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NULL CONTROLLABILITY OF A VOLUME-SURFACE REACTION-DIFFUSION
EQUATION WITH DYNAMIC BOUNDARY CONDITIONS

FOUAD ET-TAHRI, SALAH-EDDINE CHORFI, LAHCEN MANIAR, AND IDRISS BOUTAAYAMOU

ABSTRACT. This article focuses on investigating the null controllability of a volume-surface reaction-
diffusion equation with dynamic boundary conditions. Notably, the reaction and diffusion coefficients
depend on the state variable in the bulk and on its surface. Our main result establishes the local null
controllability of the quasi-linear equation under certain conditions on the regularity of diffusion and
reaction coefficients as well as initial data. To this end, we approach the problem by first addressing
the question of null controllability in the framework of a inhomogeneous linearized equation. Next,
we derive new estimates of both control and state, allowing us to apply a local inversion theorem to
obtain the local null controllability of the quasi-linear equation.

1. INTRODUCTION AND MAIN RESULTS

The prototype model of reaction-diffusion equations with distributed control can be written as

follows:
Yy — V- (DVY) +a(yp) =10 in Qp, 1
1/)(,0) :1/)0 in Qa ( . )

with boundary conditions. Here Q C R? (d € N) is a bounded domain with smooth boundary T := 99,
Qr :=Qx(0,T), w € Q (the control region) a nonempty open set strictly contained in Q, 7" > 0 the
control time, v the control function, g is the initial datum, the function a represents the reaction
term, and the diffusion coefficient D can be expressed in a general form as D := D(z,t,v, V). In the
linear case, D varies as a function of x and ¢ and a is linear; for semilinear equations, D depends on x
and t; otherwise, the equation is quasi-linear. Reaction-diffusion equations suppose that the behavior
of different populations is mainly influenced by two processes: local reactions, where populations
interact with each other, and diffusion, where populations spread through a physical space. The term
“population” is widely used within this framework and can incorporate examples from various fields
such as biology, ecology, geology, and combustion theory. Examples of such populations may include
particles, free waves on the surface of water, flames, cells, and bacteria as seen in references [27,33, 30]
and the cited bibliography.

Our research in this paper focuses on the null controllability of reaction-diffusion equations with
dynamic boundary conditions of the surface diffusion type (generalized Wentzell type). The equation
we are dealing with reads as follows:

Y =V (c(@)VY) +a(y) = f + Lyv in Qr,

Yry — Ve - (0(¢r)Vryr) + o(¥r)o,y + b(Yr) = fr onI'r, Lo
Yr =Y on I'r, (1.2)
(¥(-,0),¢r(-,0)) = (¢, Yo,r) in QxT,

where I'r :=T x (0,7), wr := w x (0,T), v € L*(wr), (¢o,%or) € L*(Q) x L*(T) and the source
terms (f, fr) belong to an appropriate weight space; V, Vr and 9, denote the gradient, tangential
gradient and normal derivative associated to the outward normal v of €, respectively; V- and Vrp-
denote divergence and tangential divergence respectively, ¢r ; is the derivative of ¢¥r with respect to
t, 9. is the trace of ¢ on I' and o,6,a,b : R — R are given such that

e The diffusion coefficients satisfy
0,0 € C3(R,R), o(r)>00>0 and &(r)>dp >0 VreR. (1.3)
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e The reaction terms verify
a,be C*(R,R) and a(0)=0b(0)=0. (1.4)

We emphasize that we do not require growth conditions on the reaction terms nor upper bounds on
the diffusion coefficients. In general, the term ¥r ; — V- (§(¢r)Vrer) models the tangential diffusive
flux on the boundary which is coupled to the diffusion equation in the bulk by the co-normal derivative
o(¢r)0,1. We treat this problem as a coupled system of dynamic equations for ¢ and v, with side
condition 1|, = ¢r. For the mathematical theory of surface diffusion boundary conditions, we refer
to [11,23,25,38,44,46] and [28,43] for the physical interpretation and derivations of the dynamic
boundary condition.

Volume-surface reaction-diffusion equations such as (1.2) can be found in the biology of cells
and asymmetric cell division [13]; in the chemistry of cells to model signaling molecules [42]. The
well-posedness and stability along with numerical results on the discretization are presented in the
aforementioned papers. As for applications in thermomechanics, we refer to [39] and the referenced
literature.

Local null controllability means that there exists a data space such that the null controllability is
fulfilled for any initial data small enough in this space. We refer to [12] and the references therein
for some results on the semilinear case. Recently, there has been notable progress in investigating the
local null controllability of (1.1) under static boundary conditions, specifically Dirichlet conditions.
In [16,35], the authors showed the local null controllability of (1.1) when (D,a) = (o(¢),0). For
the case of (D,a) = (6(V),0), the local controllability is discussed in [18]. When considering
(D,a) = (o(z,t),0) or (c(|V¥]),0), relevant insights are provided in [9]. Additional intriguing models,
such as the thermistor problem and a Ladyzhenskaya-Smagorinsky model of turbulence, are addressed

in [17,29]. In the one-dimensional case, [0, 19,21] analyzed an equation of similar form. For the
controllability of parabolic and parabolic-elliptic equations with local and non-local nonlinearities,
comprehensive discussions are available in [10,41]. Further insights into numerical aspects can be
found in [19,20], along with the cited references.

Therefore, it is natural to extend the known results to equations with dynamic boundary conditions
where the boundary diffusion also depends on the state. Concerning the null controllability and inverse
problems of linear and semilinear equations with such boundary conditions, we refer to [2,3,7,31,32]. In
particular, [37] dealt with the null controllability of (1.2) in the case of constant diffusion coefficients.
Note that incorporating nonlinearities in both the bulk equation and boundary equation makes the
null controllability of the equation rather challenging compared to the Dirichlet boundary condition.
Therefore, we need to develop suitable estimates that are well-adapted to our case, since several new
boundary terms need to be estimated.

Before we present the main result of this paper, we recall the definition of local null controllability
associated with (1.2). We start by introducing Sobolev-type spaces needed in the sequel:

H* == {(y,yr) € H*(Q) x H*T) : y. =yr}, k=1,2,3,
where H*(Q) and H*(T') are respectively the usual L?-based Sobolev spaces over € and T.

Definition 1.1. We say that (1.2) is locally null controllable at time T if there exists & > 0 such
that for any Vo = (o,%0r) € H? and F := (f,fr) € G (G is introduced in Section 3) with
| Wollgs + || Fllc < &, there exists a control v € L?(wr) such that the solution of (1.2) satisfies

(W, T),%r(-,T)) = (0,0) in Q x .
The main result of this paper reads as follows:

Theorem 1.2. Assume that d < 3 and assumptions (1.3) and (1.4) hold true, then the quasi-linear
equation (1.2) is locally null controllable at any time T.

The local null controllability of (1.2) is reformulated as a surjectivity of the mapping A : X — Y:
AW, v) := (A (V) = Lyv, A5(9), ¥ (-, 0)),
where
U= (¢, ¢r),
M () =9 = V- (0(¥)VY) + a(¥),
A2(¥) :=try — Vr - (6(¢r)Vrr) + o(4r)dy + b(yr)
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and X,Y are appropriate spaces of the state-control (see Section 3). More precisely, Theorem 1.2 is
equivalent to

Je > 0, V(F,¥y) € By((0,0),¢), 3(¥,v) € X, such that A(¥,v) = (F, V).

To achieve this, we apply the Lyusternik-Graves Inverse Mapping Theorem in infinite dimensional
spaces, whose proof can be referenced in [5].

Theorem 1.3 (Lyusternik-Graves’ Theorem). Let X and Y be Banach spaces and let A : B(0,7) C
X — Y be a C' mapping. Let us assume that the derivative A'(0) : X — Y is onto and let us set
& = A(0). Then there exist e > 0, a mapping W : B(§o,¢e) CY — X and a constant C > 0 satisfying:
e W(z) € B(0,r) and Ao W (z) =z Vz € B(&,¢),
o [W(2)lx < Cllz—&lly Vz € B(&o, e).

The most difficult task is therefore the choice of spaces X and Y for which mapping A is well defined.
The surjectivity of A’(0, 0) is linked to the null controllability of the inhomogeneous linearized equation
(around zero) of (1.2) given by

Py — o (0)AyY +a' (0) = T,v+ f in Qrp,

Yri — 0(0)Arer + 0(0)9,9 4+ b'(0)yr = fr  on I'r, (15)
Yr =Y, on I'r, '
(w(ao)awr(ao)) = (,(/)07’(/}0,1—‘) in QxT.

