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A B S T R A C T   

Land managers must find a compromise between rapidly changing landscapes and biodiversity conservation 
through ecological networks. Estimating ecological networks is a key approach to enhance or maintain functional 
connectivity by identifying the nodes and links of a graph, which represent habitats and their corresponding 
functional corridors, respectively. To understand the current state of biodiversity, it is necessary to consider 
dynamic landscape connectivity while relying on relevant land cover maps. Although a current land cover map is 
relatively easy to produce using existing data, this is challenging for past landscapes. Here we investigated the 
impact of changes in landscape connectivity in an urban landscape at a fine scale on the habitat availability of 
two bird species: the tree pipit Anthus trivialis and the short-toed treecreeper Certhia brachydactyla. These species, 
exhibiting different niche ecologies, have shown contrasting population trends at a medium-term scale. The 
occurrences of C. brachydactyla were better correlated with resistance values that maximise the use of corridors, 
whereas the occurrences of A. trivialis better fitted with intermediate resistance values. The statistical approach 
indirectly highlighted relevant information about the ecology the capacity of both species to use urban habitats. 
Landscape connectivity increased for both species over the 24-year study period and may have implications for 
local abundances, which could explain, at the national scale, the increase in populations of C. brachydactyla, but 
not the decrease in populations of A. trivialis. Thus, more attention must be paid on rural habitats and their 
associated species that are more impacted by human activities, but efforts could also be achieved in urban areas 
especially for highly corridor-dependent species. Studying dynamic landscape connectivity at a fine scale is 
essential for estimating past and future land cover changes and their associated impacts on ecological networks, 
to better reconcile human and biodiversity concerns in land management.   

1. Introduction 

Human-induced land cover changes (LCC) are causing major dis
ruptions to ecosystems worldwide and threatening biodiversity and 
associated ecosystem services (Benítez-López et al., 2010; Leclère et al., 
2020; Maxwell et al., 2016). Over the last few decades, LCC have 
manifested mainly through habitat loss and degradation, thus reducing 
suitable habitats into several isolated patches (i.e., biogeographic 
islands). The remaining patches serve as the last refuges for biodiversity 
(Fahrig, 2003; Wilcove et al., 1987). Surrounded by unsuitable habitats, 
organisms living in these isolated patches may encounter difficulties 

moving between them, thus increasing the risk of inbreeding and 
entering into a vortex of extinction (Frankham, 2005; Keyghobadi, 
2007). Landscape connectivity, defined as the extent to which the 
landscape facilitates or impedes movement between suitable patches 
(Taylor et al., 1993, 2006), plays a crucial role in ensuring the persis
tence and resilience of wildlife populations. Therefore, researchers have 
used landscape modelling approaches to describe both structural con
nectivity (i.e., physical relationships of landscape features) and functional 
connectivity (i.e., the organism’s behavioural response to both the 
landscape structure and the landscape matrix) (Taylor et al., 1993, 
2006). 
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The concept of landscape resistance has become widely accepted for 
simulating how organisms perceive the landscape (Adriaensen et al., 
2003; McRae et al., 2008; Spear et al., 2010). This involves assigning 
ecological cost values to various landscape features, which represent 
obstacles to movement. Among the various modelling approaches, 
graph theory is frequently used due to the limited amount of input data 
required as well as its ability to characterise ecological processes (Cal
abrese and Fagan, 2004; Foltête et al., 2014; Zeller et al., 2018). In 
accordance, graph theory is often used combined with the 
resistance-based approach to analyse functional connections (links) 
between biodiversity reservoirs (nodes) as key elements of graphs 
(Foltête et al., 2014, 2020; Pascual-Hortal and Saura, 2008; Saura and 
Rubio, 2010). Indeed, resistance-based models have been extensively 
used during the past two decades, showing strong correlations with real 
or measured connectivity from telemetry or gene flows (Balbi et al., 
2018; Zeller et al., 2018). 

The challenge of landscape connectivity is to understand and predict 
the current biological flux for each landscape element of the study area. 
This is commonly achieved by analysing a land cover map of the current 
landscape with the assumption that this landscape explains the struc
ture, gene flow or abundance of the studied populations (Zeller et al., 
2020). However, the current landscape structure and its connectivity 
can also result from past land cover (Lira et al., 2019; Uroy et al., 2021). 
Therefore, to understand an ecological process, it may be more relevant 
to consider both past and current landscapes and investigate the po
tential time-lag effects on (meta)-populations or communities (Epps and 
Keyghobadi, 2015; Lira et al., 2019; Uroy et al., 2021). Landscape 
connectivity modelling should be not limited to a ‘time-static’ landscape 
when considering its temporal dynamics (Zeller et al., 2020). For 
example, sedentary populations do not move across the landscape in the 
same way in autumn or winter as they do in spring, as patch resources 
and their availability change with the seasons (Martin et al., 2018; Mui 
et al., 2017). It is thus crucial to have at least two relevant snapshots of 
the studied landscape to understand and explain its ecological processes 
(Balkenhol et al., 2015; Uroy et al., 2021; Zeller et al., 2020). In this 
context, studying landscape connectivity along with the associated 
populations raises several challenges. The first challenge is to obtain a 
reliable land cover map that describes complex environments like urban 
areas. Even though remote sensing, which is increasingly accessible due 
to recent technological advances, can acquire the height of elements 
such as LiDAR (Neyns and Canters, 2022; Shahtahmassebi et al., 2021), 
this type of technology remains expensive and difficult to obtain or 
process. However, there is substantial evidence that high map accuracy, 
notably with a high spatial resolution, is important to predict species 
richness or organism movements (App et al., 2022; Barr et al., 2021; 
Balbi et al., 2019; Salgueiro et al., 2021). The second challenge is to 
reconstruct past landscapes from archive images, although this lacks 
information about the height of elements. Nevertheless, some remote 
sensing studies have shown that vegetation strata can be extracted from 
very high resolution images (Merciol et al., 2019; Morin et al., 2022; 
Puissant et al., 2014). Thus, for some species, it is not easy to accurately 
characterise and model habitats and their associated corridors in terms 
of their current or past landscapes. Several questions thus arise. What is 
the role played by urban habitats in landscape connectivity dynamics? 
Are LCC always detrimental? Are two habitats located on different sides 
of a city truly isolated? Were they connected 20 years ago? Without 
telemetry and genetic data, these questions cannot be accurately 
answered without reliable maps of current and past landscapes. 

