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Abstract

In this paper, we consider the power allocation problem for 5G wireless
networks using massive multiple input multiple output technologies. Two
non-linear optimization models are considered to maximize the worst
user signal-to-interference noise ratio and the total capacity of the net-
work subject to power constraints. In particular, we transform the first
one into a geometric programming (GP) problem. Whereas the second
one leads to a signomial programming formulation. The main contri-
butions of the paper are first to propose novel formulations for power
allocation in wireless networks while using stochastic, geometric, and
signomial programming frameworks altogether. We derive stochastic for-
mulations for each GP model to deal with the uncertainty of wireless
channels. Secondly, since solving optimally the stochastic models repre-
sents a challenging task, we obtain tight bounds using approximation
solution methods. In particular, the piece-wise linear programming and
the sequential approximation methods allow us to obtain tight intervals
for the objective function values of the stochastic models. Notice that
these intervals contain the optimal solutions. In particular, we propose an
approximated GP model that allows obtaining lower bounds for the sig-
nomial problem. This is achieved by using the arithmetic-geometric mean
inequality. Finally, we compare the deterministic and stochastic models
and prove the robustness of the stochastic models. Notice that we solve
all the instances and obtain near-optimal solutions for most of them.
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1 Introduction

The fifth-generation (5G) of wireless communications brought increased atten-
tion from both academia and industry communities as it offers the potential
development of unprecedented future network applications. It is expected
that these networks will impact the operation of many industries and soci-
ety. Example applications include mobile health, autonomous vehicles, smart
cities and homes, manufacturing and entertainment, education, smart grid,
data analytics, and networks to be developed under the Internet of Things
(IoT) paradigm, just to name a few [1–7]. Notice that 5G technology, as a
revolutionary approach, is envisioned to eliminate access bounds to wireless
networks, limitations of bandwidth capacity and latency on connectivity [7].
Unfortunately, current network infrastructures cannot be adapted straightfor-
wardly to 5G technology. Thus, it is mandatorily required to update previous
ones. These new updates will play a critical role since novel components of 5G
networks will handle the huge increased data usage, coverage, security, and
with low latency. In this paper, we consider the problem of optimal power
allocation on these networks by using Massive Multiple Input Multiple Out-
put (MaMIMO) technologies. Notice that MaMIMO appears as an extension
of a traditional MIMO system. The main advantage of MaMIMO is that we
can use a significantly larger number of antennas than in a classical MIMO
system. It has been shown that MaMIMO allows one to achieve better per-
formance in terms of signal paths, link reliability, coverage, and security. As
such, it emerges as a serious candidate for future 5G based-networks.

Our main contributions in this paper can be enumerated as follows. First,
we propose novel formulations for power allocation in wireless networks while
using stochastic, geometric, and signomial programming frameworks alto-
gether. Secondly, since solving optimally the stochastic models represents
a challenging task, we obtain tight bounds (intervals) using approximation
solution methods. In particular, the piece-wise linear programming and the
sequential approximation methods allow us to obtain tight intervals for the
objective function values of the stochastic models. Notice that these intervals
contain the optimal solutions. Next, we propose an approximated GP model
to obtain lower bounds for the signomial model. For this purpose, we use
the arithmetic-geometric mean inequality. Finally, we compare the determin-
istic and stochastic models and prove the robustness of the stochastic models.
Notice that we solve all the instances and obtain near-optimal solutions for
most of the instances. More precisely, we consider two non-linear program-
ming optimization problems for the optimal power allocation where the aim is
to maximize the worst user signal-to-interference noise ratio (SINR) and the
total capacity of the network subject to power constraints. In particular, we
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transform the first one into equivalent geometric programming (GP) problem.
Whereas the second one leads to an equivalent signomial programming (SP)
formulation. Notice that a GP model is a non-convex problem. However, it
can be transformed into a convex one by using standard logarithmic trans-
formations leading to sum-log-exp convex functions. Consequently, all GPs
can be solved to global optimality by using interior point algorithms in poly-
nomial time complexity [8]. Unlike a GP problem, an SP problem cannot be
transformed into an equivalent convex one. Thus it is significantly harder to
solve optimally. However, in this case, we also derive an approximated GP for-
mulation that allows obtaining lower bounds for the original SP problem. The
latter is achieved by using the arithmetic-geometric mean inequality [8, 9].
Subsequently, we derive stochastic formulations for each GP model to deal
with the uncertainty of wireless channels. In particular, we propose individual
and joint chance constraints for each GP model. Finally, we obtain lower and
upper bounds with piece-wise tangent linear and sequential convex approxi-
mation methods. We conduct substantial numerical experiments to compare
all the proposed models and algorithms.

A GP model is a type of mathematical optimization problem characterized
by objective and constraint functions that have a special form [8]. In general,
a GP model can be written as

min
{x∈Rm

++}

∑
i∈I0

ci

m∏
j=1

x
dij

j (1)

s.t.
∑
i∈Ik

ci

m∏
j=1

x
dij

j ≤ 1, k ∈ {1, . . . ,K} (2)

where the set {Ik, k ∈ K = {0, 1, . . . ,K}} is the disjoint index sets of

{1, . . . , Q}. Usually, the term ci
∏m

j=1 x
dij

j for each i ∈ Ik is called a monomial
function where each term ci for all i ∈ Ik must be a nonnegative real num-
ber. If at least one of them is negative, then the problem (1)-(2) is no longer
a GP model, but an SP problem. The exponent parameters dij for all i ∈ Ik,
k ∈ K and j ∈ M = {1, . . . ,m} can be real numbers. Finally, each variable xj

for j ∈ M must be strictly positive. Hereafter, we denote by Rm
++ the set of

positive real numbers of dimension m. A sum of monomials is called a posyn-
omial function. Constraints where a monomial is strictly equal to one, are also
allowed in a GP model. However, constraints involving a posynomial function
strictly equal to one also lead to a non-GP problem. We will see that the
arising power allocation problems considered in this paper can be written as
equivalent GP or SP problems. As far as we know, individual and joint chance
constraints for GP and SP problems have not been investigated in the liter-
ature for power allocation in wireless networks. Individual and joint chance
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constraints for the constraints in (2) can be formulated respectively as [11]

Pξ

{∑
i∈Ik

ci(ξ)

m∏
j=1

x
dij

j ≤ 1

}
≥ 1− α, k ∈ {1, . . . ,K} (3)

and

Pξ

{∑
i∈Ik

ci(ξ)

m∏
j=1

x
dij

j ≤ 1, k ∈ {1, . . . ,K}

}
≥ 1− α (4)

where we assume that each input parameter (ci(ξ)) for all i ∈ Ik, k ∈ K behaves
as a random variable which is distributed according to a certain probability
distribution function. Notice that each chance constraint (3), for each k ∈ K,
ensures that at least (1 − α) percentage of the uncertain constraints must be
satisfied separately where α is an input parameter chosen arbitrarily from the
interval [0; 0.5). Whereas the joint chance constraint (4) ensures that (1− α)
percentage of the constraints must be satisfied according to a joint probability
distribution function.

This paper is organized as follows. In Section 2, we present and discuss
some related works which are closer to our power allocation problem. We also
discuss a few relevant works related to probabilistic individual and joint chance
constraints when applied to GP problems. Next, in Section 3, we present two
non-linear optimization problems for power allocation in 5G wireless networks
and explain how they can be transformed into equivalent GP models. Sub-
sequently, we propose individual and joint chance constraints for each GP
model and derive its equivalent deterministic formulation. Next, in Section 4,
we present and explain the sequential approximation methods used to solve
the GP models involving joint probabilistic constraints and also for solving
the approximated GP models that allow computing lower bounds for the SP
problem. In this section, we also present GP models using tangent piece-wise
linear functions that we use to calculate lower and upper bounds for the
two non-linear optimization problems. Subsequently, in Section 5, we conduct
substantial numerical experiments and compare all the proposed models and
algorithms. Finally, Section 6 concludes the paper.