Given suitable assumptions on f and fr, equation (1.5) is null controllable. The adjoint equation of
(1.5) with source terms can be expressed as follows:

— ¢t —(0)A¢ +d'(0)p = f in Qr,

—¢r,e — 0(0)Ar¢r + 0(0)0,¢ + b'(0)¢r = fr  onI'r, (1.6)
or = @|r onI'p, '
(¢, 1), ¢r(-,T)) = (¢1, ¢1,1) in QxT.

We restrict ourselves to dimensions d < 3 so that the following Sobolev embeddings are valid:
o WH4(M) < L>°(M), with continuous embedding,
o H?(M) < WH4(M), with continuous embedding,
e H?(M) < L>(M), with continuous embedding,
where M =  or I'. These are well-known results that are deduced from the general results shown
in [, Theorem 4.12] in case M = Q and [34, Theorem 2.2] in case M =T
This paper is structured as follows: Section 2 is devoted to the study of the well-posedness and
null controllability of the inhomogenuous linearized equation (1.5). In Section 3, we prove the main
result on local null controllability of (1.2) (Theorem 1.2). Finally, we give some conclusions and final
comments in Section 4.

Notation. Throughout this paper, we adopt the following notations:

e The symbol C will stand for a generic positive constant depending on Q, w, s, A, T, 7, 9§, a
and b (the parameters s and A are introduced in Subsection 2.3).
e To write estimates in abbreviated form, we denote:

VY = (Vy,Vryr), AY :=(Ay,Aryr), Yi:= We.yre), Yie : = Yoo Yru)s
where Y := (y,yr), Vr is the tangential gradient, Ar is the Laplace-Beltrami, Y; and Y
respectively denote the first and second-order partial derivative of Y with respect to ¢.
2. WELL-POSEDNESS AND NULL CONTROLLABILITY OF (1.5)
2.1. General setting. The natural state space for our problems is
L2 .= L2 (ﬁ; dr ® dS) ,

where dx denotes the Lebesgue measure on 2 and dS denotes the natural surface measure on T
This space can be identified with
L*(Q, dz) ® L*(T, dS).
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It is a Hilbert space with the inner product
(Y, Z)12 = (y,2)r2(0) + (yr, 2r)r2ry, Y = (Y, yr), Z = (2, 2r) € L2
We will also denote
L = L>®(Q) @ L>=(T).
It is a Banach space with the norm

[Y|Lee := max{[|y[[z~(a), lyrllzem}; Y = (y,yr) € L.

To describe the surface heat diffusion, we need to define certain differential operators on I', defined
locally in terms of the standard Riemannian metric on T', see [30]. In this paper, we will not use
the local formulas that define these operators, but rather the relevant properties such as the surface
divergence theorem. These operators can be defined by extensions as follows, we refer to [8]:

e We define the tangential gradient Vryr for any smooth function yr on I' by
Vryr = Vy — (avy)ya (21)

where y is an extension of yr in a neighborhood of I". It can be seen as the projection of the
standard Fuclidean gradient Vy onto the tangent space on T.
o We define the tangential divergence divpYr for any smooth vector field Yr on I' by

divrYr :=divY = Y'v - v, (2.2)

where Y/ = (9;Y;) and Y is an extension of Y7 in a neighborhood of I'. Note that formulas
(2.1) and (2.2) do not depend on the chosen extension, and divp(Yr) can be considered as a
continuous linear form on H!(T")

divp(Yr) : HY(T) — R, 2zp— —/(Yp,vsz>F ds,
I

where (, )r is the Riemannian inner product of tangential vectors on I'. In the following, we
will denote Vr - Y1 instead of divp(Yr) and - instead of (, )r.
e The Laplace-Beltrami Aryr is defined by

Aryr = divp(Vryr) Vyr € H*(D).

In particular, the Stokes divergence theorem on I' holds, see [15],

/AFyFZF ds = —/ Vryr -Vrzr dS Vyr S H2(F) Var € Hl(F) (23)
T T

In the one-dimensional case, we can take a look:

Remark 1. In the one-dimensional case, for example Q = (0,1), then I" = {0, 1}. We have

e The measure dS on I' can be identified with the counting measure

/ryF dS = yr(0) + yr(1).

e The spaces L?(I") and L>(T") are identified with R?, so L?(I") can be equipped with the inner
product

(yr, zr) 2y = yr(0)zr(0) + yr(1)zr(1)
and L>°(T") equipped with the following norm
lyrll Lo ) = max(Jyr(0)[, [yr(1))).

e Since I' is a manifold of dimension 0, therefore the two tangeant spaces at 0 and 1 are trivial.
Consequently, the tangential operators are trivial: Vr = 0 and Ar = 0.
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2.2. Well-posedness and regularity of solutions to (1.5). In this section, we will present the
well-posedness and regularity properties of solutions to (1.5) as well as to (1.6). In the sequel, we use
the following notations.

Notation. For any Y = (y,yr), we will denote

LY =y — 0(0)Ay + d/(0)y,
LoY :=yr: — 6(0)Aryr + o(0)d,y + b (0)yr,
LY = -y — 0(0)Ay + a’(0)y,
L3Y = —yr; — 0(0)Aryr + 0(0)dyy + b'(0)yr.
We also introduce the following energy space
E:= H'(0,T;1L%) N L*(0,T; H?).
We are focused on addressing the following categories of solutions for (1.5), see [37].
Definition 2.1. Let F = (f, fr) € L*(0,T;L?), ¥g = (Yo, %o r) € L? and v € L*(wr).
(1) A distributional solution (solution by transposition) of (1.5) is a function ¥ = (¢,9r) €
L?(0,T;1L?) such that for any Z = (z, 2r) € E with Z(-,T) = 0, we have

YLYZ da dt + | rLiZ dS dt — / vz da dt

Qr I'r wT

= /QT fz dx dt—i—/FT frzr dS dt—l—/ﬂwoz(-,O) dx—i—/rzpo,pzr(-,()) ds. (2.5)

(2) A strong solution of (1.5) is a function (v, 9r) € E fulfilling (1.5) in L2(0,T;12).

The well-posedness and regularity properties of the solutions to (1.5) are based on semigroup theory,
as studied in detail in [37].

Proposition 1. Let F = (f, fr) € L*(0,T;1L?) and v € L?(w7).
(1) If ¥o = (Yo,%0r) € L2. Then there exists a unique distributional solution ¥ = (¢, ¢r) €
C([0,T);1L?) of (1.5). Moreover, there is a constant C > 0 such that
1%l c(o, 152y < C (H‘I’OHIL2 + |1 Fl| 220,712y + HU||L2(wT)) . (2.6)

(2) If o = (vo,%0r) € H'. Then there exists a unique strong solution ¥ = (1,¢r) € E of (1.5).
Moreover, there is a constant C > 0 such that

1¥]le < C (I%olls + 17|22 0,7L2) + V]l 22 wr)) - (2.7)
Proof. The proof of existence and uniqueness as well as estimates (2.6) and (2.7) can be found in [37,

Propositions 2.4 and 2.5]. O

Considering the transformation ¢ — 7" — ¢, one can pass from equation (1.6) to an equation similar
to (1.5) without control and vice versa. We thus obtain

Corollary 1. Let F = (f, fr) € L*(0,T;L?).
(1) If 7 = (¢r,¢7r) € L2 Then there exists a unique distributional solution ® = (¢, ¢r) €
C([0,T);1L?) of (1.6). Moreover, there is a constant C' > 0 such that
12llcqo,mLey < C (I@7llee + 1 FllL20,i12)) -
(2) If &7 = (¢, ¢rr) € H'. Then there exists a unique strong solution ® = (¢, ¢r) € E of (1.6).
Moreover, there is a constant C' > 0 such that

[12lle < C (@7l + [|Fllz20,72)) - (2.8)

Remark 2. As far as the well-posedness of the quasi-linear equation is concerned (but without
boundary diffusion), we refer to [14]. The well-posedness of (1.2) can be done by the Faedo-Galerkin
approximation. We refer to [24,26,40] for similar equations.
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2.3. Null controllability of (1.5). The aim of this section is to prove null controllability for the
equation (1.5), we also prove estimates on the state and regularity on the control which require some
regularity in the initial data and source terms. We consider the following positive weight functions «
and £ which depend on 2 and w

G2 Ametn(e) Almtn(z))
afz,t) = =1 and £(x,t) = T
Here, A\,m > 1 and 7 = n(z) is a function in C2(Q) satisfying
n>0in, n=0onT, 6{15/ |[Vn(z)] >0 and ||n]le =1, (2.9)

where w’ CC w is a nonempty open set. The existence of such a function 7 satisfying (2.9) is proved
in [22] if Q is a C? domain. The following lemma is a Carleman estimate for the adjoint equation
(1.6). The proof can be found in [37] which deals with the null controllability of linear and semilinear
parabolic equations with dynamic boundary conditions.

