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Projections in enlargements of �ltrations under Jacod's

absolute continuity hypothesis for marked point processes*

Pavel V. Gapeev� Monique Jeanblanc� Dongli Wu�

Abstract

We consider the initial and progressive enlargements of a �ltration (called the reference
�ltration) generated by a marked point process with a strictly positive random time. We
assume Jacod's absolute continuity hypothesis, that is, the existence of a nonnegative con-
ditional density for the random time with respect to the reference �ltration. Then, starting
with the predictable integral representation of a martingale in the initial enlargement of
the reference �ltration, we derive explicit expressions for the coe�cients which appear in
the predictable integral representations for the optional projections of the martingale on
the progressively enlarged �ltration and on the reference �ltration. We also provide similar
results for the optional projection of a martingale (in the progressively enlarged �ltration)
on the reference �ltration. This paper also extends the results obtained in our previous
paper [14] in the Brownian motion setting to the case of absolute continuity hypothesis.

1 Introduction

In this paper, we consider the initial (resp. progressive) enlargement of a �ltration F (called
hereafter the reference �ltration) with a strictly positive random variable τ (called hereafter
the random time), denoted by F(τ) (resp. G). We study the case in which F is generated by a
marked point process (MPP for short. The reason why we are working with such processes is
that a marked point process in F remains a marked point process. in any larger �ltration, in
particular is a semi-martingale in any enlargement of F with possibly a di�erent compensator
and under some conditions admits the weak predictable representation property (WPRP for
short).
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We assume that the law of τ has no atoms and that Jacod's absolute continuity hypothesis
introduced in [3] and [15] holds (see Section 3 below for details). We recall that, under some
hypotheses on τ (see Hypothesis 3.4 below), the weak predictable representation property holds
in the �ltration F(τ) and (adding a pure jump martingale) in the �ltration G. We study the
relationship between the representation of martingales in the initially (resp. progressively)
enlarged �ltration and the various optional projections. The paper is an extension of our
previous paper [14] to the case of models driven by marked point processes. We refer the
reader to the monograph [1] for results on enlargements of �ltrations. Our results can be useful
to compare the optimal strategies of investors having di�erent information �ows (see, e.g. [3]
and [15]). Note that, without any di�culties, one can study models driven by independent
Brownian motions and marked point processes, but this would simply lead to longer formulae.
Detailed studies of the weak predictable representation property when the process also has a
continuous martingale part were provided in [9] (see also [10]-[11]).

The paper is organised as follows. In Section 2, we recall standard results of stochastic
analysis that we use in the paper. In Section 3, we give some basic de�nitions and results
related to the initial and progressive enlargements of a �ltration F generated by a marked point
process with a random time τ , denoted by F(τ) and G, respectively, under Jacod's hypothesis.
In Section 4, we recall that the weak predictable representation property holds in the reference
�ltration with respect to the compensated random measure and prove that the weak predictable
representation property holds with respect to an explicit martingale and a compensated random
measure in the enlargements of �ltration involved. In Section 5, we consider the optional
projections of an F(τ)-martingale on the �ltrations G and F. We derive explicit expressions
for the coe�cients in the integral representations of these optional projections in terms of the
original F(τ)-martingale and the components in its representation as a stochastic integral and
give analogous results in the case of F-optional projections of a G-martingale. In Section 6,
we consider the optional projections of a strictly positive F(τ)-martingale on G and F and the
F-optional projection of a strictly positive G-martingale. We describe the set of equivalent
martingale measures in the associated extension of the exponential model driven by a marked
point process and enhanced with the random time τ . In particular, we show that the set
of equivalent martingale measures in the model with the progressively enlarged �ltration G
is essentially larger than the one obtained by means of the optional projections on G of the
Radon-Nikodym densities in the model with the initially enlarged �ltration F(τ). Some technical
proofs are presented in Appendix.

2 Preliminary de�nitions and results

We work on a standard complete probability space (Ω,G,P), on which there exists a sequence
(Tn, Zn)n≥1, where (Tn)n≥1 is a strictly increasing sequence of �nite strictly positive random
variables with no accumulation points, and (Zn)n≥1 a sequence of real-valued random variables.
We shall say that the sequence (Tn, Zn)n≥1 is a marked point process (MPP) on R with no
accumulation points (see Def. 1.1.6 in [25], Section 1.2, pages 3-4 in [22], Chapter 4 in [6], and
Chapter VIII in [7]).

We denote by B(R+) the σ-algebra of the Borel sets on R+ ≡ [0,∞) and introduce the
associated random measure µ on G ×B(R+)×B(R) which is de�ned, for any set A ∈ B(R) and
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any t ≥ 0, by

µ(ω; (0, t], A) =
∑
n≥1

11{Tn(ω)≤t} 11{Zn(ω)∈A} ,

which is called the jump measure of the marked point process. We denote by F = (Ft)t≥0 the
natural �ltration of the MPP given by

Ft = σ
(
µ((a, b], A), 0 ≤ a < b ≤ t, A ∈ B(R)

)
, ∀t ≥ 0 ,

which is a right-continuous �ltration (see Proposition 3.39 in [18]). We call F hereafter the
reference �ltration, and note that all Tn, for n ≥ 1, are F-stopping times. We de�ne the
compensator ν of the jump measure µ with respect to F as the unique random measure

ν(ω; (0, t], A) =

∫ t

0

∫
A

ν(ω; ds, dz), ∀t ≥ 0 ,

is F-predictable and we introduce

µ̃((0, t], A) := µ((0, t], A)− ν((0, t], A), ∀t ≥ 0 ,

which is an F-martingale. We shall say that µ̃ is the F-compensated martingale of the marked
point process, and, by abuse of language, that ν is the compensator of µ. More generally, if K
is a �ltration larger that F, we say that νK is the K-compensator of µ if, for any A ∈ B(R), the
process

µ̃K((0, t], A) := µ((0, t], A)− νK((0, t], A), ∀t ≥ 0 ,

is a K-martingale, and the process νK((0, ·], A) is K-predictable. With an abuse of language,
we shall write that µ̃K is a K-martingale.

Hypothesis 2.1 We assume, as in Chapter VIII, De�nition D5, page 236 of [7] and [27], that
the F-compensator ν admits the representation

ν(ω; dt, dz) = ηt(ω; dz) dt, ∀t ≥ 0 , (1)

where η(dz) is a transition kernel.

As usual, P(F) (resp. O(F)) is the predictable (resp. optional) σ-algebra on F. For a family
of processes ξ(z) = (ξt(z))t≥0 parameterized by z ∈ R, we shall say that ξ is P(F) ⊗ B(R)-
measurable, if the map (t, ω, z) → ξt(ω; z) is P(F) ⊗ B(R)-measurable, and we de�ne O(F) ⊗
B(R)-measurable processes in a similar way.