2 Related work

Interference is a major problem in wireless networks affecting the broadcast
nature of radio transmission channels. It affects data rate metrics includ-
ing user signal-to-interference noise ratio as well as the maximum achievable
capacity of the networks. In particular, in communication systems where users
transmit in frequency bands that are non-orthogonal, it is significantly harder
to deal with the interference problem. A common strategy that allows mini-
mizing it consists of handling efficiently the amount of power to be assigned to
different users. Unfortunately, several service metrics related to the interference
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are non-linear functions of SINR which is a non-linear and non-convex function
of power. As a consequence, the arising power control optimization problems
are difficult to solve optimally since they belong to the complexity class of NP-
hard problems. However, some of these problems can be transformed into GP
problems, and hence they can be convexified.

Some recently published papers dealing with power allocation problems in
wireless networks where the geometric programming approach is utilized can
be consulted for instance in [10, 12–17]. More general works can be found in
references [18–23]. For the sake of brevity, we describe a few of them where the
GP approach was taken into account for power allocation problems in wireless
networks. In [10], the authors consider a resource allocation problem which
is formulated as a non-convex problem that allows connecting a set of users
to a cloud radio access network structure. To solve the problem, the authors
propose an iterative algorithm that requires applying different transforma-
tions and convexification techniques and solving a sequence of GP problems
with a sequential convex approximation method. By simulation results, they
show that their proposed algorithm allows for increasing the total through-
put of the network. Similarly in [12], the authors propose a novel framework
for 5G and beyond (5G+) heterogeneous wireless networks which require the
access of a technology referred to in the literature as power domain non-
orthogonal multiple access (PD-NOMA). The main goal of their work is to
maximize the total network profit under some practical technological network
constraints in addition to power maximum limits, and isolation of the vir-
tualized wireless network. They formulate the problem as a mixed integer
non-linear optimization problem. To solve the model, they propose a practical
approach with reduced computational complexity that consists of solving an
alternating method where the optimization problem is broken down into three
sub-problems. The latter is achieved by using the sequential convex approxi-
mation method, the GP approach, and a mesh adaptive direct search method.
Their numerical experiments reveal that the proposed approach can improve
the overall network profit. Also, in [15] the authors consider a resource alloca-
tion problem for uplink non-orthogonal multiple access networks for health and
public safety applications. The authors apply a chance-constrained robust opti-
mization approach leading to a joint resource allocation problem that allows
minimizing user transmit power subject to rate and outage constraints. Since
their resulting non-linear problem is non-convex, they apply variable relax-
ation and complementary geometric programming approaches and develop a
two-step iterative algorithm based on successive convex approximations. By
simulation results, the authors demonstrate that their proposed algorithm
outperforms the traditional orthogonal multiple access transmission schemes
in terms of user transmit power and overall system density using fewer sub-
carriers. Finally, we mention the work proposed by [24] where the authors
present several power allocation models that can be equivalently written as
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GP problems. Their examples include maximizing the total system through-
put or the worst user throughput, subject to the quality of service constraints,
delay constraints on data rates, and outage probabilities.

As can be observed from the literature, several relevant problems related to
future wireless networks utilized the GP approach to solve specialized resource
allocation problems. However, we notice that there have been no attempts yet
to include stochastic individual or joint chance constraints in these types of
problems to handle efficiently the uncertainty of the input parameters. The
chance-constrained approach allows imposing a probability of occurrence for
some or all of the constraints of a mathematical programming problem. This
means that some of the constraints will be satisfied, at least for a given per-
centage of the occurrences of each random variable. Probabilistic constraints
can be considered either separately or jointly. Notice that the stochastic pro-
gramming framework is a relevant approach in the literature and is frequently
considered in optimization problems. It allows for obtaining optimal solutions
while taking into account the uncertainty of the input parameters of a math-
ematical programming problem [25–33]. In particular, the authors in [34, 35]
show that the probabilistic constraint (3) can be equivalently written employ-
ing two deterministic constraints involving posynomials and slack variables. To
the best of our knowledge, there are only a few works in the literature includ-
ing stochastic GP problems subject to joint probabilistic constraints. In [11],
the authors impose joint probabilistic constraints on a generic GP problem
and assume that the input stochastic parameters are normally distributed and
independent of each other. They approximate the problem by using piece-wise
linear functions which allow transforming the resulting problem into an equiv-
alent convex geometric program. They also prove that their approximation
model allows obtaining lower bounds for the original problem. Finally, they
design a sequential convex optimization algorithm that allows obtaining upper
bounds for the original problem too. Similarly, the authors in [36] discuss joint
rectangular probabilistic constrained GPs. For this purpose, they assume that
the input random parameters are elliptically distributed and pairwise indepen-
dent. The authors obtain a non-convex reformulation of the joint rectangular
chance-constrained problem and propose convex approximations using variable
transformation and piece-wise linear functions. Finally, they provide a theo-
retical bound for the number of segments in the worst-case scenario and show
by numerical experiments that their approximations are asymptotically tight.

A few other recently published works dealing with resource allocation of
power in wireless networks where the approaches proposed in this paper could
be applied as part of future research can be briefly described as follows. In
[43], the authors propose a dynamic optimization model to maximize the total
uplink and/or downlink energy efficiency while satisfying quality of service
constraints using as a viable solution the Mobile Edge Computing (MEC)
paradigm to satisfy the growing demand for broadband for the next gener-
ation heterogeneous systems. The authors divide the optimization problem
into two separate sub-problems, a computational carrier scheduling one, and a
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resource allocation problem. In particular, they propose a sub-gradient method
for the computational resource allocation and a successive convex approxi-
mation together with a dual decomposition method. Their simulation results
show considerable improvements for various traffic models guaranteeing fair-
ness requirements. It also improved the total throughput for mobile computing
services. Similarly, in [44] the authors present a deep learning-based mobil-
ity robustness optimization solution that learns the required parameter values
for the mobility pattern for self-organizing networks. Their simulation exper-
iments show that the function of mobility robustness optimization not only
learns to optimize its performance but also it learns how to distribute the
excess load of the network. Finally, they prove that the solution minimizes the
number of unsatisfied users guaranteeing a more balanced network. Finally,
in reference [45], the authors consider a dynamic optimization model to min-
imize the total energy consumption of fifth-generation (5G) heterogeneous
networks while providing the required coverage and capacity. This is achieved
by optimizing carrier allocation and power utilization. They do also propose
a multi-hop back-hauling strategy to effectively use the existing infrastructure
of small-cell networks for simultaneous transmissions. Their numerical results
demonstrated considerable power savings for different traffic models. They fur-
ther show that energy efficiency and system data rates can be significantly
improved.

3 Mathematical formulations

In this section, first, we present the two non-linear optimization problems.
Then, for each one of them, we derive equivalent GP formulations. In partic-
ular, for the second one, we obtain an equivalent SP formulation. Thus, we
derive an approximated GP model that allows obtaining lower bounds for it.
Subsequently, we impose individual and joint chance constraints on each GP
model obtained and derive for each one of them an equivalent deterministic
GP formulation.

3.1 Maximizing the worst user signal to interference
noise ratio

The first model we consider allows maximizing the worst user signal-to-
interference noise ratio for a MaMIMO system where each receiver has perfect
channel state information [37]. Hereafter, we assume that the MaMIMO net-
work is located inside a single cell area and it is composed of a set of
K = {1, . . . ,K} users and a unique base station (BS). We also assume
that each user is using only one antenna to receive the data from the BS
which is equipped with a predefined number of antennas T . We formulate the
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optimization problem as

(M1) : max
{p∈RK

++}
min
{i∈K}

{
pi | gHi gi |2∑

j∈K,(j ̸=i) pj | gHi gj |2 + | σi |2

}
(5)

s.t. Pmin ≤ pi ≤ Pmax, ∀i ∈ K (6)

where p = (pi) denotes the amount of power to be assigned for each user
i ∈ K. The input parameters gi ∈ CT×1, gHi ∈ C1×T and σi denotes the beam
domain channel vector associated to user i ∈ K, its Hermitian transpose and
Additive White Gaussian Noise (AWGN), respectively. The AWGN is assumed
to behave according to an independent complex Gaussian distribution function
with zero mean and unit variance (σi ∼ CN (0, 1)). Finally, we assume that each
component of each vector gi, i ∈ K is a complex number generated according to
a quasi-static independent and identically distributed Rayleigh fading channel.
Notice that from the solution of model (M1), a power allocation mechanism
can be designed by simply using the power allocation vector obtained from the
model. Similarly, the worst user SINR can be easily obtained from the value
of the objective function since we use a unique variable for all users in K.
This objective function value will coincide with the user or users having the
maximum worst SINR.