Among the different taxa impacted by human activities, birds are a 
good taxon to understand the positive and negative consequences of 
land management (Fahrig et al., 2015; Guetté et al., 2017; McKinney, 
2008). A long-term population monitoring of birds in France (Suivi 
Temporel des Oiseaux Communs), initiated by the French National 
Museum of Natural History, observed that population trends vary ac
cording to their global ecology (Fontaine et al., 2020). Generalist and 
forest species tend to exhibit more stability over time, in contrast to 

open-field and urban species, which clearly show population declines. In 
this context, investigations are needed to determine whether changes in 
land cover at a fine scale could explain both positive and negative 
population trends. 

In this study, we used both a current and a past land cover map of the 
city of Poitiers, France, to investigate changes in landscape connectivity 
of two birds at a fine scale (i.e., 1m of spatial resolution) over a 24-year 
period. We obtained the current and past land cover maps using remote 
sensing approaches. The very high resolution of these maps allowed us 
to describe small elements such as hedgerows or isolated trees. We assess 
changes in landscape connectivity for two bird species showing different 
ecological requirements: the short-toed treecreeper Certhia brachy
dactyla, a specialist of forest landscapes with low dispersal capacity 
found in urban canopies and rural areas, and the tree pipit Anthus triv
ialis, a specialist of shrubby and bocage landscapes with medium 
dispersal capacity found in rural areas. Here, the occurrences of these 
two birds, recorded between 2015 and 2021, allowed us to validate our 
resistance-based maps and to add robustness to our connectivity models. 
Regarding the results of Fontaine et al. (2020), we expected that the 
landscape connectivity of C. brachydactyla increased between 1993 and 
2017 whereas the landscape connectivity of A. trivialis decreased over 
this period. 

2. Material and methods 

2.1. Study area 

The study area is the city of Poitiers, France (46.34◦ N, 0.20◦ E), and 
its surrounding area (extending over 225 km2). Located in the west of 
France, this area has an oceanic climate. The elevation ranges from 50 m 
to 160 m, the average temperature is 11.5 ◦C and the average annual 
precipitation is 687 mm. With a population of 131,499 inhabitants 
(census in 2017, INSEE), Poitiers is an important historical metropolis of 
western France. Its urban areas have mostly expanded since 1950, with a 
highway built around 1970 and a high-speed railway (HSR) in 2012. 
This urban landscape contains semi-natural areas such as wetlands along 
the Le Clain River, forests, open fields and an urban natural park. These 
semi-natural areas promote the presence of biodiversity, including 
protected species. Hence, this is a region of particular interest for un
derstanding spatiotemporal landscape changes and their impact on 
biodiversity. 

2.2. Land cover map of 2017 

We built a land cover map of 2017 using the available public French 
databases and remote sensing products as described in Morin et al. 
(2022) (Fig. 1). Considering the high complexity and heterogeneity in 
the urban ecosystem, the approach using geographic object-based image 
analysis (GEOBIA) allowed us to enhance the land cover map by iden
tifying and extracting the urban green areas (Neyns and Canters, 2022; 
Shahtahmassebi et al., 2021). 

Among the existing databases, the BD Topo (2017) of the French 
National Geographic Institute (IGN) vector database was downloaded 
and used to identify watercourses and water bodies, buildings, transport 
infrastructure and wooded areas. In addition, the Registre Parcellaire 
Graphique vector database of 2017 was used to identify the agricultural 
plot boundaries, while the French land cover maps (OSO) (Inglada et al., 
2017) from 2016, 2017, 2018 and 2019 were used to extract annual 
croplands and permanent grassland. The urban extent was extracted 
from the OSO of 2017. 

To enhance this map, we used GEOBIA, including a learning step to 
characterise and distinguish wooded and herbaceous vegetation in 
urban areas. For this purpose, we used a false-colour image from 2017 
with a 0.5m spatial resolution provided by the IGN. This GEOBIA 
method contains four main steps: (1) pre-processing step, including the 
extraction of spectral and textural information, (2) segmentation, (3) 
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classification and (4) evaluation of classification accuracy (Blaschke 
et al., 2014; Chen et al., 2018). We used the LargeScaleMeanShift algo
rithm with a spatial radius of 5 pixels, a range radius of 28 pixels and a 
minimum segment size of 60 pixels. The normalised difference vegeta
tion index (NDVI) was calculated. Four Haralick textures were calcu
lated from the brightness (i.e., mean of NIR, Red and Green spectral 
bands) with a window size of 7 × 7 pixels: Energy, Entropy, Contrast, 
Correlation. The average within segments was extracted for of all spectral 
bands and textures and the standard deviation was extracted from tex
tures and the green band. The classification step included a random 
forest classification (i.e., machine learning algorithm) to create decision 
rules and identify three classes: artificial areas, herbaceous and wooded 
vegetation (see Morin et al., 2022 for more details). We chose a value of 
250 for the number of trees in the forest and 4 for the depth of the trees 
corresponding to a third of the number of the predictor variables 
(Rodriguez-Galiano et al., 2012). A stratified subsampling was used 
followed by a cross-validation process as suggested by Dupuy et al. 
(2020) to improve the classification accuracy. Training data were 
divided into five roughly equal subset to produce five different classi
fications. Finally, these classifications were merged by majority voting. 
Training dataset included 1860 polygons: 1134 for artificial areas, 350 
for grass and 376 for trees. Polygons were selected by photointerpreta
tion across all the study area to avoid spatial autocorrelation, which can 
bias the evaluation of the classification performance (Mannel et al., 
2011). The classification showed high global accuracy with an overall 
accuracy of 95.20% and a Cohen’s kappa of 0.90. At the category level, 
artificial areas, grass and trees showed F-Scores of 94.6%, 95.8% and 
85.52% respectively. Vegetation strata were well detected and differ
entiated from artificial areas (i.e., buildings, roads, parking areas, bare 
soil), which strongly improved the amount of urban vegetation identi
fied and the precision of its detection (Morin et al., 2022). 