Recall that, under Hypothesis 2.1, if ξ is a P(F)⊗ B(R)-measurable process such that∫ t

0

∫
R
|ξs(z)| ηs(dz) ds <∞, ∀t ≥ 0 , (2)

the process Y = (Yt)t≥0 de�ned as

Yt = Y0 +

∫ t

0

∫
R
ξs(z) µ̃(ds, dz), ∀t ≥ 0 , (3)
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is an F-martingale (see Chapter VIII, Corollary C4, page 235 in [7]).
Furthermore, any F-martingale Y admits a representation as in (3) with ξ satisfying (2) (see

Chapter VIII, Theorem T8, page 239 in [7] and Theorem 2.2 in [27]). This property is referred
to as the weak predictable representation property (WPRP) of the marked point process µ in
the �ltration F with respect to the compensated jump measure µ − ν (see also Theorem 13.19
in [16], or Th. 1.13.2 in [22], or Theorem 1.1.21 in [25]). Such a representation is essentially
unique (P× ηt(dz)× dt-a.s.).

Let X = (Xt)t≥0 be a measurable process and H be a �ltration satisfying the usual hypothe-
ses of completeness and right continuity. We denote by p,FX = (p,FXt)t≥0 (resp.

o,FX = (o,FXt)t≥0)
its F-predictable (resp. optional) projection when they exist (see Chapter V, Th. 5.1 (resp. 5.2)
in [16] or Section 1.3.1, page 15 in [1]).

3 Jacod's absolute continuity hypothesis

In the whole paper, we work on a complete probability space (Ω,G,P) which supports a marked
point process with a right-continuous and completed natural �ltration F = (Ft)t≥0 and a strictly
positive random variable τ . Note that the inclusion F∞ ⊂ G holds and, in general, this inclusion
is strict. We recall that any F-martingale admits a càdlàg modi�cation, see Corollary 2.48 in
[16]. In what follows, τ is a given random time de�ned on (Ω,G), i.e. a strictly positive random
variable.

Hypothesis 3.1 We assume in the whole paper that Jacod's absolute continuity hypothesis (in
short Jacod's hypothesis) holds, that is, the regular conditional distributions of τ given Ft are
absolutely continuous with respect to ρ, the unconditional law of the random variable τ is of the
form

P(τ ∈ · | Ft) ≪ P(τ ∈ ·),∀t ≥ 0 (P-a.s.) .

Note that Hypothesis 3.1 was not assumed in [9]. We assume that Hypothesis 3.1 holds
in order to be able to obtain explicit expressions for the coe�cients of the process in the
weak predictable representations given considered initially and progressively enlarged �ltrations
F(τ) and G. This assumption implies (see Lemma 2.3 in [13]) that there exists a family of
nonnegative processes p(u) = (pt(u))t≥0 such that the function (ω, t, u) 7→ pt(u;ω) is O(F) ⊗
B(R+)-measurable, and, for each u ≥ 0, the process p(u) is a càdlàg F-martingale. Moreover,
for any Borel bounded function f , the following equality holds

E
[
f(τ)

∣∣Ft

]
=

∫ ∞

0

f(u) pt(u) ρ(du), ∀t ≥ 0 (P-a.s.) . (4)

The expression in (4) implies that

P(τ > s | Ft) =

∫ ∞

s

pt(u) ρ(du), ∀t, s ≥ 0 (P-a.s.) ,

so that the equality ∫ ∞

0

pt(u) ρ(du) = 1, (P-a.s.),

4



is satis�ed, and p0(u) = 1, for each u ≥ 0.
We shall call the family of F-optional processes p(u), for each u ≥ 0, the F-conditional

density family with respect to ρ(du). Note that, even if p is not strictly positive, p(τ) is strictly
positive (see formula (4.10) in [1]). □

The following proposition is proved as a consequence of the weak predictable representa-
tion property in [24, Pro. 2.1] (see also Chapter II, De�nition 1.27 in [19] and Chapter III,
Theorem 4.24 in [19]).

Proposition 3.2 For each u ≥ 0, the F-martingale p(u) admits the representation

dpt(u) =

∫
R
ft(u, z) µ̃(dt, dz),∀t ≥ 0, p0(u) = 1 , (5)

for a P(F)⊗ B(R+)⊗ B(R)-measurable process f , and∫ t

0

∫
R
|fs(u, z)| ηs(dz) ds <∞, ∀t ≥ 0 .

Proof: The existence of f is due to the weak predictable representation property in the
�ltration F. Note that at the jump times of the process we have ∆pt(u) = ft(u, z), and hence,
using the non-negativity of p, we see that ft(u, z) ≥ −pt−(u), ∀t ≥ 0, ∀z ∈ R. We shall prove
latter on that this inequality holds everywhere. □

Let us denote by H = (Ht)t≥0 with Ht = 11{τ≤t}, for all t ≥ 0, the indicator default process,
where τ denotes the time at which a default occurs. Moreover, since H is a G-adapted càdlàg
process, we can introduce the F-supermartingale G = (Gt)t≥0 de�ned by G = o,F(1−H), that
is, the F-optional projection of 1−H satisfying the property

Gt = P(τ > t | Ft), ∀t ≥ 0 (P-a.s.) , (6)

which, according to the equality (4), can be represented in the form

Gt =

∫ ∞

t

pt(u) ρ(du), ∀t ≥ 0 (P-a.s.) .

Note that G0 = 1.

Hypothesis 3.3 We assume that G,G− are strictly positive.

The F-supermartingale G is called the Azéma supermartingale of the random time τ .

Hypothesis 3.4 We assume that the distribution law ρ of the strictly positive random variable
τ avoids F-stopping times (in particular, ρ is non-atomic).
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4 Enlargements of �ltrations and martingales

We will consider two enlarged �ltrations: the initial enlargement of F obtained by adding the
σ-�eld σ(τ) at time 0 and denoted F(τ), and the progressive enlargement of F obtained by
progressively adding information of σ(τ ∧ t) at time t ≥ 0, or, more precisely, the smallest
right-continuous �ltration G containing F and turning out τ into a stopping time.

The aim of the paper is to explicitly compute the components in the integral representations
of the optional projections of the F(τ)-martingales and of the G-martingales. In this section,
we recall some well known results. We give the form of the F(τ)-semimartingale decomposi-
tion and G-semimartingale decomposition of µ̃ de�ned in (2) as well as the G-semimartingale
decomposition of H. We underline that the martingale part µ̃(τ) of the F(τ)-semimartingale de-
composition of µ̃ enjoys the F(τ)-predictable representation property, while the pair (µ̃G,MG)
of the martingale parts of the G-semimartingale decompositions of µ̃ and H enjoys the G-
predictable representation property, where the integral with respect to the pair is understood
componentwise.

4.1 The initially enlarged �ltration

As in the introduction, let us denote by F(τ) = (F (τ)
t )t≥0 = (Ft∨σ(τ))t≥0 the initial enlargement

of the �ltration F with the random time τ . Note that F (τ)
0 = σ(τ). We recall that, under Jacod's

hypothesis, any F-local martingale is an F(τ)-special semimartingale (see, e.g., Theorem 2.1 in
[17] or Proposition 5.30, page 116 in [1]). Note that, according to Proposition 4.20 in [1], the
�ltration F(τ) is right-continuous.

We further denote F(τ)-optional processes with the superscript (τ) as in Y (τ). We denote
F-adapted processes by capital letters as X, or lower case x, or φ, or even x0.