In (M1), the objective function (5) denotes the worst user SINR [38, 39].
Whilst the constraints (6) ensure that each power variable is greater than or
equal to Pmin and less than or equal to Pmax. Notice that by introducing an
additional variable t and defining the parameters aij =| gHi gj |2| gHi gi |−2> 0
and bi =| σ2

i || gHi gi |−2> 0 for all i, j ∈ K, we can write (M1) equivalently as

min
{(p,t)∈RK+1

++ }
t−1 (7)

s.t.
∑

j∈K,(j ̸=i)

aijpjp
−1
i t+ bip

−1
i t ≤ 1, ∀i ∈ K (8)

Pmin ≤ pi ≤ Pmax, ∀i ∈ K

We note that the coefficients aij and bi in (8) for all i, j ∈ K, may not be known
precisely. Thus, we suppose that each one of them is normally distributed and
independent of the other, i.e., aij(ξ) ∼ N (āij , σ

2
aij

) and bi(ξ) ∼ N (b̄i, σ
2
bi
).

This allows replacing the deterministic constraints in (8) with the following
individual chance constraints

Pξ

 ∑
j∈K,(j ̸=i)

aij(ξ)pjp
−1
i t+ bi(ξ)p

−1
i t ≤ 1

 ≥ (1− α), ∀i ∈ K (9)
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According to [34], the constraints (9) can be written in equivalent deterministic
form as ∑

j∈K,(j ̸=i)

āijpjp
−1
i t+ b̄ip

−1
i t+

ϕ−1(1− α)


√ ∑

j∈K,(j ̸=i)

σ2
aij

p2jp
−2
i t2 + σ2

bi
p−2
i t2

 ≤ 1,∀i ∈ K (10)

where ϕ−1(1− α) is the quantile of the standard normal distribution function
N (0, 1). The parameter α can take values in the interval α ∈ [0; 0.5). Notice
that the constraints (10) are generalized posynomial constraints. Thus, they
can be transformed into standard GP format. The latter can be achieved by
introducing additional variables θi > 0 for all i ∈ K. This allows imposing an
upper bound on each term inside the root square∑

j∈K,(j ̸=i)

σ2
aij

p2jp
−2
i t2 + σ2

bip
−2
i t2 ≤ θ2i , ∀i ∈ K (11)

which in turn allows obtaining the equivalent set of constraints∑
j∈K,(j ̸=i)

āijpjp
−1
i t+ b̄ip

−1
i t+ ϕ−1(1− α)θi ≤ 1, ∀i ∈ K (12)

∑
j∈K,(j ̸=i)

σ2
aij

p2jp
−2
i t2θ−2

i + σ2
bip

−2
i t2θ−2

i ≤ 1, ∀i ∈ K (13)

Notice that the constraints (12)-(13) prove that the resulting problem is a
GP problem. Consequently, we can obtain the global optimal solution using
individual chance constraints by solving the following GP model

(IM1) : min
{(p,t)∈RK+1

++ }
t−1

s.t.
∑

j∈K,(j ̸=i)

āijpjp
−1
i t+ b̄ip

−1
i t+

ϕ−1(1− α)


√ ∑

j∈K,(j ̸=i)

σ2
aij

p2jp
−2
i t2 + σ2

bi
p−2
i t2

 ≤ 1,

∀i ∈ K
Pmin ≤ pi ≤ Pmax, ∀i ∈ K
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Similarly, we can replace the deterministic constraints (8) by the following
joint probabilistic constraints

Pξ

 ∑
j∈K,(j ̸=i)

aij(ξ)pjp
−1
i t+ bi(ξ)p

−1
i t ≤ 1,∀i ∈ K

 ≥ (1− α) (14)

As these constraints are equivalent, we have

∏
i∈K

Pξ

 ∑
j∈K,(j ̸=i)

aij(ξ)pjp
−1
i t+ bi(ξ)p

−1
i t ≤ 1

 ≥ (1− α) (15)

Next, by introducing auxiliary variables yi ∈ R++ for all i ∈ K, we get the
following equivalent deterministic GP problem using joint chance constraints
[11, 34, 35]

(JM1) : min
{(p,t,y)∈R2K+1

++ }
t−1

s.t.
∑

j∈K,(j ̸=i)

āijpjp
−1
i t+ b̄ip

−1
i t+

ϕ−1(yi)


√ ∑

j∈K,(j ̸=i)

σ2
aij

p2jp
−2
i t2 + σ2

bi
p−2
i t2

 ≤ 1,

∀i ∈ K (16)∏
i∈K

yi ≥ (1− α) (17)

0 ≤ yi ≤ 1, ∀i ∈ K (18)

Pmin ≤ pi ≤ Pmax, ∀i ∈ K

Notice that the quantile function now depends on the variable yi for all i ∈ K.
In the next section, we obtain lower and upper bounds for (JM1) using tangent
piece-wise linear functions as well as a sequential approximation algorithm
[11]. This allows reporting an interval where the global optimal solution lies.

3.2 Maximizing the total capacity of the wireless network

The second model we consider maximizes the total capacity of the network
in presence of signal-to-interference noise ratio for a MaMIMO system where
each receiver has a perfect channel state information [37]. In this case, the
non-linear optimization problem we consider can be stated as

(M2) : max
{p∈RK

++}

∑
i∈K

log2

1 +
pi | gHi gi |2∑

j∈K
(j ̸=i)

pj | gHi gj |2 + | σi |2

 (19)
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s.t. Pmin ≤ pi ≤ Pmax, ∀i ∈ K

Similarly as for (M1), we redefine the nonnegative parameters aij =| gHi gj |2>
0 and bi =| σi |2> 0 for all i, j ∈ K.

Claim 1 (M2) can be equivalently written as a signomial programming problem.

Proof First, notice that

∑
i∈K

log2

1 +
pi | gHi gi |2∑

j∈K
(j ̸=i)

pj | gHi gj |2 + | σi |2

 =

log2

∏
i∈K

1 +
pi | gHi gi |2∑

j∈K
(j ̸=i)

pj | gHi gj |2 + | σi |2




Next, we introduce a lower bound variable ti for each i ∈ K in order to obtain an
optimal solution for (M2) by solving the following equivalent problem

max
{(p,t)∈R2K

++}

∏
i∈K

ti

s.t. ti ≤ 1 +
aiipi∑

j∈K,(j ̸=i) aijpj + bi
, ∀i ∈ K (20)

Pmin ≤ pi ≤ Pmax, ∀i ∈ K

In particular, we note that the constraints (20) can be written as∑
j∈K,(j ̸=i) aijpjti + biti∑

j∈K,(j ̸=i) aijpj + bi + aiipi
≤ 1, ∀i ∈ K (21)

or as ∑
j∈K,(j ̸=i)

aijb
−1
i pjti + ti −

∑
j∈K

aijb
−1
i pj ≤ 1 ∀i ∈ K (22)

Notice that the left-hand side of constraint (22) has negative coefficients which show
that (M2) leads to a signomial programming problem. □

Because of Claim 1, we see that finding a global optimal solution for (M2) is
significantly harder than solving a GP problem. However, we can still approx-
imate each posynomial function in the denominator of the constraints (21)
with a monomial function to obtain a lower bound for (M2) [8]. This can be
achieved by using the arithmetic-geometric mean inequality. Thus, we have
the following proposition.

