
HAL Id: hal-04376895
https://hal.science/hal-04376895v1

Submitted on 5 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Zooming in for clarity: towards low-code modeling
for activity data flow

Ali Nour Eldin, Jonathan Baudot, Walid Gaaloul

To cite this version:
Ali Nour Eldin, Jonathan Baudot, Walid Gaaloul. Zooming in for clarity: towards low-code modeling
for activity data flow. 21st International Conference on Business Process Management BPM, Sep
2023, Utrecht, Netherlands. pp.267-282, �10.1007/978-3-031-41623-1_16�. �hal-04376895�

https://hal.science/hal-04376895v1
https://hal.archives-ouvertes.fr

Zooming in for Clarity: Towards low-code
modeling for Activity Data Flow

Ali Nour Eldin1,2, Jonathan Baudot2, Walid Gaaloul1

1 Telecom SudParis, Institut Polytechnique de Paris, France,
email: {ali.nour_eldin, walid.gaaloul}@telecom-sudparis.eu

2 Bonitasoft, France, emails: {ali.nour-eldin, jonathan.baudot}@bonitasoft.com

Abstract. Business Process Modeling and Notation (BPMN) is a widely
used standard workflow language for modeling business processes. How-
ever, there is a growing need to integrate data and process models to
enable a more holistic view of business processes to reducing implemen-
tation time through a clear understanding of the mode, and BPMN has
limitations in representing data-related concepts. To address this, we
propose an extension to BPMN called DataFlow BPMN (DF-BPMN),
which is a low-coding visual solution, for modeling and analyzing the
relationship between process and data. Low-code is a growing develop-
ment approach supported by many platforms. It fills the gap between
business and developer. Indeed, it enables quick generation and delivery
of business applications with minimum effort. We introduce the Activity
DataFlow, an extension of activity that allows zooming into the data ma-
nipulated within it, which enable different levels of granularity: control-
flow perspective and data perspective. Additionally, we developed a tool
for creating a model with the DF-BPMN. Our approach has been eval-
uated quantitatively and qualitatively, and the results demonstrate that
DF-BPMN offers significant advantages over BPMN.

Keywords: BPMN · Low-Code · Process Modeling · data perspective ·
data models

1 Introduction

A business process is a set of activities within an enterprise that follows a de-
fined logical order and dependency, with the objective of producing a desired
result. Process models provide a comprehensive understanding of a process [3],
and can be understood from different perspectives [2]. The control-flow perspec-
tive describes tasks and their execution order through different constructors,
which can be modeled using BPMN [8]. The data perspective deals with business
and processing data, similar to UML [9]. Integrating these perspectives within
the same workflow modeling language is essential for success, as it enhances
information representation, reduces implementation time, and enables effective
decision-making and resource allocation.

2 A. Nour Eldin

Low-Code Development Platforms (LCDPs) provide development environ-
ments for creating software applications using visual interfaces, rather than tradi-
tional manual coding methods. These platforms use process modeling languages
to define business processes and automate related tasks, such as data modifica-
tion, scheduling, or linking data flows to external services. Process executions
help bridge the gap between business and developer [10]. Fig. 1 illustrates the
steps involved in LCDP development compared to the Business Process Lifecy-
cle: (i) language specification, (ii) language compilation, and (iii) execution and
monitoring. Furthermore, BPMN elements are commonly used as the language
specification in LCDP-based business processes [10].

Business
Process

Life Cycle

Design

ImplementationExecution
and Monitoring

Evaluation

Process Designer/
Business Analysts:
*Business indentification
*Language spesification

Developers:
*Put process in action
*Implementation
*Testing
*Deployment

Data Analysts:
*Tracking of process
*Identifying issues

Business Analysts:
*Process Mining tools

1

23

4

Future of DF-BPMN

Legend

BP lifecycle

LCDPs in BP

DF-BPMN

Fig. 1. Comparison of the Business Process Lifecycle vs. Low-Code Process Develop-
ment (LCPDs) in Business Process (BP) vs. the DF-BPMN approach

Business Process Modeling and Notation (BPMN) is a widely-used standard
for modeling business processes, designed to be comprehensible by various stake-
holders such as analysts, developers, and business people [8]. However, BPMN
process models have limited detail on persistent data structures and struggle to
represent interactions between data objects and data stores. As a result, the data
flow perspective has been neglected in BPMN automation, in comparison to the
control flow. This can lead to misunderstandings and errors during implementa-
tion by technical developers. For example, in the BPMN model shown in Fig.2,
the activity "Complete quotation" has an input and output "DB" data store

Zooming in for Clarity: Towards low-code modeling for Activity Data Flow 3

representing a database, without detailing the object name and their attributes.
Therefore, the representation of "DB" can be ambiguous and prone to mistakes
during process implementation.

