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Abstract

The recent breakthroughs in natural language processing for model pretraining on large
quantities of data have opened the way for similar foundation models in computer vision.
These models could greatly simplify the use of images in any system by producing general-
purpose visual features, i.e., features that work across image distributions and tasks without
finetuning. This work shows that existing pretraining methods, especially self-supervised
methods, can produce such features if trained on enough curated data from diverse sources.
We revisit existing approaches and combine different techniques to scale our pretraining in
terms of data and model size. Most of the technical contributions aim at accelerating and
stabilizing the training at scale. In terms of data, we propose an automatic pipeline to build
a dedicated, diverse, and curated image dataset instead of uncurated data, as typically done
in the self-supervised literature. In terms of models, we train a ViT model (Dosovitskiy
et al., 2021) with 1B parameters and distill it into a series of smaller models that surpass
the best available general-purpose features, OpenCLIP (Ilharco et al., 2021) on most of the
benchmarks at image and pixel levels.

1 Introduction

Learning task-agnostic pretrained representations have become the standard in Natural Language Process-
ing (NLP) (Radford et al., 2019; Raffel et al., 2020; Chowdhery et al., 2022; Hoffmann et al., 2022; Touvron
et al., 2023). One can use these features “as they are”, i.e., without fine-tuning, and achieve performances
on downstream tasks that are significantly better than those produced by task-specific models (Brown et al.,
2020). This success has been fueled by pretraining on large quantities of raw text using pretext objectives,
such as language modeling (Radford et al., 2017) or word vectors (Devlin et al., 2019), that require no
supervision.

Following this paradigm shift in NLP, we expect similar “foundation” models to appear in computer vi-
sion (Bommasani et al., 2021). These models should generate visual features that work out of the box on
any task, both at the image level, e.g., image classification, and pixel level, e.g., segmentation. Most promis-
ing efforts towards these foundation models focus on text-guided pretraining, i.e., using a form of textual
supervision to guide the training of the features (Joulin et al., 2016; Mahajan et al., 2018; Radford et al.,
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Figure 1: Visualization of the first PCA components. We compute a PCA between the patches of the
images from the same column (a, b, c and d) and show their first 3 components. Each component is matched
to a different color channel. Same parts are matched between related images despite changes of pose, style
or even objects. Background is removed by thresholding the first PCA component.

2021). This form of text-guided pretraining limits the information that can be retained about the image
since captions only approximate the rich information in images, and complex pixel-level information may
not surface with this supervision. Furthermore, these image encoders require aligned text-image corpora and
hence, do not offer the flexibility of their text counterparts, that is, to learn from raw data alone.

An alternative to text-guided pretraining is self-supervised learning (Caron et al., 2018; Chen et al., 2020;
He et al., 2022) where features are learned from images alone. These approaches are conceptually closer to
pretext tasks such as language modeling and can capture information at the image and pixel level (Caron
et al., 2021). Additionally, the features output by self-supervised models have been shown to exhibit various
useful properties, and have enabled enabled a wide variety of applications (Amir et al., 2022; Tumanyan
et al., 2022; Ofri-Amar et al., 2023; Hamilton et al., 2022). However, despite their potential to learn general-
purpose features, most of the advances in self-supervised learning were made in the context of pretraining on
a small curated dataset, ImageNet-1k (Russakovsky et al., 2015). Some efforts on scaling these approaches
beyond ImageNet-1k have been attempted (Caron et al., 2019; Goyal et al., 2021; 2022a), but they focused on
uncurated datasets, which typically lead to a significant drop in the quality of the features. This is explained
by the lack of control over the data quality and diversity, which are essential to produce good features.

In this work, we explore if self-supervised learning has the potential to learn general-purpose visual features if
pretrained on a large quantity of curated data. We revisit existing discriminative self-supervised approaches
that learn features at both the image and patch level, such as iBOT (Zhou et al., 2022a), and we reconsider
some of their design choices under the lens of a larger dataset. Most of our technical contributions are tailored
toward stabilizing and accelerating discriminative self-supervised learning when scaling in model and data
sizes. These improvements make our approach around 2× faster and require 3× less memory than similar
discriminative self-supervised methods, allowing us to leverage longer training with larger batch sizes.

Regarding pretraining data, we have built an automatic pipeline to filter and rebalance datasets from an
extensive collection of uncurated images. This pipeline is inspired by pipelines used in NLP (Wenzek et al.,
2020), where data similarities are used instead of external metadata and do not require manual annotation.
A major difficulty when dealing with images in the wild is to rebalance concepts and avoid overfitting on a
few dominant modes. In this work, a naive clustering approach works reasonably well to resolve this issue.
We gathered a small but diverse corpus of 142M images to validate our approach.
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Figure 2: Evolution of performance when scaling in parameters. We show performance on eight
types of vision tasks, as presented in Sec. 7, and average metrics with each type. Features are extracted
from our self-supervised encoders, DINOv2 (dark blue), and we compare them with self-supervised methods
(pale orange), as well as weakly-supervised methods (dark pink). We report the best-performing weakly-
supervised model’s performance as a dashed horizontal line. Our family of models drastically improves over
the previous state of the art in self-supervised learning and reaches performance comparable with weakly-
supervised features. See Sec. 7 for a detailed analysis.

Finally, we provide a variety of pretrained visual models, called DINOv2, trained with different Vision
Transformers (ViT) (Dosovitskiy et al., 2016) architectures on our data. We release all the models and
the code to retrain DINOv2 on any data. We validate the quality of DINOv2 on various computer vision
benchmarks at both image and pixel levels as we scale them, as summarized in Fig. 2. We conclude that self-
supervised pretraining alone is a good candidate for learning transferable frozen features that are competitive
with the best openly available weakly-supervised models.

2 Related Work

Intra-image self-supervised training. A first family of self-supervised methods focuses on pretext tasks
built from the image, i.e., extracting a signal from the image to be predicted from the rest of the image.
This idea has become prevalent with the work of Doersch et al. (2015), where they train by predicting the
context of a given patch. Many other pretext tasks were introduced based on, for example, re-colorizing
images (Zhang et al., 2016), predicting transformations (Gidaris et al., 2018), inpainting (Pathak et al.,
2016) or patch re-ordering (Noroozi & Favaro, 2016; Misra & Maaten, 2020). Recently, the emergence of
patch-based architectures, like ViTs, has led to a revisit of inpainting for pre-training (He et al., 2022; Bao
et al., 2021; El-Nouby et al., 2021), potentially in feature space (Assran et al., 2023; Baevski et al., 2022).
Of particular interest, He et al. (2022) show that a masked auto-encoder (MAE) learns features that provide
substantial improvements when finetuned on downstream tasks. This property of MAEs has been further
validated on video (Tong et al., 2022), audio (Xu et al., 2022), and across other modalities (Girdhar et al.,
2023). However, their features require supervised finetuning, while our features perform well out of the box.

Discriminative self-supervised learning. The second line of work, closer to ours, is using discriminative
signals between images or groups of images to learn features. This family of methods has roots in early
deep learning work (Hadsell et al., 2006) but became popular with the emergence of instance classification
methods (Dosovitskiy et al., 2016; Bojanowski & Joulin, 2017; Wu et al., 2018). Several improvements
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Figure 3: Overview of our data processing pipeline. Images from curated and uncurated data sources
are first mapped to embeddings. Uncurated images are then deduplicated before being matched to curated
images. The resulting combination augments the initial dataset through a self-supervised retrieval system.

were made based either on instance-level objectives (Hénaff et al., 2019; He et al., 2020; Chen & He, 2021;
Chen et al., 2020; Grill et al., 2020; Caron et al., 2021) or clustering (Caron et al., 2018; Asano et al.,
2020; Caron et al., 2020). These methods provide performant frozen features on standard benchmarks like
ImageNet (Russakovsky et al., 2015), but they are hard to scale to larger model sizes (Chen et al., 2021). In
this work, we revisit the training of these approaches in the context of large pretraining datasets and models.
In particular, we build on top of Zhou et al. (2022a) that we find particularly suited for scaling.

Scaling self-supervised pretraining. A growing body of work has focused on the scaling abilities of
self-supervised learning in terms of data and model size (Caron et al., 2019; Goyal et al., 2019; Tian et al.,
2021; Goyal et al., 2022a). Most of these works use large quantities of uncurated data to train models
without supervision. They show evidence that discriminative methods scale with data, but because of the
poor quality of the pretraining data, most of the results are obtained by finetuning the features. Of particular
interest, Goyal et al. (2021) have also shown that these methods benefit from scaling in model size given
enough pretrained data. This line of work questions the ability of self-supervised methods to work on any
data while we focus on producing the best pretrained encoders.

Automatic data curation. Our dataset construction borrows from the image retrieval community (Wein-
zaepfel et al., 2021; Radenović et al., 2018b; Berman et al., 2019; Douze et al., 2009; Tolias et al., 2016; Revaud
et al., 2019). In particular, the use of retrieval to augment the training set has been studied in the context of
semi-supervised learning (Yalniz et al., 2019). Similarly, others have used hashtags or other metadata (Ma-
hajan et al., 2018; Radford et al., 2021) or pretrained vision encoders (Schuhmann et al., 2021; 2022) to
filter uncurated datasets. Unlike these works, we use no pretrained encoders, metadata nor supervision
to filter images and leverage visual similarity between images. Our approach is inspired by text curation
pipelines (Wenzek et al., 2020), where a language model is trained on Wikipedia to score texts extracted
from an uncurated source.