We also recall that, for any t ≥ 0 �xed, any F (τ)
t -measurable random variable Y

(τ)
t is

of the form Yt(ω, τ(ω)), for some Ft ⊗ B(R+)-measurable function (ω, u) 7→ Yt(ω, u) (see,

e.g., Proposition 2.7, part (i) in [8]). In particular, any F (τ)
0 -measurable random variable is a

Borel function of τ . Recall that any F(τ)-predictable process can be represented in the form
Yt(ω, τ(ω)), for all t ≥ 0, where the mapping (ω, t, u) 7→ Yt(ω, u) de�ned on Ω × R+ × R+

and valued in R is P(F) ⊗ B(R+)-measurable. Moreover, under Jacod's hypothesis, any F(τ)-

optional process Y (τ) = (Y
(τ)
t )t≥0 can be written as Y

(τ)
t = Yt(τ), for all t ≥ 0, where the process

Y = (Yt(u), t ≥ 0, u ∈ R+) is O(F)⊗ B(R+)-measurable (see Theorem 6.9 in [28]).
As an immediate consequence of Jacod's hypothesis, we observe that, for each t ≥ 0, if the

F (τ)
t -measurable random variable Yt(τ) is integrable, then the following representation holds

E
[
Yt(τ)

∣∣Ft

]
=

∫ ∞

0

Yt(u) pt(u) ρ(du), ∀t ≥ 0

(see, e.g., Proposition 4.18 (b), page 85 in [1]).
In the following proposition, we give the F(τ)-semimartingale decomposition of µ̃, de�ned in

(2).

Proposition 4.1 The F(τ)-semimartingale decomposition of the F-martingale µ̃ is given by

µ̃((0, t], A) = µ̃(τ)((0, t], A) +

∫ t

0

∫
A

fs(τ, z)

ps−(τ)
ηs(dz) ds, ∀t ≥ 0 ,∀A ∈ B(R) ,
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where µ̃(τ) is an F(τ)-martingale and f is given in (5). We assume that ντ) has a �nite mass.
In other terms, the process (Tn, Zn)n≥1 is a marked point process with F(τ)-compensator ν(τ),
where we have

ν(τ)(dt, dz) =

(
1 +

ft(τ, z)

pt−(τ)

)
ηt(dz) dt, ∀t ≥ 0 ,∀z ∈ R . (7)

In particular, we have 1 + ft(τ, z)/pt−(τ) ≥ 0, ∀t ≥ 0, ∀z ∈ R.

Proof: From the results of initial enlargement1, the process µ̃(τ) de�ned by

µ̃(τ)((0, t], A) = µ̃((0, t], A]−
∫ t

0

d⟨µ̃((0, ·], A), p(u)⟩Fs
ps−(u)

∣∣∣∣
u=τ

, ∀t ≥ 0 ,∀A ∈ B(R) ,

is an F(τ)-martingale. In order to compute the predictable covariation, we start by computing
the quadratic covariation of the processes µ̃ and p(u), for each u ≥ 0. Obviously, we have

[
µ̃, p(u)

]
t
=

∫ t

0

∫
R
fs(u, z)µ(ds, dz), ∀t, u ≥ 0 ,

and hence, from Theorem 6.28, part 2 in [16],

〈
µ̃, p(u)

〉F
t
=

∫ t

0

∫
R
fs(u, z) ηs(dz) ds, ∀t, u ≥ 0 .

It follows that

µ̃(τ)((0, t],R) = µ((0, t],R)−
∫ t

0

∫
R

(
fs(τ, z)

ps−(τ)
+ 1

)
ηs(dz) ds, ∀t ≥ 0 ,

is an F(τ)-martingale and the F(τ)-compensator of µ is

ν(τ)(dt, dz) =

(
ft(τ, z)

pt−(τ)
+ 1

)
ηt(dz) dt, ∀t ≥ 0 ,∀z ∈ R ,

since the process

µ̃(τ) = µ− ν −
∫ ·

0

∫
R

fs(τ, z)

ps−(τ)
ηs(dz) ds ≡ µ− ν(τ)

is an F(τ)-martingale. This completes the proof. □

Note that the weak predictable representation property for the marked point process µ̃(τ)

holds in F(τ) (See Proposition 4.6 or [4]).

1One applies Theorem 2.1 in [17] which states that, under Jacod's hypothesis, for any F-martingale X =
(Xt)t≥0, the process X(τ) = (Xt(τ))t≥0 de�ned by

Xt(τ) = Xt −
∫ t

0

d⟨X, p(u)⟩Fs
ps−(u)

∣∣∣∣
u=τ

, ∀t ≥ 0 ,

is an F(τ)-martingale. Note that p(τ) does not vanish.
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Proposition 4.2 Each (P,F(τ))-martingale Y (τ) = (Yt(τ))t≥0 admits a representation of the
form

Yt(τ) = Y0(τ) +

∫ t

0

∫
R
ψs(τ, z) µ̃

(τ)(ds, dz), ∀t ≥ 0 , (8)

for some P(F)⊗ B(R+)⊗ B(R)-measurable process ψ satisfying∫ t

0

∫
R
|ψs(τ, z)| ν(τ)(ds, dz) <∞, ∀t ≥ 0 ,

where ν(τ) is de�ned in (7).

4.2 The progressively enlarged �ltration

We denote by G = (Gt)t≥0 the progressive enlargement of F with τ , that is, the right-continuous
version of G0 where

G0
t =

⋂
s>t

(
Fs ∨ σ(τ ∧ s)

)
, ∀t ≥ 0 . (9)

Note that τ is a G-stopping time and that, according to the hypothesis that the random
variable τ is strictly positive, the σ-algebra G0 is trivial, so that the initial value of a G-adapted
process is a deterministic one. Observe that, under Jacod's hypothesis, any F-martingale is a
G-semimartingale (see, e.g., Proposition 5.30, page 116 in [1] or Theorem 3.1 in [20]), and thus,
a special semimartingale according to Chapter VI, Theorem 4, page 367 in [26].

We observe that the completion of the two enlargements G and F(τ) follows from F∞ ⊂
G∞ ⊂ F (τ)

∞ ⊂ A.
We further indicate with the superscript G the processes which are G-adapted, as Y G, as

we shall do now for the G-adapted process 11{τ≤t} which will be denoted HG. We recall that,
under Jacod's hypothesis, any G-optional process Y G can be written as

Y G
t = 11{τ>t} Y

0
t + 11{τ≤t} Y

1
t (τ), ∀t ≥ 0 ,

where Y 0 is F-optional and Y 1 is O(F) ⊗ B(R+)-measurable (see Theorem 6.9 in [28]). A
particular case occurs when Y G is the optional projection of a process Y (τ). In that case, one
has

Y 0
t =

1

Gt

∫ ∞

t

Yt(u) pt(u) ρ(du), ∀t ≥ 0 , and Y 1
t (u) = Yt(u), ∀t, u ≥ 0with t ≥ u ,

where the process G is de�ned in (6). Here, Y 0 is called the F-optional reduction of Y G. We
also recall that any G-predictable process Y G

t = (Y G
t )t≥0 can be written as

Y G
t = 11{τ≥t} Y

0
t + 11{τ<t} Y

1
t (τ), ∀t ≥ 0 ,

where the process Y 0 is F-predictable and Y 1 is P(F)⊗ B(R+)-measurable (see, e.g., Proposi-
tion 2.11, page 36 in [1]). In this case, Y 0 is called the F-predictable reduction of Y G. Note
that the càg process (11{τ<t})t≥0 is G-predictable.
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As it follows from the Doob-Meyer decomposition of the supermartingale HG and the fact
that any G-predictable process is equal, on the set {τ ≥ t} to an F-predictable process, there
exists an F-predictable increasing process Λ = (Λt)t≥0 such that the process MG = (MG

t )t≥0

de�ned by
MG

t = HG
t − Λt∧τ , ∀t ≥ 0 , (10)

is a G-martingale. It is known that, under Jacod's hypothesis, the process Λ admits the
representation (we also use the fact that ρ has no atoms)

Λt =

∫ t

0

ps(s)

Gs

ρ(ds) =

∫ t

0

ps−(s)

Gs−
ρ(ds), ∀t ≥ 0 ,

(see Proposition 4.4 in [12] or Corollary 5.27 (b), page 114 in [1]). In this respect, the process
λ = (λt)t≥0 de�ned by λt = pt−(t)/Gt−, for t ≥ 0, is the intensity rate of τ with respect to the
measure ρ (see Proposition 2.15, page 37 in [1]).