Fig. 2. A procurement request using BPMN 2.0.

This paper focuses on the first step of low-coding, which is language specifi-
cation. We propose an extension to BPMN called DataFlow BPMN (DF-BPMN)
that integrates a data perspective with the control flow perspective. DF-BPMN
bridges the gap between process and data diagrams, enabling a clear understand-
ing of the data involved in business processes (see Fig.1). With DF-BPMN, devel-
opers can represent data in a graphical format within BPMN, zooming into the
activity for modeling manipulated data and offering different levels of granular-
ity for a better understanding of the interactions between control flow and data
perspectives. To evaluate our language, we conducted a quantitative analysis
based on real-life business process models and analyzed the results statistically
using the Paired t-test[5].

The remainder of this paper is organized as follows. In sec.2, we discuss the
limitations of BPMN in terms of the data-flow perspective. In sec.3, we review
existing works related to our contribution. In sec.4, we present the zoom-in
approach of DF-BPMN. In sec.5, we discuss the novel insights of merging data
and processes. Then, in sec.6, we present the evaluations of DF-BPMN before
concluding in sec.7.

2 Motivating Example and Limitations of BPMN as a
data-flow language

Fig. 2 represents a business process model modeled in BPMN 2.0. A user fills
a procurement request and identify potential suppliers. This request is sent to

4 A. Nour Eldin

those suppliers for quotation. After completed, the quotations are sent back
to the requestor for review and selection. To effectively implement the process
in Fig. 2, developer must understand how the information is conceptually struc-
tured and arranged within each class (suppliers, quotation and request) and how
the process interacts with it.Request has connected to Quotation and Supplier.
Each Request has one or more Quotation. Each Quotation has one Supplier and
also the Supplier is selected for a Request. All these necessary information are
concealed in a simple data store "DB" in Fig. 2.

We identified conceptual limitations in BPMN (L1-L4) that hinder model
understandability and quality, requiring a well-structured approach to address
these issues and provide clearer guidance for developers.
L1. BPMN data stores are underspecified. Data stores in BPMN process
models represent persistent data sources [8], but they lack details on the concep-
tual structure of a database. For example, in the activity "Create quotation for
multiple suppliers" it is unclear whether the input classes are Supplier, Request,
or both, and whether the output class is Quotation. This ambiguity complicates
the use of BPMN for process models connected to database systems, hinders
tracking instance manipulation, and negatively impacts understandability be-
tween different developers. For instance, some developers can understand from
the data store connection in "Create quotation for multiple suppliers" activity,
that the request is already created and they need to select it from the database,
while others may understand that they need to create a new instance object of
Request, which can lead to time loss during implementation.
L2. Interaction between data instances is not clear. Data objects repre-
sent volatile process data and are connected to activities through associations [8].
For example, in the "create quotation for multiple suppliers" example, the inter-
action between data instances, such as the "DB" data store used as input and
output, is unclear. This ambiguity, coupled with the lack of explicit represen-
tation of data cardinality [2], like multi-instance data, complicates the model’s
interpretation. These limitations can result in development inefficiencies, as de-
velopers struggle to determine involved data objects, required information, and
data relationships. Understandability of the BPMN model can also vary among
developers based on their experiences and perspectives, highlighting the need for
a single visual language that conveys all necessary information, including data
cardinality.
L3. Data from/to external environment are not supported. Informa-
tion systems are often connected to external environments, such as user inter-
faces and services, making it crucial to represent the interaction between process
activities and external resources graphically for effective process modeling and
development. However, BPMN models lack support for this representation, mak-
ing it challenging to determine which activities are connected to external data
or services. For instance, the activity "Complete quotation" requires the user (a
supplier) to provide necessary quotation information through an external user
interface, which is not supported in BPMN. Therefore, while implementation,
the developers required textual infractions to understand the process model. The

Zooming in for Clarity: Towards low-code modeling for Activity Data Flow 5

graphical representation of external resources is important for effective process
implementation, as it helps prevent misunderstandings and errors during imple-
mentation.

Since process models and data schema are conceptualized independently, it is
necessary to support designers in understanding and capturing the relationship
between processes and different data types in order to develop data aware process
modeling.

3 Related Work

Low-Code Development Platforms (LCDPs) currently focus on the execution
of the process model, with little attention given to extending process modeling
languages to make them easier for developers to use [10]. In this section, we not
only present LCDPs, but also illustrate some approaches that extend BPMN to
link data and processes [7,6,4].

