
HAL Id: hal-04376757
https://hal.science/hal-04376757

Submitted on 7 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fluid initialization and dynamic window for
smoothed-particle hydrodynamics simulation

Samuel Carensac, Nicolas Pronost, Saida Bouakaz

To cite this version:
Samuel Carensac, Nicolas Pronost, Saida Bouakaz. Fluid initialization and dynamic window for
smoothed-particle hydrodynamics simulation. SIMULATION: Transactions of The Society for Mod-
eling and Simulation International, inPress, �10.1177/00375497231216477�. �hal-04376757�

https://hal.science/hal-04376757
https://hal.archives-ouvertes.fr


Fluid initialization and dynamic window
for SPH simulation

Samuel Carensac1, Nicolas Pronost1 and Saida Bouakaz1

Abstract
Fluid simulation is an essential tool to produce realistic looking animations. In particular, Lagrangian simulations
offer interactive computation times with an easy integration of the two-way interaction with rigid bodies. However, the
interactivity is lost for larger scenes even if only the areas around the bodies have any visual interest. In this paper,
we present a novel approach to quickly initialize additional fluid in a rest state in simulations with any 3D boundary
shape and able to preserve any already existing fluid. Our approach only uses the density property of the particles to
allow compatibility with any smoothed-particle hydrodynamics (SPH) simulation scheme and any boundaries model.
This initialization method is fast enough to allow the initialization of new fluid volumes interactively while the simulation
is running. We showcase our approach by proposing a method to create a dynamic simulation window, allowing the
restriction of simulating the fluid only around moving objects. We propose multiple experiments to demonstrate the
capabilities and performance of our approach.

Keywords
fluid simulation, boundary modelling, SPH implementation

1 Introduction

Nowadays, physics-based simulations are widely used to
create animations. This is due to the increasing requirement
to have more and more real life-like scenes where the
virtual world behaves in a physically realistic way. One
noticeable widespread type of physics simulations is fluid
simulation and most animation software currently integrate
at least a simple one. Through the years, multiples
models have been proposed to simulate a fluid, from
Eulerian approaches to pure Lagrangians approaches and
hybrid approaches. Although, currently the hybrid PIC/FLIP
(Particles In Cell/Fluid Implicit Particle) approaches are the
most common in animation for its high graphical qualities,
pure Lagrangian approaches are often used, but not limited,
to produce animations at interactive computation times. Still,
even when the computation time is not a limitation, fluid
simulation can be limited by its requirement for large amount
of memory. This problem is particularly noticeable for large
scenes with moving objects where only the areas close to
the objects have a real interest, leading to a large waste of
memory space and computation time if the whole scene is
simulated at all time to maintain the physics realism.

Solutions have been proposed to overcome this problem.
One approach currently integrated in some animation
software consists in only simulating with high quality the
area of interest and using a lower resolution procedural
animation for the remainder of the scene. However, it only
considers a static area of interest and cannot handle the
displacement of the area of interest during the animation
to be able to follow the moving objects. A more complete
solution has been proposed by Stomakhin and Selle1. Their
solution handles any displacement of the simulated area on
a procedurally generated background ocean. However, this

solution can only be applied to hybrid fluid simulations.
To our knowledge, no solution has been proposed for pure
Lagrangian fluid simulations. One of the main conditions
to create a dynamic simulation window is the ability to add
fluid in the simulation when the window moves. Unlike for
hybrid approaches, there is currently no existing model that
can initialize additional fluid in a realistic state within a short
computation time.

Our goal is therefore to propose a novel approach to
initialize a fluid in a rest state for particle-based simulations
for any 3D boundary shape and capable of integrating any
fluid that already exists in the simulation area (section 3).
We aim to propose a method that is fast enough to be used
to initialize fluid while the simulation is running, while
being completely independent of both the smoothed particles
hydrodynamics (SPH) simulation scheme and the boundary
model.

Our initialization method is then combined with a fast
perturbation absorption system at boundaries to create a
dynamic window for SPH fluid simulations (section 4).
We show the versatility and low computation times of
our initialization method through various experiments
(section 5). We then present the capabilities of our
perturbation absorption system and the application of our
dynamic window to boat simulations (sections 5.6 and 5.7).

1Univ Lyon, UCBL, CNRS, INSA Lyon, LIRIS, UMR5205, F-69622
Villeurbanne, France

Corresponding author:
Nicolas Pronost, batiment Nautibus, 8 boulevard Niels Bohr, 69622
Villeurbanne, France.
Email: nicolas.pronost@univ-lyon1.fr



2

Finally, we discuss various points that could benefit from
further studies and improvements (section 6).

2 Related works

2.1 Simulation window and boundaries
As it can be seen in the system proposed by Stomakhin and
Selle1, two main components are required for a dynamic
window. The first component is a boundary model to handle
the particle transfers between the inside and the outside of
the high quality simulated area. This model has received
quite a lot of interest in the context of SPH simulations
for which various approaches have been proposed. To be
able to simulate a high quality area nested within a larger
lower quality area or a procedural model and to handle it
is necessary to handle the transfer of information between
the two areas. The most common approach is to replace
the normal solid boundaries that block the particles by
boundaries allowing the transfer of particles. They are called
open boundaries and allow waves and flow of fluids to enter
and exit the high quality simulated area giving the illusion
that the high quality simulation extends further than the
actual boundary. The main difficulty of such system is that
the boundaries are often represented as solid static particles
with constant mass making the transfer of particles though
the boundary impossible. This problem may be solved by
using cyclic or periodic boundaries2. In this approach, the
flow of fluid at the paired boundaries must be identical
which limits its usage as there is no real transfer of particles
between the inside and the outside of the simulation space.

Currently, the most commonly used approach to generate
true open boundaries is to replace the solid boundary by a
buffer of manually placed particles as proposed by Lastiwka
et al.3. Tafuni et al.4 improved this method by using ghost
particles to better compute the properties for the particles
inside the buffer. They improved this approach several
times5,6 to allow for a single particle buffer to be both an
inlet and outlet, which allows the particles to travel both ways
at a boundary. Kassiotis et al.7 proposed another approach
where the mass of the nodes in a semi-analytical boundary
model is manipulated in order to integrate the inflow and
outflow of the fluid. This approach has been later improved
by adding Riemann solvers to compute the properties of
the particles when they are created at the boundary8 and
made more flexible in9 by adding the possibility to specify a
desired pressure at the boundary instead of the fluid velocity.
Currently, open boundaries in Lagrangian simulations have
mainly been used to couple the particle-based simulation
with other models. Research works with that objective
mainly use the buffer-based approach10,11 or more rarely
Kassiotis et al.’s approach12. All these works proposed open
boundaries for a static area but do not explore the possibility
of moving an area of interest in a larger simulated space
which is our goal.

Few Eulerian-based works allow interactive use of a
large scale volume of liquid. Among them, Chentanez and
Müller13 propose an hybrid approach combining particle, 3D
grid and height field methods. Cells away from the liquid
surface are grouped into larger cells on which simplified
versions of the physical calculations are used. This technique
saves computing time where the simulation does not have

a significant visual impact. In the Lagrangian approach,
in addition to influencing the accuracy of calculations, the
particle size also affects the memory size needed to simulate
a given volume. A simulation with larger particles limits the
details obtained but makes it possible to simulate a larger
volume of fluid without requiring prohibitive calculation
times. This makes the use of dynamic particle sizes much
more interesting than the use of dynamic time steps. Works
using this approach showcase the ability of a fully dynamic
particle size by merging and splitting particles depending
on the precision required14 or combine multiple simulations
each with a static particle size15. However, this approach
relies on a continuous transition between the particle sizes
and the applicability of this approach to transitioning a
significant amount of particles at a single simulation step,
which would be necessary when moving a dynamic window,
has not been explored.

The second component for the dynamic window proposed
by Stomakhin and Selle1 is a system to add fluid in the
direction of motion and to remove fluid in the opposite
direction. To our knowledge, no method exists to generate
a distribution of pure Lagrangian particles similar to a fluid
at rest, i.e. a fluid with no internal motion, that can be
used to add and remove the fluid. When using Lagrangian
simulations, most works start the simulation with particles
arranged on a regular grid. This is not a possible solution
when we desire to add a fluid that is initially at rest as such
distribution generates large rearrangements of the particles
and in particular near the borders. In his initial work,
Monaghan16 proposed to use a damping term to accelerate
the rate at which the kinetic energy is expended. However,
even with this improvement, waiting for the fluid to reach a
rest state may still take a long simulation time.

2.2 Particle Packing
To reduce the computation time to reach a rest state,
Colagrossi et al.17 proposed a particle packing algorithm
which displaces the particles depending on the gradient of
the particles concentration instead of the pressure. Although
their system is still an iterative process, less computations
are required at each step resulting in faster computation
times. Negi and Ramachandran18 improved this approach
by adding a repulsive force between the particles, making
it more stable and compatible with 3D simulations (see
Figure 2 and Algorithm 3 in18). Their results show that it
improves the homogeneity of the density function in the
fluid. However, this approach is significantly impacted by
the quality of the solid particles distribution and potentially
requires boundaries defined by multiples layers of solid
particles. It makes the particle packing inapplicable for
single layer boundary systems such as Akinci et al.19

and for particle-less boundaries such as Bender et al.20.
Moreover, the use of solid particles at the free surface
can be problematic as, depending on the simulated scene,
sampling a boundary above the free surface can be difficult,
for instance in a wavy scene with floating objects.