Lemma 2.2. There are constants C7 > 0 and A1,s1 > 1 such that for any s > s1, any X > A1 and
any (¢, ér) € E, we have the following estimate

/ e 2 [sTHET (16 + |Ad?) + sA%|V | + > NP 9]?] da dt
Qr

+/ e > [s7H (|oral? + |Argr[®) + sAVrdr[* + $*A°Eor[*] dS dt
I'r
+sA / e 25¢|0,¢* dS dt < Cy <33A4 / e~ 259e3|p|? da dt

T'r w’%x(0,T)

+/ e 2°|L;®)? dz dt+/ e * L3 @[ dS dt>~ (2.10)
Qr Tr

Furthermore, Cy and Ay only depend on Q and w, and sy can be chosen of the form sy = C(T + T?),
where C' only depends on Q, w, 0(0), §(0), a’(0) and V' (0).

We will deduce a Carleman estimate similar to (2.10) with functions blowing up only at t = T.
Define the new weight functions:
e2dm _ pA(mn(z)) eMm+n(z))

Bz, t) = ) and ((x,t) = )

where the function /¢ is given by

, (x,t) €Qx(0,T),

o) { e ift € [0,7/2]

HT —t)  ifte[T/2,T).

Note that £ € C*([0,T]). An estimate with such weights is given in the following result. In the proof,
we will use Lemma 2.2 and energy estimate (2.8).

Proposition 2. There exist constants A1,s1 > 1 such that for any s > sy, any A > A1, there exists a
constant C := C(s,\,T) > 0 which satisfies the following property: for any ® = (¢, ¢r) € E, we have
the following estimate:

/ e—QSB [E(t) (|¢t|2 + |A¢|2) + E—l(t)|v¢|2 +£_3(t)|¢|2] dx dt

Qr

+/ e~ 28 [g(t) (|¢F,t\2 + |AF¢F|2) + 071 (t)|Vror|? +£_3(t)‘¢F|2] ds de
T'r

—2s8p—1 2 M2 M2
+/ 1(1)[0,9) det+/ﬂ|¢<,o>| dx+/r|¢>p<,o>| ds

<C / e P13 (1) |¢)? da dt+/ e 2P| @)% da dt+/ e 2P|Ls®)? dS dt |,
UJIX(O,T) QT FT

(2.11)

with s1 and \1 as in Lemma 2.2.
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Proof. To do so, we split the left-hand side of (2.11) into two parts, corresponding to the restrictions
of ¢ on Q x (0,7/2) and Q x (T/2,T). Firstly, on Q x (T/2,T). Using Carleman estimate (2.10),
a =B and € = A H@) =1 in Q x (T/2,T), we obtain

/ /T/2 e 20 [0(t) (106> + 1A0) + 1OV + 72 (1)[¢]?] du at

/// e 20 [0t) (|gre)® + |Arer[®) + 1) | Vrgr > + ¢73()|or|*] dS dt
T/2

T/2
+// e 2P0 (1) |0, 6% dS dt
rJrT

<C / e 253 p? da dt—i—/ e LI da dt+/ e L®* dS dt | .
w’ % (0,T) Qr I'r

(2.12)
In accordance with the definition of ¢, we have ¢(t) > ¢(T —t) on [0,T], then
e72% <728 on QO x(0,T). (2.13)
On the other hand, one has
e 23 < Ce™ P13 on Qx (0,7), (2.14)

where C only depending on s, A and T'. Indeed, on Qx (T/2,T), we have e~ 253 = e3Mm+n(z)) =258 p=3
and on Q x (0,7/2), e=25(@=5) (¢£)® is bounded with respect to z and this bound admits 0 as a limit
when ¢ \, 0. Hence e~25(2=5) (££)* is bounded on Q x (0,7/2). Considering (2.12)-(2.14), we obtain

/ /T/Q e 2 [UD) (I6l” +1A6) + 71OV + €7 (1)|6]] da dt
/ / ¢ O (oral? + 18060 ) + 1OV eorl? + 2 @)16r) dS d
T/2

<C </ e 28073 (1) |¢|* da dt+/ e 2P )% da dt+/ e 2PILs®|? dS dt) .
x(0,T) Qr T'r
(2.15)
Secondly, on Q x (0,7/2). Let us define a function 9 € C*([0,T]) such that
9t) =1 in [0,7/2] and 9(t)=0 in [37/4,T].
Put Y := (y,yr) defined by Y := 9 ®, then Y is the strong solution of the equation

LY = 0Lid — 9'¢ in Qr,
LY = 9L5® — ' ér on T'p
yr = Y|r on I'r,

(W T)ye(T)) = (0,0) in QxT.
Using the continuity of the normal derivative from H?(f2) to L?(T) and energy estimate (2.8), one has
1Y (L 0)IE2 + 1Y 20,722y + Vel 220,722y + IVY 1220 722)
+||AYH%2(O,T;]L2) + ||5uy\|%2(o,T;L2(r)) < C|IY I
< Cll(ILI®, VL5 ®) — 9P| 72 (g 112 (2.16)
The definition of ¥ and (2.16) imply that
1D(, 0)[12 + @172 (0.7/2.02) + 191220 7202y + VR Z2(0.7/2.12)
HIA®|F 20 7202y + 10001172 (0.7/2:12 (1))
< C (L9, L5®) 320 a1 yan2) + 1132z /21 4 ) - (2.17)
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Using the boundedness from above and from below of the weight functions 8 and £ in Q x (0,37/4)
and (2.17), we get

T/2
/ / e 20 [0(t) (10> + (A1) + 71 () |V +€7(1)|9f°] da dt
T/2
// e 2P [e(t) (|or.)* + |Argr|?) + €71 )| Veor|? + €73 ()|or?] dS dt

T2
+ / / 2801 (1)[0,0[2 A8 dt + (02 e + [60(20) |2,

3T/4 3T/4
<C / / e 2P |LI®|? do dt + // e 2PILy®% dS dt
I
3T/4 3T /4
// e 2B073(1)|¢|? da dt+// e 2B073(t)|gr|? da dS) :

which, combined with (2.15), yields (2.11). O
From now on, we fix s = s1, A = A1, and introduce the following weights, which we will need in the
sequel.

A
Remark 3. Taking m > 1 large enough for instance m > w, we have that

Bt) < (5/4)B(t) V(x,t) e Qx(0,T),

where

B(t) = max f(x,t), [(t):=minpS(z,t).

reQ) 2€Q
Notation. Let us introduce the notations
V() = B/, ult) = OB () = AO)
pa () i= ()62, pg(t) := 37O CHD2 g e g2 5)
Remark 4. We have the following elementary estimates
papy = p P (papy ) < CpTh, usel < Cpa,
po < Cpy, p<Cu?, pp <Cup_y Vke{l,---,5},
lrpne| < Cui_y Vke{2,---,5}.

Proposition 3. Let F = (f, fr), Yo = (Yo, %r o) such that pF € L*(0,T;L?) and ¥y € L2 Then,
there exists a control v such that the solution U of (1.5) corresponding to v, F and Uy, satisfies

0% 220, 702) + o1z ury < € (IF 120z + 1%0llE2) (2.18)
In particular (1.5) is null controllable. Moreover, we can choose v satisfying
psv € HY(0,T; L*(w)) N L?(0, T; H*(w)) (2.19)
and
3043y + 100, Oy < C (1P a0 70y + W02 ) - (2:20)
Proof. The proof of this result is inspired by the method of Fursikov and Imanuvilov [22]. Let us

consider the following space:
P .= {Y = (y’yr) Ly S CZ(QiT) and y‘r(7t) = yF(';t)’ te [O,T]}

Note that P can be identified with C?(Q7) and is dense in E. We define the bilinear form B :
PxP—Rby

o *L3YLsZ dS dt + / u 2 xyz de dt,

B(Y, Z) ::/ 1o *LIYLI Z dx dt+/
Qr r Qr

T
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where x € C5°(w) (the space of test functions with compact support in w) is given such that 0 < x <1
and x|, =1 ( L} and L3 are defined in (2.4)). We also define the linear form F : P — R by

F(Z) = <F, Z>L2(O,T;]L2) + <\Ifo, Z(-, 0)>IL2~

We claim that B is an inner product in P and F is continuous for the norm || - ||g associated with the
scalar product B. Indeed, due to Carleman estimate (2.11), there exists a constant C := C(s,\,T) > 0
such that for all Z := (z,2r) € P, one has