LCDPs are defined as "platforms that enable rapid delivery of business ap-
plications with a minimum of hand-coding." Most of these platforms use similar
concepts in graphical user interfaces, allowing developers to define and manip-
ulate data specified through tables, forms, reports, and other types of represen-
tation [10]. As the author said, "we are comparing BPMN modeling elements to
build the case study application with its equivalent modeling constructs using
different LCDPs associated with the data handling mechanism and their im-
plementation." which mean that most of platforms used BPMN elements. For
example, Bonitasoft 3 is an open-source and extensible platform for business
process automation and optimization. They use BPMN diagrams to describe
the business processes. The structure of the business data is presented by BDM.
Also, they allow developers to define forms, reports, and other types of represen-
tation. Another tool called Mendix 4 allows the user to build processes using the
available Microflow modeling language, which is based on the BPMN standard
and helps to extend or change the default behavior of the developed application.
This language defines the same elements as BPMN but with different symbols.
For example, an event in Mendix is equivalent to an event in BPMN (details
in [10]). However, these representations cannot help developers in their imple-
mentation by low-coding. LCDPs in business processes focus on the execution of
the process and facilitate the execution of the process to the organization. But
developers still spend time on the implementation, and they cannot track their
business data using the existing workflow languages.

Various approaches have been developed to extend BPMN and add support
for data modeling. These approaches introduce new concepts, elements, and
mechanisms for modeling data entities, relationships, and constraints, thus en-
abling a more comprehensive and integrated representation of both process and
data aspects. In [7], the information model of a process is connected to its BPMN
3 https://bonitasoft.com
4 https://www.mendix.com

6 A. Nour Eldin

process diagram through OCL expressions. The information model is represented
by a class diagram that includes a "Artifact" class containing process variables.
The process diagram is formalized as a Petri net, and BPMN activities are de-
fined using OCL operation contracts. These contracts are converted into logic
derivation rules that can be easily translated into SQL queries. Another frame-
work defines new variables, pre-conditions, and effects on activities by adding
new properties and accessing data objects and data stores to modify them [6].
This framework uses a verification model to parametrically verify data-aware
processes with respect to read-only relations. However, these approaches neglect
the important aspect of process visualization, which is necessary for developers
to easily understand and use the model. In [4], "Activity Views" proposes a new
extension to bridge the gap between process and data modeling, with a focus
on databases. Moreover, [4] only considers the databases aspect of the model.
However, The data in Business process does not restricted to database, and there
are different data types used in BP, like data object in BPMN.

However, our approach introduces a new visual concept that allows develop-
ers to easily model data in BPMN. Furthermore, it enables developers to zoom in
on activities to manipulate and interpret data. Additionally, the ability to zoom
in and out of activities allows for exploration of different levels of granularity, a
feature that is not supported in existing works. Indeed, our approach takes into
account most of the data required in business processes.

4 DF-BPMN: DataFlow in Business Process Modeling
and Notation

In this section, we will present the graphical elements of our language, followed
by an example that addresses all the limitations of BPMN using DF-BPMN,
and then proceed with the formal definition of DF-BPMN.

4.1 Graphical Process Modeling using DF-BPMN

In this section, we present a first step to low-coding approach that aims to estab-
lish a conceptual link between BPMN process models and data models, in order
to capture the connection between them more effectively, which helps develop-
ers better understand the model. Our proposed concept, Activity DataFlow ,
allows for a more detailed representation of how process activities interact with
and manipulate different types of data, such as database, process variable, and
external environment data. By specifying the inputs, outputs, and data oper-
ations performed by each activity, the method provides a comprehensive and
detailed representation of the process and its relationship with data. This al-
lows zooming into the activity for early identification of potential data-related
issues and better optimization of the data flow within the process. This helps
reduce implementation time and minimize mistakes during execution. Addition-
ally, zooming out of the activity presents the control flow perspective of the
process, while developers can zoom in on activities as needed.

Zooming in for Clarity: Towards low-code modeling for Activity Data Flow 7

Our approach to modeling data in BPMN starts with process activities, which
are a common starting point for data modeling. The main objective of the Ac-
tivity DataFlow extension is to visualize how data flows into a specific activity
based on various sources, and to capture important details about the data oper-
ations that are performed. This allows us to better understand the flow of data
throughout an activity.

objectName:objectType name:Type
[state]

attribute_1:Type

name:Type

name:Type

name:Type
[state]

:ObjectType

Enivrement
data: user

Enivrement data:
services, systems, ...