2.3 Pre-simulated volume
Due to the objective of doing repeated initialization for an
optimization, Hall et al.21 noted that, even if the particle



Carensac et al. 3

packing approach is faster than a damped simulation (i.e.
simulating a non negligible number of steps in order
for the fluid to stabilize and remove the local high and
low pressure regions), its iterative nature is still too slow
for its application. As such, instead of starting with the
usual cartesian or triangular initial particle distribution, they
decided to initialize the fluid with particles already in a
rest state distribution (see Figure 10 in21). To obtain the
rest state distribution of the particles a volume of fluid
enclosing all the volumes of fluid they aim to initialize during
their optimizations is simply pre-simulated and stored. The
method requires a dependency between the values of the
boundary particles and the fluid distribution that may lead to
uncertain solid definition as, depending on the fluid particles
distribution, the properties of the solid particles will change.
Also, this solution is limited to boundary models that use
solid particles. The approach is unlikely to be applicable
to boundary models requiring special computations for the
boundary particles properties such as Akinci et al.19’s model.
Also, this approach removes all fluid particles within one
kernel radius of the boundary, creating large gaps between
the fluid and the solid. These gaps may be reduced by
adapting the solid particles properties. However, this will
lead to the loss of information about the geometry if the
particles are not small enough. Finally, as the method needs
to modify the mass of the boundaries particles to fit the
loaded distribution, it is inapplicable for any simulation
already containing some fluid.

In this paper we propose an algorithm to initialize
a distribution of particles corresponding to a fluid at
rest. It is fast to compute and compatible with complex
and versatile 3D boundary models and SPH formulations
while being completely independent of the chosen SPH
scheme and boundary model. We then use our algorithm
in combination with a perturbation absorption system to
design a novel dynamic simulation window process for
particle based simulations. It allows us to interactively move
a high resolution simulated area within a virtually infinite
simulation space in real-time.

Our framework is capable of simulating moving objects
in interaction with a virtually infinite 3D volume of fluid. It
would be used in high-performance interactive applications
like video games, but also visual effect software to simulate
for instance floating or immersed objects, or characters
walking in a fluid that a camera will follow.

3 Fluid initialization
Our algorithm follows Hall et al.21’s idea of pre-computing
and saving a larger simulation space with the fluid at rest and
then loading only the particles inside the simulation area at
execution time. However, instead of not loading any particle
within the smoothing length of the boundaries, we use a
condition based on the density in order to select the particles
that will be loaded (see section 3.1 and section 3.2). It allows
us to remove the modification of the boundary particle mass.
On top of removing a drawback, this modification should
make the method easily applicable for any boundary model
as our only requirement is the ability to compute the density
of the fluid particles. We end our loading process with a
few simulation steps to obtain a perfect stabilization of the

1. initial state : bound-
ary (grey), fluid (pur-
ple) and solid (green)
particles

2. remove boundaries

3. load boundary
(black), fluid (blue)
and air (yellow) at
rest

4. tag fluid and solid
neighbors as candi-
dates (C)

5. early removal of
the candidates either
dense or closed to
fluid or solid particles

6. iteratively remove
and update the can-
didates until reaching
the target density

7. last iteration
removing the last
candidates

8. remove air particles
and merge fluid parti-
cles

Figure 1. Overview of the rest fluid initialization algorithm.

fluid (see section 3.3). Although our selection process uses
an iterative algorithm, it is only a selection process and no
particles are moved in that process. As such, the number of
iterations is much lower than in a damped simulation or in
a particle packing process. Before explaining our selection
process we must note one additional difference with Hall
et al.21’s approach. Since we compute the particles density,
we must load additional particles around the volume of fluid
we are trying to initialize. These additional air particles are
necessary to have a complete neighborhood when computing
the density of a fluid particle. We can load the air particles by
loading every particle that is inside the simulation boundaries



4

and in the neighborhood of one of the fluid particles without
being a fluid particle itself. The air particles will be removed
from the simulation once the selection process is finished,
and therefore never rendered. Since we only compute the
density of a limited amount of particles, it is only necessary
to load the air particles that are around the specific areas of
interest.

3.1 Fluid particle selection
The first step in our algorithm (see Figure 1, Algorithm 1
and Appendix B) is to select the fluid particles that have
to be loaded. We start by loading all particles that are
inside the required simulation space. We then eliminate
the particles that are extremely close to the boundary in
order to accelerate the following processing. This step is
required since, if there is a particle that is too close to
the solid boundaries when running the simulation, it will
produce a high particle velocity that can either produce an
artifact or even tunnel the particle through the boundary. Any
particle that has an overlap of at least 50% with a boundary
particle is removed, and in practice it means removing any
particle that has a distance to the boundary smaller than D =
0.5× particleRadius, making it compatible with particle-
less boundary models and a bit faster to compute. We must
precise that in our experiments the boundary and other solid
objects are sampled by placing the solid particles on the
surface of the mesh. If the particles for a solid object were
placed adjacent to the inside of the mesh then the distance
to the boundary would be D = 0. A distance D = 0 could
be used, respectively D = −0.5× particleRadius if the
solid objects are sampled with the solid particles inside of
the boundaries, meaning only removing the particles that
are strictly outside the simulated area. However, we have
found in our experiments that no particle with a 50% overlap
remains once the particles selection step is finished. As such,
an early removal of these particles reduces the computation
time, as we simply use a distance instead of having to
compute the density.

In our selection process, the fluid particles do not move.
As such, the contribution of the boundary particles to their
density computation is a constant ρconstant i that can be
computed once and stored. We also have found during
our experiments that it is possible to use an empirical
rule to quickly eliminate some particles depending on their
ρconstant i. Indeed, during all our simulations we have never
seen any particle with a constant density contribution higher
than 70% of the rest density ρ0 of the fluid. We thus added a
second early elimination step that removes any particle with
a constant density contribution above that threshold.

For the main selection process, we must eliminate particles
until the remaining ones properly represent the desired fluid
volume and density. As the loaded particles are at rest, any
particle with no boundary within its kernel radius will not
be eliminated. As such, only a small number of particles is
considered in the next steps. In our approach, we use rules
to select particles depending on their density as it is fast to
calculate and the average is a good estimation to know if
we have removed enough particles. As in the SPH approach
the particle properties depend on the neighbors, eliminating a
single particle has an impact on a large number of particles.
We then cannot simply set a desired density threshold and

remove every particle above it. Such a process would result
in a density lower than the desired one and would create void
regions in the fluid. Instead, we use an iterative process that
starts with a high density threshold and reduces it while re-
computing the particles density at each iteration. We propose
the following selection process:

• initialize the selection threshold ρcap max with the
maximum density observed across all particles

• reduce the threshold by ∆ρcap max

• compute the density of every candidate for elimination
• eliminate any candidate above the threshold ρcap max

• repeat the previous 3 steps until the average density of
the candidates reaches the target density ρtarget

This selection process can be quickly executed as the
particles are static so their neighbors do not need to be
recomputed. If the implementation is sequential, the density
computation needs to be executed only once as each removed
particle can subtract its own influence on its neighbors.
However, as we use a GPU implementation that needs
synchronisation, we did not benefit from this and it may
actually lead to higher computation times compared to
simply recomputing the density.

3.1.1 Protection rule If the variation between two
iterations ∆ρcap max

is too large, large groups of packed
particles will be removed in areas where the density is too
high. This will create large holes in the fluid. This issue
can be solved by using a lower variation ∆ρcap max

as it
will only remove the highest particles in the high density
areas which will lower the density of all other particles.
However, this would greatly increase the computation time.
To limit the negative impact of using larger ∆ρcap max , we
added a validation step on particles that have been selected
as removal candidates for the current step. After having
computed the density, any particle with a density above
the threshold verifies if it has a neighbor with a higher
density than itself. If such neighbor is found, the particle
then estimates its density ρ∗ without the contribution of
this neighbor ρij . If ρ∗ falls below the current value of
the threshold ρcap max then the particle is protected from
elimination.

3.1.2 Step size regulator Our algorithm relies on the
diminution of the target density by a constant step at each
iteration. This may lead to a final density significantly lower
than the target density if the average density before the final
step is just slightly above the target density. The larger the
density step ∆ρcap max

is, the more important this problem
will be. We can reduce it by reducing the step size the further
we progress in the selection process. At each iteration, the
error between the target density ρtarget and the average
density ρavg should be reduced until it reaches 0 at the last
iteration. By linking the step size to this error evaluation,
we will maintain a large step size if it does not progress
fast enough and can quickly transition to a smaller step size
if too many particles are removed at a given iteration. For
this, we used a factor of Rssr = 2 in all our experiments,
i.e. ∆ρcap max

= (ρtarget − ρavg)× 2. This factor results in
no loss of quality while improving computation times (see
section 5.2). Also, we capped ∆ρcap max

to a minimum
value of 0.5% of the fluid rest density to prevent variations



Carensac et al. 5

Algorithm 1: Particle selection process
Remove particles outside the simulated area and the

boundary particles;
Load pre-simulated file with boundary, fluid and air
particles;

Tag loaded particles that have solid or already
existing fluid neighbors as candidates;

foreach p ∈ candidates ∪ air do
if solid or existing particle < 0.5 ×
particleRadius then

remove particle;
end
compute and save ρconstant i;
if ρconstant i > 0.7× ρ0 then

remove particle;
end

end
foreach p ∈ candidates do

search and store neighbors in fluid;
compute ρair i;
compute and save ρconstant i += ρair i;
compute ρfluid i;
ρi = ρconstant i + ρfluid i;

end
ρavg =

∑
ρi;

ρcap max = ρi max;
while ρavg > ρtarget do

∆ρcap max
=

max((ρtarget − ρavg)×Rssr, 0.005× ρ0);
// see 3.1.2 ρcap max− = ∆ρcap max ;

foreach p ∈ candidates do
if ρi > ρcap max then

tag as removalCandidate;
end

end
foreach p ∈ removalCandidate do
// see 3.1.1

foreach pj ∈ removalCandidate do
ρ∗i = ρi − ρij ;
if ρ∗i < ρcap max then

remove removalCandidate tagging;
end

end
end
foreach p ∈ removalCandidate do

remove particle;
end
foreach p ∈ candidates do

compute ρfluid i;
ρi = ρconstant i + ρfluid i;

end
ρavg =

∑
ρi;

end

too small to have any significant progress toward the
convergence.