The Doob-Meyer decomposition of the Azéma supermartingale can be given explicitly and
its multiplicative decomposition is as follows.

Proposition 4.3 Suppose that Jacod's hypothesis holds. The Doob-Meyer decomposition of the
Azéma supermartingale G is

Gt = 1−
∫ t

0

Gs λs ρ(ds) +

∫ t

0

∫
R

∫ ∞

s

fs(u, z) µ̃(ds, dz) ρ(du), ∀t ≥ 0 , (11)

or in a simpli�ed form

Gt = 1−
∫ t

0

Gs λs ρ(ds) +

∫ t

0

∫
R
φ(s, z) µ̃(ds, dz), ∀t ≥ 0 ,

where

φ(t, z) =

∫ ∞

t

ft(u, z) ρ(du), ∀t ≥ 0 , ∀z ∈ R . (12)

Proof: The Doob-Meyer decomposition of G is obtained using Itô-Ventzell formula as de-
veloped in Theorem 3.1 in [23] to the process

Gt(x) = P(τ > x | Ft) =

∫ ∞

x

pt(u) ρ(du)

=

∫ ∞

x

p0(u)ρ(du) +

∫ t

s=0

∫
R

∫ ∞

u=x

fs(u, z) µ̃(ds, dz) ρ(du), ∀t ≥ 0 ,

with a parameter x, where the forward integral (with respect to the compensated measure) in
[23] is the usual stochastic integral in our setting since we integrate predictable processes. Then
(with the notation of [23] γ = 0, H(s, x) =

∫∞
x
fs(u, z)ρ(du)),

Gt = Gt(t) = 1−
∫ t

0

λsGs ρ(ds) +

∫ t

0

∫ ∞

s

∫
R
fs(u, z) ρ(du) µ̃(ds, dz), ∀t ≥ 0 .

□

In the following proposition, we give the semimartingale decomposition of the process µ̃
de�ned in (12) in the �ltration G.
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Proposition 4.4 The G-semimartingale decomposition of the F-martingale µ̃([0, ·], A) is given
by for any A ∈ B(R)

µ̃((0, t], A) = µ̃G((0, t], A) +

∫ t∧τ

0

∫
A

φs(z)

Gs−
ηs(dz) ds+

∫ t

t∧τ

∫
A

fs(τ, z)

ps−(τ)
ηs(dz) ds, ∀t ≥ 0 , (13)

where µ̃G((0, ·], A) is a G-martingale, φ is de�ned in (12), and f is de�ned in (5). The pre-
dictable random measure

νG(dt, dz) =

[
11{τ≥t}

(
φt(z)

Gt

+ 1

)
+ 11{τ<t}

(
ft(τ, z)

pt−(τ)
+ 1

)]
ηt(dz) dt, ∀t ≥ 0, ∀z ∈ R , (14)

is the G-compensator of the random jump measure µ.

Proof: Recall that the process G admits a Doob-Meyer decomposition as G = m− (HG)p,F

with a martingale m = (mt)t≥0 (see
2) where, from (11) and (12), we get

mt =

∫ t

0

∫
R
φs(z) µ̃(ds, dz) , ∀t ≥ 0 .

The G-semimartingale decomposition3 of the F-martingale µ̃ is given by

µ̃((0, t], A) = µ̃G((0, t], A) +

∫ t∧τ

0

d⟨µ̃(A),m⟩Fs
Gs−

+

∫ t

t∧τ

d⟨µ̃(A), p(u)⟩Fs
ps−(u)

∣∣∣∣
u=τ

= µ̃G((0, t], A) +

∫ t∧τ

0

∫
A

φs(z)

Gs−
ηs(dz) ds+

∫ t

t∧τ

∫
A

fs(τ, z)

ps−(τ)
ηs(dz) ds , ∀t ≥ 0, ∀A ∈ B(R) ,

where (µ̃G((0, t], A))t≥0 is a G-martingale. It thus follows that the G-compensator of µ is given
by (14). □

Remark 4.5 The compensator νG of µ in (14) being increasing, the process ft(τ, z)/pt−(τ)+1,
∀t ≥ 0, ∀z ∈ R, is nonnegative, as well as the process φt(z)/Gt + 1, ∀t ≥ 0, ∀z ∈ R.

Proposition 4.6 Each (P,G)-martingale Y G = (Y G
t )t≥0 can be represented as

Y G
t = Y G

0 +

∫ t

0

∫
R
αG
s (z) µ̃

G(ds, dz) +

∫ t

0

β0
s dM

G
s , ∀t ≥ 0 , (15)

2 It is known that, under the assumption that the random time τ avoids all F-stopping times, the dual
optional projection of H is continuous and equal to the dual predictable projection of H, denoted by Hp (see
Proposition 1.48 (a), page 22 in [1]). Therefore the martingale m which appears in the general formulae of
the semimartingale decomposition (see Proposition 5.30, page 116 in [1]) is equal to the martingale part of the
Doob-Meyer decomposition of G, that is, one has G = m−Hp with an F-martingale m = (mt)t≥0. In particular,
the predictable projection of G is pG = pm−Hp = m− −Hp = G−.

3One can use Remark 2 and Theorem 5.30, page 116 in [1] to deduce that, for any F-martingale X, the
process XG = (XG

t )t≥0 de�ned by

XG
t = Xt −

∫ t∧τ

0

d⟨X,m⟩Fs
Gs−

−
∫ t

t∧τ

d⟨X, p(u)⟩Fs
ps−(u)

∣∣∣∣
u=τ

, ∀t ≥ 0 ,

is a G-martingale.
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for some P(G)⊗ B(R)-measurable process αG satisfying∫ t

0

∫
R

∣∣αG
s (z)

∣∣ νG(ds, dz) <∞, ∀t ≥ 0 ,

where νG is de�ned in (14). Here, the process αG is of the form

αG
t (z) = 11{τ≥t} α

0
t (z) + 11{τ<t} αt(τ, z), ∀t ≥ 0, ∀z ∈ R , (16)

where α0 is a P(F)⊗B(R)-measurable process, α is a P(F)⊗B(R+)⊗B(R)-measurable process,
while β0 is an F-predictable process.