2.3. Land cover map of 1993 

We used the land cover map of 1993 described in Morin et al. (2023) 
(Fig. 1). The methodology used aerial images from the IGN and 
Landsat-5 TM scenes to reconstruct the past landscape using GEOBIA. 
This land cover map has a spatial resolution of 0.5 m and contains the 
same land cover categories as the land cover map of 2017. 

The Orfeo Toolbox (OTB) open-source project (Grizonnet et al., 
2017) was used to conduct the remote sensing analysis, while the QGIS 
project (Quantum GIS Development Team, 2019) was used for the 
remote sensing and GIS analysis. The two land cover maps of 1993 and 
2017 were resampled to a spatial resolution of 5 m to facilitate land
scape analysis. 

2.4. Analysis of landscape changes 

We investigated the landscape structure and the functional connec
tivity in the two land cover maps. 

2.4.1. Landscape composition and configuration analysis 
We compared the LCC between 1993 and 2017 using several land

scape metrics that describe the landscape structure. These metrics were 
calculated using the QGIS project (Quantum GIS Development Team, 
2019) and LecoS (Jung, 2016). To characterise the landscape composi
tion, we computed the percentage of impervious surface (i.e., buildings, 
roads, railways, other impervious surfaces), cropland, grassland (i.e., 
meadows, lawns, herbaceous vegetation) and wooded vegetation (i.e., 
forests, hedgerows, shrublands, isolated trees). Concerning the land
scape configuration, we computed the number and the mean surface of 
patches for these four categories. These metrics were calculated at the 
landscape level (i.e., whole study area) as well as at the local level using 
choropleth maps with grids of 500 × 500 m. 

Fig. 1. Land cover maps of Poitiers from 1993 to 2017.  
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2.4.2. Functional connectivity: building and validating ecological networks 

2.4.2.1. Landscape connectivity metrics in 2017. We assessed functional 
connectivity using graph theory. We used Graphab software (Foltête 
et al., 2012a) to model landscape graphs for two bird species: the 
short-toed treecreeper Certhia brachydatyla, a forest core species, and the 
tree pipit Anthus trivialis, an edge forest species. In this study, we tested 
three different resistance scenarios ranging from 1 to 100: linear, loga
rithmic and exponential resistance values (RV) (Table 1) (Balbi et al., 
2018; Balkenhol et al., 2015). Testing several resistance value scenarios 
allow to create more or less differences between categories and so to 
ensure stable results and limiting misclassifications. Five categories 
were created to classify the land cover categories: (1) habitat, (2) 
favourable elements, (3) neutral elements, (4) unfavourable elements 
and (5) ecological barrier. The minimum size of habitat (i.e., nodes) was 
set to 0.3 ha for both species. Choices in these steps have been made 
according to literature and expert opinion (see Appendix 1). 

The landscape graph can be pruned using a maximum dispersal 
distance to identify the functional corridors between habitat patches. 
Moreover, this parameter is integrated when computing the connectivity 
metrics to estimate the habitat availability at different spatial scales. 

Even though these two species are well known, it is not easy to 
identify their dispersal capacity. We determined this distance using the 
approach described by Sahraoui et al. (2017, 2021a) based on an allo
metric relationship. Sutherland et al. (2000) showed that diet type and 
body mass were correlated with the dispersal distance for mammals and 
birds. We thus used the allometric conversion for birds (13.1 M0.63) as 
well as the dataset of Lislevand et al. (2007) to extract the body mass of 
the two species. Therefore, the median dispersal distance of 
C. brachydactyla and A. trivialis was 760 m and 1280 m, respectively. The 
dispersal distance was converted into a cost distance (conversion distance 
function) in the landscape graphs for each resistance scenario (Appendix 
1) (Foltête et al., 2012a). 

Thus, we computed (1) the equivalent connectivity characterising 
the habitat availability at the global level (i.e., the whole study area) and 
(2) the number of patches divided by the number of components to 
describe the fragmentation level. A component is a region in which 
habitat patches are functionally connected. The equivalent connectivity 
(Sahraoui et al., 2021b; Saura et al., 2011) is calculated based on the 
habitat quantity and the probability of interaction between habitat 
patches using a dispersal distance: 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n

i=1

∑n

j=1
aiaj p∗

ij

√

where ai and aj are the area of patches i and j, and p∗ij is the maximum 
probability of movement between these patches following the formula:  

pij = e− αdij                                                                                           

where α determines the decreasing intensity of the probability of 
dispersion, d is the dispersal distance and p describes the dispersion set 
to 0.05 for a maximum dispersal distance (used in this study for all 
connectivity metrics) and set to 0.5 for a median dispersal distance. 

In addition, the flux (Foltête et al., 2012b; Saura and Torné, 2009; 
Urban and Keitt, 2001) was calculated at the local level (i.e., patch level) 

that characterises habitat availability by summing the area of the 
adjacent accessible habitats weighted by the dispersal distance: 
∑n

j=1
aβ

j e− αdij  

where aj is the area of patch j, β allows the weighting of the carrying 
capacity of patches (its value is set to 1 when the carrying capacity is 
weighted by the area of patches and 0 if the patches have an equal 
carrying capacity) and e− αdij characterises the probability of movement 
between patches i and j as described above. Here, the term ‘carrying 
capacity’ refers to the ability of a habitat patch to support a specific 
number of individuals (Appendix 2). The flux metric was then interpo
lated (i.e., gFlux) using the dispersal distance value. This method gives a 
value that characterises the habitat availability for each pixel. This 
spatial generalisation of a local metric was proposed by Foltête et al. 
(2012b) to increase the accuracy of species distribution models. 