12, 02 dx—l—/ (20 (-, 0) 2 dS+/ 22 da dt+/ =22 dS dt
Q r Qr I'r
<CB(Z2). (2.21)
In particular, B is a scalar product in P. To ensure the continuity of F, using Cauchy-Schwarz
inequality and (2.21), we get

[F(2)| < C (|nFlle20,rn2) + [Tollz) 1 2] (2.22)

In the sequel, we will denote by P the completion of P for the norm || - | and we will still denote B
and F the corresponding continuous extensions. From the Riesz Representation theorem, there exists
a unique ® = (¢, ¢r) € P such that

B(®,Z) = F(Z) VZeP. (2.23)
Using (2.22) and (2.23), we obtain
[@lls < C ([|£F || L2 0,7:22) + [ WollLz) - (2.24)
Let us introduce (¥, v) with
U= g 2(LI0,L3®) and v i= —xuq 20w, (2.25)

According to (2.25) and the definition of B and x? < x, we obtain

/ pplyl? dz dt—i—/ pol¢rl* ds dt+/ pilol* de dt < B(®, ®).
Qr T'r w

T
Using this equation and estimate (2.24), we deduce estimate (2.18). As a consequence ¥ € L?(0, T;1L?),
v € L*(wr) and from (2.23), W is the unique distributional solution of (1.2) with the control v. Let
W= —xu; 2® and g := L{(u3W). Then,
9 = —xmspy Li® + x(papy ?)ed +20(0)uspy *Vx - Vo
+0(0)pspi *AX ¢ = g1 + 92 + g5+ 9a. (2.26)
Using the definition of ¢ in (2.25) and Remark 4, we obtain

91l < Cpolyl,  g2| < Cutigl, (2.27)
lgsl < Cp= Vel |gal < Cpl@l.
From the Carleman estimate (2.11) and (2.24), we get
/Q 2 [PV + 162 do dt < C (InFl3e,ram) + (ol ) (2.28)
T
Taking into account (2.18), (2.26), (2.27) and (2.28), we obtain
g€ Q) and g3 ay < C (InFlle ez + 1ol (2:29)
Since x € C§°(w) and w € Q, then psW is the strong solution of
Li(usW) =g in OQr,
Li(usW) =0 on I'p,
(p3w)r = (p3w)), on I'r,

([L3’LU(',T),[J,3U)1"(',T)) = (070) in @ xI.
Using estimates (2.8) and (2.29), we obtain

lasW 2 < € (1nF 120,00 + 1ol ) - (2.30)
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Since psw|, = ps3v, we deduce (2.19). From the following continuous embedding (see Theorem 4
in [15])
H(0,T; L*(w)) 0 L2(0, T3 H? (w)) < C((0,T]; H' (w))

and estimate (2.30), we obtain

o(,0) € H'(w) and [[o(,0)}s) < C (I1F 320z + I WollEe) (2:31)

Since p3vy = (pav)e — p3,v and |ps | < Cpq, then
500l 32y < € (1P 1320702 + W02z ) (2:32)
Finally, from (2.31) and (2.32), we obtain (2.20). O

Proposition 4. Under the assumptions of Proposition 3 and if (U,v) is a state-control for (1.5)
provided by Proposition 3 associated with data ¥o = (¢o,%or) and F' = (f, fr) such that uF €
L2(0,T;1L?) and psFy € L*(0,T;1L%). The following estimates are satisfied

(1) For any ¥, € L2, one has

sup OGO + 12V U ras < O (IF [aoran +1%0l2:) - (238)

(2) If we assume that ¥y € H', one has
sup BOIVECE + Wil ra + 1A o oo

< C (1P Izo.ae) + 1ol ) - (2.34)
(3) If we assume that Vo € H2, one has
sup 5 (0] (-,1)[I1F2 + HM4V‘I’tH2L2(0,T;L2)
0<t<T

< C (I1F 320 rz + luaFillizo s + 1 %oll3) (2.35)
(4) If we assume that Wy € H? and F(-,0) € H', one has
Oi?gTﬂg(tNW‘I’t('at”th s WerlF2 0,2y + s AW 220 72y

+ sup pE(O)|AV(0)1F2 + 115 VT2 0 2
0<t<T

< O (InF a0 ray + I0aFilFaomaz) + I1E G0 + [ %ollfs ). (2.36)

Proof. (1) Firstly, multiplying the first equation of (1.5) by u31 and integrating in €2, one has

1 d
LAl 212 de + o(0) / IV do = / iz | da
2 dt Jg Q Q

+0(0) /F 1200, dS — d(0) /Q 2l da + / (B dz + /Q 1201 da.

Secondly, multiplying the second equation of (1.5) by u3¢r and integrating on T, using the Stokes
divergence formula (2.3), we obtain

1 d

51 u3)r|? d5+5(0)/M§\Vr¢r|2 ds = /Mzﬂz,thﬁr\z ds
N N I

—o(0) / 1208, dS — B/(0) / el dS + / 130 fr dS.
I I I

Next, we add these identities, using the fact that |uapa | < Cu2, |p3] < Cpd and Young’s inequality,
we get
1d

5 il +00) [ i3IVl do+50) [ udVruel? as
Q T

< Cllpo¥|f. +C </ p3lvl? dx+/ﬂu§\f|2 da:+/ru§\frl2 d5> ~
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Integrating over (0,t), one has

sup 50V 0)[1F2 + 12V OlF20 702
0<t<T

< C (o WIEs + 1120 l3e gy + I2F e iz + W02

Using the fact that pe < Cu, p2 < Cp and estimate (2.18), we deduce (2.33).
(2) Firstly, multiplying the first equation of (1.5) by p3¢; and integrating over Q, we obtain

o(0) d
/u§|¢tl2 do + 2O )7/ (3| Vp|? dw:o(o)/ psps| VO do

+0(0) /F 12,0, dS — a'(0) /Q 12, do + / (2 do + /Q 120, f da.

Using Young’s inequality and the following elementary estimates

luspse) < Cps,  ps < Co, (2.37)
we get
1 o(0) d
5 [l ae+ T L [ dvep ar< e ( [ @vep i (2.38)

s [ aitor ar) +o0) [ o as+o ([l o+ [ il ar).

On the other hand, multiplying the second equation of (1.5) by p3¢r; and integrating over I', by the
Stokes divergence formula (2.3), we find

5(0) d

[ ona as+ 525 [ i3V as = 6(0) [ g Trorf as
r r r

~0(0) [ o0, a5 =¥ (O) [ dirvre as+ [ orese as

Using Young’s inequality and (2.37), we have

1 5(0) d

§/H§|¢nt 2dS + 7(2)5/#§|Vr1/)r\2 ds <C </ 13| Vrir|? dS
T N N

T / 2l [? dS) — o(0) / W2 D S + C / W2 frf? ds. (2.39)
T T I

By summing (2.38) and (2.39), integrating over (0,t), using u3 < Cpy, us < Cp and estimates (2.18)
and (2.33), one has

s eloran + sup sBOIVECHIZ < C (InFlEoran + %ol ) (2.40)
Now, multiplying the first equation of (1.5) by —u3A and integrating over €2, we obtain

1 d
5t LAV o o0) [ AAVE do = [ paps Vo do
2 dt Jg Q Q

+ [ dvd,was+a ) [ Bave o= [ 2ave do- [ 1daur do.
r Q w Q

Using |psps,e| < Cua, Young’s inequality and the continuity of the normal derivative from H?(Q2) to
L3(T"), we find

1 d a(0
s e ae+ I [ ziavp av <o [ iivep ar

+ [ uionaP as+ [ o aos [l o [ el ac).
T Q w Q
Integrating over (0,¢) and using estimates (2.18), (2.33) and (2.40), we obtain

OgggTu?,(t)lle(.,t)llim) + 3 A |72y < C (||MF||2LQ(O7T;L2) + ||\Ifo\|ﬁ‘;p) . (241
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On the other hand, multiplying the second equation of (1.5) by —u3Artr and integrating over T', we
get
1d
2 dt Jp
+0(0) / paAriprad,p dS + b'(0) / pAArprr dS — / paAripr fr dS.
r r r

12| Ve[ dS + 6(0) / (2 Arr]? dS = / st d [V |? dS
I I

Using Young’s inequality and the continuity of the normal derivative from H?(2) to L?(T), one has

1 d 4(0
> @ 13| Vryr|? dS + % / p3|Aryr|? dS < C (/ 13| Vryr|* dS
r r r

o[t ar s [ ol as [t as s [l as).
Q Q r r
Integrating over (0,t) and using estimates (2.33) and (2.41), we get
swp OV (Ol + lsArvr o) < C (I0F IR0 ran + 1Polf) - (242)

Finally, from (2.40)-(2.42), we deduce (2.34).
(3) Differentiating with respect to time the equations in (1.5), one has

Yit — 0 (0) Aty + a'(0)1hy = Ty + fi in Qr
Yra — 6(0)Artpr ¢ + 0(0)0,¢0r + b (0)Yrt = fre onTr (2.43)
wl‘,t = Ir on I'r.