Proof: Due to the avoidance property, the process µ((0, ·], A) + HG is a G-measurable
marked point process, with sequence of jumps (∪nTn)∪τ and jumps (Zn, n ≥ 1) (after ordering
the jump times). The result follows from the de�nition of MG in (10) above. See also [4]. □

Remark 4.7 Note that, if the process βG admits the representation

βG
t = 11{τ≥t} β

0
t + 11{τ<t} β

1
t (τ), ∀t ≥ 0 ,

then the equality ∫ t

0

βG
s dM

G
s =

∫ t

0

β0
s dM

G
s , ∀t ≥ 0 ,

holds, for any choice of the P(G)⊗ B(R)-measurable process β1, since MG is �at after τ (i.e.,
MG

t =MG
t∧τ , for all t ≥ 0).

5 Optional projections of martingales

Let Y (τ) be an F(τ)-martingale. Then, Y (τ) admits the integral representation given by (8). We
study the G-optional projection Y G (a G-martingale) of the process Y (τ) and the F-optional
projection Y (an F-martingale) of Y (τ). TheG-martingale Y G admits the integral representation
given by (15), with some process αG in the form of (16), which has a P(F)⊗B(R)-measurable
process α0, a P(F)⊗ B(R+)⊗ B(R)-measurable process α, as well as an F-predictable process
β0.

Observe that any square integrable F-martingale Y admits the representation (3) with some
P(F)⊗ B(R)-measurable process ξ satisfying

E
[ ∫ t

0

∫
R
ξ2s (z) ηs(dz) ds

]
<∞, ∀t ≥ 0 ,

(see Chapter VIII, Theorem T8, page 239 in [7]).
Similarly, we observe that any square integrable F(τ)-martingale Y (τ) admits the represen-

tation (8) with some P(F)⊗ B(R+)⊗ B(R)-measurable process ψ satisfying

E
[ ∫ t

0

∫
R
ψ2
s(τ, z) ν

(τ)(ds, dz)

]
<∞, ∀t ≥ 0 , (17)
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where ν(τ) is de�ned in (7) (see Chapter VIII, Theorem T8, page 239 in [7]).
Finally, we observe that any square integrable G-martingale Y G admits the representation

(15) with some P(G)⊗ B(R)-measurable process αG satisfying

E
[ ∫ t

0

∫
R

(
αG
s (z)

)2
νG(ds, dz)

]
<∞, ∀t ≥ 0 , (18)

and F-predictable process β0, where νG is de�ned in (14) (see Chapter VIII, Theorem T8,
page 239 in [7]).

5.1 The projections of F(τ)-martingales on G
Proposition 5.1 Let Y (τ) be an F(τ)-martingale with the representation (8) above:

Yt(τ) = Y0(τ) +

∫ t

0

∫
R
ψs(τ, z) µ̃

(τ)(ds, dz)

for some P(F) ⊗ B(R+) ⊗ B(R)-measurable process ψ, We study the G-optional projection
Y G of the process Y (τ). Note that Y G is a G-martingale. The G-martingale Y G admits the
integral representation given by (15), with some process αG in the form of (16), which has a
P(F)⊗ B(R)-measurable process α0, a P(F)⊗ B(R+)⊗ B(R)-measurable process α, as well as
an F-predictable process β0. Then Y G

0 = E[Yt(τ)]. The P(F)⊗B(R)-measurable process α0, the
P(F)⊗ B(R+)⊗ B(R)-measurable process α and the F-predictable process β0 are of the form

α0
t (z) =

1

φt(z) +Gt−
(19)

×
∫ ∞

t

((
ψt(u, z) + Yt−(u)

) (
ft(u, z) + pt−(u)

)
− Yt−(u)

(
φt(z)

Gt−
+ 1

)
pt−(u)

)
ρ(du),

∀t ≥ 0 ,∀z ∈ R ,
αt(u, z) = ψt(u, z), ∀u ≥ t ≥ 0 , ∀z ∈ R , (20)

β0
t = p,F(Yt−(t))− Y 0

t−, ∀t ≥ 0 , (21)

where Y 0 = (Y 0
t )t≥0 is the F-predictable reduction of Y G given by

Y 0
t− =

1

Gt−

∫ ∞

t

Yt−(u) pt−(u) ρ(du), ∀t ≥ 0 , (22)

and Y 0
− is its left limit.

Proof: In the �rst part of the proof (the �rst and the second step), we assume that the
F(τ)-martingale Y (τ) is square integrable, so that the G-martingale Y G is square integrable too.
In the �rst step, we determine αG(z), for each z ∈ R, and, in the second step, we determine β0.
We generalize the result to any F(τ)-martingale by localisation in the second part of the proof
(third step).

We introduce the sign
TP
= to indicate that the tower property for conditional expectations

is applied.
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First step: We assume that the F(τ)-martingale Y (τ) is square integrable, so that the
G-martingale Y G is square integrable too. In particular, Y0(τ) is square integrable and the
P(F)⊗B(R+)⊗B(R)-measurable process ψ satis�es (17) as well as the P(G)⊗B(R)-measurable
process αG satis�es (18). Then, consider a bounded P(G)⊗ B(R)-measurable process γG such
that γG(z) = (γGt (z))t≥0, for each z ∈ R, as well as a bounded F-predictable process θ0 = (θ0t )t≥0,
and de�ne the process KG = (KG

t )t≥0 by

KG
t = KG

0 +

∫ t

0

∫
R
γGs (z) µ̃

G(ds, dz) +

∫ t

0

θ0s dM
G
s , ∀t ≥ 0 , (23)

where νG is de�ned in (14). It is seen that the process KG is a square integrable G-martingale,
since γG satis�es the condition

E
[ ∫ t

0

∫
R

(
γGs (z)

)2
νG(ds, dz)

]
<∞, ∀t ≥ 0 , (24)

and the process θ0 is F-predictable and bounded. In this case, the square integrable random
variable Y G

t = E[Yt(τ) | Gt] is the only Gt-measurable random variable such that

E
[
Yt(τ)K

G
t

]
= E

[
Y G
t KG

t

]
, ∀t ≥ 0 , (25)

holds. Thus, since one has

E
[
Yt(τ)K

G
0

]
= E

[
Y G
t KG

0

]
, ∀t ≥ 0 ,

the equality (25) is equivalent to the system of two following equalities

E
[
Yt(τ)

∫ t

0

∫
R
γGs (z) µ̃

G(ds, dz)

]
= E

[
Y G
t

∫ t

0

∫
R
γGs (z) µ̃

G(ds, dz)

]
, ∀t ≥ 0 , (26)

and

E
[
Yt(τ)

∫ t

0

θ0s dM
G
s

]
= E

[
Y G
t

∫ t

0

θ0s dM
G
s

]
, ∀t ≥ 0 . (27)

We now determine the processes α0 and α from the equality (26). On the one hand, one has

E
[
Yt(τ)

∫ t

0

∫
R
γGs (z)

(
µ(ds, dz)− νG(ds, dz)

)]
= E

[
Yt(τ)

(∫ t

0

∫
R
γGs (z)

(
µ(ds, dz)− ν(τ)(ds, dz)

)
+

∫ t

0

∫
R
γGs (z)

(
ν(τ)(ds, dz)− νG(ds, dz)

))]
, ∀t ≥ 0 ,

where ν(τ) is de�ned in (7). Integrating by parts on the time interval [0, t] the product the two
F(τ)-martingales Y (τ) and Υ = (Υt)t≥0 de�ned by

Υt =

∫ t

0

∫
R
γGs (z) µ̃

(τ)(ds, dz), ∀t ≥ 0 , (28)
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and taking into account the fact that Υt−dYt(τ) and Yt−(τ)dΥt correspond to true martingales,
as we shall prove in Appendix below, one has

E
[
Yt(τ)

∫ t

0

∫
R
γGs (z) µ̃

(τ)(ds, dz)

]
= E

[ ∫ t

0

∫
R
γGs (z)ψs(τ, z) ν

(τ)(ds, dz)

]
, ∀t ≥ 0 .