3 Data Processing

We assemble our curated LVD-142M dataset by retrieving, from a large pool of uncurated data, images that
are close to those in several curated datasets. We describe below the main components in our data pipeline
including the curated/uncurated data sources, the image deduplication step and the retrieval system. Our
pipeline does not require any metadata or text and directly works with images, as shown in Fig. 3. We refer
the reader to appendix A for more details on our approach.

Data sources. Our selection of curated datasets is detailed in the appendix (Table 15) and contains
ImageNet-22k, the train split of ImageNet-1k, Google Landmarks and several fine-grained datasets. For the
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uncurated data source, we collect a raw unfiltered dataset of images from a publicly available repository of
crawled web data. From each web page in the repository, we extract URL links of images from <img> tags.
We discard URLs that are unsafe or restricted by domains, and post-process the downloaded images (PCA
hash deduplication, NSFW filtering, and blurring identifiable faces). This results in 1.2B unique images.

Deduplication. We apply the copy detection pipeline of Pizzi et al. (2022) to the uncurated data and
remove near-duplicate images. This reduces redundancy and increases diversity among images. We also
remove near-duplicates of images contained in the test or validation set of any benchmark used in this work.

Self-supervised image retrieval. We build our curated pretraining dataset by retrieving images from
our uncurated data source that are close to images in our curated sources. In order to do this, we first
compute an image embedding using a self-supervised ViT-H/16 network pretrained on ImageNet-22k, and
use cosine-similarity as a distance measure between images. Then, we perform k-means clustering of the
uncurated data. Given a query dataset for retrieval, if it is large enough we retrieve N (typically 4) nearest
neighbors for each query image. If it is small, we sample M images from the cluster corresponding to each
query image. Although visual inspection seemed to indicate good retrieval quality for N much larger than
4, this leads to more collisions (images that are nearest-neighbor retrievals of multiple queries). We choose
N = 4 as it provides a good tradeoff in that sense.

Implementation Details. The deduplication and retrieval stages of our pipeline rely on the Faiss li-
brary (Johnson et al., 2019) to efficiently index and compute batch searches of nearest embeddings. In
particular, we heavily leverage its support for GPU-accelerated indices, using inverted file indices with prod-
uct quantization codes (Jegou et al., 2010). The whole processing is distributed on a compute cluster of 20
nodes equipped with 8 V100-32GB GPUs and takes less than two days to produce the LVD-142M dataset.

4 Discriminative Self-supervised Pre-training

We learn our features with a discriminative self-supervised method that can be seen as a combination of
DINO and iBOT losses with the centering of SwAV (Caron et al., 2020). We also add a regularizer to spread
features and a short high-resolution training phase. We rapidly introduce each of these approaches, but more
details can be found in the related papers, or in our open-sourced code.

• Image-level objective (Caron et al., 2021). We consider the cross-entropy loss between the
features extracted from a student and a teacher network. Both features are coming from the class
token of a ViT, obtained from different crops of the same image. We pass the student class token
through the student DINO head. This head is an MLP model outputting a vector of scores, that
we call "prototype scores". We then apply a softmax to obtain ps. Similarly, we apply the teacher
DINO head to the teacher class token to obtain teacher prototype scores. We then apply a softmax
followed by a centering with moving average (or a Sinkhorn-Knopp centering as detailed thereafter)
to obtain pt. The DINO loss term corresponds to:

LDINO = −
∑

pt log ps

We learn the parameters of the student and build the teacher head with an exponential moving
average of past iterates (He et al., 2020).

• Patch-level objective (Zhou et al., 2022a). We randomly mask some of the input patches
given to the student, but not to the teacher. We then apply the student iBOT head to the student
mask tokens. Similarly, we apply the teacher iBOT head to the (visible) teacher patch tokens
corresponding to the ones masked in the student. We then apply the softmax and centering steps
as above, and obtain the iBOT loss term:

LiBOT = −
∑

i

pti log psi
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, where i are patch indices for masked tokens. Similarly to above, we learn the parameters of the
student, and build the teacher head through exponential moving average.

• Untying head weights between both objectives. Both the DINO and the iBOT loss use a
learnable MLP projection head. It is applied to the output tokens and the loss is compute atop. In
Zhou et al. (2022a), an ablation study shows that sharing parameters between the DINO and iBOT
heads leads to better performance. At scale, we observed that the opposite is true, and we therefore
use two separate heads in all our experiments.

• Sinkhorn-Knopp centering (Caron et al., 2020). Ruan et al. (2023) recommend to replace the
teacher softmax-centering step of DINO and iBot by the Sinkhorn-Knopp (SK) batch normalization
of SwAV (Caron et al., 2020). We run the Sinkhorn-Knopp algorithm steps for 3 iterations. For the
student, we apply the softmax normalization.

• KoLeo regularizer (Sablayrolles et al., 2019). The KoLeo regularizer derives from the
Kozachenko-Leonenko differential entropy estimator (see Beirlant et al. (1997); Delattre & Fournier
(2017)) and encourages a uniform span of the features within a batch. Given a set of n vectors
(x1, . . . , xn), it is defined as

Lkoleo = − 1
n

n∑
i=1

log(dn,i),

where dn,i = minj ̸=i ∥xi − xj∥ is the minimum distance between xi and any other point within the
batch. We also ℓ2-normalize the features before computing this regularizer.

• Adapting the resolution (Touvron et al., 2019). Increasing image resolution is key to pixel-
level downstream tasks such as segmentation or detection, where small objects disappear at low
resolutions. However, training at high resolution is time and memory demanding, and instead, we
increase the resolution of images to 518×518 during a short period at the end of pretraining. This is
also similar to UniViT training from Likhomanenko et al. (2021) and FlexiViT training from Beyer
et al. (2023).

5 Efficient implementation

We consider several improvements to train models at a larger scale. We train models on A100 GPUs using
PyTorch 2.0. The code and pretrained models are made available under Apache 2.0 license 1. The details of
our models are in the appendix, Table 17. With the same hardware, compared to the iBOT implementation,
the DINOv2 code runs around 2× faster using only 1/3 of the memory.

Fast and memory-efficient attention. We implemented our own version of FlashAttention (Dao et al.,
2022) to improve memory usage and speed on the self-attention layers. Our version is on par with or
better than the original on all cases considered, while covering more use-cases and hardware. Due to the
GPU hardware specifics, the efficiency is best when the embedding dimension per head is a multiple of
64, and the matrix operations are even better when the full embedding dimension is a multiple of 256.
As a consequence, our ViT-g architecture slightly differs from the architecture proposed by Zhai et al.
(2022) in order to maximize compute efficiency, and we use an embedding dimension of 1536 with 24 heads
(64 dim/head), rather than 1408 with 16 heads (88 dim/head). Our experiments did not show significant
differences in final accuracy, and our ViT-g backbone counts 1.1B parameters.

Sequence packing. The DINO algorithm requires forwarding both large crops (at resolution 224) and
small crops (resolution 98). When split into patches, these two groups are represented by token sequences
of different lengths and cannot be forwarded together. In order to accelerate training, we use a trick called
"sequence packing," which originates from NLP (Krell et al., 2022). The idea is simple: we concatenate the

1https://github.com/facebookresearch/dinov2
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sequences we must forward through the transformers into a single long sequence. We pass this sequence
through the transformer blocks as usual. However, a block-diagonal mask is applied to the self-attention
matrix in attention layers, preventing attention between different sequences. This way, the forward is strictly
equivalent to forwarding each sequence separately. This trick gives us significant compute efficiency gains
compared to using separate forward and backward passes, as in prior implementations. The lower-level
components of our setup are available in the xFormers library2 (Lefaudeux et al. (2022)).

Efficient stochastic depth. We implement an improved version of stochastic depth (Huang et al., 2016)
that skips the computation of the dropped residuals rather than masking the result. This saves memory and
compute in proportion approximately equal to the drop rate, thanks to specific fused kernels. With high
drop rates (d = 40% in this work), this allows a drastic improvement in compute efficiency and memory
usage. The implementation consists of randomly shuffling the B samples over the batch dimension, and
slicing the first (1 − d) × B samples for the computations in the block.

Fully-Sharded Data Parallel (FSDP). Minimizing our objective with the AdamW optimizer requires
4 model replicas in float32 precision – student, teacher, optimizer first moments, optimizer second moments.
This sums to 16 GB of memory for a billion-parameter model such as our ViT-g. In order to reduce this
memory footprint per GPU, we split the model replicas across GPUs, i.e., sharding 16 GB across GPUs
using the PyTorch implementation of FSDP. Consequently, the model size is not bounded by the memory of
a single GPU but by the total sum of GPU memory across compute nodes. The Pytorch implementation of
FSDP brings a second advantage, which is to save on the cross-GPU communication costs: the weight shards
are stored in float32 precision as required by the optimizer, but broadcasting weights and reducing gradients
is done in float16 precision for the backbone (MLP heads gradients are reduced in float32 to avoid training
instabilities). This leads to approximately 50% reduction in communication costs compared to the float32
gradient all-reduce operation used in DistributedDataParallel (DDP), which is used in other self-supervised
pretraining methods (Caron et al., 2021; Zhou et al., 2022a). As a consequence, the training procedure
scales more efficiently than DDP with float16 autocast when scaling the number of GPU nodes. Overall,
Pytorch-FSDP mixed-precision is superior to DDP with autocast in virtually all cases we encountered.