Proposition 1 For fixed and nonnegative parameter values δij and βi for all i, j ∈ K
such that

∑
j∈K δij + βi = 1, for all i ∈ K, the following GP model gives a lower

bound for (M2)

Q(δ, β) = max
{(p,t)∈R2K

++}

∏
i∈K

ti (23)
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s.t.
∏
l∈K

p−δil
l

 ∑
j∈K,(j ̸=i)

cijpjti + diti

 ≤ 1, ∀i ∈ K (24)

Pmin ≤ pi ≤ Pmax, ∀i ∈ K
where

cil = ail
∏
j∈K

(
aij
δij

)−δij

(biβ
−1
i )−βi , ∀i, l ∈ K, (i ̸= l)

and

di = bi
∏
j∈K

(
aij
δij

)−δij

(biβ
−1
i )−βi , ∀i ∈ K

Proof Notice that by applying the arithmetic-geometric mean inequality we have
that ∑

j∈K
aijpj + bi ≥

∏
j∈K

(
aijpj
δij

)δij

(biβ
−1
i )βi , ∀i ∈ K (25)

for values of δij ≥ 0, βi ≥ 0 for all i, j ∈ K with respect to
∑

j∈K δij + βi = 1 for all
i ∈ K. We do also have∑

j∈K,(j ̸=i) aijpjti + biti∑
j∈K aijpj + bi

≤
∑

j∈K,(j ̸=i) aijpjti + biti∏
j∈K

(
aijpj

δij

)δij
(biβ

−1
i )βi

≤ 1, ∀i ∈ K (26)

Next, by performing simple algebraic manipulations in the latter inequalities we
obtain ∏

l∈K
p−δil
l

 ∑
j∈K,(j ̸=i)

cijpjti + diti

 ≤ 1, ∀i ∈ K, (27)

Finally, a lower bound for (M2) can be obtained by calculating the logarithm of the
objective function in (23). Thus, concluding the proof. □

Notice that the inequalities (25) have zero gaps when all the involved terms
in the sum and the product are equal. Furthermore, we observe from Proposi-
tion 1 that we can adjust the parameter δij and βi for all i, j ∈ K to tighten
the lower bound obtained with Q(δ, β). More precisely, we see that the opti-
mal values for the parameters δij and βi for all i, j ∈ K can be obtained by
solving the following optimization problem

Q(δ∗, β∗) = max
{(δ,β)∈RK2+K

+ }
Q(δ, β) (28)

s.t.
∑
j∈K

δij + βi = 1, ∀i ∈ K (29)

Unfortunately, finding the global optimal solution of problem (28)-(29) is not
trivial as it is a non-convex problem. However, in an attempt to find its global
optimal solution, we can still solve the problem with an iterative algorithm
referred to as the single condensation method in the literature which is essen-
tially a sequential approximation method [24]. In general, with this method,
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we can obtain a locally optimal solution to the problem. However, a common
strategy may consist of generating different initial solutions for model (28)-
(29) to increase the chances to obtain the global optimal solution for model
(M2). In the next section, we explain how we apply this method to obtain a
lower bound for (M2).

Notice that analogously as for the model (M1), we can assume that the
input parameters cij and di for all i, j ∈ K in model Q(δ, β) are random vari-
ables normally and independently distributed, i.e., cij(ξ) ∼ N (c̄ij , σ

2
cij ) and

di(ξ) ∼ N (d̄i, σ
2
di
), respectively. This allows writing the following stochastic

version of Q(δ, β) with individual chance constraints

(IM2) : max
{(p,t)∈R2K

++}

∏
i∈K

ti

s.t.
∏
l∈K

p−δil
l

 ∑
j∈K,(j ̸=i)

c̄ijpjti + d̄iti

+

ϕ−1(1− α)


√√√√√∏

l∈K

p−2δil
l

 ∑
j∈K,(j ̸=i)

σ2
cijp

2
j t

2
i + σ2

di
t2i


 ≤ 1,

∀i ∈ K (30)

Pmin ≤ pi ≤ Pmax, ∀i ∈ K

Observe that model (IM2) is a GP problem and then, it can be solved opti-
mally. Finally, we can also arrive at the following stochastic optimization
problem with joint chance constraints

(JM2) : max
{(p,t,y)∈R3K

++}

∏
i∈K

ti

s.t.
∏
l∈K

p−δil
l

 ∑
j∈K,(j ̸=i)

c̄ijpjti + d̄iti

+

ϕ−1(yi)


√√√√√∏

l∈K

p−2δil
l

 ∑
j∈K,(j ̸=i)

σ2
cijp

2
j t

2
i + σ2

di
t2i


 ≤ 1,

∀i ∈ K (31)∏
i∈K

yi ≥ (1− α)

0 ≤ yi ≤ 1, ∀i ∈ K
Pmin ≤ pi ≤ Pmax, ∀i ∈ K

Similarly as for (JM1), in the next section, we compute bounds for (JM2)
using piece-wise linearization and sequential approximation methods.
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4 Piece-wise linear and sequential
approximation methods

In this section, we present two GP models using a tangent piece-wise linear
approximation method for computing lower and upper bounds for (JM1) and
(JM2), respectively. Then, we present a sequential approximation algorithm to
obtain upper and lower bounds for (JM1) and (JM2), respectively. Finally, we
present a single condensed sequential approximation method used to compute
lower bounds for model Q(δ, β) (See proposition 1). We mention that in order
to solve the models (IM2) and (JM2), we use the best parameter values (δ∗, β∗)
obtained with the single condensation method.

4.1 GP models obtained using tangent piece-wise linear
functions

According to Theorem 1 in [11], we can compute lower and upper bounds for
(JM1) and (JM2) by solving the following GP models

(JM1)
Lb : min

{(p,t,y)∈R2K+1
++ }

t−1

s.t.
∑

j∈K,(j ̸=i)

āijpjp
−1
i t+ b̄ip

−1
i t+

(
e

fs
2 y

gs
2

i

)
√ ∑

j∈K,(j ̸=i)

σ2
aij

p2jp
−2
i t2 + σ2

bi
p−2
i t2

 ≤ 1,

∀i ∈ K, s ∈ S (32)∏
i∈K

yi ≥ (1− α)

0 ≤ yi ≤ 1, ∀i ∈ K
Pmin ≤ pi ≤ Pmax, ∀i ∈ K

and

(JM2)
Ub : max

{(p,t,y)∈R3K
++}

∏
i∈K

ti

s.t.
∏
l∈K

p−δil
l

 ∑
j∈K,(j ̸=i)

c̄ijpjti + d̄iti

+

(
e

fs
2 y

gs
2

i

)
√√√√√∏

l∈K

p−2δil
l

 ∑
j∈K,(j ̸=i)

σ2
cijp

2
j t

2
i + σ2

di
t2i


 ≤ 1,

∀i ∈ K, s ∈ S (33)
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i∈K

yi ≥ (1− α)

0 ≤ yi ≤ 1, ∀i ∈ K
Pmin ≤ pi ≤ Pmax, ∀i ∈ K

respectively where the set S = {1, . . . , S} corresponds to an index set associ-
ated with a set of linear functions. Notice that to obtain a convex reformulation
of the constraints (16), one can use the standard variable transformations
xi = log(yi), ri = log(ti) and hi = log(pi) for each i ∈ K. Thus, the constraints
(16) can be equivalently written as∑

j∈K,(j ̸=i)

ehj−hi+r+log(āij) + e−hi+r+log(b̄i) +

√√√√√e2 log(ϕ−1(exi ))

 ∑
j∈K,(j ̸=i)

e
2hj−2hi+2r+log(σ2

aij
)
+ e

−2hi+2r+log(σ2
bi
)

 ≤ 1,

∀i ∈ K (34)