Data storeData object

Data processing
operator

Dependent
object

Multi-instance
object output

Object output

Multi-instance
object input

Object input

Dependency
object

Reference linkData flow

:ObjectType

Value

Local
Variable

(a) (b)

(d)

(f)

(h)

(j)

(c)

(e)

(g)

(i)

Fig. 3. Symbols used in DF-BPMN.

Fig. 3 represents the symbols proposed to allow to build your BPMN models
injected by data5. The symbols include inputs and outputs that represent the
data objects manipulated within the activity. Each object can have a type, and
there are various types of objects such as process variables (also known as data
objects in BPMN), databases (also known as data stores in BPMN), two types of
environment data: (1) related to user operations, such as user forms and websites;
and (2) external resources, such as services and systems; as well as local data,
which is a static value used within the activity. The icons in the second part of
Fig. 3 represent several types of data objects (input or output). Except for local
data, which was displayed without an icon.

The input shape in this language is a semi-circle with an arrow (see Fig. 3 (a)).
Each input can have one or more attributes, which are presented as rectangles.
The input shape can represent one of several types, as indicated by corresponding
icons. Each input also includes the name and type of the object it represents.
Similarly, each attribute has a name and type associated with it. The output
shape is the complement of the input shape, starting with a left arrow and
5 You can find the detailed documantation here

https://drive.google.com/file/d/1OlyvdmG6lZWu_PqOhf6OgEkZ6cwT6RPa/view?usp=sharing

8 A. Nour Eldin

semi-round shape. It has several types, like the input, and includes a name and
type, as well as the option to attach attributes. Additionally, the state of the
output object is indicated by "[]" at the top of its name, indicating any operation
performed on it during the process (see Fig. 3 (b)).

To facilitate interaction between the input and the output, a dataflow se-
quence is introduced to represent the transfer of input from the source to the
destination, it’s a sequence flow presented by an arrow. The dataflow sequence
visually connects the input and output, indicating the direction of data transfer.
In this way, the flow of information between the input and the output can be
easily understood by the process designer (see Fig. 3 (i)). We also use a reference
link (as shown in Fig. 3 (j)) to represent equivalent data objects. The reference
link is displayed using a dotted line. In addition, the representation of data also
needs to be considered. Sometimes, the input may read multiple instances of the
same data object, while the output may write or update multiple objects. To
address this, the multiple-instance object is represented by adding three bars
"|||" to the input or output shape (as shown in Fig. 3 (c-d)).

Moreover, our DF-BPMN language includes three other types of input: de-
pendency, dependent, and local data objects. The dependent and dependency
objects are always interdependent, representing situations where the user needs
to select certain data from the input in order to modify the output. The depen-
dency object is always represented as a user (f) who needs to read and select
data from the dependency object (data object/store) (e), therefore, there are
dependent together. The local data object is a variable that can be used as a
static value within the activity (g). These different types of inputs expand the
range of use cases for our language, providing more flexibility and precision in
modeling complex processes.

Finally, in the context of our DF-BPMN language, complex operations such
as arithmetic operations, logical operations, and conditions are represented us-
ing data processing operators. These operators are denoted by the symbol (h)
and can be used in combination with input and output objects to create com-
plex processing logic. For example, if an activity requires the addition of two
input objects, it can be represented using a data processing operator denoting
addition, with the two input objects as inputs and the output object as the
result. These data processing operators add another layer of flexibility to the
DF-BPMN language, allowing for the representation of more complex business
processes.

4.2 DF-BPMN in Action

Fig.4 depicts several instances of Activities DataFlow for the example shown in
Fig.2. These visualizations provide a way to zoom in on specific activities and
understand how data is manipulated within them without ambiguity6. For exam-
ple, the activity "create quotation" in Fig.2 has one input data store "DB" and

6 You can find all the process models here

https://drive.google.com/file/d/1_1v3MFaVcKuz8rOKxRTKkCb3-G9mVxbh/view?usp=sharing

Zooming in for Clarity: Towards low-code modeling for Activity Data Flow 9

Create quotation [create]

description: string

summery: string

supplierId: int

desciption: string

:Request
[created]

summery: string

supplierId: int

request: Resuest

:Quotation
[created]

:Supplier

id: int

Complete quotation [complete]

accepted:bool

price:float

:Quotation
[completed]

comments:string

status:string

hasSupplierAccepted: bool

:Quotation

status:string
"Completed"

comments:string

price: float

Fig. 4. Activities Modeled with DF-BPMN Language: (a) Create Quotation, (b) Com-
plete Quotation.

one output data store "DB", making it impossible to determine which data ob-
ject is in the input and which are in the output. However, the Activity DataFlow
"create quotation" (shown in Fig.4(a)) extends the "create quotation" activity
to include all data related to it. It has four inputs: one input from the data store
called "supplier" object, which has one attribute (i.e., "id"), and three inputs
from a user (environment data) (L3). It also has two output objects, one of
which is a multiple-instance object (cf. L1).