Model distillation. Most of our technical improvements to the training loop aim at improving the training
of large models over large quantities of data. For smaller models, we distill them from our largest model,
the ViT-g, instead of training them from scratch. Knowledge distillation (Hinton et al., 2014) aims at
reproducing the output of a large model with a smaller model by minimizing some distance between both
outputs for a set of given inputs. Since our objective function is a form of distillation from the teacher
network to the student network, we leverage the same training loop with a few exceptions: we use a larger
model as a frozen teacher, keep a spare EMA of the student that we use as our final model, remove the
masking and stochastic depth, and, apply the iBOT loss on the two global crops. In our ablations, we
observe that this approach achieves better performance than training from scratch, even for a ViT-L. Our
distillation method ends up close to the one described by Duval et al. (2023), except we do not modify the
loss terms for distillation and evaluate the EMA of the student.

6 Ablation Studies

We present a set of ablations to empirically validate different components of our pipeline: the technical
modifications described in Sec. 4, the pretraining data and the impact of model distillation. We consider
various downstream tasks that are described in Sec. 7.

6.1 Improved Training Recipe

Our approach improves over the iBOT method by combining it with several existing components described
in Sec. 4. To evaluate their importance, we train multiple models where we successively add components to
a baseline iBOT model. We report the Top-1 accuracy on the validation set of ImageNet-1k with a k-NN

2https://github.com/facebookresearch/xformers
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INet-1k k-NN INet-1k linear
iBOT 72.9 82.3
+(our reproduction) 74.5 ↑ 1.6 83.2 ↑ 0.9
+LayerScale, Stochastic Depth 75.4 ↑ 0.9 82.0 ↓ 1.2
+128k prototypes 76.6 ↑ 1.2 81.9 ↓ 0.1
+KoLeo 78.9 ↑ 2.3 82.5 ↑ 0.6
+SwiGLU FFN 78.7 ↓ 0.2 83.1 ↑ 0.6
+Patch size 14 78.9 ↑ 0.2 83.5 ↑ 0.4
+Teacher momentum 0.994 79.4 ↑ 0.5 83.6 ↑ 0.1
+Tweak warmup schedules 80.5 ↑ 1.1 83.8 ↑ 0.2
+Batch size 3k 81.7 ↑ 1.2 84.7 ↑ 0.9
+Sinkhorn-Knopp 81.7 = 84.7 =
+Untying heads = DINOv2 82.0 ↑ 0.3 84.5 ↓ 0.2

Table 1: Ablation study of the training differences between iBOT and DINOv2. We optimize
for k-NN performance, as in our experience, the linear probe performance is lower-bounded by the k-NN
performance. Some modifications, like LayerScale and a high Stochastic Depth (rate=0.4), incur a decrease
in linear probe performance, but have the benefits of increasing the stability of training by avoiding NaN
loss values during training (Touvron et al., 2022). Overall, these modifications allowed for the next set of
improvements to be added. Experiments are run using the ViT-Large architecture on ImageNet-22k.

Training Data INet-1k Im-A ADE-20k Oxford-M iNat2018 iNat2021 Places205
INet-22k 85.9 73.5 46.6 62.5 81.1 85.6 67.0
INet-22k \ INet-1k 85.3 70.3 46.2 58.7 80.1 85.1 66.5
Uncurated data 83.3 59.4 48.5 54.3 68.0 76.4 67.2
LVD-142M 85.8 73.9 47.7 64.6 82.3 86.4 67.6

Table 2: Ablation of the source of pretraining data. We compare the INet-22k dataset that was
used in iBOT to our dataset, LVD-142M. Each model is trained for the same number of iterations, that is
smaller than in our final run, without high-resolution adaptation. Pretraining on LVD-142M maintains the
performance over INet-1k while leading to models that perform better in other domains.

and a linear probe in Table 1. Generally, we observe that each component improves the performance on
either k-NN or linear probing and even both in most cases. Only LayerScale and Stochastic Depth incur a
performance drop in linear probing but significantly improve the training stability in our experience.

6.2 Pretraining Data Source

The quality of features is directly related to the quality of the pretraining data. In this experiment, we
probe the impact of LVD-142M compared to ImageNet-22k, a commonly used pretraining dataset, or using
directly raw and uncurated data. For the uncurated dataset, we randomly sample 142 million images from
the same data source as LVD-142M. We train a ViT-g/14 on each dataset for the same number of iterations.
We also include a variant of ImageNet-22k obtained by removing the synsets of ImageNet-1k (INet-22k \
INet-1k) for completeness. We report the comparisons in Table 2.

The most salient observation is that training on a curated set of images works better on most benchmarks
than training on uncurated data. This confirms the benefit of curating data, even in the case of self-
supervised pretraining. When compared with models trained on ImageNet-22k, training on LVD-142M is
also superior on all the benchmarks but ImageNet-1k. This confirms that training on a more diverse set of
images improves the quality of the features in domains that are not covered by ImageNet-22k. We also see
that training on our curated data increases the performances on domains that are not used for the curation
process (INaturalist 2018, 2021 and Places205), proving that scale and diversity can benefit unseen domains.
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Figure 4: Model scale versus data scale. Evolution of performance as a function of model size for
two different pretraining datasets: ImageNet-22k (14M images) and LVD-142M (142M images). The ViT-g
trained on LVD-142M surpasses the ViT-g trained on ImageNet-22k on most benchmarks.

KoLeo INet-1k Im-A ADE-20k Oxford-M
✕ 85.3 70.6 47.2 55.6
✓ 85.8 72.8 47.1 63.9

(a) Koleo loss

MIM INet-1k Im-A ADE-20k Oxford-M
✕ 85.3 72.0 44.2 64.3
✓ 85.8 72.8 47.1 63.9

(b) MIM objective in iBOT

Table 3: (a) Effect of the KoLeo loss term. (b) Effect of the iBOT Masked Image Modeling (MIM) loss
term. Evaluation performed on ImageNet-{1k,A} (classification with linear probe, accuracy %), ADE-20k
(segmentation with linear layer, mIoU) and Oxford-M (image retrieval, mAP). Each model is trained on the
same number of iterations, that is smaller than our final run. The KoLeo loss term improves nearest-neighbor
search tasks (e.g. retrieval), and the MIM loss improves patch-level tasks (e.g. segmentation).

Overall, the conclusion of this ablation is that our dataset provides a good balance of different types of
images that leads to the best performance overall.

6.3 Model Size and Data

We quantify the importance of scaling data with the model size in Fig. 4. As the size of models grow, training
on LVD-142M becomes more beneficial than training on ImageNet-22k. For instance, a ViT-g trained on
LVD-142M matches the performance on ImageNet-1k of a model trained on ImageNet-22k while significantly
outperforming it on the other benchmarks.

6.4 Loss Components

We validated the proposed technical improvements in Sec. 6.1 by adding them incrementally. This section
analyzes the performance hit observed if we ablate specific loss terms, starting from our best-performing
model. We ablate the importance of the KoLeo loss and the impact of the masked image modeling term.
For both, we report performance on ImageNet-1k using a linear classifier, ADE-20k segmentation using a
linear classifier, and nearest-neighbor image retrieval on Oxford-M. Table 3a shows the impact of using the
KoLeo loss. We see that the instance retrieval performance improves by more than 8%, confirming that this
term helps spread features in the output space. At the same time, the other metrics do not suffer from this
regularization. In Table 3b, we show the impact of using the masked image modeling term from iBOT. This
term is critical for dense prediction tasks, leading to almost 3% performance improvement.

6.5 Impact of Knowledge Distillation

For small architectures, we distill larger models instead of training them from scratch. We use the distillation
procedure described in Sec. 5. We evaluate the effectiveness of this approach by comparing a ViT-L/14
trained from scratch with one distilled from a ViT-g/14 over 12 benchmarks in Fig. 5. We also report the
performance of the ViT-g/14 used for distillation as a topline. The distilled model outperforms the one
trained from scratch on all 12 benchmarks, validating our pretraining approach for small models.
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(a) Comparison on individual metrics

Arch Method INet-1k Segm. Depth↓ Classif.
ViT-g/14 Scratch 86.5 73.4 1.00 92.1
ViT-L/14 Scratch 84.5 72.2 1.10 90.2
ViT-L/14 Distill 86.3 73.3 1.08 91.2

Arch Method Finegr. Retriev. ARSketch Video
ViT-g/14 Scratch 78.3 75.2 77.0 69.3
ViT-L/14 Scratch 75.8 71.3 69.5 67.3
ViT-L/14 Distill 77.6 76.3 74.5 67.5

(b) Averaged metrics on 8 vision tasks

Figure 5: Effectiveness of knowledge distillation. Comparison between a ViT-L trained from scratch
or distilled from DINOv2 using ViT-g/14. For reference, we also report the performance of the ViT-g/14
teacher. We show that a ViT-L model distilled from a frozen ViT-g outperforms a the same model trained
from scratch on all benchmarks, sometimes even outperforming the distillation target.
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Figure 6: Role of resolution. Performance of ViT-L/16 trained on ImageNet-1k at fixed resolution (“224”
and “416”) or trained at 224 then 416 for a short duration (“224→416”). We train linear classifiers on top of
frozen features at different resolutions and report Top-1 accuracy on ImageNet and mIoU on ADE-20k. We
observe that performing SSL training at high resolution for a short duration achieve behavior and results
close to training at the same high resolution for the full training, at a fraction of the cost.

