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-ABSTRACT -We defined in [START_REF] Clerc | Les transformations agréables et une nouvelle classe de nombres narcissiques parfaits[END_REF] the perfect r-narcissistic numbers, or rppdi, which are a natural extension of the classic ppdi or Armstrong number of the first kind ( [START_REF]Armstrong numbers of the first kind or ppdi[END_REF]). We have shown that the set of these rppdi is finite and we have given the list of the first 15 rppdi greater than 1 in decimal base ( [START_REF] Clerc | The perfect r-narcissistic numbers[END_REF], [START_REF]R-narcissistic numbers (rppdi)[END_REF]).

Let us now consider the ppdi and the rppdi in any base b; we will thus define two distinct families (ppdib, ppdi0) on the one hand and (rppdib, rppdi0) on the other hand, associated with any base b other than the decimal base. We will treat here the cases of bases from 3 to 9 (base 2 only has the trivial solution 1 and base 10 corresponds to the classic ppdi and rppdi) without taking into account the common trivial solution 1.

For a k-digit number n, the function S p (n) will express the sum of the powers p >= 1 of all the digits of n: n = ∑ i=1 i=k a i 10 k-i , a 1 > 0, S p (n) = ∑ i=1 i=k a i p , p >= 1.

To move on to rppdi, we apply S p , not to n (as for ppdi), but to a power r (> 1) of n.

Recall that a perfect r-narcissistic number or rppdi ( [START_REF] Clerc | Les transformations agréables et une nouvelle classe de nombres narcissiques parfaits[END_REF], [START_REF] Clerc | The perfect r-narcissistic numbers[END_REF]) is an integer n (> 1) with p digits whose power r > 1 (r = 1 corresponding to the classic ppdi) is such that the sum of the powers p of all its digits S p (n r ) is equal to the number n. While a p-digit ppdi is a solution of n = S p (n), a p-digit rppdi is a solution of n = S p (n r ) for r > 1.

An rppdi is therefore a p-digit fixed point of the transformation S p r (1) n ---> S p r (n) = S p (n r ), r > 1 , a ppdi being a fixed point with p digits of (1) but with r = 1.

In any base b (2 < b < 10), n becomes n_b and we apply the transformation S p r to n_b; we then look for fixed points of: n = S p r (n_b), for r = 1 (ppdi) or r > 1 (rppdi).

With p = number of digits of n_b, then denoted p b , we obtain the ppdi in base b or ppdib, and the rppdi in base b or rppdib; in this case it is the number n_b which has p digits. With p = number of digits of n, then denoted p 0 , we obtain fixed points of S p r which we will respectively call ppdi0 ( r = 1) and rppdi0 (r > 1); in this case it is the number n which has p digits. Let us add that for ppdi, only ppdib are considered by the authors ( [START_REF] Cira | Various arithmetic functions and their applications[END_REF], [START_REF]Armstrong numbers of the first kind in base 9, OEIS A[END_REF]).

The pleasant character of the transformations S p r ([3], [START_REF] Clerc | The perfect r-narcissistic numbers[END_REF]) leads to the finiteness of the sets of integers, {ppdib}, {ppdi0} of a on the other hand, {rppdib}, {rppdi0} on the other hand; the set, also finite ( [START_REF] Clerc | The perfect r-narcissistic numbers[END_REF]), of all the fixed points of the pleasant transformation S p r , contains the first two for r = 1 and the last two for r > 1.

For finiteness, we can also draw inspiration from the general demonstration of [START_REF] Clerc | Quelques nombres de Niven-Harshad particuliers[END_REF], and frame such numbers n with k digits in base b by (since n r < 10 kr ):

(2) b k-1 < n < rk(b-1) k , with r = 1 for ppdi and r > 1 for rppdi, the lower limit being the smallest k-digit number, the upper limit being the image by S k r of the largest. We can then easily show that for all b, and all r, there exists a k*(b, r) such that, in (2), the lower limit is strictly greater than the upper limit; there will therefore be no solution for k >= k*(b, r), which ensures the finite nature of all of these numbers for any base (and any finite r). To be more readable we will give all our results by expressing them in decimal base.