Multiplying the first equation of (2.43) by u21; and integrating over 2, we obtain

1 d
1d / 12l da + o (0) / LIV da = / Hapiaglnl? deo

+o(0) / 12D,y dS — d!(0) / 12 ? da + / e, de + / 1200, da
N Q w Q

Using Young’s inequality, |papa | < Cp3 and p3 < Cuj, we get

1 d
LY T dx+a<o>/ LIV da < C/ J2n[? de

+0(0) / i 0,1hy dS + C/ palvg|? da + C/ il fel? da. (2.44)
r w Q
Multiplying the second equation of (2.43) by u3¢r, and integrating over I', we get

1 d
1d 2 45 + 5(0) / L2V ? dS = / papiashir o dS

—o(0) / 12000, dS — b(0) / 2lr a2 dS + / 120r 4 frs dS.
I I T

T

<C [ il a8 = o(0) [ pdvrsdii dS+C [ yiifeal ds. (2.45)
r r r
By summing (2.44) and (2.45) and integrating the estimate obtained over (0,t), we find
sup p(O)1We( )lIF2 + |1V 8ellZ2 0 72
0<t<T

< C (s Wil 220z + Isvillfeur) + aaFllie raz) + 12 0)l1E2)
On the other hand, we have
900 < C (W0l + [0 0) By + IFC,0) ) (2.46)
Since usF € HY(0,T;1L?) and H'(0,T;1L?) — C([0,T];L?) with continuous embedding, then
IF G022 < ClluF 220,702y + l1aFel 2o 0.r02)- (2.47)
Using estimates (2.46)-(2.47), (2.34) and (2.20), we obtain (2.35).
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(4) Firstly, multiplying the first equation of (2.43) by u2ty; and integrating over €2, we obtain

(0) d

g
[l do+ T2 [ 2Vl de = 0(0) [ sl Vi ds
Q Q Q

+0(0) / 120ty dS — a’(O)/ paiby do + / P2ty da +/ pEy fr dr.
r Q w Q
Using Young’s inequality and the following elementary estimates

\uspse| < Cuiy priesr < Cg,

we get
1 9 2 0(0)7(i 2 2 2 2 2
5 [ mElenl® do+ == | p[V[* de < C | 4|V o+ 0(0) | p3gudin dS
Q Q Q r
+C/ui|1/)t|2 dx+C/u§|vt|2 dx+/ui|ft|2 dz. (2.48)
Q w Q

Secondly, multiplying the second equation of (2.43) by p2+r + and integrating over I', we find
0(0) d
/ AT o
r

2
d 2\ =
St w
_U(O)/ngr,ttaﬂ/’t dS—b’(O)/uﬁwr,twr,n d5+/ﬂg¢r,ttfr,t ds.
r r r

/ 12|V |2 dS = 6(0) / st | Vetbra|? dS
N N

Using Young’s inequality, we have

1 2
) /1‘ M5WF,tt

—(0) / 121Dty AS + C / 12l dS + C / 121 fr 2 dS. (2.49)
T T T

5(0) d

2AS+ = — / P3|V, [* dS < 0/ pilVrer,* dS
2 de¢ r T

By summing (2.48) and (2.49) and integrating over (0, t), one has

s ®ellZ2 0y + sup ps(O)[VE(L )T < C( sup i (8)[[ (- £)]2
0<t<T 0<t<T
HleaVOellT20,702) + lsvellie @ + 10F 720,702 + l0aFelliz 0,72
HWollZ: + [VE( 0)]E) - (2.50)
On the other hand, we can easily get
IV, 0) 2 < € (1ol + lo( 0llFys oy + I, 0)E ) - (2.51)
From (2.50)-(2.51) and estimates (2.35), (2.20), we obtain

s Witll72 0. mnzy + sup p3(®)IV (-, 1)
0<t<T

< C (InF e + luaFillzoras + 1FC,0) IR + [ Wollfs ) - (2.52)

Multiplying the first equation of (2.43) by —u2A; and integrating over ), we obtain

1d

2 dt Jq

+ / P20,y dS + a(0) / pE Apapy da — / p2 Adpyvy da — / pEAY, f; d.
T Q w Q

12V dz + o (0) / 12| A P da = / st d | Vi da
Q Q

Using Young’s inequality and the continuity of the normal derivative from H?(f2) to L?(T'), we find

1d 0
s vl s 70 [ davp ar <o [ @vae i
tJa 2 Jo Q

s [ dlral as+ [ ol aet [ 3ol ars [ dlnr dx) .
T Q w Q
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Integrating over (0,t), we obtain

sup /ﬂg|th(-,t)|2 dx—f—/ p2|Avpe|? da dt
Q Qr

0<t<T

§C</ IV dras s [l dos [ lonal as a
Qr Q

<t<T I'r

[ P drars [ dIAR deder [ 9002 dx) .
wr Qr Q
Using estimates (2.35),(2.51) and (2.52), we get
sup 3 (O[|VY: (- 0172y + s A% 7200y
0<t<T

< € (InF Ia0m2) + I FillFaqo may + 1F (L 0) 2 + [Wllfs ) (2:53)

Now, multiplying the second equation of (2.43) by fpgprnt and integrating over I', we get

1 d
BT 12| Vrr > dS + 6(0) / 3| Arpr|* dS = / ps s, |Vrore|* dS
T N T
+0(0)/M§AF¢F¢5u¢t d5+b'(0)/M§AF¢F,t¢F,t ds — / pEArYr ¢ fr dS.
r T T

Similarly as above, one has
1d
2 dt Jr

+/u§|wt|2 dw+/u§|Awt\2 dx+/u§|wr,t|2 d5+/ui|fr,t\2 dS)-
Q Q I N

5(0)

245+ =~ / 3| Aryr > dS < C (/ pilVrr,
T r

2
5 ds

12| Vribr

Hence

sup t3(0)[ Voo e (5 )17y + s Artr el| 72 (ry
0<t<T

< C (InF s e + luaFillie i + IFC,0) [ + [ Woll ) - (2.54)
From (2.53) and (2.54), we obtain
sup_pE(O)IIVE( )2 + s AWz s
0<t<T

< C (InFle0 e + luaFillie oz + IFC,0) I + 1 Woll ) - (2.55)
Multiplying the first equation of (1.5) by —u2A, and integrating over €2, we obtain

o(0) d
[ v do 4+ 70 4 [ i31a0p az = [ @ud,u as

+0(0) [ psps 1AV dz+a'0) [ v do

—/ p2 A dr — / pEAY, f da.
w Q
Using Young’s inequality and the trace theorem for the normal derivative, we have

c(0) d
vt as e TR5 e ar< o ([ s+ [ i as
Q 2 dt Jg r Q

+/Qu§|A¢tI2 dx+/Qu§|MJ\2 da:+/Qu3|1/1|2 dx+/uf\vl2 dz

+/Qu2|f\2 dx). (2.56)

Multiplying the second equation of (1.5) by —u2Artr, and integrating over T', we obtain

6(0) d
/Mg\vr¢r,t|2 dS + 50 )*/M§|AF¢F|2 dS = 5(0)/N5M5,t|AF¢F|2 ds
r 2 dt r N
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+0(0) / P Arir 10,1 dS + ¥ (0) / pbr Aripr,; dS — / pEAripr 4 fr dS.
N N N

Hence,

5(0) d

/Mg\vr¢r,t|2 ds + 77/N§|AF¢F|2 ds <’ /M§|AF¢F|2 ds

+/u§|prF7t2 dS—|—/ pdl? dx—|—/ palAp|? da
r Q Q

v [aiwras+ [ el as). (257)
r r
Summing (2.56) and (2.57) and integrating over (0,t), one has
sVl + s iBOIARC O < € (InsWilo e

F A7 12y + 115 AV [T 20 102y + 100P 1720 702) + l10]172 (0
1Pl 0 72 + [1WolE2)
Using (2.34), (2.18) and (2.55), we obtain
15V Vel 720,72y + sup p3(6)|A(,1)|72
0<t<T

< C (P araz) + Pl raz) + IF GOl + %ol (2:58)
Finally, from (2.52), (2.55) and (2.58), we deduce (2.36). O

3. CONTROLLABILITY OF THE QUASI-LINEAR EQUATION

We will establish the local controllability of equation (1.2) using Lyusternik-Graves’ Theorem 1.3.
Throughout this section, we assume that d < 3.