6.6 Impact of Resolution

We measure the impact of changing the resolution during the pretraining on the performance of image and
patch-level features. We consider models trained from scratch using a fixed resolution of either 224 × 224 or
416×416, and a model trained from scratch at 224×224, then resumed for 10k more iterations at 416×416.
High-resolution training is compute-intensive, so we conduct this ablation on a small setup: a ViT-L/16
trained on ImageNet1k. In Fig. 6, we report the performance of a linear probe on ImageNet-1k and ADE-
20k, evaluated at various resolutions. The model trained on high-resolution images performs best across
resolutions, but this comes at a high cost: training at 416 is approximately 3 × more compute-intensive
than training at 224. On the other hand, training at high resolution for only 10k iterations at the end of the
training is almost as good and only requiring a fraction of the compute. As a consequence, we include this
step at the end of the training rather than training at a high resolution from scratch.
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7 Results

In this section, we present the empirical evaluation of our models on many image understanding tasks. We
evaluate both global and local image representations, on category and instance-level recognition, semantic
segmentation, monocular depth prediction, and action recognition. We detail the list of benchmarks in
Appendix C. The goal of this evaluation is twofold. First, we show that our self-supervised features outper-
form the current state of the art by a very large margin. Second, we show that they match, or surpass the
performance of weakly-supervised ones on a substantial number of tasks.

Baselines. In our comparisons, we use two kinds of models as baselines. We compare to the best performing
self-supervised models that are openly available. First, we run our evaluations for MAE (He et al., 2022),
DINO (Caron et al., 2021), SEERv2 (Goyal et al., 2022a), MSN (Assran et al., 2022), EsViT (Li et al.,
2022a), Mugs (Zhou et al., 2022b) and iBOT (Zhou et al., 2022a). When several architectural variants were
proposed for a given method, we report results for the one that leads to best top-1 accuracy on ImageNet-
1k. Second, we report performance of open-source weakly-supervised models such as CLIP (Radford et al.,
2021), OpenCLIP (Ilharco et al., 2021; Cherti et al., 2023), and SWAG (Singh et al., 2022). When evaluating
models on ImageNet-1k, we report the performance for each of the aforementioned methods. For all other
evaluations, we report the four best-performing models amongst SSL ones. Also, for reference, we report the
best performing OpenCLIP-G for weakly-supervised ones.

7.1 ImageNet Classification

As a first evaluation, we probe the quality of the holistic image representation produced by the model on the
ImageNet-1k classification dataset. We evaluate the quality of features by training a simple classifier over a
frozen backbone, and do not perform finetuning of the backbone weights. Following previous work, we use
a linear model for simplicity, ensuring a reproducible evaluation, despite the fact that classes may not be
linearly separable. Because most SSL methods were developped using ImageNet-1k validation performance
as a debugging signal, we also report the top-1 accuracy on ImageNet-ReaL and ImageNet-V2. In order
to report this additional validation performance, for all models, we run the evaluation with our code. We
compare our frozen features to the best publicly available SSL features in Table 4, regardless of architecture
or pretraining data. We see the components proposed in this work lead to a very significant improvement
(+4.2%) over the previous state of the art (iBOT ViT-L/16 trained on ImageNet-22k) on linear evaluation.
At the same time, we also see that the performance increase on the alternative test sets is larger for our
method, indicating stronger generalization. We describe details of our linear evaluation in Appendix B.3.

How far are we from weakly-supervised models? We also want to validate that our features are com-
petitive with state-of-the-art open-source weakly supervised models. To this end, we compare on ImageNet-
1k, using the linear evaluation, to three off-the-shelf methods with several architectural variants. For all
models, we run the linear evaluation using our code, after making sure that our numbers match those re-
ported in technical reports and papers. We show the result of this evaluation in Table 4. We see that our
backbone, surpases the performance of OpenCLIP with a ViT-G/14 architecture (+0.3%) and EVA-CLIP
with a ViT-g/14 (+0.1%). At the same time, we also observe that our performance on the ImageNet-V2 test
set is significantly better (+1.1% versus EVA-CLIP), indicating better generalization. For the remainder of
this section, we report OpenCLIP-G as a reference for weakly-supervised models.

Can we finetune the encoders? We question if the ability of our models to produce high quality frozen
features impact their performance when finetuned with supervision on a specific dataset. While this is not
core to this paper, this experiment is indicative of whether we have involuntarily specialized our models
to the setting of linear evaluations of frozen features. To run this sanity check, we apply the finetuning
pipeline from Touvron et al. (2022), without tweaking hyper-parameters. In Table 5, we show that the
Top-1 accuracy on the validation set of ImageNet-1k improves by more than +2% when the backbone is
finetuned. This is true both when using models at resolution 224 and 448. Further gains can be obtained by
tuning the hyper-parameters of the finetuning, but this is beyond the goal of this sanity check. Nonetheless,
our best finetuned performance (88.9%) is only a couple of percent below (−2.2%) the absolute state of the
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kNN linear
Method Arch. Data Text sup. val val ReaL V2

Weakly supervised
CLIP ViT-L/14 WIT-400M ✓ 79.8 84.3 88.1 75.3
CLIP ViT-L/14336 WIT-400M ✓ 80.5 85.3 88.8 75.8
SWAG ViT-H/14 IG3.6B ✓ 82.6 85.7 88.7 77.6
OpenCLIP ViT-H/14 LAION-2B ✓ 81.7 84.4 88.4 75.5
OpenCLIP ViT-G/14 LAION-2B ✓ 83.2 86.2 89.4 77.2
EVA-CLIP ViT-g/14 custom∗ ✓ 83.5 86.4 89.3 77.4

Self-supervised
MAE ViT-H/14 INet-1k ✕ 49.4 76.6 83.3 64.8
DINO ViT-S/8 INet-1k ✕ 78.6 79.2 85.5 68.2
SEERv2 RG10B IG2B ✕ – 79.8 – –
MSN ViT-L/7 INet-1k ✕ 79.2 80.7 86.0 69.7
EsViT Swin-B/W=14 INet-1k ✕ 79.4 81.3 87.0 70.4
Mugs ViT-L/16 INet-1k ✕ 80.2 82.1 86.9 70.8
iBOT ViT-L/16 INet-22k ✕ 72.9 82.3 87.5 72.4

DINOv2

ViT-S/14 LVD-142M ✕ 79.0 81.1 86.6 70.9
ViT-B/14 LVD-142M ✕ 82.1 84.5 88.3 75.1
ViT-L/14 LVD-142M ✕ 83.5 86.3 89.5 78.0
ViT-g/14 LVD-142M ✕ 83.5 86.5 89.6 78.4

Table 4: Linear evaluation on ImageNet-1k of frozen pretrained features. We report Top-1 accuracy
on the validation set for publicly available models trained on public or private data, and with or without
text supervision (text sup.). For reference, we also report the kNN performance on the validation set. We
compare across any possible architectures (Arch.), at resolution 224 × 224 unless stated otherwise. The
dataset used for training EVA-CLIP is a custom mixture, see paper for details (Fang et al., 2023).

arts (91.1%), obtained by Chen et al. (2023a). As DINOv2 leads to features that are strong in both the
linear and finetuning settings, a strong property of our approach is that finetuning is optional.

Arch. Res. Linear Finetuned ∆

ViT-g/14 224 86.5 88.5 +2.0
448 86.7 88.9 +2.2

Table 5: Supervised finetuning on ImageNet-1k. We use the pipeline of Touvron et al. (2022) to
finetune our encoders on ImageNet-1k at resolutions 224 × 224 or 448 × 448. We compare with the accuracy
obtained with linear probing and observe only modest improvements with fine-tuning: this suggests that
DINOv2 features already perform well out-of-the-box.

Robustness analysis. To complement our study, and probe the generalization of our features, we evaluate
our ImageNet-1k models trained with linear classification heads on domain generalization benchmarks. We
use the best performing linear classifier as described above and simply run inference on those benchmarks.
Please note that most results in the literature are obtained with models that are finetuned end-to-end on
ImageNet-1k. We show the result of this experiment in Table 6. When comparing with state-of-the-art SSL
methods, our models shows drastically better robustness (+29.6% on A (Hendrycks et al., 2021b), +22.1%
on R (Hendrycks et al., 2021a) and +23.0% on Sketch (Wang et al., 2019) compared to iBOT). Our model
also improves upon the best weakly-supervised model on ImageNet-A while lagging behind on R and Sketch.
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Method Arch Data Im-A Im-R Im-C↓ Sketch
OpenCLIP ViT-G/14 LAION-2B 63.8 87.8 45.3 66.4
MAE ViT-H/14 INet-1k 10.2 34.4 61.4 21.9
DINO ViT-B/8 INet-1k 23.9 37.0 56.6 25.5
iBOT ViT-L/16 INet-22k 41.5 51.0 43.9 38.5

DINOv2

ViT-S/14 LVD-142M 33.5 53.7 54.4 41.2
ViT-B/14 LVD-142M 55.1 63.3 42.7 50.6
ViT-L/14 LVD-142M 71.3 74.4 31.5 59.3
ViT-g/14 LVD-142M 75.9 78.8 28.2 62.5

Table 6: Domain Generalization with a linear probe on top of frozen features at a resolution of 224.
Higher numbers are better for all benchmarks except Im-C.