-PPDIs

The ppdi in decimal base ( [START_REF] Cira | Various arithmetic functions and their applications[END_REF]) and in any base in the form of ppdib ( [START_REF] Cira | Various arithmetic functions and their applications[END_REF], [START_REF]Armstrong numbers of the first kind in base 9, OEIS A[END_REF]) are well listed in the literature, but not in the version of ppdi0. Naturally, in decimal base, the ppdib and the ppdi0 are identified with the well-known ppdi: we know ( [START_REF]Armstrong numbers of the first kind or ppdi[END_REF]) that there are 88 including: 1, ..., 9, 153, 370, 371, ..., 115132219018763992565095597973971522401.

To simplify the results concerning ppdib, ppdi0 in base b, we do not cite or count trivial solutions 1, 2, ..., b-1.

1 -1 -The PPDIB Here p = p b . This choice is the one adopted in [START_REF] Cira | Various arithmetic functions and their applications[END_REF] as in [START_REF]Armstrong numbers of the first kind in base 9, OEIS A[END_REF].

In [2, 10 9 ], the results, written in base 10, provide 96 solutions. b = 3 has 3 solutions: -PROPERTY 1 For any base b, if a fixed point m of S p (n_b), with p = p b or p 0 , is a multiple of b, then m + 1 is also the fixed point of this application. Indeed, if m = 0(b), m_b ends with a 0 (in m_b = ∑ i=1 i=p a i b p-i we will have a p = 0), and if m is a solution, m + 1 is also a solution since a p will become equal to 1 and will remain so at any power. Examples: 370, 371 in base 10 for ppdi; 28, 29 in base 4 for ppdib; 156608073, 156608074 in base 9 for ppdi0, ...

-RPPDI

In ( [START_REF] Clerc | Les transformations agréables et une nouvelle classe de nombres narcissiques parfaits[END_REF], [START_REF] Clerc | The perfect r-narcissistic numbers[END_REF]), the rppdi were defined and the list ([OEI2]) of the first 15 rppdi greater than 1 in decimal base was given (we write 8(3) for solution 8 with r = 3 ): 7(4), 8(3), 9(2); 

  For example, for rppdib, k*(10,1) = 61, k*(10,2) = 69, ..., k*(10,6) = 81, k*(9,1) = 53, k*(9,2) = 60, k*(9,3) = 64, ..., ,k*(8,2) = 51, ,k*(8,4) = 57, ... All ppdi as well as all rppdi are finite in number in all bases and the corresponding definition intervals are [1, 10 k*(b,r)-1 [, b > 2, r > = 1. The integers common to the two sets {ppdib}, {ppdi0} respectively {rppdib}, {rppdi0}, are n which have exactly the same number of digits in decimal base and in the base b concerned.

  This choice is, to our knowledge, not used, but it is nonetheless also natural since it is associated with the number of digits of the initial n (and not of the transformed n_b). We obtain in our search interval, 34 solutions such that n and n_b have the same length, and therefore common to the two sets {ppdib},