3.1. Study of the mapping A. We introduce suitable spaces so that the mapping A verifies the
conditions of Theorem 1.3.

X:= {(‘I’,U) : IU/O\II7 /’['4\111‘.7 A\Ila MSA\I/t € L2<07T;L2)a M1V, pu3vg € LQ(WT)7
(LW — 1,0, LoW), g (L ¥ — 1,0, LyW), € L2(0,T;1L2), ¥(-,0) € H?,

0(,0) € H'(w), sup 20T 0)% < o0n sup 2] T(,0)]2 <oo},
0<t<T 0<t<T

G:={F : pF, paFy € L*(0,T;1L?), F(-,0) € H'},
Y :=G x H3,
where L; and Ly are defined in (2.4). These spaces are naturally equipped with the following norms
(¥, )l := (lluo‘I’HQLZ(o,T;La) Hllpa¥ell7z0 ez + luavlZe ) + lHavelZe
HWC0)[F + 0(, 01 Fr ) + 1L ¥ = Lov, Lo W) [ F2 (g e
Hlpa(@a¥ — L0, LoW)yl[729rpe) + 1A 220, rin2) + s AV F2 (0 112

1/2
+ sup p3(®)[|W: (- )|lF + sup u?(t)II‘P(wt)lﬁz) :
0<t<T 0<t<T

1Flle = (112 sy + s Fillo ey + 1FC0)E)
One can easily prove that these are Hilbert spaces.
Remark 5. For any (¥,v) € X and F € G, we have:
U e HY(0,T;1L%) N L*0,T;H?),v € H'(0,T; L*(w)) and F € H'(0,T;L?).

Consequently,
U e C(0,T);HY,v € C([0,T); L*(w)) and F € C([0,T];1L?).
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In particular, ¥(-,0),v(-,0) and F(-,0) are well defined.

Remark 6. It is simple to note that there is a constant C' > 0 such that
T
/0 pE (1) [Fe dt < C(T,0)IF V(P,0) € X

Consider the mapping A : X — Y given by
AW, v) = ((A1(¥, ), A2(¥, ), ¥(-,0)),
where
A1 (V,0) =9 = V- (0(¥)VY) + a(y) — Lyv,
A2(¥,v) == tr; — Vr - (0(¢r)Vrer) + o(¢r)o + b(¢r).
The following lemma shows that the mapping A is well defined.

Lemma 3.1. Let r > 0. There is a positive constant C := C(r) > 0 such that the mapping A : X =Y
defined above verifies

1AL, 0) 1§ < C (102, )] + (T, 0)llx + (2, 0)[%) . (¥,0) € Bx((0,0),7). (3.1)
In particular, A : X — Y is well defined.

Proof. Let r > 0 and (¥, v) € Bx((0,0),7). From the definition of the norm of X and the continuity
of Sobolev embedding H? < >, we can easily obtain that

[P~ < Col|(¥,v)||x < Cor for all (¥,v) € Bx((0,0),7). (3.2)

Throughout this proof, we will use the fact that the it derivative of o and 0, the jth derivative of a
and b are Lipschitz-continuous on the interval Jy := [-Cyr, Cor] for i = 0,1,2 and j = 0,1. One has

A ) = (A1 (¥, 0), A2(T, 0)) [ T2 0,702y + 114 (A1 (T, 0), A2 (W, 0))el T2 0 72)
+| (AL (¥, ), A2(%, ) (-, 0)[Ifs + [T (-, 0) - (3-3)

Then, it suffices to show that each term of (3.3) is bounded as in estimate (3.1). Firstly, we claim
that

|12(A1 (W, 0), Ao (W, 0))[[F2 (0712 < C (10T, 0) 1% + [[(¥,0)I%) - (3.4)
We have
1A (%, 0), Ao (W, 0)) 172012y = [l1A1(Y, 0) 17200y + [11A2(P, 0) |72,

SC’(/QTM LW — 10 de dt+/ W2V - ((o(y) — o(0)Ve) |* de dt

Qr

+/ 2 la(y) —a' (0)y)? do dt+/ P Lo¥|? dS dt
Qr

I'r
+ [ WVe- (6r) = 50)ror) [ dS (3.5)
7
2 Y, 2 20 12 2 - ,
w [ s ton) ~y Oy as e+ [ pelur oo a5 dt) = >0

According to the definition of the norm of X, note that
I+ 1= (¥ — T, Lo )2 ey < 100, 0) 2. (3.6)
Using a(0) = b(0) = 0 and Taylor’s Inequality, we obtain

M? M2
Ii+1s < —/ PPt de dt+f/ pPlyr|t ds dt
QT FT

4
< C (/ psly|t da dt+/ pslyr|t ds dt)
Qr I'r

C sup pg(O1U(, )72 (0,72
0<t<T

IN
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< Cllw,v)l, (3.7)

where M = sup |a”’(z)| and M = sup [b”(z)|. Let us now analyze I5. Since o is Lipschitz-continuous
zeJy € J
on Jy and ¢’ is bounded on Jy, one has

Bo= [ o @)PIvel dedes [ (o) - o(0)AuP de di

QT QT

IN

c (/ w2 |Vap|* da dt+/ w2 AY)? dz dt)
SZT QT

c (/O uQ(t>/Q|w<~7t)|4 dz dt+/o MZ(t)||1/’('7t>||%°°(Q)/Q|A¢('at)|2 dz dt>-

The fact that d < 3 implies that H2(Q) — WH4(Q) and H?(Q) < L°°(£2) with continuous embed-
dings. Hence

IN

T
L < ¢ / B2 082y
< C sup ps(®)1v( 1) 320
0<t<T
< O(T,0)|%. (3.8)
Similarly, we obtain
I, < Cl|(Y,v)lx (3.9)

For the last term I, thanks to the continuity of the Sobolev embedding H?(I') < L*°(T) and the
continuity of the normal derivative from H?(2) to L?(T), we have

T
L < 0 / 20061 (s £) 2o o |00 6 )2y

< 0 [ OO 60Oy
< c / OIW (6l at
< C sup pt)[9(, 1)
0<t<T
< O, v)lx. (3.10)
From estimates (3.5)-(3.10), we obtain (3.4). Secondly, we prove that
114 (A1(2, ), 42(T, 0))el 20,702y < C (1L, ) + 12, 0) 1% + (T, 0)[%) - (3.11)

Using the fact that o’ and b’ are bounded on Jy, we find
104 (A1 (¥, 0), Ao (¥, 0))el[F 20,722y = a2 (W, 0))el T2 () + 114 (A28, 0))e T2y

<C </QT p3 | (LW — ]lwv)t‘2 dx dt + /QT w2 (V- ((o(v) — U(O))V¢))t|2 de dt

+ /Q Rt + /FTuiusz ds dt + / 121V (8(r) — 6(0)) Vo)), dS d

T

+ [ sl as aee [ i iotor) - o0) 2,0, a5 )
I'r

T'r
7
=C|> J |- (3.12)
j=1

It is clear that
J1+ Ja = pa(@n® = 1,0, L W) |72 2y < (Y, 0)]3, (3.13)
s+ Jo = |W4‘I’t||L2(0TJL2) < (@, 0)|%- (3.14)
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Let us show the estimate for J5. One has

5 o< c(/ 2o @Y PIT0l! do de+ [ pdlo! (@) VP d de

Qr

+ [l e o ar+ [
Qr

Qr

121(0(6) — 0(0) Ay [? da dt)

IN

C(/ NPV e dit [ 2196 VP do
Qr Qr

o[ 1A dr s [ A de ) —O(ZJQJ).

j=1

Using Sobolev embeddings as above and Remark 6, we get

/OT HiOIYeC D0 ( /Q V(1) dx) dt

T
C / B0 8) 22 19C ) [ pzc

J21

IN

IN

IN

T
c( sup Mé(t)llw(-,t)ll‘}{zm)) | i O a
0<t<T 0
1w, v) 6.