Image classification Video classification
Feature Arch iNat2018 iNat2021 Places205 K400 UCF-101 SSv2
OpenCLIP ViT-G/14 73.0 76.0 69.8 78.3 90.7 35.8
MAE ViT-H/14 31.0 32.3 52.4 54.2 70.6 29.2
DINO ViT-B/8 59.6 68.3 60.4 64.5 85.0 32.6
iBOT ViT-L/16 66.3 74.6 64.4 72.6 88.6 38.7

DINOv2

ViT-S/14 69.0 74.2 62.9 67.8 87.0 33.1
ViT-B/14 76.4 81.1 66.2 73.2 89.1 34.4
ViT-L/14 80.4 85.1 67.3 76.3 90.5 35.6
ViT-g/14 81.6 85.7 67.5 78.4 91.2 38.3

Table 7: Linear evaluation on other image and video classification. The image benchmarks contain
a large quantity of fine-grained examples about objects or scenes. The video benchmarks cover action
classification and human-object interaction. All the features are frozen with a linear probe on top.

7.2 Additional Image and Video classification Benchmarks

In this section we study the generalization of our features on downstream classification benchmarks. We
consider two sets of evaluations in that context. On one hand, we use large and finegrained datasets such
as iNaturalist and Places205. On the other, we use the 12 image classification tasks originally proposed
in SimCLR (Chen et al., 2020). For iNaturalist 2018, iNaturalist 2021, and Places205, we train a linear
classifier with data augmentations as in Sec. 7.1 We report top-1 accuracy for those three datasets in Table 7.
Interestingly, our model significantly outperforms OpenCLIP ViT-G/14 on both variants of iNaturalist
(+8.6% and +9.7% for 2018 and 2021 respectively), and lags slightly behind on Places 205 (−2.3%).

In a second set of evaluations, we measure the performance of our model on video action recognition even
though our features were not trained on videos.. We evaluated features on three datasets, namely UCF-
101 (Soomro et al., 2012), Kinetics-400 (Kay et al., 2017) and Something-Something v2 (Goyal et al., 2017).
For this evaluation, we pick 8 evenly spaced frames in the video and train a linear classifier on the average
of the features for UCF and K-400. For SSv2, we opt for concatenation to retain more temporal information
than with feature averaging. For each dataset, we measure average accuracy and report the results in
Table 7. We see that amongst self-supervised approaches, our model clearly sets a new state of the art.
Moreover, our model matches the accuracy of the OpenCLIP features on UCF and Kinetics (+0.1% and
+0.5% respectively) and clearly outperforms them on SSv2 (+2.5%). This is particularly interesting, as
SSv2 requires a much richer understanding of the video frames.

Finally, in Table 8, we compare selected frozen features on 12 transfer classification benchmarks initially
proposed by Chen et al. (2020). This benchmark covers scenes, objects (food, cars, planes), and textures.
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Feature Arch Food C10 C100 SUN Cars Aircr VOC DTD Pets Cal101 Flowers CUB Avg
OpenCLIP ViT-G/14 94.5 98.7 91.0 84.0 96.1 80.2 89.3 86.0 95.7 98.1 99.5 89.9 91.9
MAE ViT-H/14 78.4 96.1 83.9 63.9 56.1 63.4 84.3 75.4 89.4 95.9 92.3 57.2 78.0
DINO ViT-B/8 85.1 97.2 86.9 70.3 76.6 70.6 86.7 79.6 93.2 95.4 97.6 81.7 85.1
iBOT ViT-L/16 91.0 99.0 92.8 75.6 71.8 72.4 89.0 80.7 87.7 97.5 99.6 82.1 86.6

DINOv2

ViT-S/14 89.1 97.7 87.5 74.4 81.6 74.0 87.8 80.6 95.1 97.0 99.6 88.1 87.7
ViT-B/14 92.8 98.7 91.3 77.3 88.2 79.4 88.2 83.3 96.2 96.1 99.6 89.6 90.1
ViT-L/14 94.3 99.3 93.4 78.7 90.1 81.5 88.3 84.0 96.6 97.5 99.7 90.5 91.2
ViT-g/14 94.7 99.5 94.4 78.7 91.4 87.2 89.0 84.5 96.7 97.6 99.7 91.6 92.1

Table 8: Linear evaluation of frozen features on fine-grained benchmarks. Accuracy on 12 bench-
marks covering objects, scenes and textures following the evaluation protocol proposed in Chen et al. (2020).

Oxford Paris Met AmsterTime
Feature Arch M H M H GAP GAP- ACC mAP
OpenCLIP ViT-G/14 50.7 19.7 79.2 60.2 6.5 23.9 34.4 24.6
MAE ViT-H/14 11.7 2.2 19.9 4.7 7.5 23.5 30.5 4.2
DINO ViT-B/8 40.1 13.7 65.3 35.3 17.1 37.7 43.9 24.6
iBOT ViT-L/16 39.0 12.7 70.7 47.0 25.1 54.8 58.2 26.7

DINOv2

ViT-S/14 68.8 43.2 84.6 68.5 29.4 54.3 57.7 43.5
ViT-B/14 72.9 49.5 90.3 78.6 36.7 63.5 66.1 45.6
ViT-L/14 75.1 54.0 92.7 83.5 40.0 68.9 71.6 50.0
ViT-g/14 73.6 52.3 92.1 82.6 36.8 73.6 76.5 46.7

Table 9: Evaluation of frozen features on instance-level recognition. We consider 4 different bench-
marks and report their main metrics.

We replace the Birdsnap dataset with CUB because the former was not publicly available in its entirety. We
follow the experimental protocol as outlined by Chen et al. (2020), namely training a logistic regression on
precomputed features. Our model significantly outperforms state-of-the-art SSL models, with most notable
differences on Stanford Cars (+14.8% versus DINO ViT-B/8) and FGVC Aircraft (+14.8% versus iBOT
ViT-L/16). Even though these benchmarks favor text-guided pretraining, our features are still competitive
with OpenCLIP on most classification benchmarks, with the exception of a few datasets, especially SUN
(−5.3%) and Cars (−4.7%).

7.3 Instance Recognition

In this experiment, we probe our model on the task of instance-level recognition using a non-parametric
approach. Images from a database are ranked according to their cosine similarity with a query image. We
evaluated our model and compare to baselines on Paris and Oxford, that are landmark recognition bench-
marks. We also evaluated on Met, a dataset of artworks from the Metropolitan museum, and AmsterTime,
containing street view images matched to archival images of Amsterdam. We measure performance by com-
puting the mean average precision and report our results in Table 9. We see that our features significantly
outperform both SSL (+41% mAP on Oxford-Hard), and weakly-supervised (+34% mAP on Oxford-Hard)
ones. It is interesting to see that our features perform well across task granularities, both at the category-level
and instance-level. This is a desirable property for strong off-the-shelf computer vision features.
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ADE20k CityScapes Pascal VOC
(62.9) (86.9) (89.0)

Method Arch. lin. +ms lin. +ms lin. +ms
OpenCLIP ViT-G/14 39.3 46.0 60.3 70.3 71.4 79.2
MAE ViT-H/14 33.3 30.7 58.4 61.0 67.6 63.3
DINO ViT-B/8 31.8 35.2 56.9 66.2 66.4 75.6
iBOT ViT-L/16 44.6 47.5 64.8 74.5 82.3 84.3

DINOv2

ViT-S/14 44.3 47.2 66.6 77.1 81.1 82.6
ViT-B/14 47.3 51.3 69.4 80.0 82.5 84.9
ViT-L/14 47.7 53.1 70.3 80.9 82.1 86.0
ViT-g/14 49.0 53.0 71.3 81.0 83.0 86.2

Table 10: Semantic segmentation on ADE20K, CityScapes and Pascal VOC with frozen features
and a linear classifier (lin.) and with multiscale (+ms). The absolute state of the art – from Wang et al.
(2022), Liu et al. (2021) and Chen et al. (2018) respectively – are mentioned at the top of the Table. For
reference, using the Mask2Former pipeline (Steiner et al., 2021) with a ViT-Adapter (Chen et al., 2023b) on
top of our frozen ViT-g/14 backbone gives 60.2 mIoU on ADE-20k.

7.4 Dense Recognition Tasks

We probe the quality of patch-level features extracted from our network on several dense downstream tasks.
We consider semantic image segmentation and monocular depth estimation in several settings and we conduct
evaluations on multiple datasets for each.

Semantic segmentation. For our semantic segmentation evaluation, we consider two different setups.
Linear: a linear layer is trained to predict class logits from a patch tokens. It is used to produce a low-
resolution logit map (eg 32x32 for a model with patch size 16), which is then upsampled to full resolution
(512x512) to obtain a segmentation map. This procedure is extremely simple but cannot easily produce
high-resolution segmentations. +ms: a boosted version of the linear setup. We concatenate the patch
tokens of the 4 last layers, use a larger image resolution of 640, and use multiscale test-time augmentations
to improve the predictions. We report the performance of our model variants as well as the baselines on
three datasets under the two setups in Table 10.