3.2 Fluid particle selection at liquid boundary
Our algorithm offers the possibility to load a volume of
fluid at rest adjacent to an already existing volume of fluid.
The handling of the particle selection process at a fluid-fluid
interface is mainly the same as the one at a fluid-boundary
interface. As such, the existing fluid can simply be handled
as if it was a solid object and its contribution to the density
can be computed once and added to ρconstant i. However,
there is a major difference between the existing fluid and any
solid object that would be sampled from a mesh. We do not
know the geometry of the existing fluid, there is no simple
way to remove the loaded particles that are within the already
existing fluid as it is done for the solid objects. However, our
two early selection rules are able to extract all those particles
easily. Any particle that is within the existing fluid will either
be extremely close to the fluid particles or will have a density
contribution from the existing fluid close to the rest density
as it is a sampling point inside of a fluid at rest. Still, this
means that the selection process will have significantly more
particles to handle at the early removal step.

3.3 Fluid stabilization
Our selection process gives an average density very close to
the fluid rest density. However, starting the simulation from
that distribution would lead to movements of the particles
as we have variations of densities around that average. To
solve that problem we use a localized damped simulation as a
stabilization step. Since we know that any new fluid particle
that is not in the neighborhood of either the boundaries or
the existing fluid that already has a perfect density, we do not
need to simulate them and they will be used as fixed particles.
We only then have a fine layer of simulated particles that
are in contact with a large number of perfectly distributed
particles and we have found that such simulation converges
extremely quickly. The choice of a damped simulation over
a faster algorithm, such as the particle packing algorithm,
is motivated by two reasons. The first one is that it does
not require any additional implementation as we can simply
use the normal simulation loop. The second one is related
to the use of the predictive corrective SPH algorithm called
DFSPH (Divergence Free SPH). This algorithm can use
warm-start values for its predictive corrective scheme to
greatly reduce the computation time. As such, the use of
a damped simulation allows us to know the values for the
warm-start process once the stabilization phase is finished,
even if it is only on a limited number of particles. This
leads to faster early simulation steps when the actual fluid
simulation is executed. Appendix A.1 introduces the DFSPH
simulation scheme, but we refer the reader to Bender et al.22

for its full description.
Similarly to previous works, our damping approach is

linearly proportional to each particle velocity, using a
coefficient α ∈ [0, 1]. This coefficient is applied to the
velocity just before the computation of the new particles
positions. As mentioned in17, the particle distribution
reached with damping may not be the same as without. To
limit the discontinuity that will exist at the end of the fluid
initialization, we reduce the damping coefficient after each
simulation step by a multiplicative factor ∆α. The maximum
number of stabilization steps is a parameter of our algorithm



6

and will be denoted as NbrST max. The effective number
of stabilization steps may be lower if we find the fluid to be at
rest before reaching the last stabilization step. We will define
a fluid at rest if the maximum velocity is below a threshold of
velmax target and the average velocity is below velavg target.
At the end of the stabilization process all velocities are set to
zero to cancel any remaining motion in the fluid.

4 Dynamic window
One interesting aspect of our particle initialization algorithm
is that, once the pre-simulated large fluid file is loaded, we
can rapidly reinitialize the fluid even if the boundaries or
the existing fluid distribution have changed (see section 5.5).
This allows us to add fluid in a rest state between two
simulation steps while keeping interactive performance.
We will apply our system to create a simple dynamic
simulation window. The goal of this window is to allow a
realistic fluid simulation around a moving object (typically a
boat or a character) without having to simulate the whole
area where the object can possibly go at some point.
Our dynamic window is made of two components. The
first one allows the addition of new fluid in the direction
of motion and the removal of the fluid in the opposite
direction. For this component, we can directly apply our
fluid initialization system, as described in section 4.1. The
second component is an open boundary that handles the
particles transitions through the simulation boundaries. In
our case, the open boundary must absorb the perturbation
generated inside the simulated area without generating
variation of the simulated fluid volume. This component
is presented in section 4.2. Those two components are
independent from each other and can simply be executed
sequentially. Since when we move the simulation window
with the first component we have full control of the fluid
height and velocity near every boundaries, we do not need
to execute the second component for the simulations steps
where the simulation window is displaced. In our application
scenarios, we considered that the ocean surrounding the
simulated areas is always at a given constant height Hocean

and at rest. In this work, we aim to propose realistic
animations of a fluid around a moving object of interest
while keeping interactive computation times. To be able
to integrate external perturbations, such as waves coming
from outside the simulation window, a more complete open
boundary system would be required. Although they offer
great animation quality and realism, existing models require
extremely specific boundaries models, contrarily to our
system.

4.1 Dynamic window displacement
Since the goal of this component is to add new fluid in
the direction where the simulation window is moving, it
is nearly identical to our initialization process presented in
section 3. However, we can adapt the algorithm to reduce its
computation time and to increase its stability. Indeed, in this
case, we only have to handle a fluid-fluid interface and no
fluid-boundary interface.

First, a pre-simulated file describes a fluid at rest for
a simulation with the same boundaries as the ones used
in the simulation with the dynamic window. We use our

initialization algorithm to generate this pre-simulated file
from the usual pre-simulated large simulation. This choice
is made to reduce the time taken by the adapted version
of the initialization algorithm. By using a pre-simulated file
that already fits the simulation boundaries, we can greatly
lower the number of particles affected by the selection and
stabilization processes. Indeed, as the new particles added
near the boundaries are already in a rest distribution and fit
the boundary, they will not be affected by the two processes.
This leaves us with only having to handle the particles that
are close to the existing fluid, effectively cutting the number
of affected particles in half. Also, as we show in our results
(see section 5.3), our algorithm is significantly faster at
handling a fluid-fluid interface rather than a fluid-boundary
interface, both stability-wise and computation time-wise,
making the choice of using a pre-simulated file already fitted
to the desired boundaries even more attractive.

Then, part of the existing fluid is removed before applying
the selection process. It is necessary to first remove any
existing fluid particles that would be outside of the simulated
area once the simulation window is displaced. However,
it is interesting to remove more particles. As explained in
our results (see section 5.3), with our boundary model and
simulation method, the fluid particles that are adjacent to
the boundary particles are not distributed with a normal rest
fluid distribution. Instead, the particles organized themselves
on a regular layer around the solid boundaries. This is also
most likely the case with any other boundary algorithm as
it is likely that the boundary does not represent a normal
rest fluid distribution of particles (even for models that
do not use particles for their boundaries). As such, it is
interesting to extract that regularly distributed particles layer
before trying to add any new particles. This will allow us to
have a fluid-fluid interface where both sides of the interface
will have a normal rest fluid distribution. To remove those
particles, we remove any existing fluid particles that are
at a distance DminDistToOldBoundary from the simulation
boundary. Finally, we also remove any existing fluid particles
that are too close to the simulation boundary after its
displacement, at a distance DminDistToNewBoundary. By
doing so, we will not have any existing fluid particle in the
neighborhood of a boundary particle after the displacement.
This simplifies the selection process as only the new particles
can be affected by the selection and stabilization processes.
Also, we take maximum advantage of the pre-simulated
file that is already fitted to the simulation boundaries. And
finally, it prevents the handling of a fluid-boundary interface,
which is slower and less stable.

4.2 Fast perturbation absorption
The goal of this component is to absorb the perturbation
generated by the object that the simulation window is
following. We do not aim to have a fully fledged open
boundary component. Our goal is simply to have a system
capable of dispersing any wave caused by a moving
object reasonably well while staying independent from the
boundary and simulation scheme. That way, both our fluid
initialization and perturbation absorption will be independent
to the used fluid simulation and boundary model. As such,
it would be relatively easy to integrate our system to any
existing SPH-based approach23. Our approach uses two



Carensac et al. 7

components to define the inflow and the outflow of the fluid.
They can be superimposed on one another to simulate a
boundary that is both an inflow and an outflow area.