Furthermore, in the same activity, the representation of inputs and outputs
addresses L2 from sec. 2. The supplierId object is a list of integers selected by
the user based on the list of objects supplier already stored in the data store.
Thus, we have two input data objects that are dependent on each other, called
the dependency and dependent objects, respectively: supplier from the database
and supplierId list selected by the user. Then, the summary and description are
used to create a Request object, which currently has a [created] state. Moreover,
this created object (Request) is used as input for the Quotation objects. The
Quotation is a multiple-instance object based on the list of supplier selected by
the user, creating a quotation object for each supplierId. This situation provides
a solution for L2. This indicates that the goal of the "create quotation" activity
is to create two objects with states [created], with respect to the milestone of
the activity, which is [create], visualized around the name of the activity. This
case resolves the ambiguity of the activity milestone presented in L4 in sec.2.

In addition, the attributes of each object refer to the conceptual model of
UML. This helps to resolve L1 by providing information on the required at-
tributes for each UML class that is being processed in the activity. The associa-
tion between inputs and outputs represents the interaction between data within
the activity (L2). The Activity DataFlow "completed quotation" (in Fig. 4(b))
has different input types. It includes a local data input status, which takes a
value of "completed" to modify the value in the Quotation object.

4.3 The Missing Link: Uniting Process and Data for Clarity

Starting from the BPMN definition in [8], we extend an activity to include a
data flow into it. Therefore, Definition 3 indicates the activity’s extension into

10 A. Nour Eldin

Activity DataFlow. Each activity that has data can be enhanced to a Activ-
ity DataFlow. The latter consists of: (i) a set of inputs defined in Definition 1,
which are data instances from various resources, such as a local data, a data
object (process variable), a data store (database), or a data environment (other
resources: user or other); (ii) a set of outputs defined in Definition 2, which
are data instances are written/modified by the activity; (iii) a set of operators,
which are the data processing operation from one or multiple inputs to one or
multiple outputs, to represent that are operations do in this activity, e.g., con-
dition, arithmetic’s operations,... ;(iv) and (v) a collection of dataflow and a set
of references that reflect the interaction of data instances into the activity; a
dataflow sequence represents the correlation of a data instance; and a reference
represents the equivalent of data instances7. For example, "Create quotation" of
Fig. 2 is connected to data, therefore it can be extended to Activity DataFlow.
In which, this Activity DataFlow has: (i) Four inputs: one database input (sup-
plier), and three user inputs; (ii) Two databases outputs (request,quotation). The
interactions between these data instances are represented through a collection
of dataflow and a set of references in the Activity DataFlow.

Definition 1 (Activity Input). Let Input = GI ∪ LI as an input of an ac-
tivity, where:

– GI = (objectName, objectType, type,Attset, isMuliple) as a Global Input
where:
• objectName is a name to describe the input objectType can be any object

type you need (e.g integer, string or complexType)
• type ∈ {data_object, data_store, user, systems}
• Attset = {att1, ..., attk} where attk = (attributeName, attributeType)

such as attributeName is the description of attribute attributeType is
any type (e.g integer, string, complexType, ...)

• isMuliple is a boolean variable to describe if the object is represent multiple-
instance object

– LI = (objectName, objectType, objectV alue, isMuliple) as Local Input such
as objectV alue represents the static value of this input.

Definition 2 (Activity Output). Let Output = (objectName, objectType, type,
state, Attset, isMuliple) as an output of an activity, where objectName, object-
Type, type, Attset, isMuliple are represented in the Def. 1, and state define the
state of each object data during the execution time (like created, updated, deleted,
...)

Definition 3 (Activity DataFlow). Given an activity ac in a process model.
Let Activity DataFlow adac = (state, Iset, Oset, Operatorset, DFset, Rset) is a tu-
ple to represents the data flow into the activity, where:

– Iset = {i1, . . . , ij | ij ∈ Input}, is a set of inputs accessed by process activity
ac.

7 You can find the implementation details here

https://drive.google.com/file/d/1OlyvdmG6lZWu_PqOhf6OgEkZ6cwT6RPa/view?usp=sharing

Zooming in for Clarity: Towards low-code modeling for Activity Data Flow 11

– Oset = {o1, . . . , ol | ol ∈ Output}, is a set of output produced by process
activity ac.

– Operatorset = {operator1, . . . , operatorm} is a set of operators in which
represent the existing of data processing operations where operatorm = op-
eraterName and operaterName is a name to describe the operator.