IN

Applying Cauchy-Schwarz inequality, we obtain

o < /OTui<t> ( | vt oRvac o d:c) at

< /OTui(t) ( J dx)m ( [ et dx)l/ at

T
< / K2 0 () 22 1 ) [zt

T
< C < sup Mg(t)Hl/J(',f)@p(Q)) / 3 O)llte ()32 o) At
0<t<T 0
< O, v)llx-
Using the fact that H?(Q) < L*°(Q) is continuous and Remark 6, one has

T
By < / 2O ) P (/Q A, )2 do:) at

T

< / O, 1) 2z A, D2y
T
< (sup 201 >%2<m) | Ol 0 a
< C|(¥, Hx
We also have
T
< [ ROCOE (/ A )2 dx) i

T

< c / B2 )22 | A (-, )|y
T

< o s BOICOBe ) [ BOI80Olq

0<t<T 0
< OJ(w, )L
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J2 < C ([(,0)[% + (T, 0)]%) - (3.15)

Analogously, we obtain

J5 < C([(,0)[% + (T, 0)]%) - (3.16)

It remains to analyze the last term .J;. Using ¢’ is bounded on Jy, o is Lipscitz-continuous on Jy,
H?(T') <= L>=(T") is continuous, the normal derivative is continuous from H?() to L?(T') and Remark

6, we find

From estimates (3.12

1(A1(¥, v)

We have,

We obtain

J7

IN

C (/ Niwr,t
I'r

T
c </0 ui(t)llwr,t(wt)II%m(r)/F\3u¢(-»t)\2 ds dt

0,0 a5 v+ [ dlvnPion? as dt)
I'r

IN

T
+ [0l [ oatoF as dt)

IN

T, L2 L2
c </0 pa@ONere G ) a2 oy 19 C D) 72 ) dt

T
+/0 w3 (O G Ol e ooy 196 5 O 2 0 dt)

IN

T
C( sup u?(t)Hw(ut)llizz(m/ 3 (O[Pr ()| F2ry i
0<t<T 0

T

+021£TM§(75)||1/1F(',t)”%ﬂ(r)/0 3O D)2 0 dt)
< C(®,v)]x- (3.17)
)-(3.17), we obtain (3.11). Lastly, we show that
(0, A2(, v) (-, 0) e < C (1L, )1z + (L, 0) % + (T, 0)]%) - (3.18)
(AL (W, 0)(-,0), A2(¥,0) (-, 0) [ = [ A1 (T, 0) (-, )72 () + [[42(T, 0) (-, O) 7y
<C (||(1/)t = (0)AY — 1,0) (-, 0) |1 () + la(®) (- )71 0
HI(V - ((0(¥) = a(0) V) (-, 0) 11 () + 1(¥re = 5(0)Areer) (-, 0) 72
HI(o ()2 ) (5 0z oy + b))y

7
+[(Vr - ((6(¢r) — 5(0))VF¢F))(HO)H§{1(F)> =0 (Z Kj) : (3.19)

Ki+ Ky

IN

C (1194 0) [ + 1A, ) + [0 0) 31,

IN

C( sup 3 ()W (-, )3 + 19 (-, 0)[1Fs + Iv(-»O)II?p(wJ
0<t<T

ClI(®,v)|lx- (3.20)

IN

Since a and b are Lipschitz-continuous on Jy with a(0) = b(0) = 0, then

Ky + K Ce(, 0|3

Cll(w, v) 13- (3.21)

INIA
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Let us treat the term K3. Using the fact that o, ¢’ and ¢” are bounded on Jy, Sobolev embeddings
as above and Vi (-,0) € H?(2)?, one has

Ky < C (I @ 0DITHC, 0PI 0 + I (- 0) = (0D AE(,0) 1)
< C(IVBE,0) P13y + T8 0PV, 0)[2 ) + 1A, 0)l33 0y |G, 0 VL, 0) 20y )
< C (60,0l + 100 0) 1Sy + 14, 0) 3o ey )
< C (IOl + I, o)1 + 112, 0)15) (3.22)
A similar argument shows that
Kz < C (I, 0)[E + I, o)1 + 1, 0)]18) (3.23)

It remains to analyze the term Kj5. Since o and ¢’ are bounded on .Jy, the normal derivative 9,
H*(Q) — H*3/2(T") is continuous for s > 3/2 and Sobolev embeddings, we obtain

K5 < C (10400 ) + 10,90, 0)Vevr(, 0) )

< C (||1/1('70)||§13(Q) + ||VF¢F(',0)||%oo(r)||3u1/)('70)||%2(r))

< C (||¢('70)||§13(Q) + ”wr('aO)Hiﬁ(F)Hd)('aO)”?—I?(Q))

< C (1w, )l + (%, 0)]%) - (3.24)
From estimates (3.19)-(3.24), we obtain (3.18). O

Lemma 3.2. The mapping A : X — Y is continuously differentiable.
Proof. To simplify, isolating the linear part of A, let us put

/13(\1/,’[1) = (1;[]26 - ]lwvawl“,ta\:[/('vo))
Ay(W,0) = (V- (o(y)Vp) —a(y), Vr - (0(¢r)Vryr) — o(¢r)d,y — b(yr),0)
= (/141(\1’,1}),/142(\1/71}),0).

As A = A3 — A4 and Aj is linear continuous, then it is continuously differentiable and DAs(V,v) = As.
Let us show that A4 is continuously differentiable. We will start by proving that A4 is Gateaux-
differentiable at any (¥,v) € X and determine the G-derivative A'(¥,v). Let € € (—1,1) \ {0} and
(T, ), (P,u) € X. One has

A (W, 0) +e(P,u) — A (W,v)  o(Y +e¢) — U(KZJ)A

3 9

+ o' (¢ + Ei) —a'(¥) IVY|* + 0 (1 + ) Ad + 20" (Y + £¢) Vi - Vg

(8

_a¥ +¢e9) —a(¥)

€

+e0’' (Y +e¢) Vo[ = ZLE

and

Ao ((¥,0) + (P, u)) — Ag2(V, ) _ 0(Yr +edr) — (5(1P1“)Aer

3 3

s “i’j) — SO |G + 6(r + edr)Arr
o(yYr + 6(,251“) —o(¢r)

+26' (Yr + edr)Vripr - Vror —

,b(wF +5¢£) - bWI‘) +55/(7/}F +€¢I‘ |VF¢F‘2 ZME

Oyb — o(Yr + €or)o, ¢

We consider the linear mapping DA4(V,v) : X — Y defined by
DA4(V,0)(®,u) = (o' ()02 + 0" ()| VY [* + 0 (V) A + 20" (V) Vi - V)
—a' ()¢, &' (¢r)¢rArr + 6" (Yr)ér|Vegr|* + 6(vr) Ardr
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+26"(¢r)Vrtr - Vror — o’ (vr)oroy, v — o(¢r)dy¢ — b (Yr)ér, 0)
6 8
= (ZLj,ZMj,o) with Lg = Mg = 0.
j=1  j=1

Using the dominated convergence theorem, we can show that

A4((V,v) + (@, u)) — A4(T,v)

— DAL (P, u)(P,v) in Y ase — 0.
Indeed, we have

"A4((\Ij7v) +e(P,u)) — Ag(T,0)
€

2

— DAL, 0)(P,u)

Y

6
gc(Zﬂmwizmﬁmm+mm2@»mmﬂ+mw@xwm%@}

+

waw%mmﬂmememmﬁmwmmw%mo.

j=1
Let us start with the term ||u(L$ — L1)|\2L2(QT).

o(¢ +e¢) —o(¢) — o’ (¢)

2
. |Ay|* dx dt.

Hmm—memﬂ=l;m

T

Since o is of class C?, by Taylor-Lagrange inequality, we have

o(§+ed) —o(¢) — o' (P)ed

3

12

2
M2
A < =il A,

where

M= sup 0", Ko = [=Colll(¥,v)]lx + 1L, w)][x), Co(| (¥, v) [l + (@, w) )]

and the constant Cj is defined in (3.2). Moreover

/ wPlol*| Ay dz dt < C sup u?(t)IIQS(-,t)H‘iIz(Q)/ |A|? da dt
Qr 0<t<T Qr

Cl(@, w)llx ] (T, v)]%-

Then, using the dominated convergence theorem, we obtain ||u(L§ — L1) ||2L2(QT) — 0ase — 0. For
the term ||ua(L§ — Ll)t||%2(QT)) one has

la(Z5 = L)lBagay) < c(ﬁ 2
T

+A;uﬂﬁw+€@—0WMW@FM¢Vd$&

+/ 15
Qp

Using the dominated convergence theorem as above, we obtain ||p4 (L5 — Ll)t||2Lg(QT) —0ase — 0.
We have

IN

o' (Y +ed) —o'(Y) —ego”(¥)

3

2
[¢ 2| Avp]? da dt

o(Y +e¢) —a(y) — e’ ()

3

2
| Ay |* dz dt) .