Notice that we can replace the terms
(
e

fs
2 y

gs
2

i

)
for all s ∈ S, i ∈ K in (JM1)

Lb

and (JM2)
Ub by tangent linear functions. However, this can be performed once

the log transformations have already been applied to convexify the problem
[8]. This leads to the constraints (34). Thus, we approximate the function
2 log(ϕ−1(exi)) ≥ Fs(xi) = fsxi + gs for all s ∈ S, i ∈ K. For this purpose, one
can choose tangent lines of 2 log(ϕ−1(exi)) at different points in [log(1−α), 0),
say χ1, . . . , χS . Then, for each s ∈ S, we have that

gs =
2eχs(ϕ−1)(1)(eχs)

ϕ−1(eχs)

and
fs = −gsχs + 2 log(ϕ−1(eχs))

This is possible to achieve since the function 2 log(ϕ−1(exi)) is convex at the
required interval. Consequently, we have that the feasible sets of (JM1) and
(JM2) are contained in the feasible sets of (JM1)

Lb and (JM2)
Ub, respec-

tively. Finally, by reversing the log transformations, one can easily verify that

ϕ−1(yi) ≥ e
fs
2 y

gs
2

i for all s ∈ S, and i ∈ K.

4.2 Sequential approximation methods

Now we explain the sequential approximation method used to compute upper
and lower bounds for (JM1) and (JM2), respectively [11]. For the sake of
brevity, we only explain the method when applied to (JM1). The idea is simple
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and consists of fixing the variable y = yn at iteration n while satisfying the
feasibility of the constraints (17)-(18). This allows solving the GP problem

(JM1)(y
n) : min

{(p,t)∈RK+1
++ }

t−1

s.t.
∑

j∈K,(j ̸=i)

āijpjp
−1
i t+ b̄ip

−1
i t+

ϕ−1(yni )


√ ∑

j∈K,(j ̸=i)

σ2
aij

p2jp
−2
i t2 + σ2

bi
p−2
i t2

 ≤ 1, ∀i ∈ K

Pmin ≤ pi ≤ Pmax, ∀i ∈ K

Let (pn, tn, θn, vn) denote an optimal solution of (JM1)(y
n), an optimal solu-

tion of the Lagrangian dual variable θ and the optimal objective function value,
respectively [11]. We then compute the search direction parameters

φi = θni (ϕ
−1)

′
(yni )

√ ∑
j∈K,(j ̸=i)

σ2
aij

(pnj )
2(pni )

−2(tn)2 + σ2
bi
(pni )

−2(tn)2

for each i ∈ K and update the y variable by solving the following GP problem

(JM1)(p
n, tn) : min

{y∈RK
+ }

∑
i∈K

φiyi

s.t. yi ≤ ϕ

 1−
∑

j∈K,(j ̸=i) āijp
n
j (p

n
i )

−1tn − b̄i(p
n
i )

−1tn√∑
j∈K,(j ̸=i) σ

2
aij

(pnj )
2(pni )

−2(tn)2 + σ2
bi
(pni )

−2(tn)2

 ,∀i ∈ K

∏
i∈K

yi ≥ (1− α)

0 ≤ yi ≤ 1,∀i ∈ K

where ϕ(·) denotes the normal cumulative distribution function. The iterative
sequential method is depicted in Algorithm 1

Finally, we present a single condensed sequential approximation method
used to compute lower bounds for Q(δ, β) according to [24]. This procedure is
depicted in Algorithm 2 as follows. The procedure is simple and starts by ini-
tializing the input parameter values δ and β while ensuring that the conditions
(29) are satisfied. Then, we iterative until the difference between the objective
function values obtained with model Q(δ, β) in two consecutive iterations is
less than or equal to a small positive value ϵ. Notice that at each iteration, the
input parameters δ and β are updated according to the monomials approxima-
tions (25). Finally, the best solution obtained for Q∗ = Q(δ∗, β∗) is returned
by the algorithm together with the optimal values of parameters δ∗ and β∗.
Recall that to solve models (IM2) and (JM2), we use these parameter val-
ues. Notice that Algorithm 2 can be sensitive to the initial values of δ and β.
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Algorithm 1 Sequential convex approximation method

Require: An instance of problem (JM1)
Ensure: An upper bound for (JM1)
1: Initialization step:
2: Choose an initial point y0 of y satisfying the constraints (17)-(18).
3: Solve (JM1)(y

0) and use the optimal solution obtained for solving (JM1)(p
0, t0).

4: Set n = 1. Denote by yn the optimal solution of (JM1)(p
0, t0)

5: Iterative step:
6: while (∥yn−1 − yn∥ > ε and number of iterations <= MaxIter) do
7: Solve (JM1)(y

n) and use the optimal solution obtained for solving
(JM1)(p

n, tn).
8: Let ȳ denote the optimal solution of (JM1)(p

n, tn)
9: yn+1 = yn + τ(ȳ − yn). Here, τ ∈ (0, 1) is the step length.

10: Set n = n+ 1.
11: end while
12: return the best solution found (pn, tn, yn)

Algorithm 2 Single condensed sequential approximation method

Require: An instance of problem Q(δ, β)
Ensure: A lower bound for Q(δ, β)
1: Initialization step:
2: Randomly generate positive values for the parameters δ and β satisfying the

conditions (29).
3: Solve the GP problem Q(δ, β).
4: Let (p, t) ∈ R2K and VQ denote the optimal solution and objective function value

obtained.
5: Iterative step:
6: while (True) do
7: for i ∈ K do
8: βi =

bi∑
l∈K ailp̂l+bi

9: for j ∈ K do

10: δij =
aij p̂j∑

l∈K ailp̂l+bi

11: end for
12: end for
13: Solve the GP problem Q(δ, β).
14: Let (p, t) ∈ R2K and WQ denote the optimal solution and objective function

value obtained.
15: if (| WQ − VQ |≤ ϵ or number of Iterations ≥ MaxIt) then
16: Break
17: else
18: WQ = VQ
19: end if
20: end while
21: return best solution obtained (p∗, t∗,W ∗

Q, δ∗, β∗)

Consequently, to increase the chances of obtaining a global optimal solution
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for Q = Q(δ, β), an intuitive approach is to run Algorithm 2 several times by
using different initial values for the parameter δ and β. Although this approach
does not guarantee finding the global optimal solution to the problem, we can
still measure the difference between the stochastic and deterministic models
derived from Q(δ∗, β∗).

5 Numerical experiments

In this section, we conduct substantial numerical experiments to compare all
the proposed models and the sequential approximation algorithms. For this
purpose, we implement python codes using CVXPY version 1.1.12 interfaced
with Mosek solver version 9.2.42 [40–42]. The numerical experiments were
carried out on an Intel(R) 64 bits core (TM) with 2.50 GHz and 12GB of RAM
under Windows 10. We present numerical results for all the proposed models
derived for (M1) and (M2) where the objectives are to maximize the worst
user signal-to-interference noise ratio and the total capacity of the network,
respectively. In particular, for (M1), we consider instances dimensions ranging
fromK = 10 toK = 50 users. Whereas for (M2), we generate instances ranging
from K = 10 to K = 22 users. We notice that the objective functions of
both models (M1) and (M2) deteriorate significantly when the number of users
increases. This is clear since the more users the network has, the higher the
interference generated. In particular, for (M2) we did not generate instances
with more than K = 22 users because doing this leads to infeasible solutions.
We arbitrarily set the input parameters values to Pmin = 0.1, Pmax = 0.5
and generate the complex vectors gi ∈ CT×1, and gHi ∈ C1×T for each i ∈ K
according to an independent complex Gaussian distribution function with zero
mean and variance equal to one. Then, we multiply each of these vectors by
a factor of 2.5. Finally, the parameter σi for each i ∈ K is also generated
according to an independent complex Gaussian distribution function with zero
mean and variance equal to one. The parameters aij and bi are calculated as
explained in Section 3. Without loss of generality, we assume in our stochastic
GP models that āij = aij and b̄i = bi for all i, j ∈ K coincide with the
means of the random variables. In all our experiments, we vary the parameter
values of α ∈ {0.1; 0.25}, and σbi , σaij

∈ {10−3; 10−2; 10−1; 1; 2} for all
i, j ∈ K. In order to solve the GP models (JM1)

Lb and (JM2)
Ub, we consider

the set S = {5, 10, 20} to reference the number of tangent linear segments.
Finally, the parameter values in Algorithms 1 and 2 are set to ε = 10−4,
MaxIter = 50, τ = 0.5, yi = 0.9999999 for all i ∈ K as initial values, and
ϵ = 10−6, MaxIt = 1000, respectively. Notice that the initial values of yi for
all i ∈ K give a value of 5.199337582290661 for the inverse of the standard
normal cumulative distribution function. Thus, avoiding the value of 1 which
gives infinite for this function. Moreover, these values satisfy all the required
constraints of the GP models of Algorithm 1.