Now, integrating by parts on the time interval [0, t] the product of the martingale Y (τ) and
the bounded variation process Γ(τ) = (Γt(τ))t≥0 de�ned by

Γt(τ) =

∫ t

0

∫
R
γGs (z)

(
ν(τ)(ds, dz)− νG(ds, dz)

)
, ∀t ≥ 0 ,

one obtains

E
[
Yt(τ) Γt(τ)

]
= E

[ ∫ t

0

∫
R
Ys−(τ) γ

G
s (z)

(
ν(τ)(ds, dz)− νG(ds, dz)

)]
, ∀t ≥ 0 .

On the other hand, one has by integration by parts

E
[
Y G
t

∫ t

0

∫
R
γGs (z) µ̃

(τ)(ds, dz)

]
= E

[ ∫ t

0

∫
R
γGs (z)α

G
s (z) ν

G(ds, dz)

]
, ∀t ≥ 0 .

Finally, (26) is equivalent to, for any γG satisfying (24), we have

E
[ ∫ t

0

∫
R
γGs (z)

(
ψs(τ, z) ν

(τ)(ds, dz) + Ys−(τ)
(
ν(τ)(ds, dz)− νG(ds, dz)

))]

= E
[ ∫ t

0

∫
R
γGs (z)α

G
s (z) ν

G(ds, dz)

]
, ∀t ≥ 0 . (29)

For γG(z) such that γGt (z) = 11{τ≥t}γ
0
t (z), ∀t > 0, ∀z ∈ R, where γ0 is P(F)⊗B(R)-measurable,

using the identities (7) and (14), we have

E
[ ∫ t

0

∫
R
γ0s (z) 11{τ≥s}

[(
ψs(τ, z) + Ys−(τ)

)(fs(τ, z)
ps−(τ)

+ 1

)
− Ys−(τ)

(
φs(z)

Gs−
+ 1

)]
ηs(dz) ds

]
= E

[ ∫ t

0

∫
R
γ0s (z) 11{τ≥s} α

0
s(z)

(
φs(z)

Gs−
+ 1

)
ηs(dz) ds

]
, ∀t ≥ 0 , (30)

and, introducing by tower property a conditioning with respect to Fs and using the existence
of the conditional density, setting Ft(u, z) = ft(u, z)/ps−(u) + 1 and Φt(z) = φt(z)/Gt− + 1,
∀t, u ≥ 0, ∀z ∈ R, the left-hand side of (30) is equal to

E
[ ∫ t

0

∫
R
γ0s (z) 11{τ≥s}

((
ψs(τ, z) + Ys−(τ)

)
Fs(τ, z)− Ys−(τ) Φs(z)

)
ηs(dz) ds

]

TP
= E

[ ∫ t

0

∫
R
γ0s (z)

∫ ∞

s

((
ψs(u, z) + Ys−(u)

)
Fs(τ, z)− Ys−(u) Φs(z)

)
ps−(u) ρ(du) ηs(dz) ds

]
,

∀t ≥ 0 , (31)
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where, in the last equality, we have used the fact that the F-predictable projection of p(u) is
p−(u), the process p(u) being a martingale, for each u ≥ 0 �xed.

We note also that, using the fact thatG− is the F-predictable projection ofG (see Remark 2),
the right-hand side of (30) is

E
[ ∫ t

0

∫
R
γ0s (z) 11{τ≥s} α

0
s(z) Φs(z) ηs(dz) ds

]
= E

[ ∫ t

0

∫
R
γ0s (z)Gs α

0
s(z) Φs(z) ηs(dz) ds

]
= E

[ ∫ t

0

∫
R
γ0s (z)Gs− α

0
s(z) Φs(z) ηs(dz) ds

]
, ∀t ≥ 0 . (32)

It follows from (30) that the right-hand sides of (31) and (32) are equal, for any γ0, and hence,∫ ∞

t

((
ψt(u, z) + Yt−(u

)
Ft(u, z)− Yt−(u) Φt(z)

)
pt−(u) ρ(du)

=

∫ ∞

t

((
ψt(u, z) + Yt−(u)

) (
ft(u, z) + pt(u)

)
− Yt−(u)

(
φt(z)

Gt−
+ 1

))
pt−(u) ρ(du)

= Gt− α
0
t (z) Φt(z) = α0

t (z)
(
φt(z) +Gt−

)
, ∀t ≥ 0, ∀z ∈ R ,

and expression (19) holds.
Using the identities (7) and (14), for γG of the form γGt = γt(τ, z)11{τ<t}, ∀s > 0, for

γ ∈ P(F)⊗ B(R+)⊗ B(R), equality (29) leads to

E
[ ∫ t

0

∫
R
γs(τ, z) 11{τ<s} ψs(τ, z)Fs(τ, z) ηs(dz) ds

]
= E

[ ∫ t

0

∫
R
γs(τ, z) 11{τ<s} αs(τ, z)Fs(τ, z) ηs(dz) ds

]
, ∀t ≥ 0 ,

and we can choose α = ψ on the event {τ < t}, so that expression (20) holds.
Second step: In the second step, we compute the value of β0, from the expression (27). It

is straightforward to see that

E
[
Y G
t

∫ t

0

θ0s dM
G
s

]
= E

[ ∫ t

0

β0
s θ

0
s λs 11{τ>s} ρ(ds)

]
TP
= E

[ ∫ t

0

β0
s θ

0
s λsGs ρ(ds)

]
, ∀t ≥ 0 .

From the de�nition of MG, it follows that

E
[
Yt(τ)

∫ t

0

θ0s dM
G
s

]
= E

[
Yt(τ)

(
11{τ≤t} θ

0
τ −

∫ t

0

11{τ>s} θ
0
s λs ρ(ds)

)]
TP
= E

[ ∫ t

0

Yt(s) θ
0
s pt(s) ρ(ds)−

∫ t

0

θ0s λs E
[
Y (τ)
s 11{τ>s}

∣∣Fs

]
ρ(ds)

]
= E

[ ∫ t

0

Ys−(s) ps−(s) θ
0
s ρ(ds)−

∫ t

0

θ0s λs

(∫ ∞

s

Ys−(u) ps−(u) ρ(du)

)
ρ(ds)

]
= E

[ ∫ t

0

p,FΣs ps−(s) θ
0
s ρ(ds)−

∫ t

0

θ0s λs

(∫ ∞

s

Ys−(u) ps−(u) ρ(du)

)
ρ(ds)

]
, ∀t ≥ 0 ,
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where we have used in the third equality that Y (u)p(u) is an F-martingale [1, Pro 4.33] with
predictable projection Y−(u)p−(u), for each u ≥ 0, and de�ned Σ = (Σt)t≥0 by Σt = Yt−(t), for
all t ≥ 0. We are not able to give conditions so that Σ is predictable, since we do not have
regularity of the process Yt−(u) with respect to u, for each u ≥ 0, this is why we have to take
its predictable projection.