4.2.1 Inflow To simulate the inflow of the fluid, we use
an approach similar to the one proposed by Napoli et al.24.
Instead of having particles crossing the boundary of the
simulated area to be added in the fluid, they create the
particles directly in the fluid when they detect that there is
enough space near the boundary. To do so, for each particle
that moves away from a given distance to the simulation
boundary, they look in a cone behind the particle and if this
cone is empty they add a new fluid particle. In our approach,
we do not need to study the displacement of fluid particles.
We sample the area inside the fluid and near the fixed
boundary that we know to be stable relative to the boundary
and each other. Then, at each simulation step, we check each
sampled position for enough space to add a new particle.
To decide if there is enough space we simply check if the
minimum distance between the sampled point and any fluid
particle is below a given distance threshold DinflowThreshold

and if the density of the new particle would be below
a density threshold DinflowThresholdDensity. A benefit of
this approach is that all the complexity is in the sampling
phase. On top of being able to be pre-computed as long as
the boundaries particles do not change, we can generate a
sampling distribution where every position is stable even if
all positions were to be added at a single simulation step (e.g.
if the simulation area is empty). This allows us to handle the
addition test of every position in a single parallel step. We
already know that the distribution of fluid particles in a rest
state has this property and we can use a rest fluid distribution
that we have to compute anyway for the displacement of the
simulation window.

The last remaining problem is to set the velocity of
the new particles. To do so, we use a weighted average
of the velocities of the surrounding particles. The weights
correspond to the density contribution of the neighboring
particles, i.e. mj ×Wij so the boundary particles are taken
into account in this weighted average. The reason is twofold.
First, without it, our inflow system will generate a self
increasing current when a large enough gap will be detected
near the boundary. Second, this technically allows our inflow
system to handle inflow currents in our simulation by
setting velocities at the boundary particles (even though they
are strictly static in the remainder of the simulation). It
means that this inflow approach could possibly be used to
implement a fully fledged open boundary model.

4.2.2 Outflow Handling a complete outflow system for an
open boundary is extremely complex if we do not have any
restriction on the boundary model that is used. Usually, the
boundary used for a fluid simulation is solid, usually due
to the use of solid particles or geometries with constant
area and mass. The consequence is that the fluid particles
are slowed when getting close to the boundary and there is
no consistent area near the boundary where we can decide
that the particle is now outside of the simulated area. Even
if there was such an area, the removal of a fluid particle
would create a gap in the fluid. This would require additional
systems to keep the fluid continuous, either by modifying
the boundary properties dynamically, which is the approach

used by Kassiotis et al.7, or finding a way so that the particles
that have been removed still exist in the simulation, which is
the approach used in buffer-based open boundaries. For our
outflow, we define a system that removes from the simulation
the parts of the waves that are above the height Hocean of the
area outside the simulation. To do so, we remove the particles
that are above this height and at proximity, given a threshold
DoutflowThreshold, of the boundary of the simulation. This
system absorbs the upper part of the wave and also reduces
the reflection of the part of the wave that is below Hocean, as
when colliding with the boundary, the particles of fluid will
accumulate and gain a vertical velocity that will move them
into the removal area.

5 Results

In our experiments, we used a solely GPU implementation
of the DFSPH algorithm based on the implementation
found in the SPlisHSPlasH library (version 1.3.1). This
implementation uses the single layer rigid-fluid coupling
of Akinci et al.19 (see Appendix A.2) and the variant of
Schechter and Bridson25 for the viscosity. No surface tension
algorithm has been used. We increased the minimum number
of iterations of the divergence solver from 1 to 3 as it greatly
improves the stability of the simulation. The following
simulation parameters are kept constant for all experiments:
particle radius 0.025m, time-step ∆t = 3ms, viscosity 0.02,
rest density ρ0 = 1000, density threshold 0.01%, divergence
threshold 0.1%. When running the damped simulation for
the stabilisation phase the density threshold is relaxed to
0.05% since it is very unlikely that the early steps of
the stabilization would be able to reach a high level of
accuracy considering the initial distribution of the particles
within a reasonable number of iterations. Since we are using
predefined distributions of fluid particles, it is possible that
the fluid particles randomly fit the boundary or existing
fluid particles leading to results that are unrepresentative
of a common usage of the algorithm. To alleviate this
effect, each experiment is run 51 times and a random
offset, within a range of one particle diameter on each
dimension, is applied on the precomputed particles set.
In our results, we always report the median values. All
experiments have been performed on a desktop with an Intel
Xeon W-2255 CPU and a Nvidia GTX 2070 SUPER card.
An implementation of our algorithm and the code used for
our experiments can be found in the following repository:
https://gitlab.liris.cnrs.fr/npronost/sph dynamic window.

5.1 Algorithm parameters

The parameters of our algorithm must be chosen to reduce
the number of iterations for both the particle selection
process and the stabilization process. Unfortunately, the
optimal parameters for one process may be different for
the second process. This could typically be solved by
an optimization however for our experiments we simply
found values which are robust across a very large range of
simulations and giving reasonable computation times. Below
are the values used in the following experiments for the fluid
initialization.

https://github.com/InteractiveComputerGraphics/SPlisHSPlasH
https://gitlab.liris.cnrs.fr/npronost/sph_dynamic_window


8

100

150

200

250

300

350

400

975 980 985 990 995 1000

Co
m

pu
ta

tio
n 

tim
e 

(m
s)

Average density

base regulator regulator+protection

(a)

950
955
960
965
970
975
980
985
990
995
1000

6.6

6.8

7

7.2

7.4

7.6

7.8

8

8.2

0 1 2 3

av
er

ag
e 

de
ns

ity

de
ns

ity
 d

ev
ia

tio
n 

to
 ta

rg
et

 (i
n 

%
)

Rssr

R(%-dev) R+P(%-dev) R(ρ_avg) R+P(ρ_avg)

(b)

Figure 2. (a) Total computation time (in ms) required depending on the obtained average density (in kg/m3) for each combination
of selection rules. (b) Average density (in kg/m3) and density distribution relative to target density depending on Rssr.

• ∆ρcap max : controlled by the step size regulator,
capped to a minimum value of ρ0 × 0.5% (see
section 5.2).

• ρtarget: set to 99.9% of the fluid rest density ρ0. Can
be slightly lowered (down to 99% of the rest density)
to significantly improve the speed of the stabilization
step at the cost of loosing some fluid volume.

• NbrST max: a value of 10 ensures that the
stabilization phase ends with the fluid in a rest state
in all our simulations.

• α: is initialized at αini = 0.8.
• ∆α: depends on the initial α value and the number

of stabilization steps. It is set so that on the final
stabilization step we have α = 0.1, resulting in the
value ∆α = (0.1/αini)

1/(NbrST max−1).
• velmax target: set to 0.25× particleRadius/∆t.
• velavg target: set to 0.05× particleRadius/∆t.

And here are the values that are specific to the dynamic
window.

• Hocean: customized for each scenario, usually 1 meter.
• DminDistToOldBoundary: is specific to the boundary

model, set to 3× particleRadius in our simulations.
The goal is to use the lowest value that produces
a continuous one particle layer of fluid around all
boundaries.

• DminDistToNewBoundary: is specific to the boundary
model, set to 1.5× kernelRadius in our simulations.
Usually the kernel radius is fixed to kernelRadius =
4× particleRadius in SPH simulations.

• DinflowThresholdDistance: set between
0.5× ParticleRadius and 2× particleRadius.
Lower values result in a more consistent inflow of
particles at the risk of generating instabilities. Set to
1.2× ParticleRadius in all our simulations.

• DinflowThresholdDensity: set between 0.5× ρ0 and
1.5× ρ0. Higher values result in a more consistent
inflow of particles at the risk of generating instabilities.
Set to 0.85× ρ0 in all our simulations.

• DoutflowThreshold: set to kernelRadius.

5.2 Particles selection
We propose three systems for the particle selection:

• The elimination rule to eliminate the particles above
the density threshold ρcap max.

• The protection rule to protect the particles that have
neighbors with density above the threshold ρcap max

and for which an elimination lowers the density below
the threshold.

• The step size regulator to adapt ∆ρcap max depending
on the error between the target density and the current
average density.

The elimination rule is mandatory for reaching the
target rest density while the protection rule and the step
size regulator allow larger ∆ρcap max while preventing the
apparition of gaps in the fluid. In this section, we study the
impact of the protection rule and the step size regulator.

In these experiments, we use a 3 meter high rectangular
column of fluid in a (3.5;5.0;3.5) container with a π/4 rad
rotated 2m box floating on top of it (see Figure 3a and
Figure 4b). We compare 3 configurations: using only the
elimination rule (referred to as base), using the elimination
rule and the step size regulator (referred to as regulator), and
using all three rules (referred to as regulator+protection).
For the base configuration, we can obtain various results
by changing ∆ρcap max

as there is no step size regulator to
control it. For the other configurations, the various results
are obtained by changing the value of the ratio Rssr used by
the step size regulator. For all configurations, larger values of
the aforementioned parameter will result in a larger step size
being used which will both lower the quality of the result,
mostly visible by a larger error of the average density ρavg
post selection step, and also lower the computation time. The
lower computation time is a result of both the lower number
of iterations for the selection step and the lower average
density, making the stabilization step faster.

To compare the behaviour of each configuration, we study
the relation between the obtained average density and the
required computation time (see Figure 2a). For the base
configuration, only a single variation (obtained by using
∆ρcap max = 5) is able to result in the best possible ρavg
with an error of only 0.1% relative to the target density.
However, it requires 380ms to obtain this level of quality.
Both the regulator and regulator+protection configurations
are able to obtain the highest level of quality for much
lower computation times, with the best computation times



Carensac et al. 9

(a) (b) (c)

Figure 3. Diagrams of the experiments initialization: (a) floating cube experiment (section 5.2); (b) initialization with pre-existing
fluid experiment (section 5.3); (c) complex geometry experiment (section 5.4). The boundaries are in black, the area with a newly
initialized fluid is in red, solid objects are in green, and the pre-existing fluid is in blue.