Springer Nature 2021 LATEX template

Article Title 19

5.1 Worst user SINR

In Table 1 of Annex A of the supplementary material, we present average
numerical results for the GP models (M1), (IM1), and (JM1) over 20 samples.
More precisely, in column 1 we present the number of users of each particular
instance. Whilst in columns 2-5, 6-9 and 10-13 we present the optimal objective
function value, the CPU time in seconds required by Mosek and CVXPY
solvers and the standard deviation obtained with the models (M1), (IM1) and
(JM1), respectively. In particular, model (JM1) is solved with Algorithm 1.
Consequently, in column 14, we present the number of iterations required by
Algorithm 1 to obtain the solution.

From Table 1, first, we observe that the optimal objective function values
obtained with model (JM1) are larger than those reported for (IM1). In turn,
the objective values obtained with (IM1) are larger than the ones obtained
with (M1). Next, we see that these differences increase when using higher
values of σ and α. Notice that by using higher values for the parameters σ and
α, we can obtain more conservative solutions to the problem. Next, we observe
that the CPU time required by Mosek solver is significantly smaller than the
one reported for CVXPY. This can be explained by the parser property of
CVXPY solver which is required to convexify the GP problem [8]. Next, we
observe that the standard deviation values are large and nearly the same for
all the instances. This fact gives an idea of how sensitive the solutions obtained
with the GP models are depending on the input data. Finally, we observe
that the number of iterations is on average less than 22 which evidences the
effectiveness achieved by the Algorithm 1.

In Tables 2, 3, 4, and 5 (See Annex A), we report numerical results obtained
with model (JM1) using randomly generated instances for different values of
α and σ. We solve the same instances in these tables. The main purpose of
these tables is to show how tight the GP models using tangent piece-wise linear
functions are when compared to the sequential approximation Algorithm 1.
The legend of these tables is the same and is as follows. In column 1, we
present the number of users considered in the network. Next, in columns 2-6
we present the number of tangent linear segments used in model (JM1)

Lb and
its number of constraints, its optimal objective function value, and the CPU
times in seconds obtained with Mosek and CVXPY solvers, respectively. From
columns 7 to 10, we present the optimal objective function value of (JM1)
obtained with Algorithm 1, the CPU times in seconds required by Mosek and
CVXPY solvers, and the number of iterations required by Algorithm 1 to solve
(JM1). Finally, in column 11 we respectively report the gaps that we compute

by
[
v((JM1))−v((JM1)

Lb)
v((JM1))

]
∗100 where v(·) denotes the optimal objective function

value of the respective model. Notice that we report these gap values for a
different number of tangent linear segments used in model (JM1)

Lb. From
Tables 2, 3, 4, and 5, we mainly observe that the objective function values
obtained with (JM1) are slightly higher than those obtained with (JM1)

Lb. In
particular, we see that the gap values reported in column 11 in each of these
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tables become smaller when using more tangent linear functions in (JM1)
Lb.

Similarly, we observe that the gap values obtained with σ = 0.01 are smaller
than those obtained when using σ = 0.1. Next, we also see that the optimal
objective function values reported in Tables 4 and 5 for both models (JM1)

Lb

and (JM1) are larger than in Tables 2 and 3, respectively. We notice that this
is a consequence of using a larger value of parameter α which is equivalent to
imposing a stronger probabilistic constraint in each model. As a consequence,
we obtain more conservative solutions with each model.

Another relevant observation is that the CPU times reported in columns
5 and 6, and in columns 8 and 9 for all the instances in each of these tables
are significantly higher for CVXPY than for the Mosek solver. Recall that the
CPU time of CVXPY includes the CPU time of the Mosek solver. This shows
that CVXPY spends a considerable amount of time transforming the problem
from GP format to a convex problem that is solvable by the Mosek solver.
Finally, we observe that the number of iterations required by Algorithm 1 to
solve all the instances remains nearly the same in Tables 2, 3, 4, and 5.

To give more insights regarding the conservatism level achieved with the
solutions obtained with models (M1), (IM1), (JM1) and (JM1)

Lb, we report
in Figures 1-4 the number of violated constraints and amount of constraint
violations for an instance with K = 30 users while using parameter values
of α = 0.25 and σ = {0.1, 1}. More precisely, we save the optimal solutions
obtained with the models (M1), (IM1), (JM1), and (JM1)

Lb for a particular
instance randomly generated. And then, we randomly generate another 100
instances (scenarios) and count the number of violated constraints in (8) and
their violated amounts obtained by replacing the saved solutions.

From Figures 1 and 2, we mainly observe that the optimal saved solution
obtained with (IM1) is more robust than the one obtained with (M1) in the
sense that it allows obtaining less violated constraints and a lower amount of
violation. Similarly, we observe that the optimal saved solution obtained with
(JM1) using Algorithm 1 is more conservative than the one obtained with
(IM1). Finally, we see that the solution obtained with (JM1)

Lb is less conser-
vative than the one obtained with (JM1) using Algorithm 1. In conclusion, we
see that the solution obtained with the joint chance-constrained model (JM1)
is significantly more robust than the ones obtained with the other models. In
Figures 3 and 4, we observe similar trends as in Figures 1 and 2. Ultimately,
we notice that the higher the value of parameter σ, the higher the level of
robustness achieved with the obtained solutions.

5.2 Maximum capacity

Now, we report numerical results for the second power allocation problem
which is aimed to maximize the total capacity of the wireless network. In par-
ticular, in Table 6 (See annex B in the supplementary material), we report
numerical results for Q(δ, β). These results are obtained with the condensed
sequential approximation Algorithm 2. In this table, we do also report numer-
ical results for the model (IM2). Recall that the latter model is solved using
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Fig. 1 Number of violated constraints for each randomly generated instance using K = 30,
α = 0.25 and σ = 0.1

Fig. 2 The total amount of constraint violation for each randomly generated instance using
K = 30, α = 0.25 and σ = 0.1
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Fig. 3 Number of violated constraints for each randomly generated instance using K = 30,
α = 0.25 and σ = 1

Fig. 4 The total amount of constraint violation for each randomly generated instance using
K = 30, α = 0.25 and σ = 1
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the best values obtained for the parameters δ and β when solving Q(δ, β)
with Algorithm 2. In Table 6, column 1 shows the number of users of each
instance. Columns 2 to 6 present the objective function value of Q(δ, β), the
capacity achieved which is computed by taking the logarithm of the objec-
tive function value, the CPU time in seconds required by the Mosek and
CVXPY solvers to obtain the solutions and the number of iterations required
by Algorithm 2. Columns 7-10 report the optimal objective function value of
model (IM2), its capacity which is again computed by taking the logarithm
of the objective value, and the CPU times in seconds required by the Mosek
and CVXPY solvers, respectively. The instances are randomly generated and
solved for different input values for the parameters α and σ. From Table 6,
first, we observe that the capacity values decrease significantly when the num-
ber of users increases. This is evident since the higher the number of users, the
higher the interference in the network. Next, we also see that the CPU times
required by CVXPY increase considerably with the number of users. Similarly,
the number of iterations required by Algorithm 2 to converge also increases
with the number of users. Next, we observe that the optimal objective func-
tion values obtained with (IM2) decrease when the parameter σ increases.
On the opposite, these objective values increase with an increase of parame-
ter α. Finally, we observe that the CPU time values required by CVXPY are
significantly higher than those required by the Mosek solver.