It follows that

β0
t =

1

λtGt−

(
p,FΣt pt−(t)− λt

∫ ∞

t

Yt−(u) pt−(u) ρ(du)

)
(33)

= p,FΣt −
1

Gt−

∫ ∞

t

Yt−(u) pt−(u) ρ(du), ∀t ≥ 0 ,

where we have used the fact that λt = pt−(t)/Gt−, for t ≥ 0. The expression in (33) implies
the fact means that (21) holds with (22).

Third step: The extension to F(τ)-martingales is done using usual localisation procedure
(see Third step of Proof of Proposition 5.1 in [14]). □

5.2 The projections of F(τ)-martingales on F
Proposition 5.2 Let Y (τ) be an F(τ)-martingale with the representation given by equality (8).
Then, its F-optional projection Y = (Yt)t≥0 admits the representation (3), with P(F) ⊗ B(R)-
measurable process ξ, given by

ξt(z) =

∫ ∞

0

(
ψt(u, z)

(
ft(u, z) + pt−(u)

)
+ Yt−(u) ft(u, z)

)
ρ(du), ∀t ≥ 0 .

Proof: As before, we assume that Y (τ) is square integrable. Then, consider a bounded
P(F)⊗ B(R)-measurable process ζ such that ζ(z) = (ζt(z))t≥0, for each z ∈ R, and de�ne the
process K = (Kt)t≥0 by

Kt = K0 +

∫ t

0

∫
R
ζs(z) µ̃(ds, dz), ∀t ≥ 0 .

It is seen that the process K is a square integrable G-martingale, since the process ζ satis�es
the condition

E
[ ∫ t

0

∫
R
ζ2s (z) ηs(dz) ds

]
<∞, ∀t ≥ 0 .

In this case, the square integrable random variable Yt = E[Yt(τ) | Ft] is the only Ft-measurable
random variable such that

E
[
Yt(τ)Kt

]
= E

[
YtKt

]
, ∀t ≥ 0 , (34)

holds. Thus, the equality (34) is equivalent to the following equality

E
[
Yt(τ)

∫ t

0

∫
R
ζs(z) µ̃(ds, dz)

]
= E

[
Yt

∫ t

0

∫
R
ζs(z) µ̃(ds, dz)

]
, ∀t ≥ 0 .
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On the one hand, one has

E
[
Yt(τ)

∫ t

0

∫
R
ζs(z) µ̃(ds, dz)

]
= E

[
Yt(τ)

∫ t

0

∫
R
ζs(z) µ̃

(τ)(ds, dz) + Yt(τ)

∫ t

0

∫
R
ζs(z)

(
ν(τ)(ds, dz)− ηs(dz) ds

)]
, ∀t ≥ 0 ,

where ν(τ) is de�ned in (7). Integrating by parts on the time interval [0, t] the product of the
two F(τ)-martingales Y (τ) and Φ(τ) = (Φt(τ))t≥0 de�ned by

Φt(τ) =

∫ t

0

∫
R
ζs(z) µ̃

(τ)(ds, dz), ∀t ≥ 0 ,

one has, using the square integrability assumption, that

E
[
Yt(τ) Φt(τ)

]
= E

[ ∫ t

0

∫
R
ζs(z)ψs(τ, z) ν

(τ)(ds, dz)

]
= E

[ ∫ t

0

∫
R
ζs(z)ψs(τ, z)Fs(τ, z) ηs(dz) ds

]
,∀t ≥ 0 .

By integrating by parts the product of Y (τ) and the process ∆(τ) = (∆t(τ))t≥0 of bounded
variation de�ned by

∆t(τ) =

∫ t

0

∫
R
ζs(z)

(
ν(τ)(ds, dz)− ηs(dz) ds

)
, ∀t ≥ 0 ,

one obtains, using the equality (7), that

E
[
Yt(τ)∆t(τ)

]
= E

[ ∫ t

0

∫
R
ζs(z)Ys−(τ)

fs(τ, z)

ps(τ)
ηs(dz) ds

]
, ∀t ≥ 0 .

Hence, we have

E
[
Yt(τ)

∫ t

0

∫
R
ζs(z) µ̃(ds, dz)

]
= E

[
Yt(τ) Φt(τ)

]
+ E

[
Yt(τ)∆t(τ)

]
, ∀t ≥ 0 .

On the other hand, one has

E
[
Yt

∫ t

0

∫
R
ζs(z) µ̃(ds, dz)

]
= E

[ ∫ t

0

∫
R
ζs(z) ξs(z) ηs(dz) ds

]
, ∀t ≥ 0 .

Finally, the expression (34) implies

E
[ ∫ t

0

∫
R
ζs(z)

∫ ∞

0

(
ζs(u, z) fs(u, z) + Ys−(u)

(
fs(u, z)− 1

))
ps−(u) ρ(du) ηs(dz) ds

]
= E

[ ∫ t

0

∫
R
ζs(z) ξs(z) ηs(dz) ds

]
, ∀t ≥ 0 ,

then, we obtain the expression (5.2). □
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5.3 The projections of G-martingales on F
Proposition 5.3 Let Y G be a G-martingale with the representation given by equality (15)

Y G
t = Y G

0 +

∫ t

0

∫
R
αG
s (z) µ̃

G(ds, dz) +

∫ t

0

β0
s dM

G
s , ∀t ≥ 0 ,

and the decomposition given in (4.2) above.
Then, its F-optional projection Y is given by (3) above,

Yt = Y0 +

∫ t

0

∫
R
ξs(z) µ̃(ds, dz), ∀t ≥ 0

where the P(F)⊗ B(R)-measurable process ξ is given by

ξt(z) = α0
t (z)

(
φt(z) +Gt−

)
+ Y 0

t− φt(z)

+

∫ t

0

(
αt(u, z)

(
ft(u, z) + pt−(u)

)
+ Yt−(u) ft(u, z) pt−(u)

)
ρ(du), ∀t ≥ 0, ∀z ∈ R ,

with the supermartingale G given by the equality (6).

Proof: As before, for any G-adapted bounded process θG, we consider the equality satis�ed
by Y such that

E
[
Yt

∫ t

0

∫
R
θGs µ̃(ds, dz)

]
= E

[
Y G
t

∫ t

0

∫
R
θGs µ̃(ds, dz)

]
, ∀t ≥ 0 .

The left-hand side is equal to

E
[ ∫ t

0

∫
R
ξs(z) θ

G
s ηs(dz) ds

]
, ∀t ≥ 0 .