2.4.2.2. Bird occurrences. Bird occurrences come from the dataset of the 
Ligue de Protection des Oiseaux, a national bird association. This 
dataset, validated by experts, contains protocoled and opportunistic 
data. The opportunistic data refer to information collected by a non- 
standardised method. Even though professional surveys contain more 
detailed information (e.g., presence and absence information), they 
have fewer data points. Conversely, opportunistic data include more 
occurrences and cover a larger area, although they are only composed of 
occurrences of presence and have a biased spatial distribution (e.g., 
close to cities). These complementary data are increasingly used in 
species distribution models or for the prediction of species abundance 
(Coron et al., 2018; Giraud et al., 2016; Préau et al., 2020; Wood et al., 
2022). This dataset is composed of around 96,000 records of 50 different 
species. It was filtered while keeping the data between 2015 and 2021 to 
obtain sufficient information and fit with our study period. A broader 
time window could influence the temporal variation of the distribution 
of the impacted species, for example, by LCC due to urbanisation. The 
two selected species were chosen as they are both specialist species, well 
distributed and not too rare with occurrences of 2730 and 1022 for 
C. brachydatyla and A. trivialis, respectively (Appendix 2). 

2.4.2.3. Statistical validation of the connectivity models. Point process 
models (PPM) (Baddeley et al., 2015) were used in this study to explain 
the distribution of each species according to the best model of functional 
connectivity and the sampling variables. This method aims to model the 
number of occurrences (N) and their spatial location (s) in an inhomoge
neous Poisson process with an intensity μ(s) describing the expected 
number of presence records per unit area for a given location. The inho
mogeneous Poisson process is a generalisation of the MaxEnt model 
(Phillips et al., 2006; Renner and Warton, 2013) and pseudo-absence lo
gistic regression (Warton and Shepherd, 2010). One advantage of this 
method is its use of presence occurrences to explain the spatial distribution 
of a phenomenon. We used the same approach as in De Solan et al. (2019) 
to study the spatial distribution of both species. Dummy points were added 
to the presence points to increase the accuracy of the models using a 
quadrature scheme of 100 × 100 m to allow the likelihood convergence in 
PPMs. Geyer (1999) saturation point process models were used to manage 

Table 1 
Resistance values of categories. The classes were: a) buildings, b) impervious surfaces, c) highways & highspeed railways, d) main roads, e) railways, f) croplands, g) 
grasslands, lawns and others herbaceous elements, h) forests cores, i) Forest edges, shrublands and isolated trees, j) water bodies and courses.  

Categories Certhia brachydatcyla Anthus trivialis Resistance values 

Linear Logarithmic Exponential 

Habitat h, i i 1 1 1 
Favourable g f, g 25 68.4 3.2 
Neutral b, f b, h 50 90 10 
Unfavourable d, e, j d, e, j 75 96.8 31.6 
Ecological barrier a, c a, c 100 100 100  
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the residual spatial aggregation detected in the initial PPM and avoid bias 
parameter estimates and standard errors (De Solan et al., 2019; Dormann 
et al., 2007). The Geyer process model is similar to the PPM, although it 
also considers that intensity (μ(s)) is influenced by the adjacent records. 
The spatial interaction between points is managed by a saturation 
parameter that influences the strength of the interaction and the maximum 
distance radius of the interaction. Both parameters were maximised by 
pseudo-likelihood to identify a distance value of 101 m and a saturation 
value of 14 for C. brachydatyla and a distance value of 401 m and a 
saturation value of 9 for A. trivialis. 

2.4.2.4. Predicted variables. When using opportunistic data, the chal
lenge resides in estimating the sampling effort, because the data are not 
protocoled. Thus, we used the entire dataset of birds (i.e., 96,000 oc
currences of 50 species) to approximate the sampling effort and create a 
grid of 500 × 500 m to count the number of unique dates within each 
cell. Then, the centroids of these cells were extracted to conduct ordi
nary kriging to interpolate the number of dates for each pixel in the 
study area (Appendix 3). This measure was used as a proxy of the 
sampling effort. Accessibility was characterised by quantifying the 
percentage of transport infrastructures (roads, railways) for each pixel 
via a moving window analysis with a 250 m radius (Appendix 3). This 
metric was calculated to consider a likely stronger sampling effort by 
citizens around this infrastructure, thus reflecting its greater reach
ability (De Solan et al., 2019). The interpolated connectivity metric (i.e., 
linear, logarithmic or exponential RV) was included in each model to 
test its influence on the occurrence of the species (Appendix 3). All 
variables were normalised. For C. brachydatcyla, the connectivity met
rics were tested using a second-order polynomial function to better 
predict the presence of the species. For A. trivialis, the connectivity 
metrics were log-transformed before the PPM. As suggested in other 
studies, it is important to validate the form of covariates by exploring the 
smoothed partial residuals (Baddeley et al., 2015; Chang et al., 2013; 
Renner et al., 2015). As highlighted by Renner et al. (2015), PPM can 
integrate individual information such as behaviour to understand 
ecological processes. Hence, the use of this connectivity metric should 
be relevant to explain the species distribution, because the interpolated 
flux is calculated from the perception of the landscape (i.e., landscape 
structure and species behaviour) and the probability of dispersion (i.e., 
dispersal capacity). The variables used were not correlated. 

GIS analysis was conducted using QGIS v.3.10 (Quantum GIS 
Development Team, 2019) and statistical analysis using R v.3.6.1 (R 
Core Team, 2022) and the spatstat package (Baddeley et al., 2015). 