Our models show very good performance on all datasets and for all setups. Interestingly, our evaluation
using +ms is on par with fully finetuning MAE with an Upernet decoder (53.0 versus 53.6 mIoU). This is
surprising because we use a significantly simpler predictor. Also, our best model, when evaluated using the
boosted recipe, almost matches the state of the art on Pascal VOC (86.2 versus 89.0 mIoU).

Frozen backbone in a SOTA pipeline. In a final experiment, we freeze our backbone, and plug it into
a ViT-Adapter Chen et al. (2023b) with a Mask2former head (Cheng et al., 2022). We tune the weights of
the adapter and head, but keep the backbone frozen, meaning 66% of the weights are frozen. This allows
for a lighter segmentation training than full end-to-end fine-tuning. With this setup, we reach 60.2 mIoU
on ADE20k, close to the competitive state of the art, standing at 62.9 mIoU (Wang et al., 2022). Although
our setup for this experiment doesn’t makes use of the optimisations described in Sec. 5, the segmentation
training in this experiment took 28 hours on 16 V100 GPUs.

Depth estimation. In this experiment, we evaluate our patch-level features on three monocular depth
estimation benchmarks: NYUd, KITTI and zero-shot transfer from NYUd to SUN3d. We follow the evalu-
ation protocol of Li et al. (2022b). We consider three different setups for this evaluation. lin. 1: we extract
the last layer of the frozen transformer and concatenate the [CLS] token to each patch token. Then we
bi-linearly upsample the tokens by a factor of 4 to increase the resolution. Finally we train a simple linear
layer using a classification loss by dividing the depth prediction range in 256 uniformly distributed bins and
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NYUd KITTI NYUd → SUN RGB-D
(0.330) (2.10) (0.421)

Method Arch. lin. 1 lin. 4 DPT lin. 1 lin. 4 DPT lin. 1 lin. 4 DPT
OpenCLIP ViT-G/14 0.541 0.510 0.414 3.57 3.21 2.56 0.537 0.476 0.408
MAE ViT-H/14 0.517 0.483 0.415 3.66 3.26 2.59 0.545 0.523 0.506
DINO ViT-B/8 0.555 0.539 0.492 3.81 3.56 2.74 0.553 0.541 0.520
iBOT ViT-L/16 0.417 0.387 0.358 3.31 3.07 2.55 0.447 0.435 0.426

DINOv2

ViT-S/14 0.449 0.417 0.356 3.10 2.86 2.34 0.477 0.431 0.409
ViT-B/14 0.399 0.362 0.317 2.90 2.59 2.23 0.448 0.400 0.377
ViT-L/14 0.384 0.333 0.293 2.78 2.50 2.14 0.429 0.396 0.360
ViT-g/14 0.344 0.298 0.279 2.62 2.35 2.11 0.402 0.362 0.338

Table 11: Depth estimation with frozen features. We report performance when training a linear
classifier on top of one (lin. 1) or four (lin. 4) transformer layers, as well, as the DPT decoder (DPT) of
Ranftl et al. (2021). We report the RMSE metric on the 3 datasets. Lower is better. For reference, we
report state-of-the-art results taken from Li et al. (2022b) on each benchmark on top of the Table.

use a linear normalization following Bhat et al. (2021). lin. 4: we use the same protocol that we use with
one layer, but concatenate the tokens from layers l = {3, 6, 9, 12} for ViT-S/B, l = {5, 12, 18, 24} for ViT-L,
and l = {10, 20, 30, 40} for ViT-g. DPT: we use the DPT decoder (Ranftl et al., 2021) on top of our frozen
models and setup a regression task. We scale the size of the head following the dimension of the features for
each architecture. We show results for all baselines, all datasets and all setups in Table 11.

From this table, we see that our features clearly surpass the best SSL and WSL features available. It
is interesting to see that iBOT features extracted from a ViT-L outperform the ones of OpenCLIP with
a ViT-G. This observation supports the intuition that caption-based feature learning fails to learn subtle
patterns like this one. Also, our model, with the DPT decoder and frozen backbone, matches or exceeds
the performance of the recent work of Li et al. (2022b). Finally, the out-of-domain generalization result on
SUN-RGBd shows that our features allow very good transfer between domains. A depth prediction module
trained on indoor scenes from NYUd generalizes pretty well to the outdoor examples of SUN-RGBd.

7.5 Qualitative Results

In this final section of the empirical evaluation of our features, we propose a few qualitative analyses.

Semantic Segmentation and Depth Estimation. We show some qualitative results for our dense
prediction evaluations: segmentation on ADE20K in Fig. 7 and depth estimation on NYUd, KITTI and
SUN RGB-D in Fig. 7. We compare DINOv2 with OpenCLIP with a linear classifier on each dataset. While
not perfect, the linear segmentation model using our DINOv2 backbone produces good results and behaves
much better than the OpenCLIP one under this evaluation setup. Indeed, the segmentation mask produced
by OpenCLIP-G shows many artifacts and disconnected components. The qualitative results on depth
estimation clearly illustrate the quantitative gap between OpenCLIP and DINOv2. These results highlight
that our features, as well as the features extracted from OpenCLIP, are able to linearly separate complex
information such as depth, even though neither was trained with this type of information. However, our
features lead to a much smoother depth estimation, with less artifacts. Some objects such as the chair on
the SUN RGB-D image are completely ignored by OpenCLIP and correctly positioned using our features.

Out-of-distribution generalization. We show a few examples of applying the depth prediction and
segmentation linear classifiers to out-of-distribution examples in Fig. 8. The qualitative results support our
claim that our features transfer between domains. The quality of the depth and segmentation predicted for
pictures of animals, or paintings is very good, even though the domains are very different.
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Figure 7: Segmentation and depth estimation with linear classifiers. Examples from ADE20K,
NYUd, SUN RGB-D and KITTI with a linear probe on frozen OpenCLIP-G and DINOv2-g features.

Figure 8: Examples of out-of-distribution examples with frozen DINOv2-g features and a linear probe.

PCA of patch features. We show the results of the principal component analysis (PCA) performed on
the patch features extracted by our model. We keep only patches with a positive value after we threshold
the first component. This procedure turns out to separate the image’s main object from the background. We
compute a second PCA on the remaining patches across three images depicting the same category. We color
the three first components with three different colors and present the results in Fig. 1 and 9. There are two
interesting observations: first, our unsupervised foreground / background detector, based on detecting the
highest variance direction, performs very well and is capable of delineating the boundary of the main object
in the picture. Second, the other components correspond to "parts" of objects and match well for images of
the same category. This is an emerging property – our model was not trained to parse parts of objects.
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Figure 9: More visualization of the first PCA components. We compute the PCA between the patches
from all of the images and show their first 3 components. Each component corresponds to a specific color
channel. Same parts are matched between related images depsite changes of pose, style or even objects.
Background is removed by removing patches with a negative score of the first PCA component.

Patch matching. Finally, we explore what type of information our patch-level features contain by match-
ing them across images. We start by detecting the foreground object using the procedure described above.
Then, we compute the euclidean distance between patch features extracted from two images and map them
by solving an assignment problem. In order to reduce the number of matches, we then apply a non-maximum
suppression to keep only the salient ones. In Fig. 10, we show some examples of such matchings.

We observe that the features seem to capture information about semantic regions that serve similar purpose
in different objects or animals. For instance, the wing of a plane matches the wing of a bird. We also observe
that the model is robust to style (image versus drawing), and to large variation of poses (see the elephant).

8 Fairness and Bias Analysis

We conduct two fairness evaluations of our models. We probe for geographical fairness and potential harmful
label associations. For both evaluations, we experiment with our largest ViT-g model.

8.1 Geographical Fairness

We evaluate geographical fairness on the Dollar Street dataset introduced in De Vries et al. (2019) using
the evaluation protocol of Goyal et al. (2022b). This benchmark compares performance across countries
and income levels. It contains 16,073 images from 289 households across 54 countries. The task is to
recognize 94 concepts that vary visually between households based on income or location. In Table 12, we
compare our model with SEERv2 (Goyal et al., 2022a), a model trained on a geographically diverse set of
images. Our model is slightly fairer across regions and incomes than the SEERv2 model and significantly
better than the supervised baseline reported by Goyal et al. (2022a). However, we still observe a significant
difference between regions, particularly in Africa, where our model performance drops by 25.7% compared to
Europe. This shows that our model is still biased toward Western countries. Similarly, our model performs
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Figure 10: Matching across images. We match patch-level features between images from different do-
mains, poses and even objects that share similar semantic information. This exhibits the ability of our model
to transfer across domains and understand relations between similar parts of different objects.

Income buckets Regions
Method Arch. Data low medium high Africa Asia Americas Europe
SEERv2 RG-10B IG-1B 59.7 78.5 86.6 65.9 76.3 81.1 85.6
DINOv2 ViT-g/14 LVD-142M 67.4 83.3 90.5 74.0 81.6 86.2 89.7

Table 12: Geographical fairness and diversity analysis across income buckets and regions.

significantly better on high-income households than low-income ones, with a difference of 31.7%. Despite
improvements, we observe significant biases in our models toward wealthy households from Western countries.