– DFset = {df1, . . . , dfl}, is a set of dataflow sequence to connect different
data objects, where dfl = (sourceObject, targetObject) such as {sourceObject,
targetObject} ⊂ {Iset∪Oset∪Attset∪Operatorset} where Attset ⊂ {ij .Attset∪
ol.Attset | ij ∈ Iset and ol ∈ Oset} and sourceObject ̸= targetObject and
vise versa.

– Rset = {r1, . . . , rn}, is a set of references to represents the equivalent between
objects, where rn = (o1, o2) such as {o1, o2} ⊂ {Iset ∪ Oset ∪ Attset} where
Attset ⊂ {ij .Attset | ij ∈ Iset} and o1 ̸= o2 and vise versa.

Activity DataFlow represents an integration of two established standards,
namely BPMN and UML. It combines the concept of activity from BPMN
with the class, attribute, and relationship concepts from UML. This feature
of the Activity DataFlow method addresses several outstanding limitations (L1-
L4)(sec. 2) related to the representation of data in BPMN processes. Moreover,
the definition of inputs(cf. Def. 1) and outputs(cf. Def. 2) resolve the underspeci-
fication of data store. Indeed, there are different types of it, included the external
environment, which means, the representation of data from/to external environ-
ment are supported (cf. L3). Additionally, in Def 3, the dataflow sequence, the
reference, and the data processing operator resolve the ambiguity of the inter-
action between different data instances type (cf. L2). Finally, the state of the
activity and the state of each data output instance represent the milestone for
each one (cf. L4, resolved).

5 When Processes and Data Meet: Integrating Analysis
and Deployment

This section discusses some features of the research design area that resulted
DF-BPMN and demonstrates the novel perspectives that may be discovered by
using the DF-BPMN during process design, analysis, and deployment.
Understanding the process model using different granularity. The con-
cept of granularity is essential in human cognition, as it relates to the production,
interpretation, and representation of granules [11]. A granule is a group of ob-
jects or points that are connected by either their familiarity, proximity, or utility.
This process of granulation results in the formation of granules. When it comes to
process modeling, granularity refers to the level of detail at which a process is rep-
resented. In the case of DF-BPMN, there are two granularities available: (i) The
first granularity represents the entire control-flow of a model using BPMN2.0.
For example, a standard BPMN diagram can be used to represent a quotation
request. (ii)The second granularity is facilitated by the DF-BPMN model, where
each activity can be either expanded or collapsed, allowing the reader to focus

12 A. Nour Eldin

on the specific data being manipulated in those activities. Fig. 5 is an example
of a DF-BPMN that expands one activity and collapses all others in the model
to represent the same quotation request example. These different granularities
and representations provide valuable insight into the process, making it easier
to analyze and communicate with stakeholders.

Pu
rc

ha
se

 re
qu

es
t R
eq

ue
st

or

Review quotation

Create quotation [create]

description: string

summery: string

supplierId: int

desciption: string

:Request
[created]

summery: string

supplierId: int

request: Resuest

:Quotation
[created]

:Supplier

id: int

Is aborted requested?

Update request

DB

DB

send email notification

DB

DB

comment

DB

Su
pp

lie
r

Complete quotation Update request after
quotation received

Abort request
DB

Fig. 5. DF-BPMN example which expand "create quotation" activity and collapse the
others activities.

Tracking data objects in business process. Our extension increases the
expressiveness of a BPMN process model with information about process-data-
correlation on instance level. As such, it does not interfere with standard BPMN
semantics. We defined a state for each data object, thus allow the developer to
easily track the operation of each object by extracting its lifecycle based on the
state changes. For instance, Fig. 6 represents the lifecycle of the object "Re-
quest", including the activity in which it was started and finished. In addition,
the object-centric [1] has emerged recently to represent each object instance.
This lifecycle can helps in the extraction of Object-Centric Event Data. OCED
captures events and activities on specific objects in a system and provides a
more detailed view of how objects are processed, making it useful for analyzing
complex systems and processes and improving system performance using process
mining tools.

6 Evaluation

The aim of this section is to evaluate the understandability of DF-BPMN by
process designers and developers, comparing it to BPMN and Activity View
in terms of presenting different data types. We will first outline the evaluation
steps, and then present the results obtained from the study.

Zooming in for Clarity: Towards low-code modeling for Activity Data Flow 13

lifecycle of request object

init created
Crea

te
qu

ota
tio

n

pending

Upd
ate

 re
qu

es
t a

fte
r q

uo
tat

ion
 re

ce
ive

d

reviewed
Rev

iew
 qu

ota
tio

n

completed
Update request

aborded

Abort request

end

Fig. 6. Request object lifecycle.