2.4.2.5. Comparing functional connectivity changes. Once the best model 
was identified, global metrics can be calculated to quantify the habitat 
availability at the whole study area which is directly linked to the car
rying capacity of the number of individuals. Then, the habitat avail
ability can also be calculated, with a population-based approach: β = 1. 
The interpolation of the connectivity metric (here the Flux) is more 
likely to reflect the abundance of individuals (or the species richness of a 
specific guild of species) than the presence of individuals. 

Functional connectivity analysis was performed on the cartography 
of 1993. The functional connectivity metrics as described above were 
calculated (i.e., equivalent connectivity at the global level, the number 
of patches divided by the number of components). The flux metric was 
computed using the best RV (i.e., linear, logarithmic or exponential) and 
the identical cost-distance values of the 2017 map in order to interpolate 
this metric to obtain its generalisation (i.e., gFlux). To compare the two 
dates, the generalised flux was normalised (Sahraoui et al., 2017): 

gFluxnorm =
(gFlux – gFlux)

σ(gFlux)

where gFlux is the generalised flux, gFlux is the mean value of all pixels 
and σ(Flux) is the standard deviation. 

To identify any gains and losses in functional connectivity since 
1993 at the local scale, we computed the difference between the 
gFluxnorm values of 2017 and the gFluxnorm values of 1993 (Sahraoui et al., 
2017). Then, the variation of the flux metric was calculated using both 
an equal carrying capacity (β = 0) of habitat patches and an area 
weighted-based carrying capacity (β = 1) (Appendix 6). 

3. Results 

3.1. Landscape composition and configuration analysis 

LCC were measured for impervious surfaces, croplands, grasslands 
and forests using the composition and configuration landscape indices 
based on the two land cover maps (Fig. 2). At the global level, urban 
areas increased from 3555.11 ha (15.8% of the study area) in 1993 to 
4299.57 ha (19.10%) in 2017, representing a 21% increase in urban 
areas. The number of patches also increased from 13,525 to 16,516, 
although the mean patch area was constant between the two dates 
(Fig. 2). Regarding croplands, their area decreased from 7724.69 ha 
(34.3% of the study area) to 7039.49 ha (31.2%), representing a 
decrease of 8.88%. A consolidation of their patches was also observed, 
with a loss of 2521 patches between 1993 and 2017 and an increase of 
68,223.72 ha for the mean area of the patches. Grasslands were more 
fragmented in 2017 than in 1993, with their area decreasing from 
4833.26 ha (21.8% of the study area) to 3941.42 ha (17.5%) in 2017, 
representing a decrease of 18.45%. Grassland patches were more 
numerous and smaller in 2017, with 68,281 patches and a mean area of 
575.76 ha compared with 39,531 patches and a mean area of 1219.52 ha 
in 1993. Wooded areas were larger in 2017 than in 1993, increasing 
from 6469.32 ha (28.75% of the study area) to 7208.73 ha (32%), thus 
representing an increase of 11.43%. In addition, there were 3789 more 
patches of wooded areas in 2017, while their mean area remained 
constant. 

To better understand these temporal variations, choropleths maps 
were created to identify the main changing areas (Appendix 4). Urban 
areas largely sprawled around the centre of Poitiers in residential areas 
but also in small towns located in proximity and following the creation 
of the high-speed railway. These areas became denser, showing a greater 
number of patches and lower values of the fragmentation index (i.e., 
landscape division index) (Appendix 4). Interestingly, the size and 
number of wooded vegetation areas increased with the urban areas (e.g., 
residential areas) in some forests and shrublands. Croplands and grass
lands showed antagonistic behaviour in terms of their surface areas. 

3.2. Functional connectivity analysis 

3.2.1. Results and comparison of point process models 
To compare the functional connectivity between 1993 and 2017, the 

connectivity models were tested based on the occurrences of both 
studied species and the land cover in 2017. 

For the two species, the connectivity models were correlated with 
their distribution (Table 2). Accessibility had no effect on the occur
rences of C. brachydactyla but had a negative effect on A. trivialis whose 
records were dispersed on account of transport infrastructure. The 
number of unique dates had a positive influence in terms of the records 
for both species. The Geyer spatial interaction matrix suggested that the 
occurrences of both species were aggregated with an estimate = 0.2893 
± 0.0409 SE, Zval = 7.0597, p < 0.0001 for C. brachydactyla and an 
estimate = 0.2974 ± 0.0117 SE, Zval = 25.3689, p < 0.0001 for 
A. trivialis. 

The Akaike information criterion (AIC) values used to rank the three 
connectivity scenarios indicated a lower value for the logarithmic RV 
scenario for C. brachydactyla and the linear RV scenario for A. trivialis 
(Table 2). The connectivity metric tends to slightly overestimate the 
intensity, but overall, the agreement between partial residuals and fitted 
parametric effects indicates that the models are adequate (Appendix 5). 
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Interestingly, the occurrences showed different response behaviours 
with the connectivity models. For A. trivialis, the intensity followed a 
linear relationship with the log-transformed connectivity values, 
whereas the intensity of C. brachydactyla seemed to follow a plateau for 
which an increase in the connectivity value did not increase this in
tensity (Appendix 5). It is important to note that, for A. trivialis, the 
intensity also follows a quadratic relationship with the untransformed 
connectivity values, but that the log-transformation linearises this 
relationship. 

3.2.2. At the global level 
The functional connectivity results were similar with higher con

nectivity indices for 2017 at the global level for both species. Equivalent 

connectivity increased from 1.39 × 107 to 1.42 × 107 for 
C. brachydactyla, an increase of 2.16%, and from 5.83 × 106 to 6.27 ×
106 for A. trivialis, an increase of 7.55% (Fig. 3). In other words, habitat 
availability was higher for A. trivialis compared with C. brachydactyla. 
Habitats were more fragmented in 1993 than in 2017. Concerning the 
forest habitat patches, 1248 patches (>0.3 ha) were identified in 1993 
regrouped into 11 components (ratio of 113.45), while 1603 patches 
were found in 10 components (ratio of 160.3) in 2017. The forest edge 
patches were also more numerous and better connected in 2017 with 
1593 patches and 16 components (ratio of 99.56) compared with 1216 
patches and 25 components (ratio of 48.64) in 1993 (Fig. 3). 