8.2 Gender, Skintones and Age

In a second set of evaluations, we question how our model classifies images of people of different gender, skin
tone, and age (all self-reported). We follow the protocol of Goyal et al. (2022b), where we train a multiclass
classifier on a subset of 619 classes of ImageNet-22k. We group the 619 classes into four broader categories:
Human, Possibly Human, Non-Human, or Crime. Non-Human and Crime are considered harmful. Using
this classifier, we run inference on 2955 images from the Casual Conversations dataset (Hazirbas et al., 2021)
and keep all labels in the top-5 that are assigned a probability of 0.1 or more. Because of that, we can assign
multiple classes to each image. We make one modification to the original evaluation protocol: we do not
backpropagate gradients to the backbone and keep it frozen. We compare our model to SEERv2 in Table 13.
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Gender Skintone Age Groups

Model Assoc. female
darker

female
lighter

male
darker

male
lighter 18-30 30-45 45-70 70+

SEER Non-Human 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
RG-10B Crime 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Human 94.9 95.8 86.6 79.0 90.5 88.3 91.9 82.3
Possibly-Human 13.6 6.7 65.0 60.2 32.8 37.2 29.4 6.5

DINOv2 Non-Human 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ViT-g/14 Crime 0.0 0.0 0.2 0.0 0.0 0.1 0.0 0.0

Human 97.3 97.7 86.1 84.0 91.2 90.2 93.2 88.7
Possibly-Human 15.8 17.2 52.2 48.1 35.3 37.3 23.0 9.7

Table 13: Label association fairness evaluation across gender, skintones and age groups. We
follow the protocol proposed by Goyal et al. (2022b) with a slight modification. Instead of finetuning the
backbone, we simply learn a linear classifier on the subset of 619 classes of ImageNet-22k.

Model to GPU Type GPU Power GPU-hours PUE Total power Carbon emitted
Reproduce consumption consumption (tCO2eq)
DINOv2-g A100-40GB 400W 22,016 1.1 9.7 MWh 3.7

Table 14: Carbon footprint of reproducing DINOv2. We report the potential carbon emission of
reproducing DINOv2-g when assuming a power consumption for the A100-40GB of 400W, a PUE of 1.1 and
carbon intensity factor of 0.385 kg CO2e per KWh.

Our model often classifies images of all groups as Human without large deviations across skin tones. Neither
SEERv2 nor DINOv2 predict harmful labels from the Non-Human or Crime meta-categories (except for two
instances where the background contains bars visually similar to prison bars). We see that our model triggers
the Possibly-Human classes often. This class is constructed from objects in ImageNet-22k that are often
related to Humans, such as Scarf, Glasses, or Beard. Our model often predicts the Possibly-Human class
for men because of the prevalence of the Beard class. No clear pattern indicates a bias against a particular
group in this study. While this is encouraging, we also acknowledge that a more thorough evaluation of
biases may reveal flaws in our model.

9 Estimating the Environmental Impact of Training our Models

Training foundation models consumes a significant amount of energy, resulting in carbon dioxide emissions.
Patterson et al. (2021) propose a methodology to report an estimation of the carbon emitted during the
training of a model based on the specifics of the data center and its power grid. This computation informs
the design of the data center used for the training of models and the choice of location for data centers.
This methodology requires to know the specifics of the data center used for training, which can be complex
when multiple data centers are involved over time. Additionally, these specifics are most often not in the
control of the AI practitioner, and hence, this methodology is less helpful when practioners make technical
decisions about future trainings. Instead, in this section, we follow an alternative that reports the potential
carbon emission of retraining a similar model in an average data center located in the US. This methodology
was used in previous work in natural language processing (Strubell et al., 2019; Touvron et al., 2023) to
establish an apple-to-apple comparison between pretraining schemes. More precisely, we fix the value of all
exogenous variables, i.e., the Power Usage Effectiveness (PUE) and carbon intensity factor of a power grid
to the same values as in Touvron et al. (2023), that is, a PUE of 1.1 and the carbon intensity factor to the
US average of 0.385 kg CO2eq/KWh. We use the same formula as in Patterson et al. (2021) to estimate the
potential energy consumption and the carbon emission. For the power consumption of an A100-80GB, we
take the thermal design power for NVLink systems, which is 400W. We report the potential carbon emission
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of retraining a DINOv2 ViT-g in Table 14. For comparison, retraining an OpenCLIP ViT-L or OpenCLIP
ViT-G would require 22.4 MWh and 118.9 MWh, respectively, if run in the same data center. This is 10×
more carbon emission. Note that this comparison is not fair to them, since they also train a text encoder in
parallel, and we thus do not report them in the table. However, it gives a reasonable guideline for those who
are interested in training only visual features: in this context, training a self-supervised model is preferable
in terms of carbon emission. Training a text-guided model still makes sense when planning to reuse the text
encoder.

Carbon footprint of the whole project. Additionally, we estimate the footprint of the whole project to
be between 0.5k and 1k tCO2eq using the same grid as presented above 3. This carbon footprint represents
in the order of 200k GPU-days. The primary sources of emissions are the self-supervised pre-trainings of
the models. For example, a single pre-training of a ViT-g model (22k GPU-hours) emits 3.7 tons of CO2eq,
while a finetuning on ImageNet-1k (1k GPU-hours) emits 0.2 tons. This estimate only considers the GPUs’
electricity consumption and ignores other emissions, such as their manufacturing and disposal.

10 Future work and Discussion

In this work, we present DINOv2, a new series of image encoders pretrained on large curated data with no
supervision. This is the first SSL work on image data that leads to visual features that close the performance
gap with (weakly) supervised alternatives across a wide range of benchmarks and without the need for
finetuning. We can attribute the strong performance of the DINOv2 family of models to several factors:
i) an improved training recipe with better hyperparameters and regularization (Table 1), ii) a larger model
scale with improved results regardless of the data used for training (Fig. 4), iii) a larger dataset (Fig. 4)
and iv) the distillation process that makes smaller models benefit from the performance of the strongest
ViT-g model (Fig. 5). A few properties emerge from these models, such as an understanding of object parts
and scene geometry regardless of the image domains. We expect that more of these properties will emerge
at larger scales of models and data, akin to instruction emergence in large language models, and plan to
continue scaling along these axes. This paper also demonstrates that these visual features are compatible
with classifiers as simple as linear layers - meaning the underlying information is readily available. In future
work, we plan to leverage this ability to train a a language-enabled AI system that can process visual features
as if they were word tokens, and extract the required information to ground the system.
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A Data Processing

A.1 Data selection

Our selection of datasets for building LVD-142M is detailed in Tab. 15. This collection is intended to provide
images covering well various downstream vision tasks both for image-level and dense recognition.

A.2 Image similarity

We employ cosine similarity to compare image features (whether ours or feature generated for deduplication)
with the following similarity function m:

m(s, r) = cosine-similarity (f (s) , f (r)) = f(s) · f(r)
∥f(s)∥2∥f(r)∥2

where s and r are a pair of images to compare and f is the model generating features.

A.3 Deduplication

Self-deduplication. To deduplicate our uncurated data source of 1.3B images, we compute and use the
embeddings generated by Pizzi et al. (2022) and retrieve the k = 64 nearest neighbors of each image (using
cosine similarity). Considering only neighbors with a similarity >0.6, we extract the connected components
of the associated k-NN graph thanks to a scalable disjoint set data structure implementation. We then only
keep one representative for each component of duplicate images. This results in a self-deduplicated data
source of 1.1B images.

Relative deduplication To reduce redundancy and also properly evaluate the performance of our features,
we discard remaining images of our self-deduplicated data source that are too similar to train and test splits
of our evaluation datasets. To achieve this, we apply a similar procedure as for self-deduplication, with a
stricter similarity >0.45, this time identifying the duplicate components (if any) to which each reference
image belong and discarding it entirely. This results in a self- and relatively-deduplicated data source of
744M images.

A.4 Retrieval

We employ two approaches to augment dataset via retrieval: sample-based and cluster-based. The first one,
sample-based, applies to datasets larger than 1M images and consists in collecting a fixed number k of nearest
images for each sample image of the dataset to retrieve, effectively trying to multiply by k the size of the
dataset. We use k = 4 for Google Landmarks v2 and ImageNet-22k but a larger k = 32 to make this specific
retrieval a core part of our LVD-142M dataset. For smaller datasets, the second approach, cluster-based,
consists in first clustering our uncurated data source into 100, 000 separate clusters thanks to a distributed
k-means implementation. Each cluster should capture different types of image concept and contents. We
then pick 10, 000 images from each cluster associated with more than 3 images of the retrieved dataset. As
this can result in a very large number of retrieved images for some dataset, we restrict such retrievals to a
maximum of 1M images to maintain the balance between the different datasets within LVD-142M.

B Implementation Details

B.1 Unsupervised pre-training

For unsupervised pre-training we build on the DINO and iBOT codebases. We use hyperparameters shown
in Table 16, ViT architectures described in Table 17.