(a) (b)

-0.4

-0.2

0

0.2

0.4

0.6

0 2 4 6 8 10
Time (s)

h alpha_x alpha_z

(c)

Figure 4. (a) 3D model used as boundaries for the complex geometry experiment. (b) Image of the simulation for the floating cube
experiment (the green and red colored particles are active particles that were respectively below and above the density target at the
end of the selection step). (c) Evolution of the height (error relative to the expected height, values are relative to the particle radius)
and roll angles (in degrees) after the initialization of a box floating above a column of fluid.

being obtained in both cases with Rssr = 2 resulting in
respectively 244ms and 242ms. These results indicate that
the benefit of the protection rule can only be seen if we
decide to accept a slightly larger error in the final density.
Indeed, the regulator+protection configuration is able to
produce a result with an error of 0.2% relative to the
target density using only 232ms with Rssr = 2.5. Using the
same ratio, the regulator configuration fails to result in an
acceptable average density and results in an error of 1.2%
relative to the target density for a 10% lower computation
time (212ms). However, when we use a ratio lower than 2.5,
the protection rule still brings some benefits. Indeed, using
the protection rule results in a better particle distribution
at the end of the selection step, that can be quantified by
looking at the deviation of the particles densities relative to
the target density (see Figure 2b). We observe that having
the protection rule on top of the regulator leads to more
stable results both in the average density and the density
distribution. Indeed, the protection rule is able to maintain
a high level of quality for the particles distribution up to

Rssr = 2.5 compared to using only the step size regulator
where the distribution starts to degrade even with Rssr = 1.
This gain of stability is not visible in the computation times
because our stabilization step uses a damped simulation with
the DFSPH algorithm not being able to take advantage of
better particle distribution. If the stabilization algorithm was
changed to a geometric-based one, this particle distribution
could also have a positive impact on the computation times
of the stabilization step.

Since using the protection rule allows the use of Rssr = 2
without getting too close to the range limit and for only a
slight increase in computation time, we decided to use this
ratio value and the three rules in all our further experiments.

5.3 Particle initialization with existing fluid
To see if there is a significant difference in handling the
initialization, we simulated two scenarios : when there are
already existing fluid particles in the simulation and when
there are none. In the first scenario the affected particles are
only in contact with already existing fluid particles, i.e. a



10

simulation Nparticles NNearBoundary tloading tselection tstabilization ttotal iter. sel. iter. stab.
fluid-fluid 1045405 55098(62048) 15.0 109.3 122.1 246.4 6 6
fluid-boundary 605810 49895(62007) 14.1 88.3 124.0 226.4 6 10
pyramid 75142 21222(22963) 15.5 38.0 183.5 237.0 7 10
floating cube 309225 44662(48293) 15.2 74.3 156.8 244.7 7 10

Table 1. Timings (in ms) of the particle selection experiments. NNearBoundary indicates the number of particles near the solid
particles after the fluid selection process, in parentheses the number before the application of the main selection loop. The timings
shown in this table suppose that the large pre-simulated file was loaded before running the experiments.

fluid-fluid interface, and in the second one they are only in
contact with the boundary, i.e. a fluid-boundary interface. For
the first one, we pre-simulated a (6.0;3.0;6.0) cube of fluid
until it is at rest, then we removed any particle that is within
a (5;2.5;5) cube placed at 0.5m of each boundary and we
used our algorithm to reload that central area while keeping
the remaining fluid particles (see Figure 3b). Since we will
compare the computation times we need a configuration
that has roughly the same number of active particles before
the selection process, i.e. affected by the selection and
stabilization, in a scenario where we do not keep the existing
fluid. This can simply be obtained by having the same
initialization surface but in contact with solid particles. In
this scenario, we simulate a (5.5;6.0;5.5) cube of fluid at
the bottom of a (5.5;2.5;5.5) container. In both scenarios we
have around 62k active particles before the particle selection
iterations.

The results are presented in Table 1. First, for the same
number of active particles, the selection process needs to
remove much more particles, resulting in around 10% fewer
particles after selection in the fluid-boundary scenario (the
computation time difference is only due to having 400k more
particles to load at the end of the selection). We can also
observe that the stabilization process can reach the desired
velocity targets when dealing with a fluid-boundary interface
as it reaches the maximum number of stabilization iterations.
In contrast, the experiment with the fluid-fluid interface
reaches them after 6 iterations. Although it does not result in
better stabilization times, in the fluid-fluid scenario we have
10% more particles and since the particles being stabilized
are in the middle of the fluid they have around twice as
many neighbors particles resulting in a longer divergence
step for the DFSPH algorithm. The faster stabilization is due
to a better particle distribution after the selection process.
We can evaluate this difference by comparing the standard
deviation of the density in both scenario. For the fluid-
fluid interface, we have a deviation of 3.4% and for the
fluid-boundary interface a deviation of 6.9%. Better results
in the fluid-fluid scenario are observed as, when a fluid is
at rest, the distribution of the particles near a boundary is
significantly different from the one at the center of the fluid.
Although this may be unique to Akinci et al.19 boundary
model, it is very likely that this phenomenon exists with
most boundary models. The reason is that the boundary
particles are distributed on a layer, e.g. for a plane boundary
all particles will be contained in that plane. This means that
any particle near this boundary will have a large number
of neighbors organized on a regular structure most likely
causing them to have a relatively regular distribution. In
the middle of the fluid there is no particular distribution

of the particle and this problem does not exist. The pre-
simulated large simulation, that we use to know the positions
of the particles we are trying to load, does not have such
boundaries. As such, when we load a fluid-fluid interface, we
load a center of rest fluid particle distribution and expect the
same type of distribution of particles after the stabilization.
However, when we load a fluid-boundary interface, we load
a center of rest fluid particle distribution and expect a semi-
regular distribution after the stabilization which will require
more iterations to be achieved.

5.4 Complex geometry test
Following Negi and Ramachandran18, we used a zig-zag
shaped border to test our algorithm over a series of concave
and convex geometries. To generate a particular 3D geometry
we piled 2 meter squared based pyramids with a height of 2
meters. Each pyramid is placed 1 meter above the previous
one (see Figure 3b and Figure 4a). We simulate 3.5 meters
of fluid corresponding to 3.5 zig-zag shapes. The timings
for this experiment are reported in Table 1. Our algorithm
handles this case very well. The main observed limitation
with this type of boundary shape is that some particles near
the boundary have a noticeable velocity a few steps after
the simulation is started, even though they reached a near
rest state during the stabilization process. This is most likely
due to some fluid particles having a high number of solid
neighbors and that we use a relaxed density limit for the
DFSPH damped simulation. If the stability becomes the
main focus of the simulation, more time can be spent in the
stabilization.

5.5 Floating object test
In our last experiment, we replicate the floating object test by
Colagrossi et al.17. This experiment consists in initializing
a fluid with a floating object and observing the stability
though the displacement of the center of mass and roll
angle of the object. In our experiment, we use a 2m box,
rotated by π/4, floating on top of a 3 meter high rectangular
column of fluid (see Figure 4b, same setup as the particles
selection experiment in section 5.2). The variations of the
center of mass, roll angle and pitch angle of the box once
the actual fluid simulation is started after the application
of our initialization method are reported in Figure 4c. The
variation of the height is shown relative to the radius of
the fluid particles (0.025m in our experiments) and the
angles are given in degrees. We can see that there is no
significant variation in the height, which stabilizes around
0.4× particleRadius away from its initial position, which
is within an expected variation due to the start of a physical
simulation. The variations of the angles are even less



Carensac et al. 11

noticeable as they stay lower than 0.2 degrees. This shows
that the slight displacement of the particles we can observe
during the first few simulation steps do not significantly
perturb the interaction between the fluid and the rigid bodies.
Finally, we would like to bring attention to the number of
particles and computation time required for this experiment
(see Table 1). We can see that this experiment initializes more
than 300k fluid particles with around 45k particles near a
boundary in a rest state in around 244ms, with most of the
time taken by the stabilization step (157ms). Interestingly,
the stabilization step is much larger, nearly 25%, than the
time taken by the stabilization of the simple particles cube we
used in the previous fluid-boundary experiment even though
the floating cube scenario as half the total amount of particles
and a slightly higher number of particles affected by the
stabilization step. This illustrates a limitation of our damped
simulation stabilization step, related to scenarios where the
stabilization has to be done in a more constrained space than
a simple vertical plane. Finally, we recall that the timings do
not include the time taken to read the large pre-simulated
particle distribution from the drive since this loading step
could be done once at the start of a simulation and reused
in different fluid initialization processes.