Fig. 2. Structural connectivity metrics calculated for 1993 and 2007.  

Table 2 
Results of the point process models for each landscape connectivity model.  

Certhia brachydactyla Variable Estimate Standard error CI95.lo CI95.hi Z value Z test AIC ΔAIC 

Linear VR Intercept − 13.3520 0.0792 − 13.5074 − 13.1966 − 168.4101 *** 64,688.62 47.22 
gFlux 1.4660 0.1466 1.1785 1.7534 9.9964 ***   
gFlux2 − 0.5530 0.1150 − 0.7786 − 0.3274 − 4.8050 ***   
Nb date 0.1485 0.0641 0.0228 0.2741 2.3171 *   
Access 0.1115 0.1094 − 0.1030 0.3260 1.0184    
Interaction Geyer matrix 0.2871 0.0405 0.2077 0.3665 7.0888 ***   

Logarithmic VR Intercept − 13.3534 0.0955 − 13.5406 − 13.1661 − 139.7875 *** 64,641.40 0 
gFlux 1.4660 0.1357 1.1999 1.7321 10.7986 ***   
gFlux2 − 0.5583 0.1278 − 0.8089 − 0.3077 − 4.3674 ***   
Nb date 0.1686 0.0661 0.0389 0.2983 2.5485 *   
Access 0.1027 0.1138 − 0.1204 0.3258 0.9022    
Interaction Geyer matrix 0.2893 0.0409 0.2089 0.3696 7.0606 ***   

Exponential VR Intercept − 13.2347 0.0883 − 13.4079 − 13.0615 − 149.7541 *** 65,079.92 438.52 
gFlux 1.2985 0.0917 1.1187 1.4783 14.1570 ***   
gFlux2 − 0.5776 0.0722 − 0.7193 − 0.4359 − 7.990    
Nb date 0.1030 0.0628 − 0.0200 0.2261 1.6403    
Access 0.0711 0.1205 − 0.1650 0.3073 0.5901    
Interaction Geyer matrix 0.2926 0.0417 0.2109 0.3743 7.0178 ***   

Anthus trivialis Variable Estimate Standard error CI95.lo CI95.hi Z value Z test AIC ΔAIC 

Linear VR Intercept − 14.9747 0.0734 − 15.1186 − 14.8308 − 203.9516 *** 25,806.86 0 
gFlux 0.6750 0.0382 0.6001 0.7499 17.6586 ***   
Nb date 0.2294 0.0097 0.2102 0.2486 23.4534 ***   
Access − 0.1408 0.0260 − 0.1918 − 0.0897 − 5.4025 ***   
Interaction Geyer matrix 0.2974 0.0117 0.2744 0.3204 25.3689 ***   

Logarithmic VR Intercept − 14.9693 0.0733 − 15.1130 − 14.8256 − 204.2194 *** 25,819.33 12.47 
gFlux 0.6728 0.0387 0.5968 0.7487 17.3543 ***   
Nb date 0.2359 0.0096 0.2170 0.2549 24.4590 ***   
Access − 0.1462 0.0262 − 0.1975 − 0.0948 − 5.5806 ***   
Interaction Geyer matrix 0.2932 0.0116 0.2703 0.3161 25.0664 ***   

Exponential VR Intercept − 14.9626 0.0731 − 15.1059 − 14.8193 − 204.6817 *** 25,836.91 30.05 
gFlux 0.5899 0.0339 0.5234 0.6563 17.3956 ***   
Nb date 0.2175 0.0101 0.1977 0.2374 21.4748 ***    
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3.2.3. At the local level 
At the local scale, LCC had negative and positive impacts on the 

functional connectivity of the two species (Fig. 4). An increase in local 
functional connectivity was found for protected areas. 

The habitat availability of C. brachydactyla was negatively impacted 
by the high-speed railway to the west of Poitiers. Urban sprawl induced 
positive changes on habitat availability by adding wooded vegetation 
instead of crops. However, this was accompanied by an increase in road 
density (e.g., small town south-west of Poitiers). Positive changes 
mainly came from shrublands, which increased between 1993 and 2017. 
When the generalised connectivity metric was weighted by the area of 
habitat patches (reflecting more the biological flux), different results 
were produced, showing the more negative impact of high-speed rail
way and urban sprawl, while a more attenuated or positive impact was 
observed in the southern part of the study area. 

Concerning A. trivialis, temporal variations were quite similar around 
the forest patches. Due to a higher dispersal distance, positive values 
were more concentrated around wooded urban areas. The rise in 
shrublands also substantially increased the habitat areas. However, 
losses in functional connectivity were also slightly higher in some areas, 
for example, to the north of Poitiers. Considering the generalised con
nectivity metric weighted by the area of habitat patches, connectivity 
was globally higher around Poitiers (the main city), while HSR also had 
a greater impact on potential biological flux. Considering these 
weighted-area metrics, LCC seemed to have a more positive impact on 
A. trivialis (except for HSR) than on C. brachydactyla (Appendix 6). 

4. Discussion 

In this study, we investigated the impact of LCC on the habitat 
availability of two bird species at a fine scale. Current landscape con
nectivity models were validated using occurrences to find the best 

Fig. 3. Functional connectivity at the global scale.  

Fig. 4. Functional connectivity at the local scale, with the generalisation of the Flux metric calculated based on the equal carrying capacity of all habitat patches (β 
= 0). 
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parameters which were then applied to determine the connectivity of 
the past landscape. We then compare landscape connectivity between 
1993 and 2017. Results indicated both positive and negative impacts at 
the local level, contributing to improved ecological connectivity at the 
global level for both species. 