6.1 Experiment Description

We conducted an evaluation of our DF-BPMN language in two phases. In Phase
1, we provided a tutorial to introduce DF-BPMN and its usage, with no pre-
requisite knowledge of UML. Additionally, we presented another work [4] in the
tutorial for experimentation and comparison purposes. To ensure comprehension
of DF-BPMN and the other work, we conducted a brief quiz. In Phase 2, we
aimed to evaluate the understandability of DF-BPMN by presenting three exer-
cises from different domains, with each exercise having different models (BPMN,
DF-BPMN, and Activity View) for evaluation. We developed a web application
tool 8, available on GitHub at https://github.com/NourEldin-Ali/open-bpmn,
using the open-source project Eclipse GLSP9 to use our language.

In order to evaluate the understandability of DF-BPMN, a human-oriented
experiment was conducted, similar to a previous study [4], with a single con-
trolled variable. The goal was to measure the understandability of DF-BPMN
by process designers and developers, comparing it with BPMN and other works,
particularly with respect to the relationship between a process and data. Two
hypotheses were formulated to analyze these improvements quantitatively and
qualitatively. The first hypothesis (H1) tested the perceived ease of understand-
ing, suggesting that DF-BPMN improves the visualization of data objects, lead-
ing to a better understanding of the data required for activities and how it
is utilized in a process, without any textual information or UML. The second
hypothesis (H2) tested the perceived ease of understanding, suggesting that DF-
BPMN is a better solution for modeling data in BPMN.

The evaluation was conducted by five PhD students who had basic knowledge
of BPMN and three professional developers working on a Business Process Man-
agement System editor. In Phase 1, all the participants attended a 30-minute
tutorial, consisting of a video and a short quiz, on how to use DF-BPMN and
Activity View.

In Phase 2 of the evaluation, participants were divided into three groups
to validate Hypotheses (H1) and (H2) through three exercises, each featuring
a questionnaire with 12 questions. The exercises provided participants with a
textual process description, data operations, BPMN, and UML diagrams. Each
8 Online Demo: https://github.com/NourEldin-Ali/open-bpmn#start-the-online-

demo
9 https://www.eclipse.org/glsp/

14 A. Nour Eldin

group used a different model: BPMN, DF-BPMN, or Activity View, with groups
rotating between exercises to avoid learning effect bias. The DF-BPMN group
had two iterations, one with text and UML and the other without. The appli-
cation domains included shipping orders from a website, triage in an emergency
room, and loading a book. The goal of this phase was to validate Hypothesis
(H1) by comparing DF-BPMN results with and without text and UML, and to
validate Hypothesis (H2) using a paired t-test [5], a statistical method to de-
termine significant differences between the means of two related groups while
accounting for individual variability.

6.2 Results

The outcome of the study indicates that DF-BPMN has a significant impact
on streamlining the design and comprehension of processes and their associated
data. This leads to a reduction in the time spent on tasks and improved task
accuracy.

During Phase 2, we conducted a quantitative assessment of the effectiveness
of DF-BPMN by comparing it to BPMN and Activity View. We measured the
time taken to complete each task for each participant and counted the number
of accurately answered questions, adhering to strict criteria for both accuracy
and completeness of responses. Finally, we employed a paired t-test to analyze
the results, comparing DF-BPMN to BPMN and DF-BPMN to Activity View,
where the execution times of one exercise using DF-BPMN were contrasted with
those of the same exercise using another model (BPMN/Activity View).

The results displayed in Fig. 7 show that the exercises with DF-BPMN took
an average of 12 minutes, and 71% of the answers were evaluated as correct.
In contrast, the results with Activity View took an average of 17 minutes, with
only 40% of the answers being correct. With BPMN, the results took 22 minutes,
with only 38% of the answers deemed correct. These results support hypothe-
sis H2. In fact, by applying the paired t-test to the measured correct answers
between DF-BPMN and BPMN, the p-value = 8 × 10−5 < 0.05. Furthermore,
between DF-BPMN and Activity View, the p-value = 0.003 < 0.05, indicating
that the obtained results illustrated in Fig. 7 are statistically significant, and
hypothesis H2 is satisfied. Indeed, the comparison of DF-BPMN results with
and without textual descriptions reveals that without text, 74% of answers are
correct, while with textual description, 71% are correct. This suggests that the
textual description in our approach is not necessary to understand the model,
and hypothesis H1 is satisfied.