5.6 Wave absorption

The purpose of the perturbation absorption boundary is
to absorb any wave generated inside the simulated area.
Basically its effect is to absorb the energy that might be
introduced inside the simulated area. To test it, we used a
corridor of fluid with a length of 10m and a width of 1m. We
initialized the fluid with a depth of 1m inside the corridor
and then dropped a wedge at the center of the length of the
corridor. On one side of the corridor (left side) we use the
standard solid closed boundary and on the other side (right
side) we use our perturbation absorption boundary with a
target fluid depth set to the initial depth of 1m (Figure 5a).
The goal is to generate the same perturbation on each side
of the wedge and then study the difference. The amount of
kinetic energy computed as the sum of the squared velocities
is reported in Figure 5f. We can see oscillations in the kinetic
energy, essentially as we introduce an amount of kinetic
energy with the wedge (Figure 5b). Then, every time a wave
goes up on either the boundary or the wedge the kinetic
energy is converted into gravitational potential energy. And
finally the potential energy is converted back into kinetic
energy when the wave is reflected by the wedge or the
boundary. The first two spikes correspond respectively to the
first wave created initially by the wedge (Figure 5b) and to
the back-flow which results in the secondary wave due to the
gap also created by the wedge (Figure 5c). At around 2.1s
the kinetic energy is spiking again due to the reflection of
the first wave on the boundary. The energy is around 3 times
smaller on the side where our perturbation absorption system
is applied. It is followed by a small spike caused by the third
ripple (Figure 5d). At 4.4s we can see the spike caused by
the reflection of the secondary wave on the boundary. By
that time our perturbation absorption boundary has already
removed nearly all the kinetic energy and the bump in kinetic
energy is barely visible and after 5.9s any motion has nearly
stopped (Figure 5e). On the side using the regular boundaries

the energy still oscillates after 10s and even after 30s we
observed significant displacements.

At 5.9s (Figure 5e), our perturbation absorption boundary
has properly reached the initial 1m depth of fluid, by going
from the initial 46k particles (one side), down to 38k while
absorbing the wave, then back up to 40.2k particles thanks
to our inflow. It is expected to converge to a lower number
of particles as the volume of the wedge has been added. The
fluid volume is then not determined by the solid boundary but
the target depth, making it robust to very dynamic scenes, as
long as the depth does not change drastically. To conclude,
we can say that our perturbation absorption boundary worked
properly to quickly remove the energy without any loss of
fluid even though let us recall that it is not able to absorb a
current that would be below the specified fluid height.

5.7 Dynamic simulation window
To demonstrate the capabilities of our dynamic simulation
window we chose to simulate a scene with a boat moving at
high speed. As this boat has no restriction in its movement
direction we chose to use a cylindrical simulation area with a
radius of 5m and a fluid depth of 1m (see Figure 6a). In this
example, we constantly apply on the boat a force of 5000N
balancing its drag force and thus resulting in a constant
velocity of 2.9m.s−1. We obtain a realistic animation of the
boat and the fluid where the front of the boat arches upward
and the back of the boat dips below the normal fluid surface.
We observe the expected wave created by the boat cutting
through the fluid and the expected perturbations behind it.
We also observe a wave forming in front of the boat due
to the relatively flat profile of the boat resulting in many
particles being pushed forward instead of to the sides. This
simulation includes 750k fluid particles and 300k boundary
particles. Each time-step where the simulation window is
not moved takes on average 75ms, including 3.5ms for
the perturbation absorption boundary and 71ms for the
DFSPH simulation. For the time-steps where displacement
of the window is required, the window is moved in average
by 2.5× kernelRadius, i.e. 0.25m, and it takes 96ms,
making these time-steps around 2 times longer than without
displacement. Also, following a displacement of the window
the computation time spikes to around 120ms for 5 iterations
before going back up to the average step duration. This spike
is probably due to both the use of a warm start to initialize
the DFSPH iterative processes and because we initialized the
new fluid with zero velocities which may conflict with the
existing fluid. In all, this simulation runs at an average of
100ms with the full speed boat. Even though a short freeze
is observed every time the simulation window is moved, it is
still acceptable when we consider that the same data structure
as our fluid was used instead of an optimized custom data
structure for the dynamic window. Also we used our standard
parameters for this experiment and we could better fit them
to obtain lower computation times.

We used a relatively large area in our test scenario to
make it possible to completely preserve the perturbations
caused by the boat. It is possible to use our dynamic window
for scenarios with a much smaller simulated area while
still keeping a visually interesting fluid animation. As an
example we can reduce the simulated area to a 2.5m radius
cylinder (see Figure 6b) to greatly reduce the computation



12

(a) (b) (c)

(d) (e)

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

0 2 4 6 8 10

S
u

m
 s

q
u

a
re

 v
e

lo
ci

ti
e

s

Time (s)

solid boundaries perturbation absorption

(f)

Figure 5. Snapshots of the wedge perturbation absorption test. In order, (a) 0s, (b) 0.9s, (c) 1.7s, (d) 3.6s, (e) 5.9s. (f) Evolution of
the amount of kinetic energy, computed as the sum of the squared velocities, on each side of the simulation after the drop of a
wedge in the middle of a 10m corridor of 1m of fluid at rest. In blue, left side of the wedge (normal solid boundary). In red, right side
of the wedge (perturbation absorption boundary)

(a) (b)

(c) (d)

Figure 6. Snapshots of simulations with a high speed boat moving with the use of the dynamic simulation window to keep the fluid
simulation around the boat. Our system can handle any boundary shape and here 3 examples are given: 6a cylindrical boundaries
(5m radius), 6b cylindrical boundaries (2.5m radius), 6d star-shaped boundaries with vertical walls, 6c spherical boundaries (even
the boundary in the air is spherical)

times. With this smaller simulated area (containing 187k
fluid particles and 114k boundary particles), the time steps
for which the simulation window does not need to be moved
take on average 25ms and the displacement of the simulated
window takes 40ms, resulting in an average of 30ms with

the full speed boat. However, as we can see in the companion
video, this smaller simulated area causes a different type of
wave to be observed in front of the boat since there is not
enough space for the particles pushed to the front by the boat
to be accumulated in the same way. Still, the animation is



Carensac et al. 13

similar, the main difference being the disappearance of the
upfront wave caused by the accumulation of particles due
to the boat pushing them forward. Such smaller simulation
window could be used to iterate faster on an animation before
using a larger window to obtain a higher level of realism. The
window size and shape should therefore be decided by the
user according to the desired tradeoff between realism and
performance. Another way to greatly improve performances
as the cost of realism is to aim for a lower ρtarget at the
end of the particle selection step. As seen in table 1, the
majority of the time required to initialize new fluid particles
is taken by the stabilization step. By aiming for a density
slightly below the rest density of the fluid at the end of the
particle selection step, we greatly can lower the complexity
of the stabilization step. For example, by lowering the target
density to 99% of the rest density we were able to observe a
reduction of the number of required stabilization steps from
7 to 3 with the large cylindrical domain. However, using a
lower target density means we are relying on our particle
inflow system to maintain the number of particles. As we
have only used a simple system whose objective is to absorb
the perturbation caused by the boat, we noted that using a
lower target density resulted in a visible reduction of the fluid
level for smaller simulation domains. An intermediate target
density could probably be used, but as the exact value would
be specific to each simulation domain we have not explored
this optimization any further.

In Figure 6 and the companion video, we can notice that
when the fluid level is below the ocean level the newly added
particles are more clearly visible and could be perceived as
a visual artifact. We choose here to visualize how everything
happens and to render all particles, but such artifact can be
completely removed by rendering only the particles within a
distance to the area of interest and/or to the boundaries. In
the companion video, we can also perceive the removal and
spawning of the particles at the boundaries as a flickering
effect but applying any surfacing algorithm to render the
liquid will remove this effect, or by simply integrating the
window in the larger, for instance procedurally generated,
ocean. Another way to mask this flickering effect would be
to apply a fading effect to the transparency of the particles.
So, instead of appearing and disappearing instantaneously in
a single frame, the particles would go through intermediary
states where they would be more and more transparent
and only visually removed when fully transparent with
the opposite being done when particles are added to the
simulation.

Finally, our system is not restricted to a simple planar
or cylindrical boundary and is able to handle any boundary
shape. To illustrate this property, the same scene was
simulated with other boundary shapes. First using a sphere
(see Figure 6c) and then using a star-shaped prism (see
Figure 6d). Although these examples are only used to
demonstrate the flexibility of our system, tailoring the
boundary shape to a specific simulation can be extremely
useful in practice to remove particles that have no interest in
the desired animation. For example, we could have used an
inverted truncated cone for the boundaries in the boat scene
as the particles that are both near the bottom of the fluid and
near the borders are not involved in the physics realism of the
scene. The simulation using the star boundaries illustrates the

problem that can be caused by having the area of interest too
close to the boundaries as the fluid animation then differs
from the others when the border is too close to the center of
the simulated window.

6 Conclusion and future works
In this paper, we presented our work that resulted in
two contributions. First, we proposed a novel approach
to initialize a distribution of particles corresponding to
a fluid at rest and capable of handling complex 3D
boundaries. Our method is based on the use of a pre-
simulated fluid to initialize the distribution, removing the
necessity of modifying the boundaries properties and making
it compatible with fluids that would already exist within
the simulated area. We used a density-based selection of
particles, making our approach theoretically compatible with
any boundary model or SPH simulation algorithms. Our
approach is fast to compute and scales very well with large
simulations.

This paper also presents a novel dynamic simulation
window process that allows moving the simulated area
to follow a moving object of interest. This process uses
a combination of our fluid initialization approach and a
perturbation absorption system at the boundaries to prevent
the reflection of perturbations generated inside the simulated
area. With this dynamic window process, we were able to
move a virtual boat around an unrestricted flat ocean while
producing realistic looking fluid animations near the boat.
Although our method requires a number of parameters and
thresholds that is rather high, they are used to fine-tune the
simulation to achieve desired results and can be applied
to any high-performance interactive applications like video
games, but also for prototyping in visual effect software.