4.1. Dispersal behaviour and resistance values 

The spatial distributions of C. brachydactyla and A. trivialis align with 
the connectivity modeling due to their respective ecologies. This was 
expected as we used allometric approach to determine dispersal distance 
(Sahraoui et al., 2017, 2021a) and to test several RV. The occurrences of 
C. brachydactyla, which is a sedentary species and specialist of wooded 
habitats and has a low dispersal capacity, were more correlated with 
logarithmic RV. These RV described a more resistant landscape matrix, 
suggesting that the suitable habitat elements (i.e., trees) are strongly 
used to disperse. This is in accordance with the literature, which con
firms that this species is more prone to using trees to disperse (Balbi 
et al., 2021; Clergeau and Burel, 1997; Gianpasquale, 2017; Snell et al., 
2020). By contrast, the records of A. trivialis are better fitted with the 
linear RV, which is rather congruent with its ecology because it is a 
migratory species whose dispersion depends less on suitable landscape 
elements. Previous studies indicate that transforming resistance values 
can be more effective depending on the use of corridors by individuals to 
move and potentially helping to understand their behaviour (Balbi et al., 
2018; Balkenhol et al., 2015; Keeley et al., 2016; Zeller et al., 2018). 
Although our results are relevant to the ecology of both species, no 
scientific consensus has been found and does not apply universally to all 
species regarding this approach. The results depend on how the resis
tance map was constructed and the method used to model the ecological 
networks (e.g., graph theory, circuit theory). 

4.2. Have land cover changes been good or bad for the two bird species? 

At the global level, habitat availability was higher in 2017 than in 
1993 on account of the more abundant wooded vegetation in the studied 
zone. Indeed, croplands as well as grassland have been replaced by 
wooded and new residential areas with vegetation including numerous 
trees as revealed by the structural connectivity results. The greater 
dispersal capacity of A. trivialis explained the higher equivalent con
nectivity value and the lower fragmentation degree at the global level 
compared with C. brachydactyla. It should be noted that the landscape 
matrix is also less permeable for A. trivialis compared with C. brachy
dactyla that could also explain the higher equivalent connectivity value. 
Unsurprisingly, the habitat availability was negatively impacted at the 
local level by the high-speed railway and positively impacted by the 
large habitat areas created since 1993. As expected, the high-speed 
railway and main roads prevent the movement of organisms because 
of their high RV. The increase in wooded vegetation in residential areas 
promoted functional connectivity when such environments replaced 
croplands. Concurrently, regenerative forests and conservation projects 
had a favourable impact by increasing shrubland or forest areas. 
Moreover, the potential biological flux (weighted-area-based metric) 
showed that LCC had more positive impacts for A. trivialis, probably due 
to its higher dispersal capacity compared with C. brachydactyla. 

4.3. Biological flux modelling and population trends 

Interestingly, the long-term population monitoring of birds in France 
(Suivi Temporel des Oiseaux Communs) initiated by the French National 
Museum of Natural History showed that C. brachydactyla populations 
increased by up to 12.6% between 2001 and 2019 (Fontaine et al., 
2020). This observation is consistent with the positive connectivity 
changes for this species related to urbanisation and the increase in forest 
areas, validating our first hypothesis. Indeed, C. brachydactyla can be 
found in both urban and rural areas, as suggested by our results and the 

literature (Balbi et al., 2021; Guetté et al., 2017; Snell et al., 2020), and 
even though populations are more prone to live in rural environments, 
they are not negatively impacted by urban areas (Guetté et al., 2017). 
Conversely, this monitoring showed that A. trivialis populations 
decreased by 19.3% between 2001 and 2019. Fontaine et al. (2020) 
observed that species that are specialists of agricultural land dramati
cally decreased between these two dates, rejecting our second hypoth
esis. This timeframe corresponds to more intensive agricultural practices 
with the use of neonicotinoids, among others, which probably had a 
negative impact on biodiversity. Even if A. trivialis is a specialist of 
bocage landscapes and an “urban avoider” as highlighted by our results 
and other studies (Guetté et al., 2017), which could explain their pop
ulation decrease, this is not consistent with the increase in functional 
connectivity. In this context, it will be interesting to include habitat 
quality in the landscape connectivity model by quantifying the agri
cultural practices (e.g., pesticides use, mechanisation). For instance, 
dynamic connectivity models could integrate changes in croplands (i.e., 
presence or absence of crop consolidation) to serve as a proxy of changes 
in land farming management. Since the scale of comparison between 
population trends (i.e., national) and connectivity analysis (i.e., local) is 
not the same, it is possible that local populations have been increasing 
over the last few decades despite their decline on a national scale. 

Our findings suggested that wooded elements in (new) urban and 
forest areas can be favourable for forest species such as C. brachydactyla. 
In this way, future green urban areas will be able to shelter some forest 
species (Balbi et al., 2021; Mimet et al., 2020; Snell et al., 2020; 
Tremblay and St Clair, 2009). However, efforts could be made to protect 
birds near urban areas, especially against cats, which are arguably the 
most significant threat to birds (Loss et al., 2013). Because urban 
vegetation and its biodiversity is crucial for human well-being (Cox 
et al., 2017; Luck et al., 2011), urban ecological networks must be 
studied using reliable data (e.g., fine scale land cover maps) to be more 
functional. On the other hand, more attention should be given to the 
northern forest species and urban avoiders, as climate change and 
human activities tend to favour more generalist species (Callaghan et al., 
2019; Le Viol et al., 2012; Morelli et al., 2020). As highlighted above, the 
decline in A. trivialis populations and other open-field specialist pop
ulations at the national scale is probably due to recent changes in 
farming systems (Fontaine et al., 2020). Our results also suggest, in our 
studied zone, a land consolidation of croplands along with their decrease 
between 1993 and 2017 combined with a decrease in grasslands, which 
is consistent with international trends (van Vliet et al., 2017). Therefore, 
this species, which is favoured by agricultural landscapes displaying 
wooded vegetation and well-developed hedges, potentially suffers from 
the intensive practices found in large agricultural areas resulting from 
land consolidation. Alternatives to conventional farming have to be 
applied to enhance habitat quality and create more agroecological 
infrastructure and protected areas (e.g., Natura 2000 areas) (Duru et al., 
2015; Kerbiriou et al., 2018). Urban parks and wastelands could also be 
beneficial for these populations (Meffert et al., 2012). Increasing the 
quality and quantity of habitat and landscape connectivity is crucial to 
supporting open-field populations. 