In Tables 7 and 8 in annex B, we present upper bounds obtained with
model (JM2)

Ub and lower bounds obtained with model (JM2) while using the
sequential approximation Algorithm 1 for given and fixed values of δ and β.
The values of δ and β are obtained by solving Q(δ, β) with Algorithm 2 for
the instances in Table 6 of annex B. In Tables 6, 7, and 8, we solve the same
instances. In Tables 7 and 8, the legends are the same. In column 1, we present
the number of users of each instance. Next, in columns 2 and 3, we present the
number of tangent linear segments and constraints of model (JM2)

Ub. Subse-
quently, in columns 4, 5, and 6, we report the optimal objective function values
of (JM2)

Ub and the CPU times in seconds required by the Mosek and CVXPY
solvers, respectively. Similarly, in columns 7-10 we present the optimal objec-
tive function values of model (JM2), the CPU times in seconds required by the
Mosek and CVXPY solvers, and the number of iterations obtained when solv-
ing (JM2) with Algorithm 1, respectively. Finally, in column 11 we present gap

values which are computed by
[
v((JM2)

Ub)−v((JM2))
v((JM2))

]
∗ 100 where v(·) denotes

the optimal objective function value of the respective model. From Tables 7
and 8, we mainly observe that the optimal objective function values obtained
with (JM2)

Ub and (JM2) get closer when using a higher number of piece-wise
linear segments (S = 20). We further notice that these objective values dete-
riorate when using lower and higher values of α and σ, respectively. Next, we
see that the objective function values decrease when more users are present in
the network. Notice that we do not consider more than 22 users. Otherwise, we
may obtain infeasible solutions with negative capacity values. We also observe
that the CPU time values obtained with Algorithm 1 are larger than those



Springer Nature 2021 LATEX template

24 Article Title

obtained with (JM2)
Ub for all the tested instances using less than S = 20

linear segments. For the remaining ones, we observe the opposite situation.
Finally, we see that the number of iterations required by Algorithm 1 to solve
all the instances is very stable. To give more insights concerning the solutions

Fig. 5 Optimal solutions and the number of iterations obtained with Algorithm 2 for 100
initial samples of parameters δ and β using K = 10.

obtained with the condensed sequential approximation Algorithm 2, we plot in
Figures 5 and 6, the optimal solutions and the number of iterations obtained
with Q(δ, β) for K = 10 and K = 14 users while generating different initial
input values for the parameters δ and β. The idea is to provide some empirical
evidence indicating that the solutions obtained with Algorithm 2 are near the
global optimal ones. In particular, in Figures 5 and 6 we randomly generate
100 and 20 initial sample values for the parameters δ and β, respectively. All
these values are generated while satisfying the conditions imposed in problem
(28)-(29). In Figure 6, we only generate 20 samples for δ and β since the CPU
times required to solve Q(δ, β) with Algorithm 2 become larger for K = 14
users. From Figures 5 and 6, we see that it is not always possible to obtain
the same optimal solution when using different initial samples for the param-
eters δ and β. This confirms that Algorithm 2 does not guarantee finding the
global optimal solution to the problem. It only allows finding locally optimal
solutions to the problem. However, we also notice that a recurrent maximum
value is attained for many samples which might suggest that it is indeed the
global optimal solution. Regarding the number of iterations, we do not observe
a clear pattern as these values oscillate within a large range of possible values.
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Fig. 6 Optimal solutions and the number of iterations obtained with Algorithm 2 for 20
initial samples of parameters δ and β using K = 14.

Fig. 7 Slow convergence of the condensed sequential approximation method reporting opti-
mal solutions and the number of iterations obtained for an instance of K = 16 users while
using different initial values of parameters δ and β.
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Finally, to report some empirical evidence that we observed when solving
our instances regarding the slow convergence of Algorithm 2, in Figure 7 we
plot 10 curves with the optimal solutions obtained in each iteration during 10
runs of Algorithm 2 while using different initial values for the parameters δ
and β. From Figure 7, we mainly observe that only after 100 iterations do we
start finding better objective function values for the problem. Also, we notice
that only for 3 out of 10 runs do we obtain the larger objective function values
which are above the value of 10. Most of the remaining runs converge in less
than 250 iterations and with a lower objective function value. This explains
the CPU time values reported in Table 6 for Algorithm 2. To conclude, we
cannot ensure that global optimal solutions are obtained with Algorithm 2.
However, for a few small-size instances, we provide some empirical evidence
indicating that the solutions obtained are near-optimal ones.

6 Conclusions

In this paper, we consider the problem of power allocation for 5G wireless net-
works using massive multiple input multiple output technologies. We propose
two non-linear optimization models where the aims are to maximize the worst
user signal-to-interference noise ratio and the total capacity of the network
subject to power constraints. In particular, our first model is transformed into
an equivalent geometric programming problem. Whereas the second one is
formulated as an equivalent signomial programming problem. Since the latter
problem is non-convex, we propose an approximated geometric model to com-
pute lower bounds. This is achieved by using the arithmetic-geometric mean
inequality. Subsequently, we derive stochastic formulations for each geometric
programming model to deal with the uncertainty of wireless channels. More
precisely, we include individual and joint probabilistic constraints on each
GP model. Finally, we compute lower and upper bounds by using sequential
convex and piece-wise linear methods. Substantial numerical experiments are
conducted to compare all the proposed models and algorithms. Our numerical
experiments indicate the following relevant conclusions.

1. First, we conclude that the use of joint chance constraints allows obtaining
more conservative solutions for the power allocation problems than using
individual chance constraints or using directly the deterministic models.

2. Next, we observe that the sequential approximation Algorithm 1 together
with the piece-wise GP models allows obtaining tight bounds while using
joint chance constraints. The latter is a crucial fact as it shows that we can
approximate the globally optimal solutions to the problems in an efficient
manner. Moreover, we observe that this sequential method requires only a
few iterations to converge for most of the tested instances.

3. For the signomial problem, we mainly observe that the condensed sequential
approximation method requires a significantly larger number of iterations
to converge than the other sequential method. Although, as shown in the
numerical results section, we can still use it with different initial values
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for the required parameters to improve the solutions obtained with the
deterministic model.

4. We observe that independently of the parameter values obtained when solv-
ing the deterministic signomial problem, we can still obtain tight bounds
for the stochastic models derived from it.

5. Finally, as part of future research, we remark that all the modeling
approaches and solution methods studied in this paper can be further inves-
tigated and applied to many other relevant problems related to resource
allocation in wireless networks. Ultimately, we believe that novel algorith-
mic approaches including meta-heuristics should also be part of future
research, especially for solving the signomial and stochastic programming
models.

Acknowledgments

The authors acknowledge the financial support from Project: FONDECYT
No. 11180107.

Declarations

Conflict of interest: The authors have no conficts of interest to declare that
are relevant to the content of this article.

Data availability

The datasets generated during and/or analyzed during the current study are
available from the corresponding author on reasonable request.