Indeed, all the participants stated that completing the first experimental task
without the aid of DF-BPMN was more challenging, and 90% of them responded
positively when asked if DF-BPMN improved the modeling of the relationship
between processes and data. Next, we asked the participants to rate the usability
of DF-BPMN on a scale of 1 to 5, where 1 indicated "strongly disagree" and
5 indicated "strongly agree". The average results of this questionnaire-based
interview are presented in Fig. 8.

Zooming in for Clarity: Towards low-code modeling for Activity Data Flow 15

Fig. 7. Average execution time with standard deviation (left) and total percentage of
the correct answers (right) for the whole the PHASE 2.

Fig. 8. Average rating of subjects perception of the DF-BPMN.

7 Discussion & Conclusion

Low-code development platforms (LCDPs) aim to simplify software systems’ de-
velopment by providing easy-to-use graphical interfaces. The system behaviors
are defined through available data handling and workflow mechanisms enabling
the specification of business processes from users that do not have strong pro-
gramming skills. Moreover, a clear understanding of the data involved in business
processes is critical to reduce the mistake in the implementation of the model.

Although LCDPs in business process are most widely used BPMN as busi-
ness process model, but it has limitations as a data-flow language. Specifically,
BPMN underspecifies the data store and does not support the relationship be-
tween different data types. Additionally, it does not represent users and external
systems, which can lead to misunderstandings in the process model.

To address these issues, we proposed DF-BPMN, a first step in low-code solu-
tions that connects process and data diagrams by using the Activity DataFlow,
an extension of the standard BPMN activity. DF-BPMN provides insights into

16 A. Nour Eldin

how data flows through a process and identifies areas for data-related improve-
ments, enabling process designers to model the complex relationships between
processes and data. DF-BPMN allows developers to represent data in a graphical
format, improving collaboration between business and developers.

Based on our evaluation in sec. 6, DF-BPMN is a promising approach for
supporting process designers in modeling the complex relationships between pro-
cesses and data. DF-BPMN is simple to understand without requiring additional
information, and because it is a visual language, we are confident that the infor-
mation will be understood by everyone. However, humans still require assistance
in creating a model using DF-BPMN, which can be resolved using AI assis-
tance. Indeed, we are working on the second step of low-coding by generating
an execution code to be used in the engine for the execution of the process.

In conclusion, by integrating low-code and business process modeling, DF-
BPMN provides the first step of low-code solution that bridges the gap between
process and data diagrams and enables a clear understanding of the data in-
volved in business processes. It has the potential to improve overall efficiency
and effectiveness by identifying areas for data-related improvements.

References

1. van der Aalst, W.M.P.: Object-centric process mining: Dealing with divergence
and convergence in event data. In: Software Engineering and Formal Methods -
17th International Conference, SEFM (2019)

2. van der Aalst, W.M.P., van Hee, K.M.: Workflow Management: Models, Methods,
and Systems. Cooperative information systems (2002)

3. Aguilar-Savén, R.S.: Business process modelling: Review and framework. Interna-
tional Journal of Production Economics (2004)

4. Combi, C., Oliboni, B., Weske, M., Zerbato, F.: Conceptual modeling of processes
and data: Connecting different perspectives. In: Conceptual Modeling - 37th In-
ternational Conference, ER (2018)

5. Field, A.: Discovering statistics using IBM SPSS statistics. sage (2013)
6. Ghilardi, S., Gianola, A., Montali, M., Rivkin, A.: Delta-bpmn: A concrete lan-

guage and verifier for data-aware BPMN. In: Business Process Management - 19th
International Conference, BPM 2021 (2021)

7. Giacomo, G.D., Oriol, X., Estañol, M., Teniente, E.: Linking data and BPMN
processes to achieve executable models. In: Advanced Information Systems Engi-
neering - 29th International Conference, CAiSE (2017)

8. OMG: Business Process Model and Notation (BPMN), Version 2.0 (2011), http:
//www.omg.org/spec/BPMN/2.0

9. OMG: OMG Unified Modeling Language (OMG UML), Superstructure, Version
2.4.1 (August 2011), http://www.omg.org/spec/UML/2.4.1

10. Sahay, A., Di Ruscio, D., Iovino, L., Pierantonio, A.: Analyzing business process
management capabilities of low-code development platforms. Software: Practice
and Experience (2022)

11. Zadeh, L.A.: Toward a theory of fuzzy information granulation and its centrality
in human reasoning and fuzzy logic. Fuzzy sets and systems (1997)

http://www.omg.org/spec/BPMN/2.0
http://www.omg.org/spec/BPMN/2.0
http://www.omg.org/spec/UML/2.4.1

	Zooming in for Clarity: Towards low-code modeling for Activity Data Flow

