ ($x_{DMR} = 0.110$	0.41	43.0	56.8	17.7
$x_{00} = 0.864$	0.41	43.2	61.2	18.5
$x_{02} = 0.004$ $x_{02} = 0.017$	0.375	42.6	65.3	18.1
A()3 - 0.017)	0.365	45.9	71.5	18.2
	0.44	41.3	51.5	18.6
	0.445	42.7	53.4	19.4
φ = 0.3	0.42	43.1	57.1	18.6
$x_{03} = 2.0\%$	0.42	44.5	61.2	19.8
$(x_{DME} = 0.092)$	0.42	46.4	61.7	19.9
$x_{02} = 0.881$	0.385	47.7	66.7	19.1
$x_{03} = 0.02)$	0.375	49.0	72.8	19.8
	0.325	49.9	82.6	19.0
	0.345	54.7	85.0	19.7
$\mathbf{A} = 0.1$	0.42	44.6	59.5	19.1
$\psi = 0.4$	0.41	48.9	64.6	20.5
$x_{03} = 1.770$ ($x_{DME} = 0.110$	0.365	54.1	78.5	20.4
$x_{02} = 0.862$	0.34	54.8	86.4	20.4
$x_{02} = 0.019$	0.335	54.0	94.3	20.2
AU3 - 0.0177	0.35	59.9	97.6	20.9
φ = 0.45	0.40	43.2	62.1	17.8
$x_{03} = 1.7\%$	0.365	46.8	72.8	18.4
$(x_{DME} = 0.132)$	0.36	51.8	79.2	18.5
$x_{02} = 0.851$	0.305	51.1	91.4	18.3
$x_{03} = 0.017$)	0.305	54.0	105.3	18.4

*Measured using the numerically assisted non-linear extrapolation method

Table T2. Reactions and rate constant parameters for the three O₃-submechanisms used in the current study

Units: A (cm³, mole, s), E_a (cal)

Reaction	А	n	Ea
Halter et al. [2]			
$O_3 + N_2 \rightarrow O_2 + O + N_2$	4.00E+14	0	22667
$O_2 + O + N_2 \rightarrow O_3 + N_2$	1.60E+14	-0.4	-1391
$O_3 + O_2 -> O_2 + O_2 + O_2$	1.54E+14	0	23064
$O_2 + O_2 + O \rightarrow O_3 + O_2$	3.26E+19	-2.1	0
$O_3 + O_3 -> O_2 + O_3 + O_3$	4.40E+14	0	23064
$O_2 + O_3 + O \rightarrow O_3 + O_3$	1.67E+15	-0.5	-1391
$O_3 + H \le O_2 + OH$	8.43E+13	0	934
$O_3 + O \le O_2 + O_2$	4.82E+12	0	4094
$O_3 + OH \le O_2 + HO_2$	1.85E+11	0	831
$O_3 + HO_2 \le O_2 + OH + O_2$	6.02E+09	0	938
$O_3 + H_2O \le O_2 + H_2O_2$	6.62E+01	0	0
$O_3 + CH_3 \le O_2 + CH_3O$	3.07E+12	0	417
$O_3 + H \le O + HO_2$	4.52E+11	0	0
$O_3 + H_2 <=> OH + HO_2$	6.00E+10	0	19840
$O_3 + CH_4 <=> CH_3O + HO_2$	8.13E+10	0	15280
Jian <i>et al.</i> [1]			
$O_2 + O + M \le O_3 + M$	1.00E+19	-2	0
N ₂ = 1.3 ; O ₂ = 1.2 ; Kr = 1 ; Ar = 1 ; O ₃ = 0			
$O_2 + O + O_3 \le O_3 + O_3$	1.00E+23	-3	0
$O_3 + O \le O_2 + O_2$	1.10E+13	0	4300
$O_3 + H \le OH + O_2$	8.43E+13	0	934
$O_3 + HO_2 \le O_2 + O_2 + O_H$	5.80E-04	4.57	-1377
$O_3 + OH \le HO_2 + O_2$	1.20E+05	2.5	800
Zhao et al. [3]			
O ₃ (+M) <=> O ₂ + O (+M)			
Low-Pressure	2.23E+28	-4.37	27297
High-Pressure	1.37E+15	-0.67	25990
Troe Parameters (0.6417 3.91E-04 8680.74 6060.75)			
Ar = 1 ; He = 1.2 ; N ₂ = 1.5 ; H ₂ = 3 ; O ₂ = 1.5 ; O ₃ = 3.75 ; O = 6			
$O_3 + O \le O_2 + O_2$	4.82E+12	0	4094
$O_3 + O \le O_2 (sing) + O_2$	1.44E+11	0	4094
$O_3 + O \le O_2 + OH$	8.43E+13	0	934
$O_3 + H \le O + HO_2$	4.52E+11	0	0
$O_3 + OH \le O_2 + HO_2$	1.85E+11	0	831
$O_3 + H_2O \iff O_2 + H_2O_2$	6.62E+01	0	0
$O_3 + HO_2 \iff OH + O_2 + O_2$	6.62E+09	0	994
$O_3 + CO <=> O_2 + CO_2$	6.02E+02	0	0
$O_3 + HCO \le O_2 + H + CO_2$	5.00E+11	0	0
$O_3 + CH_3 <=> CH_3O + O_2$	5.83E+11	0	0

References

- [1] J. Jian, H. Hashemi, H. Wu, A.W. Jasper, P. Glarborg, A reaction mechanism for ozone dissociation and reaction with hydrogen at elevated temperature, Fuel. 322 (2022) 124138.
- [2] F. Halter, P. Higelin, P. Dagaut, Experimental and Detailed Kinetic Modeling Study of the Effect of Ozone on the Combustion of Methane, Energy Fuels. 25 (2011) 2909–2916.
- [3] H. Zhao, X. Yang, Y. Ju, Kinetic studies of ozone assisted low temperature oxidation of dimethyl ether in a flow reactor using molecular-beam mass spectrometry, Combustion and Flame. 173 (2016) 187–194.