From a theoretical standpoint there are two main
limitations that can be noted in our work. First, our
initialization system uses an average of the density of the
particles near the border as an end condition to determine
if we have the correct number of particles to fill out the
volume near the boundary. However, as the density of the
particles depends on their distribution, using the average
of the density is a rather lacking, although really fast, way
to evaluate the volume. The second one is related to our
outflow mechanism. As the removal of the particles is only
done above the initially fixed fluid level, it cannot simulate
underwater current or integrate a wave generation model to
have a more realistic ocean. The use of a complete open
boundary, such as Kassiotis et al.7 model, would greatly
open the range of possibilities, although it would most likely
significantly reduce the performance. From a performance
standpoint, it would be interesting to try to replace the
damped simulation by a particle packing algorithm for the
stabilisation step as it has been shown to significantly reduce
the computation time.

We are currently working on the final surface rendering
of both the dynamic window and its interface with the
rest of the larger body of water. As our approach does
not require any specific fluid and boundary model, we
aim to use a fast particles to surface rendering method
such as the one proposed by Xiao et al.26. In the future,
we also hope to improve our dynamic simulation window



14

and expend its applicability. We would like to expend on
our simple perturbation absorption component to make it
able to take into account inflow waves at the boundary
and handle underwater currents, as possible with some
previous works13, as well as introducing the possibility for
a variable ocean target depth. Otherwise this component
should be replaced by a proper open boundary model, for
example by Kassiotis et al.7 boundary model. We could
also calculate and visualize additional physical fields such
as pressure, velocity or density fields. Such display could
improve the understanding of the physics involved in the
simulations and aid at designing the virtual scenery. It would
also be interesting to try to use our dynamic window in
a scenario where multiple objects, each having its own
simulation window, move in a very large virtual world
therefore with multiple dynamic areas of interest. We think
our system should be capable to dynamically merge and
separate multiple simulation windows by adapting the mass
of the solid boundaries when the boundaries of two simulated
areas cross each other.

References

1. Stomakhin A and Selle A. Fluxed animated boundary method.
ACM Transactions on Graphics 2017; 36(4): 68:1–68:8. DOI:
10.1145/3072959.3073597. URL https://doi.org/10.

1145/3072959.3073597.
2. Marrone S, Di Mascio A and Le Touzé D. Coupling

of Smoothed Particle Hydrodynamics with Finite Volume
method for free-surface flows. Journal of Computational
Physics 2016; 310: 161–180. DOI:10.1016/j.jcp.2015.11.
059. URL https://linkinghub.elsevier.com/

retrieve/pii/S0021999115008074.
3. Lastiwka M, Basa M and Quinlan NJ. Permeable and non-

reflecting boundary conditions in SPH. International Journal
for Numerical Methods in Fluids 2009; 61(7): 709–724. DOI:
10.1002/fld.1971. URL http://doi.wiley.com/10.

1002/fld.1971.
4. Tafuni A, Sahin I, Vacondio R et al. Open boundary conditions

for large-scale SPH simulations. In Proceedings of 8th
international SPHERIC workshop. p. 8.

5. Tafuni A, Domı́nguez JM, Vacondio R et al. Accurate
and efficient SPH open boundary conditions for real 3-
D engineering problems. In 12th International SPHERIC
workshop. p. 10.

6. Tafuni A, Domı́nguez J, Vacondio R et al. A versa-
tile algorithm for the treatment of open boundary con-
ditions in Smoothed particle hydrodynamics GPU mod-
els. Computer Methods in Applied Mechanics and Engi-
neering 2018; 342: 604–624. DOI:10.1016/j.cma.2018.08.
004. URL https://linkinghub.elsevier.com/

retrieve/pii/S0045782518303906.
7. Kassiotis C, Violeau D and Ferrand M. Semi-analytical condi-

tions for open boundaries in smoothed particle hydrodynamics.
In Proceedings of 8th international SPHERIC workshop. pp.
1–4.

8. Joly A, Violeau D, Leroy A et al. Applying Riemann solvers
to open boundaries in free surface and confined flows. In
Proceedings of 11th international SPHERIC workshop. p. 9.

9. Leroy A, Violeau D, Ferrand M et al. A new open
boundary formulation for incompressible SPH. Computers

& Mathematics with Applications 2016; 72(9): 2417–
2432. DOI:10.1016/j.camwa.2016.09.008. URL
https://linkinghub.elsevier.com/retrieve/

pii/S0898122116305107.
10. Verbrugghe T, Dominguez JM, Altomare C et al. APPLI-

CATION OF OPEN BOUNDARIES WITHIN A TWO-WAY
COUPLED SPH MODEL TO SIMULATE NON-LINEAR
WAVE-STRUCTURE INTERACTIONS. Coastal Engineer-
ing Proceedings 2018; 1(36): 14. DOI:10.9753/icce.v36.
papers.14. URL https://journals.tdl.org/icce/

index.php/icce/article/view/8556.
11. Ni X, Feng W, Huang S et al. Hybrid SW-NS SPH

models using open boundary conditions for simulation
of free-surface flows. Ocean Engineering 2020; 196:
106845. DOI:10.1016/j.oceaneng.2019.106845. URL
https://linkinghub.elsevier.com/retrieve/

pii/S0029801818317633.
12. Chiron L, Marrone S, Di Mascio A et al. Coupled SPH–FV

method with net vorticity and mass transfer. Journal of Compu-
tational Physics 2018; 364: 111–136. DOI:10.1016/j.jcp.2018.
02.052. URL https://linkinghub.elsevier.com/

retrieve/pii/S0021999118301438.
13. Chentanez N, Müller M and Kim TY. Coupling 3d eulerian,

heightfield and particle methods for interactive simulation
of large scale liquid phenomena. In Proceedings of the
ACM SIGGRAPH/Eurographics Symposium on Computer
Animation. SCA ’14, Goslar, DEU: Eurographics Association,
p. 1–10.

14. Orthmann J and Kolb A. Temporal blending for adaptive
sph. Computer Graphics Forum 2012; 31(8): 2436–2449.
DOI:https://doi.org/10.1111/j.1467-8659.2012.03186.x.
URL https://onlinelibrary.wiley.com/

doi/abs/10.1111/j.1467-8659.2012.03186.x.
https://onlinelibrary.wiley.com/doi/pdf/

10.1111/j.1467-8659.2012.03186.x.
15. Solenthaler B and Gross M. Two-scale particle simu-

lation. ACM Trans Graph 2011; 30(4). DOI:10.1145/
2010324.1964976. URL https://doi.org/10.1145/

2010324.1964976.
16. Monaghan JJ. Simulating Free Surface Flows with

SPH. Journal of Computational Physics 1994;
110(2): 399–406. DOI:10.1006/jcph.1994.1034. URL
http://www.sciencedirect.com/science/

article/pii/S0021999184710345.
17. Colagrossi A, Bouscasse B, Antuono M et al. Particle

packing algorithm for SPH schemes. Computer Physics
Communications 2012; 183(8): 1641–1653. DOI:10.1016/j.
cpc.2012.02.032. URL http://www.sciencedirect.

com/science/article/pii/S0010465512001051.
18. Negi P and Ramachandran P. An improved particle packing

algorithm for complex geometries in SPH. arXiv:191007898
[physics] 2019; URL http://arxiv.org/abs/1910.

07898. ArXiv: 1910.07898.
19. Akinci N, Ihmsen M, Akinci G et al. Versatile rigid-

fluid coupling for incompressible SPH. ACM Transactions
on Graphics 2012; 31(4): 62:1–62:8. DOI:10.1145/
2185520.2185558. URL https://doi.org/10.1145/

2185520.2185558.
20. Bender J, Kugelstadt T, Weiler M et al. Volume maps: An

implicit boundary representation for sph. In Proceedings
of ACM SIGGRAPH Conference on Motion, Interaction and

https://doi.org/10.1145/3072959.3073597
https://doi.org/10.1145/3072959.3073597
https://linkinghub.elsevier.com/retrieve/pii/S0021999115008074
https://linkinghub.elsevier.com/retrieve/pii/S0021999115008074
http://doi.wiley.com/10.1002/fld.1971
http://doi.wiley.com/10.1002/fld.1971
https://linkinghub.elsevier.com/retrieve/pii/S0045782518303906
https://linkinghub.elsevier.com/retrieve/pii/S0045782518303906
https://linkinghub.elsevier.com/retrieve/pii/S0898122116305107
https://linkinghub.elsevier.com/retrieve/pii/S0898122116305107
https://journals.tdl.org/icce/index.php/icce/article/view/8556
https://journals.tdl.org/icce/index.php/icce/article/view/8556
https://linkinghub.elsevier.com/retrieve/pii/S0029801818317633
https://linkinghub.elsevier.com/retrieve/pii/S0029801818317633
https://linkinghub.elsevier.com/retrieve/pii/S0021999118301438
https://linkinghub.elsevier.com/retrieve/pii/S0021999118301438
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2012.03186.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2012.03186.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2012.03186.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2012.03186.x
https://doi.org/10.1145/2010324.1964976
https://doi.org/10.1145/2010324.1964976
http://www.sciencedirect.com/science/article/pii/S0021999184710345
http://www.sciencedirect.com/science/article/pii/S0021999184710345
http://www.sciencedirect.com/science/article/pii/S0010465512001051
http://www.sciencedirect.com/science/article/pii/S0010465512001051
http://arxiv.org/abs/1910.07898
http://arxiv.org/abs/1910.07898
https://doi.org/10.1145/2185520.2185558
https://doi.org/10.1145/2185520.2185558


Carensac et al. 15

Games. MIG ’19, ACM, pp. 1–10.
21. Hall J, S Rendall TC and Allen CB. Optimisa-

tion using smoothed particle hydrodynamics with volume-
based geometry control. Structural and Multidisciplinary
Optimization 2017; 56(6): 1369–1386. DOI:10.1007/
s00158-017-1729-x. URL http://link.springer.

com/10.1007/s00158-017-1729-x.
22. Bender J and Koschier D. Divergence-free smoothed

particle hydrodynamics. In Proceedings of the 14th
ACM SIGGRAPH / Eurographics Symposium on Computer
Animation - SCA ’15. Los Angeles, California: ACM
Press. ISBN 978-1-4503-3496-9, pp. 147–155. DOI:
10.1145/2786784.2786796. URL http://dl.acm.org/

citation.cfm?doid=2786784.2786796.
23. Shrey S, Kothavale B, Saraf M et al. Smooth particle

hydrodynamics: a meshless approach for structural mechanics.
SIMULATION 2023; 0(0). DOI:10.1177/00375497231180956.