	5, 8, 17.
	b = 4 has 8 solutions: 28, 29, 35, 43, 55, 62, 83, 243.
	b = 5 has 12 solutions: 13, 18, 28, 118, 289, 353, 419, 4890, 4891, 9113, 1874374, 338749352.
	b = 6 has 12 solutions: 99, 190, 2292, 2293, 2324, 3432, 3433, 6197, 36140, 269458, 391907, 10067135.
	b = 7 has 26 solutions: 10, 25, 32, 45, 133, 134, 152, 250, 3190, 3222, 3612, 3613, 4183, 9286, 35411,
	191334, 193393, 376889, 535069, 79 4376, 8094840, 10883814 , 16219922, 20496270, 32469576,
	34403018.
	b = 8 has 21 solutions: 20, 52, 92, 133, 307, 432, 433, 16819, 17864, 17865, 24583, 25639, 212419,
	906298, 906426, 938811, 1122179, 20876 46, 3821955, 13606405, 40695508.
	b = 9 has 14 solutions: 41, 50, 126, 127, 468, 469, 1824, 8052, 8295, 9857, 1198372, 3357009, 3357010,
	6287267.
	Example: in base 6, we have 99 = 243_6, p = 3, S 3 (243) = 2^3+4^3+3^3 = 99.
	1 -2 -The PPDI0
	Here p = p 0 .
	{ppdi0}.
	In [2, 10 9 ], the results, written in base 10, provide 43 solutions.
	b = 3 has 0 solution.
	b = 4 has 0 solution.
	b = 5 has 3 solutions: 13, 18, 118.
	b = 6 has 2 solutions: 190, 251.
	b = 7 has 8 solutions: 10, 25, 32, 45, 133, 134, 152, 250.
	b = 8 has 15 solutions: 20, 52, 133, 307, 432, 433, 16819, 17864, 17865, 24583, 25639, 212419,
	1122179, 2087646, 13606405.
	b = 9 has 15 solutions: 41, 50, 126, 127, 468, 469, 1824, 65538, 65539, 1198372, 3357009, 3357010,
	5300099, 156608073, 156608074.
	Example: in base 6, we have 251 = 1055_6, p = 3, S 3 (1055) = 1^3+5^3+5^3 = 251.
	Let us observe that in [2, 10 9 ] there are 96 ppdib for 43 ppdi0 ...
	Let us state a property common to ppdib and ppdi0 in any base b.

We will determine here the representatives in base b (2 < b < 10) for the two choices of p. We will observe that in [2, 10 9 ] there are 17 rppdib for 47 rppdi0 ...

-1 -

The RPPDIB With p = p b , the results, written in base 10, give 17 solutions in [2, 10 9 ]: (solution 10 for r = 2 will be noted 10( 2 As for the ppdi, the solutions n of the same length as the associated n_b, are common to the two sets {rppdib}, {rppdi0}, there are 13 in our search interval. The results obtained with our two choices allow us to observe some pathologies.

-PROPERTY 2 1) Among the rppdi0, there exists a solution n with two different r for b = 4: 8(3) and 8(9) (this answers a question implicitly asked in [START_REF] Clerc | Quelques nombres de Niven-Harshad particuliers[END_REF] concerning the rppdi in decimal base and the uniqueness of the r of a solution).

2) Among the rppdi0, we have 3 times the solution 33(2): in bases 3, 4 and 7.

3) For the base b = 4, there is no solution of type rppdib but 20 solutions of type rppdi0 in the search interval [2, 10 9 ]. Base 4 appears to be the most prolific for rppdi0. 4) The solution n = 8 appears 4 times in the rppdi0 (2 < b < 10) including 3 times with r = 3: 8(3) and 8(9) for b = 4; 8(3) for b = 7; 8(3) for b = 9. 5) Among the rppdib and rppdi0, the solution n = 7 appears twice: with b = 8 and b = 9 and each time with r = 4. 6) The various properties of 8: 8 is equal to the sum of the digits of its cube (512). 8 is equal to the sum of the digits of the cube of its expression in base 4 (which is 8000). 8 is equal to the sum of the digits of the power of 9 of its expression in base 4 (which is 512.10 9 ). 8 is equal to the sum of the digits of the power of 3 of its expression in base 7 (which is 1331).

-CONCLUSION After the finite set of {rppdi} ([3], [START_REF] Clerc | The perfect r-narcissistic numbers[END_REF], [START_REF] Clerc | Quelques nombres de Niven-Harshad particuliers[END_REF], [START_REF]R-narcissistic numbers (rppdi)[END_REF]) which has, in decimal base, 15 representatives in [2, 10 10 ], we have defined three new finite sets of narcissistic numbers in bases 3 to 9, {ppdi0}, {rppdib} and {rppdi0}. In the interval [2, 10 9 ], they have, respectively, 43, 17 and 47 elements that we have determined.
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