References

[1] C. Chiasserini, A. Magnan, IEEE 5G for the Automotive Domain,
https://futurenetworks.ieee.org/images/files/pdf/applications/
5G-for-the-Automotive-Domain030518.pdf

[2] M. Somisetty, Big Data Analytics in 5G, https://futurenetworks.ieee.org/
images/files/pdf/applications/Data-Analytics-in-5G-Applications030518.
pdf

[3] E. Markakis, I. Politis, 5G Emergency Communications,
https://futurenetworks.ieee.org/images/files/pdf/applications/
Emergency-Communications030518.pdf

[4] A. Orsino, O. N.C. Yilmaz, J. Torsner, Ericsson Research,
Factories of the Future Enabled by 5G Technology,
https://futurenetworks.ieee.org/images/files/pdf/applications/
Factories-of-the-Future-Enabled-by-5G-Technology 030518.pdf

https://futurenetworks.ieee.org/images/files/pdf/applications/5G-for-the-Automotive-Domain030518.pdf
https://futurenetworks.ieee.org/images/files/pdf/applications/5G-for-the-Automotive-Domain030518.pdf
https://futurenetworks.ieee.org/images/files/pdf/applications/Data-Analytics-in-5G-Applications030518.pdf
https://futurenetworks.ieee.org/images/files/pdf/applications/Data-Analytics-in-5G-Applications030518.pdf
https://futurenetworks.ieee.org/images/files/pdf/applications/Data-Analytics-in-5G-Applications030518.pdf
https://futurenetworks.ieee.org/images/files/pdf/applications/Emergency-Communications030518.pdf
https://futurenetworks.ieee.org/images/files/pdf/applications/Emergency-Communications030518.pdf
https://futurenetworks.ieee.org/images/files/pdf/applications/Factories-of-the-Future-Enabled-by-5G-Technology_030518.pdf
https://futurenetworks.ieee.org/images/files/pdf/applications/Factories-of-the-Future-Enabled-by-5G-Technology_030518.pdf


Springer Nature 2021 LATEX template

28 Article Title

[5] K. Rao, The Path to 5G for Health Care, https://futurenetworks.ieee.org/
images/files/pdf/applications/5G--Health-Care030518.pdf

[6] N. Mangra, A. Ghasempour, Smart Cities: Connected Ecosystem of Ecosys-
tems, https://futurenetworks.ieee.org/images/files/pdf/applications/
Smart-Cities 030518.pdf

[7] IEEE 5G and Beyond Technology Roadmap, https://futurenetworks.ieee.
org/images/files/pdf/ieee-5g-roadmap-white-paper.pdf

[8] S. Boyd, S. J. Kim, L. Vandenberghe, A. Hassibi, A Tutorial on Geometric
Programming, Optim. Eng., 8(67), (2007) 67-127.

[9] R. Duffin, E. Peterson, C. Zener, Geometric programming—theory and
application, Wiley, New York, 1967.

[10] S. Parsaeefard, V. Jumba, A. D. Shoaei, M. Derakhshani, T. Le-
Ngoc, User Association in Cloud RANs with Massive MIMO, IEEE
Trans. on Cloud Comput., 9(2), (2021) 821-833. https://ieeexplore.ieee.
org/document/8447213

[11] J. Liu, A. Lisser, Z. Chen, Stochastic geometric optimization with joint
probabilistic constraints, OPER. RES. LETT., 44 (2016) 687-691

[12] A. Azizi, S. Parsaeefard, M. R. Javan, N. Mokari, H. Yanikomeroglu,
Profit Maximization in 5G+ Networks with Heterogeneous Aerial and
Ground Base Stations, IEEE T MOBILE COMPUT, 19(10), (2020)
2445-2460. https://ieeexplore.ieee.org/document/8756087

[13] M. Bashar, K. Cumanan, A. G. Burr, H. Q. Ngo, E. G. Larsson, P. Xiao,
Energy Efficiency of the Cell-Free Massive MIMO Uplink With Optimal
Uniform Quantization, IEEE Transactions on Green Communications and
Networking, 3(4), (2019), 971-987. https://ieeexplore.ieee.org/document/
8781848

[14] N. Amani, H. Pedram, H. Taheri, S. Parsaeefard, Energy-Efficient
Resource Allocation in Heterogeneous Cloud Radio Access Networks via
BBU Offloading, IEEE. T. VEH. TECHNOL., 68(2), (2019) 1365-1377.
https://ieeexplore.ieee.org/document/8540795

[15] D. Tweed, M. Derakhshani, S. Parsaeefard, T. Le-Ngoc, Outage-
Constrained Resource Allocation in Uplink NOMA for Critical Applica-
tions, IEEE Access, 5, (2017) 27636-27648. https://ieeexplore.ieee.org/
document/8119799

https://futurenetworks.ieee.org/images/files/pdf/applications/5G--Health-Care030518.pdf
https://futurenetworks.ieee.org/images/files/pdf/applications/5G--Health-Care030518.pdf
https://futurenetworks.ieee.org/images/files/pdf/applications/Smart-Cities_030518.pdf
https://futurenetworks.ieee.org/images/files/pdf/applications/Smart-Cities_030518.pdf
https://futurenetworks.ieee.org/images/files/pdf/ieee-5g-roadmap-white-paper.pdf
https://futurenetworks.ieee.org/images/files/pdf/ieee-5g-roadmap-white-paper.pdf
https://ieeexplore.ieee.org/document/8447213
https://ieeexplore.ieee.org/document/8447213
https://ieeexplore.ieee.org/document/8756087
https://ieeexplore.ieee.org/document/8781848
https://ieeexplore.ieee.org/document/8781848
https://ieeexplore.ieee.org/document/8540795
https://ieeexplore.ieee.org/document/8119799
https://ieeexplore.ieee.org/document/8119799


Springer Nature 2021 LATEX template

Article Title 29

[16] S. Parsaeefard, R. Dawadi, M. Derakhshani, T. Le-Ngoc, M.
Baghani, Dynamic Resource Allocation for Virtualized Wireless Net-
works in Massive-MIMO-Aided and Fronthaul-Limited C-RAN, IEEE. T.
VEH. TECHNOL., 66(10), (2017) 9512-9520. https://ieeexplore.ieee.org/
document/7940003

[17] S. Lakani, F. Gagnon, Optimal Design and Energy Efficient Binary
Resource Allocation of Interference-Limited Cellular Relay-Aided Sys-
tems With Consideration of Queue Stability, in IEEE Access, 5, (2017)
8459-8474. https://ieeexplore.ieee.org/document/7894228

[18] H. Gao, Y. Su, S. Zhang, M. Diao, Antenna selection and power allocation
design for 5G massive MIMO uplink networks, CHINA. COMMUN., 16(4),
(2019) 1-15. https://ieeexplore.ieee.org/document/8695254

[19] M. Benmimoune, E. Driouch, W. Ajib, D. Massicotte, Joint Transmit
Antenna Selection and User Scheduling for Massive MIMO Systems, in
IEEE Wireless Communications and Networking Conference (WCNC),
(2015). https://ieeexplore.ieee.org/document/7127500

[20] M. Pedram, L. Wang, Energy Efficiency in 5G Cellular Network Sys-
tems, IEEE Design & Test, 37(1), (2020) 64-78. https://ieeexplore.ieee.
org/document/8935100

[21] J. Zhang, Y. Zhang, L. Xiang, Y. Sun, D. W. Kwan Ng, M. Jo, Robust
Energy-Efficient Transmission for Wireless-Powered D2D Communication
Networks, IEEE. T. VEH. TECHNOL., 70(8), (2021) 7951-7965. https:
//ieeexplore.ieee.org/document/9478186

[22] A. T. Le, N. D. X. Ha, D. T. Do, A. Silva, S. Yadav, Enabling User Group-
ing and Fixed Power Allocation Scheme for Reconfigurable Intelligent
Surfaces-Aided Wireless Systems, in IEEE Access, 9, (2021) 92263-92275.
https://ieeexplore.ieee.org/document/9464952

[23] H. Lu, X. Jiang, C. W. Chen, Distortion-Aware Cross-Layer Power Allo-
cation for Video Transmission Over Multi-User NOMA Systems, IEEE. T.
WIREL. COMMUN., 20(2), (2021) 1076-1092. https://ieeexplore.ieee.org/
document/9234043

[24] M. Chiang, C. W. Tan, D. P. Palomar, D. Ońeill, D. Julian, Power Control
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