24. Napoli E, De Marchis M, Gianguzzi C et al. A coupled Finite
Volume–Smoothed Particle Hydrodynamics method for incom-
pressible flows. Computer Methods in Applied Mechanics and
Engineering 2016; 310: 674–693. DOI:10.1016/j.cma.2016.
07.034. URL https://linkinghub.elsevier.com/

retrieve/pii/S0045782516308131.
25. Schechter H and Bridson R. Ghost SPH for animating water.

ACM Transactions on Graphics 2012; 31(4): 61:1–61:8. DOI:
10.1145/2185520.2185557. URL https://doi.org/10.

1145/2185520.2185557.
26. Xiao X, Zhang S and Yang X. Fast, high-quality rendering of

liquids generated using large-scale sph simulation. Journal of
Computer Graphics Techniques Vol 2018; 7(1).

A Simulation principles

A.1 Divergence Free Smoothed Particle
Hydrodynamics (DFSPH)

The DFSPH simulation scheme22 is an iterative algorithm
that uses iterations inside each simulation step that will
iteratively correct the particles so that their physical
properties correspond to the desired fluid. In particular, on
top of making sure that the density of the fluid stays constant,
the DFSPH also ensures that the divergence of the fluid
velocity field stays null.

The algorithm 2 presents the organization of a simulation
time step of the DFSPH algorithm. The processes to
ensure constant density and no divergence are illustrated
respectively in algorithms 3 and 4. These correction
processes are implemented by corrective predictive loops,
which will evaluate the error in the fluid and modify
the particle speed to compensate for this error. The error
evaluated by these two processes is respectively the error
between the average density and the target density and
amount of divergence in the fluid.

The velocity corrections for density and for divergence
(respectively ∆vi and ∆vνi ) can thus be expressed as :

∆vi = − 1

∆t

∑
j

mj((ρ
∗
i − ρ0)αi + (ρ∗j − ρ0)αj)∇Wij

∆vνi = −
∑
j

mj(
Dρi
Dt

αi +
Dρj
Dt

αj)∇Wij

(1)

Algorithm 2: DFSPH

foreach particles i do
find Neighborhood Ni

end
foreach particles i do

compute densities ρi compute factors αi

end
correctDivergenceError(α, v) foreach particles i do

compute non-pressure forces acceleration acci
end
foreach particles i do

vi += ∆t ∗ acci
end
correctDensityError(α, v) foreach particles i do

xi += ∆t ∗ vi
end

Algorithm 3: Constant density solver

Function correctDensityError(α, v) is
foreach particles i do

predict density ρ∗i
end
while (ρ∗avg − ρ0 > η) ∨ (iter < 2) do

foreach particles i do
correct velocity vi += ∆vi

end
foreach particles i do

predict density ρ∗i
end
compute ρ∗avg

end
end

Algorithm 4: Divergence-free solver

Function correctDivergenceError(α, v) is
foreach particles i do

predict density variation rate Dρi

Dt
end
while ((Dρ

Dt )avg > ηv) ∨ (iter < 1) do
foreach particles i do

correct velocity vi += ∆vνi
end
foreach particles i do

predict density variation rate Dρi

Dt
end
compute (Dρ

Dt )avg
end

end

The value of the density ρi depends only on the position of
the particles located in the neighborhood and can therefore
be determined at the start of each simulation step. The
different variables defined above are calculated according to

http://link.springer.com/10.1007/s00158-017-1729-x
http://link.springer.com/10.1007/s00158-017-1729-x
http://dl.acm.org/citation.cfm?doid=2786784.2786796
http://dl.acm.org/citation.cfm?doid=2786784.2786796
https://linkinghub.elsevier.com/retrieve/pii/S0045782516308131
https://linkinghub.elsevier.com/retrieve/pii/S0045782516308131
https://doi.org/10.1145/2185520.2185557
https://doi.org/10.1145/2185520.2185557


16

the following formulas:

ρ∗i = ρi +
Dρi
Dt

∆t

Dρi
Dt

= mj(vi − vj)∇Wij

ρi =
∑

mjWij

(2)

A.2 Boundary model
In our experiments we used the boundary model presented
by Akinci et al.19. This model aims to only use a single layer
of boundary particles to simulate the presence of multiple
layers of boundary. To do so they use a corrected mass value
mbi for the boundary particles by computing the volume that
each solid particles has to represent :

mbi = ρ0 ∗ Vbi = ρ0 ∗
1∑
Wij

(3)

B List of symbols and variables
Symbol Description Section
particleRadius Radius of the particles 3.1
ρ0 Rest density 3.1
ρconstant i Contribution of boundary and solid particles to a fluid particle density 3.1
ρair i Contribution of air particles to a fluid particle density 3.1
ρfluid i Contribution of fluid particles to a fluid particle density 3.1
ρavg Average density of the particles affected by the selection algorithm 3.1
ρcap max Density threshold for particle removal 3.1
ρi max Maximum density of the fluid particles 3.1
ρtarget Targeted threshold density for ρavg 3.1
∆ρcap max

Variation of ρcap max between two steps of the selection algorithm 3.1
Rssr Ratio of the error between ρtarget and ρavg used to compute ∆ρcap max

in the step
size regulator

3.1

ρ∗i Density of the ith particle without the contribution of a given neighbor particle 3.1
ρij Contribution of the particle j to the density of the particle i 3.1
D Threshold distance between a particle and the fluid initialization area border for its

early removal
3.1

α Velocity damping coefficient for the damped simulation 3.3
∆α Variation of the velocity damping coefficient between two steps of the damped

simulation
3.3

NbrST max Maximum number of steps allowed for the damped simulation 3.3
velmax target Target threshold for the maximum velocity of fluid particles to end the stabilization

step
3.3

velavg target Target threshold for the average velocity of fluid particles to end the stabilization
step

3.3

Hocean Fluid height 4
DminDistToOldBoundary Distance to boundaries before displacement of the simulated area 4.1
DminDistToNewBoundary Distance to boundaries after displacement of the simulated area 4.1
DinflowThreshold Threshold distance between existing fluid particles and a particle spawn point to

allow a new particle addition
4.2.1

DinflowThresholdDensity Threshold density of a new potential particle to be added 4.2.1
mj Effective mass of the particle j 4.2.1
Wij Kernel value between the particles i and j 4.2.1
DoutflowThreshold Threshold distance to boundaries for a particle removal 4.2.2
kernelRadius Radius of the kernel 5.1



Carensac et al. 17

Samuel Carensac is currently a research engineer at
Ubisoft after being one at the University Claude Bernard
Lyon 1, France. He received his Ph.D degree in computer
science from the University of Lyon (INSA Lyon), France
in 2019. His research interests include fluid simulation,
physics-based animation, character animation and AI.

Nicolas Pronost is an assistant professor at the University
Claude Bernard Lyon 1, France. He received his Ph.D degree
in computer science from the University Rennes 1, France
in 2006 after which he worked as a postdoctoral researcher
at the Zhejiang University of Hangzhou, China and the
EPFL, Switzerland, and then as an assistant professor at the
Utrecht University, The Netherlands. His research interests
include physics-based animation, soft body deformation,
and musculoskeletal simulation.

Saı̈da Bouakaz received her Ph.D. degree from Joseph
Fourier University, Grenoble, France. Currently, she is a Full
Professor in the Department of Computer Science, Claude
Bernard University Lyon 1, France. Her research interests
include computer vision and computer graphics. The current
emphasis of her work is the recognition of human motion,
gesture recognition and computer animation.


	1 Introduction
	2 Related works
	2.1 Simulation window and boundaries
	2.2 Particle Packing
	2.3 Pre-simulated volume

	3 Fluid initialization
	3.1 Fluid particle selection
	3.1.1 Protection rule
	3.1.2 Step size regulator

	3.2 Fluid particle selection at liquid boundary
	3.3 Fluid stabilization

	4 Dynamic window
	4.1 Dynamic window displacement
	4.2 Fast perturbation absorption
	4.2.1 Inflow
	4.2.2 Outflow


	5 Results
	5.1 Algorithm parameters
	5.2 Particles selection
	5.3 Particle initialization with existing fluid
	5.4 Complex geometry test
	5.5 Floating object test
	5.6 Wave absorption
	5.7 Dynamic simulation window

	6 Conclusion and future works
	A Simulation principles
	A.1 Divergence Free Smoothed Particle Hydrodynamics (DFSPH)
	A.2 Boundary model

	B List of symbols and variables