125 = L) Ol e = 155 = L) Oy + I9CES = L) 0o
sc</ 7(0(,0) + £6(,0)) = 0(b(,0)) = £6(,0)a’ (4 (., 0)
Qr

+/ o (¥(:,0) +e¢(-,0)) — o' (¥(,0)) —e¢(-, 0)a” (4(:, 0))

g

2
|Ap(-,0)]? do dt

2
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+ [ 100+ 20(0) = o/ (W )T, 0 da e
. o, 0) +26(,0)) = 0((,0)) = 60,00 WD) * G a y 002 o dt>.
Qr

€
In the same way, one has ||(L§ —L1)(-,0) Hip(m — 0 as ¢ — 0. By the same arguments, we treat the

other terms, thus concluding that A, is Gateaux-differentiable at (¥, v) and A} (V,v) = DA4(V,v).
To conclude, it is sufficient to show A} : X — £(X,Y) is continuous. Let ((I™,v™)), (¥,v), (P,u) € X
such that ((¥",v™)) converges to (¥, v) in X and we will prove that

(AL, 0™") (@, ) — AL (P, 0) (P, u))lly < enll(P,u)llx (3.25)
for some (&,,) converging to 0. One has
Aﬁl(\Ijna v")({)’ 7-") - Ail(\Ila v)((I)vu) = (AgvAgL?O)?

where
A5 = (0"(W") =" (W)IVY" PP+ (o" () V" + 0’ (¥)V) - (V" — V)
+(o'(y") — 0’(¢))(A¢"¢ +2VyY" - Vo) + (o(¢") — o(¥))Ag
—(a' (") = d' ()¢ == ZA”
and
A = (8"(Wr) = 8" (Yr) Vo Pér + (8" (¢r)ér Vgt + 6 (¢r)Veer) - (Vrf — Vedr)
+(6"(Yr) = " (¥r))(Arerér + 2V - Vrer) + (6(¢r) — d(vr))Arér
—(b'(¥r) = V' (¢r))ér — (o ’(w’ﬁ) — o' (¢Yr))¢ro " — o' (Yr)erd, (Y" — )
—(o (Y1) — o (vr)du¢ = ZA
Then
[AG(R", u™)(®,0) — Ay (W, u)(®,0)[1F = [u(AF, AR Z20 102y + l1a(AF, A el T2 0 7.02)
+1(AZ, AZ) (-, 0)[fs -

Firstly, let us show that ||u(/1§,/1”)HL2(O T2y < O (¥ 0") — (U, 0)[|Z]|(®,u)||%. We can easily see
that

5 8
(A5, A T2 0,72) < C (Z A3 1720y + D l0AE; II%z@T))-

Jj=1 Jj=1
Let us analyze the first term. Using the fact that the embeddings H?(Q2) < L°°() and H?(2) —
W14(Q) are continuous and ¢” is locally Lipschitz-continuous, we obtain

A2 2 0 = / 120" (") — o ()2 |V |62 da dt
< c/ K2 — PV 62 da di

Qr

T 2 n 2 2 n 4
sc/o K20 (0 —w)<-,t>|\H2<Q>H¢<~,t)||H2(m/Q\w (2, 8)[* da dt

T
< C sup p5(O@" =) )| H2(q) OilgTug(t)llqﬁ(wt)\@mm/0 /QIW/J"(I%)I4 dz dt

0<t<T
T
<Coittlp p3(t )Il(w”—ib)(-,t)llfp(m Sup u?(t)ll¢(~,t)\\i;z(m/0 19", )| 32y At

<C sup 3" =) (., )||H2(Q) s 3o )32y sup_ ps O™ (1)1 42 ()
0<t< 0<t<T

SCII(‘If",v”)*(\P,v)Ilill( v )”XH((I)aU)”X
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< OJI(E™,v") = (T, 0)[1(2, w) 1%
Similar arguments lead to the same conclusions
HMAQJH%Q(QT) < CH(\IIH, ,Un) - (\Il, U)H%H(q)a U)HFQQ j = 27 T 75
and
1148117207y < CIE™ V™) = (T, 0)[EI(@, W) IF G =1,---,8.
All this implies that
(A5, A 22 (0,712) < CHE™, ™) = (L, 0) [Z]1(@, w)lf%- (3.26)

Secondly, let us show that ||ua(AZ, Ag)el72(0 12y < €T I[(®,u)|[% for some (e7) converging to 0. We
can easily see that

5 8
lia(A5, 48)el 20,72y < C | D Ina(A8)el Gz + D InalA5) el Facry
j=1 j=1

Let us treat the first term. Since ¢” is locally Lipschitz-continuous and the continuity of embeddings
H?(Q) — L>*(Q) and H?(Q) — W4(Q). Then
lna(A50)llz2n) < C (/QT pilo” (") = o (W) P12V [*|o de dt
+ [ o T Rl = IV ar di
+ [ B W) = o N PIV IO d di

+ [ B = @RI ds )
Qr

< enl@,uli,

where ey = C' | sup [0 (4" (1)) — o ((x, )] + | (2", 0") — (L, 0)[|
(z,t)EQr

Since [[¢"™ — || gy < CI(¥™,0™) — (¥, v)[|x and ¢ is locally uniformly continuous, thus (ef;)
converges to 0. Similar arguments lead to the same conclusions:

lna(A5)ellE2 @) < €pl(@u)lE G=2,--.5
and
lna(AG)ellZz ) < P ll(@ W)l G=1,--- .8,
where (£};) and (e} ;;) converge to 0. All this implies that

5

8
||N4(A27Ag)tH%2(O,T;]L2) <C 28?1 + ZE?,jl ||(‘I’7U)||§g (3.27)

=1 j=1

Lastly, let us prove that [|(AZ, A2)(-,0)[|Z: < €%/(®,u)||} for some (%) converging to 0. We can
easily see that

(A5, 48) (-, 0)[fn < € ZHA )11 0 +Z||A )l ()

Let us analyze the first term. Using the continuity of the Sobolev embedding H?()) < L (), 0" is
locally Lipschitz-continuous, ¢’ is locally uniformly continuous and bounded and |[¢" — ||z (q,) <
C)|(T™,v™) — (¥, v)|x, one has

148, OBy = | 1Aa(o O do+ [ V48 (@,0)F da

<C (/ o (" (2, 0)) = o (W (, 0)) *[Ve" (x, 0)[*|é(z, 0)|* dz
Q
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[ 100 . 00) = 0" (0 )T 2 0) o, O
+ [ 1o )V = ) 0P V4 (. 0) ol 0)
+ [ 100 0.0) = 0" (0l OV 0 O, 0
[ 10" w0) = 0"l 0D 90" 0, 0 Vo, 0 e
< @, )2,

where ¢y, = C <sup lo” (™ (,0)) — o ((x,0))|* + || (L™, 0™) — (\Il,v)||§§), which converges to 0.
Similar argumentsxleegd to the same conclusions:

145,07 () < €Rll(@ )ik, G =2,---,5
and

148, ¢ Ol 0y < ebjall(@ )%, G =1,--+.8,

where (¢7,) and (et j5) converge to 0. All this implies that

5 8
(A5, 48) (0 lf < C [ D efo+ D et o | I1(@, )3 (3.28)

j=1 j=1
Finally, from (3.26), (3.27) and (3.28), we obtain (3.25). O

3.2. Proof of Theorem 1.2. Due to Lemmas 3.1 and 3.2, the mapping A is well-defined and con-
tinuously differentiable. Moreover

A(0,0)(T,v) = (L1 ¥ — 1,0, LyW, U(-, 0)).

Null controllability results of inhomogenuous linearized equation (1.5) obtained in Propositions 3 and
4, show that A’(0,0) : X — Y is onto. We conclude that Lyusternik-Graves’ Theorem 1.3 can be
applied to the operator A, in particular for any sufficiently small (F, ¥y) € Y, there exists (¥,v) € X
such that A(¥,v) = (F, V). Consequently, ¥ = (¢, ¢r) is the solution of the system (1.2) associated
to the control v, and the exponential growth of the weight pg as t — T~ and pe¥ € L?(0,T,1L?),
ensures that

W(»T)ﬂ/fr(,T)) = (0,0) on ) x F7
which leads to the proof of Theorem (1.2). O

4. CONCLUSION AND FINAL COMMENTS

In this work, we have studied the local null controllability of a quasi-linear reaction-diffusion equa-
tion of volume-surface type subject to dynamic boundary conditions. The strategy we have adopted
relies on the null controllability of the inhomogeneous linearized equation and a local inversion the-
orem. Although we have considered reaction and diffusion coefficients that depend only on the state
variable, our strategy can be adapted to more general diffusion and reaction coefficients depending on
both the state and its gradients.

To the best of the authors knowledge, the null controllability of quasi-linear parabolic equations
with general boundary conditions has not been considered before in the literature. Most of the previous
works have dealt only with Dirichlet and Neumann boundary conditions, as far as we know.

From a numerical perspective, it would be of much interest to investigate the approximation of null
controls numerically based on the theoretical results we have obtained. This will eventually be done
in a forthcoming paper.
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