4.4. Broader implications for conservation planning 

The strengths of the statistical approach (PPM) used in this study are 
its use of opportunistic data to (i) consider the spatial autocorrelation of 
occurrences, (ii) evaluate the impact of the sampling effort on species 
distribution, (iii) identify the most likely connectivity model and (iv) 
integrate different behaviour responses into the landscape structure and 
matrix (De Solan et al., 2019; Renner et al., 2015). Moreover, this 
method, based on graph theory, needs a relatively limited amount of 
input data (Calabrese and Fagan, 2004; Foltête et al., 2014). The pre
cision of the fine-scale land cover maps was also a key element in the 
model habitat availability and was probably more important for 
C. brachydactyla because of its dispersal behaviour. To go further, it will 
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be interesting to compare the results of this statistical approach with 
those based on telemetry or genetic data, which rely more on move
ments (Balbi et al., 2018, 2019; Zeller et al., 2018). Our approach tends 
to be more accessible (compared with telemetry or genetic data), 
because occurrences are increasingly available through citizen science 
projects, thus making them useful in ecology research (Coron et al., 
2018; Giraud et al., 2016; Wood et al., 2022). Thus, we suggest using 
both opportunistic and protocoled data to validate ecological networks 
for robust predictions whenever more robust data (telemetry or genetic) 
are not available. Additional data such as mark-release-recapture 
methods or playback recalls for birds can also be used to better under
stand the dispersal behaviour of organisms and their willingness to move 
in response to different elements (Balbi et al., 2021). 

Validating past functional connectivity remains a challenge, because 
the associated biological data are not usually available. However, it is 
possible to use current evidence of (meta-)populations or communities 
using occurrences, telemetry or genetic information to disentangle the 
effect (and the time-lag effect) of spatiotemporal land cover and con
nectivity changes (Epps and Keyghobadi, 2015; Lecoq et al., 2021; Lira 
et al., 2019; Uroy et al., 2021). Our methodology was interesting to 
estimate habitat availability over time and could be completed by 
testing the correlation between local connectivity metrics and species 
richness or abundance (Foltête et al., 2012b; Ribeiro et al., 2011). 
Indeed, landscape connectivity relies on the dispersal capacity of or
ganisms, which shapes the distribution and persistence of populations 
(Hanski and Ovaskainen, 2000; Keyghobadi, 2007; Perry and Lee, 2019; 
Reigada et al., 2015). The dispersion of organisms also depends on their 
perception of the landscape (App et al., 2022; Baguette and Van Dyck, 
2007; Balbi et al., 2021; Bélisle, 2005). For example, small landscape 
elements like isolated trees can trigger an individual’s willingness to 
move. Regarding these facts, very high resolution land cover maps based 
on remote sensing methods can help to understand current biodiversity 
through the prism of time. Such maps have been shown to be essential 
for studying landscape dynamics, as their descriptions play an important 
role in both landscape connectivity and biodiversity assessments in 
urban and rural landscapes (App et al., 2022; Balbi et al., 2021; Barr 
et al., 2021; Morin et al., 2022; Salgueiro et al., 2021; Tiang et al., 2021). 
As a consequence, the use of reliable fine-scale maps is precious in terms 
of conservation planning and should help to better understand current 
biodiversity and its spatiotemporal dynamics as well as to test land 
management scenarios (Sahraoui et al., 2021b; Tarabon et al., 2020; 
Wellmann et al., 2020). 
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Funding acquisition, Project administration. Yvonnick Guinard: 
Funding acquisition, Project administration, Supervision. Frédéric 
Grandjean: Funding acquisition, Project administration, Supervision, 
Writing – review & editing. Nicolas Bech: Conceptualization, Funding 
acquisition, Methodology, Project administration, Supervision, Valida
tion, Writing – review & editing. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data will be made available on request. 

Acknowledgments 

This work was funded by the Agence Nationale de la Recherche 
(Grant No. ANR-21-CE32-0002-01 [RECODE] to N.B.), the PEPS-CNRS 
2019 EcoMob Grant (CORECO) (for N.B.), the French Office for Biodi
versity (OFB InOV 2022 grant), Région Nouvelle Aquitaine (France), 
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Transition écologique et solidaire., p. 46 

Frankham, R., 2005. Genetics and extinction. Biol. Conserv. 126 (2), 131–140. https:// 
doi.org/10.1016/j.biocon.2005.05.002. 

Geyer, C.J., 1999. Likelihood inference for spatial point processes : likelihood and 
computation. In: Kendall, W., et al. (Eds.), Stochastic Geometry Likelihood and 
Computation. Chapman and Hall/CRC, pp. 141–172. 

Gianpasquale, C., 2017. Landscape structure influencing the spatial distribution of the 
Short-toed Treecreeper Certhia brachydactyla in a Mediterranean agroecosystem. 
Avian Biol. Res. 10 (1), 49–57. 

Giraud, C., Calenge, C., Coron, C., Julliard, R., 2016. Capitalizing on opportunistic data 
for monitoring relative abundances of species. Biometrics 72 (2), 649–658. https:// 
doi.org/10.1111/biom.12431. 

Grizonnet, M., Michel, J., Poughon, V., Inglada, J., Savinaud, M., Cresson, R., 2017. 
Orfeo ToolBox : open source processing of remote sensing images. Open Geospatial 
Data, Software and Standards 2 (1), 15. https://doi.org/10.1186/s40965-017-0031- 
6. 
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