KoLeo regularization. We apply the KoLeo regularizer with a weight of 0.1 between the class tokens of
the first global crop, for all samples within a GPU without cross-communication for this step.
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Task Dataset / Split Images Retrieval Retrieved Final
classification ImageNet-22k / – 14,197,086 as is – 14,197,086
classification ImageNet-22k / – 14,197,086 sample 56,788,344 56,788,344
classification ImageNet-1k / train 1,281,167 sample 40,997,344 40,997,344
fine-grained classif. Caltech 101 / train 3,030 cluster 2,630,000 1,000,000
fine-grained classif. CUB-200-2011 / train 5,994 cluster 1,300,000 1,000,000
fine-grained classif. DTD / train1 1,880 cluster 1,580,000 1,000,000
fine-grained classif. FGVC-Aircraft / train 3,334 cluster 1,170,000 1,000,000
fine-grained classif. Flowers-102 / train 1,020 cluster 1,060,000 1,000,000
fine-grained classif. Food-101 / train 75,750 cluster 21,670,000 1,000,000
fine-grained classif. Oxford-IIIT Pet / trainval 3,680 cluster 2,750,000 1,000,000
fine-grained classif. Stanford Cars / train 8,144 cluster 7,220,000 1,000,000
fine-grained classif. SUN397 / train1 19,850 cluster 18,950,000 1,000,000
fine-grained classif. Pascal VOC 2007 / train 2,501 cluster 1,010,000 1,000,000
segmentation ADE20K / train 20,210 cluster 20,720,000 1,000,000
segmentation Cityscapes / train 2,975 cluster 1,390,000 1,000,000
segmentation Pascal VOC 2012 (seg.) / trainaug 1,464 cluster 10,140,000 1,000,000
depth estimation Mapillary SLS / train 1,434,262 as is – 1,434,262
depth estimation KITTI / train (Eigen) 23,158 cluster 3,700,000 1,000,000
depth estimation NYU Depth V2 / train 24,231 cluster 10,850,000 1,000,000
depth estimation SUN RGB-D / train 4,829 cluster 4,870,000 1,000,000
retrieval Google Landmarks v2 / train (clean) 1,580,470 as is – 1,580,470
retrieval Google Landmarks v2 / train (clean) 1,580,470 sample 6,321,880 6,321,880
retrieval AmsterTime / new 1,231 cluster 960,000 960,000
retrieval AmsterTime / old 1,231 cluster 830,000 830,000
retrieval Met / train 397,121 cluster 62,860,000 1,000,000
retrieval Revisiting Oxford / base 4,993 cluster 3,680,000 1,000,000
retrieval Revisiting Paris / base 6,322 cluster 3,660,000 1,000,000

142,109,386

Table 15: Composition of our LVD-142M dataset. We report the list of datasets and associated splits
used to build the dataset, how they were included (as is without retrieval or via sample-based or cluster-based
retrieval). For retrievals, we indicate the actual number of retrieved images and the final number included
in the dataset. We chose to include as many datasets as possible in the pretraining data in order to cover
as many domains as possible. We kept a few datasets aside in order to evaluate performance outside of the
pretraining domain. More details about dataset usages can be found in Table 18.
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Arch. Drop-rate LR Batch size

DINOv2-S (distilled) ViT-S/14 0 1e-3 2048
DINOv2-B (distilled) ViT-B/14 0 1e-3 2048
DINOv2-L (distilled) ViT-L/14 0 1e-3 2048
DINOv2-L (from scratch) ViT-L/14 0.4 3.5e-4 3072
DINOv2-g (from scratch) ViT-g/14 0.4 3.5e-4 3072

Table 16: Training hyperparameters for DINOv2-S, DINOv2-B, DINOv2-L and DINOv2-g. All
models run for 625k iterations with optimizer AdamW, an initial LayerScale value of 1e-5, a weight decay
cosine schedule from 0.04 to 0.2, a learning rate warmup of 100k iterations, a teacher momentum cosine
schedule from 0.994 to 1, and we train in float16 precision in all cases (except for the DINO heads where we
reduce the gradients in float32).

Arch. Embed dim Heads Blocks FFN layer

ViT-S/14 (distilled) 384 6 12 MLP
ViT-B/14 (distilled) 768 12 18 MLP
ViT-L/14 (distilled) 1024 16 24 MLP
ViT-L/14 (from scratch) 1024 16 24 SwiGLU
ViT-g/14 (from scratch) 1536 24 40 SwiGLU

Table 17: Architecture details of the ViT-S/B/L/g networks used in this work. We use MLP
feed-forward networks for distilled models, and SwiGLU (Shazeer, 2020) when training from scratch.

EMA update for the teacher. The teacher is initialized with the same state as the student, and is an
exponential moving average of the student network, with a momentum value in [0.994, 1.0] following a cosine
schedule. It is updated at the end of every training step.

B.2 High-Resolution adaptation

We initialise the model with the pretrained weights then train it for 10k iterations with the same procedure
as the original pretraining. All the schedules are kept the same as in the original training, but compressed
to fit in 10k iterations. All the hyperparameters are kept the same as in the first pretraining, except the
base learning rate which is reduced.

B.3 Linear probing evaluation

For linear probing we define 3 evaluation parameters: the learning rate, how many output layers we use,
whether we concatenate the average-pooled patch token features with the class token (or use only the
class token). We train our linear layer with SGD for 12500 iterations, using random-resized-crop data
augmentation, and perform the following grid search:

• learning rate in {0.0001, 0.0002, 0.0005, 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.5}

• output layers in {1, 4}

• concatenate average-pooled tokens in {yes, no}

We then report the highest accuracy value obtained on the validation set as is common practice. Note that
this grid search is not expensive, because at each iteration we perform inference on the backbone only once,
then feed the output to all linear classifiers (each performing a single matrix multiplication).

C List of Datasets used

We show in Table 18 the list of benchmarks and datasets used and their purposes.
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Dataset Pretraining
(as is)

Retrieving
pretraining

data

Eval. Task Citation

ImageNet-1k ✗ ✓ ✓ Classif. (Russakovsky et al., 2015)
ImageNet-22k ✓ ✓ ✗ (Deng et al., 2009)
ImageNet-V2 ✗ ✗ ✓ Classif. (Recht et al., 2019)
ImageNet-ReaL ✗ ✗ ✓ Classif. (Beyer et al., 2020)
ImageNet-A ✗ ✗ ✓ Classif. (Hendrycks et al., 2021b)
ImageNet-C ✗ ✗ ✓ Classif. (Hendrycks & Dietterich, 2019)
ImageNet-R ✗ ✗ ✓ Classif. (Hendrycks et al., 2021a)
ImageNet-Sk. ✗ ✗ ✓ Classif. (Wang et al., 2019)
Food-101 ✗ ✓ ✓ Classif. (Bossard et al., 2014)
CIFAR-10 ✗ ✓ ✓ Classif. (Krizhevsky et al., 2009)
CIFAR-100 ✗ ✓ ✓ Classif. (Krizhevsky et al., 2009)
SUN397 ✗ ✓ ✓ Classif. (Xiao et al., 2010)
StanfordCars ✗ ✓ ✓ Classif. (Krause et al., 2013)
FGVC-Aircraft ✗ ✓ ✓ Classif. (Maji et al., 2013)
VOC 2007 ✗ ✓ ✓ Classif. (Everingham et al., 2010)
DTD ✗ ✓ ✓ Classif. (Cimpoi et al., 2014)
Oxford Pets ✗ ✓ ✓ Classif. (Parkhi et al., 2012)
Caltech101 ✗ ✓ ✓ Classif. (Fei-Fei et al., 2004)
Flowers ✗ ✓ ✓ Classif. (Nilsback & Zisserman, 2008)
CUB200 ✗ ✓ ✓ Classif. (Welinder et al., 2010)
iNaturalist 2018 ✗ ✗ ✓ Classif. (Van Horn et al., 2018)
iNaturalist 2021 ✗ ✗ ✓ Classif. (Van Horn et al., 2021)
Places-205 ✗ ✗ ✓ Classif. (Zhou et al., 2014)
UCF101 ✗ ✗ ✓ Video (Soomro et al., 2012)
Kinetics-400 ✗ ✗ ✓ Video (Kay et al., 2017)
SSv2 ✗ ✗ ✓ Video (Goyal et al., 2017)
GLD v2 ✓ ✓ ✗ (Weyand et al., 2020)
R-Paris ✗ ✓ ✓ Retrieval (Radenović et al., 2018a)
R-Oxford ✗ ✓ ✓ Retrieval (Radenović et al., 2018a)
Met ✗ ✓ ✓ Retrieval (Ypsilantis et al., 2021)
Amstertime ✗ ✓ ✓ Retrieval (Yildiz et al., 2022)
ADE20k ✗ ✓ ✓ Seg. (Zhou et al., 2017)
Cityscapes ✗ ✓ ✓ Seg. (Cordts et al., 2016)
VOC 2012 ✗ ✓ ✓ Seg. (Everingham et al., 2010)
Mapillary SLS ✓ ✗ ✗ (Warburg et al., 2020)
NYU-Depth V2 ✗ ✓ ✓ Depth (Silberman et al., 2012)
KITTI ✗ ✓ ✓ Depth (Geiger et al., 2013)
SUN-RGBD ✗ ✓ ✓ Depth (Song et al., 2015)
DollarStreet ✗ ✗ ✓ Fairness (De Vries et al., 2019)
Casual Conv. ✗ ✗ ✓ Fairness (Hazirbas et al., 2021)

Table 18: List of datasets used.
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