The right-hand side is equal to

E
[
Y G
t

∫ t

0

∫
R
θGs

(
µ̃G(ds, dz) + νGs (ds, dz)− ηs(dz) ds

)]
= E

[ ∫ t

0

∫
R
αG
s θ

G
s ν

G(ds, dz) +

∫ t

0

∫
R
θGs Y

G
s−

(
νG(ds, dz)− ηs(dz) ds

)]
= E

[ ∫ t

0

∫
R
θGs

(
α0
s(z)

(
φs(z)

Gs−
+ 1

)
+ Y 0

s−
φs(z)

Gs−

)
ηs(dz) 11{τ>s} ds

]
+ E

[ ∫ t

0

∫
R
θGs

(∫ s

0

(
αs(u, z)

(
fs(u, z) + ps−(u)

)
+ Ys−(u) fs(u, z)

)
ρ(du)

)
ηs(dz) ds

]
,

= E
[ ∫ t

0

∫
R
θGs

(
α0
s(z)

(
φs(z) +Gs

)
+ Y 0

s− φs(z)
)
ηs(dz) ds

]
+ E

[ ∫ t

0

∫
R
θGs

(∫ s

0

(
αs(u, z)

(
fs(u, z) + ps(u)

)
+ Ys−(u) fs(u, z)

)
ρ(du)

)
ηs(dz) ds

]
,

∀t ≥ 0 ,

where νG is de�ned in (14). Hence, this equality being true for any θG, the proof is complete. □
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Remark 5.4 Using the same methodology, wee can extend the result in the Brownian case,
established in [14] under equivalence Jacod's hypothesis to the case of absolute continuity
hypothesis. We do not give details,the results are the same as the ones in [14].

6 Changes of probability measures and applications

In this section, as an example of application of the results from the previous section, we con-
sider the relationships between strictly positive F(τ)-martingales (or G-martingales) and their
optional projections. We then apply the results in a �nancial market framework to study the
set of equivalent martingale measures in di�erent �ltrations.

A probability measure Q is said to be locally equivalent to P on the �ltration H if there
exists a strictly positive H-martingale L = (Lt)t≥0 such that

dQ
dP

∣∣∣∣
Ht

= Lt, ∀t ≥ 0 .

The martingale L is called the Radon-Nikodym density of Q with respect to P. The �locally"
terminology is needed, since as in [3], we cannot de�ne the new probability measure Q on H∞,
because the density process L is not necessarily an uniformly integrable martingale on H.

6.1 The projections of strictly positive F(τ)-martingales on G
Let L(τ) be a strictly positive F(τ)-martingale. Then, in particular, we have L0(τ) > 0 (P-a.s.).
Moreover, applying Proposition 4.2 with Y (τ) = L(τ), we can write L(τ) in the form of

Lt(τ) = L0(τ) +

∫ t

0

Ls−(τ)

∫
R∗

(
Θs(τ, z)− 1

)
µ̃(τ)(ds, dz)∀t ≥ 0 , (35)

where Lt(τ)(Θt(τ, z) − 1) = ψt(τ, z), ∀t ≥ 0, ∀z ∈ R. Note that, since at jumps times LTn =
LTn−ΘTn , ∀n ≥ 1, one has Θ > 0. Note that, if E[L0(τ)] = 1, then we can associate to the

strictly positive F(τ)-martingale L(τ) the probability measure P̃ locally equivalent to P on the
�ltration F(τ) de�ned by

dP̃
dP

∣∣∣∣
F(τ)

t

= Lt(τ), ∀t ≥ 0 .

Remark 6.1 As in Remark 6.1 in [14], the particular choice of L0(τ) = 1 (P-a.s.) is equivalent

to the property P̃(τ > u) = P(τ > u), for each u ≥ 0.

We now consider the G-optional projection LG = (LG
t )t≥0 of the strictly positive martingale

L(τ). In this case, applying Proposition 4.6 with Y G = LG, and setting L(κ− 1) = αG, so that
κ > 0, we see that LG admits the representation

LG
t = LG

0 +

∫ t

0

LG
s−

∫
R

(
κG

s (z)− 1
)
µ̃G(ds, dz) +

∫ t

0

LG
s− ξ

0
s dM

G
s , ∀t ≥ 0 . (36)
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with a strictly positive and P(G)⊗ B(R)-measurable process κG satisfying∫ t

0

∫
R

∣∣κG
s (z)− 1

∣∣ νG(ds, dz) <∞, ∀t ≥ 0 ,

where νG is de�ned in (14).
Here, the process κG is of the form

κG
t (z) = 11{τ≥t} κ0

t (z) + 11{τ<t} κt(τ, z), ∀t ≥ 0, ∀z ∈ R ,

where κ0 is a P(F)⊗B(R)-measurable process, κ is a P(F)⊗B(R+)⊗B(R)-measurable process,
while ξ0 > −1 is an F-predictable process.

Proposition 6.2 Let L(τ) = (Lt(τ))t≥0 be a strictly positive martingale of the form (35).
Then, its G-optional projection LG satis�es (36) with the G-predictable processes κG and the
F-predictable process ξ0 given by

κG
t (z)− 1 =

11{τ≥t}

L0
t−(φt(z) +Gt−)

(37)

×
∫ ∞

t

Lt−(u)

(
Θt(u, z)

(
ft(u, z) + pt−(u)

)
−
(
φt(z)

Gt−
+ 1

)
pt−(u)

)
ρ(du)

+ 11{τ<t}
(
Θt(τ, z)− 1

)
, ∀t ≥ 0 , ∀z ∈ R ,

ξ0t =
p,F(Lt−(t))

L0
t−

− 1, ∀t ≥ 0 , (38)

L0
t− =

1

Gt−

∫ ∞

t

Lt−(u) pt−(u) ρ(du), ∀t ≥ 0 ,

where L0 = (L0
t )t≥0 is the F-predictable reduction of LG and L0

− is its left-hand limit.

Proof: Consider the F(τ)-martingale L(τ) given by equality (35). In this case, its G-
optional projection LG has the form of (36). Then, Proposition 5.1 applies with Y (τ) = L(τ)
and ψ(u, z) = L−(u)(Θ(u, z) − 1), for all u ≥ 0 and z ∈ R, and therefore, equalities ψ =
LG
t (κG

t (z) − 1) = αG
t (z). That is, L

0
t−(κ0

t (z) − 1) = α0
t (z) and Lt−(u)(κt(u, z) − 1) = αt(u, z),

for all u ≥ 0 and z ∈ R, and ξ0tL0
t− = β0

t hold, for all t ≥ 0 and z ∈ R, and

Lt−(u)
(
κt(u, z)− 1

)
=

1

φt(z) +Gt−

×
∫
t

Lt−(u)

(
Θt(u, z)

(
ft(u, z) + pt−(u)

)
−

(
φt(z)

Gt−
+ 1

)
pt−(u)

)
ρ(du), ∀t ≥ 0 .

□
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6.2 The projections of strictly positive F(τ)-martingales on F
Let L(τ) be a strictly positive F(τ)-martingale of the form (35). Then, applying Proposition 5.2
with Y (τ) = L(τ), we obtain that the F-optional projection L of L(τ) admits the integral
representation

Lt = E
[
L0(τ)

]
+

∫ t

0

Ls−

∫
R
χs(z) µ̃(ds, dz), ∀t ≥ 0 ,

where the P(F)⊗ B(R)-measurable process χ is given by

χt(z) =
1

Lt−

∫ ∞

0

Lt−(u)
(
Θt(u, z)

(
ft(u, z) + pt−(u)

)
+ ft(u, z)

)
ρ(du), ∀t ≥ 0 , ∀z ∈ R .

6.3 The projections of strictly positive G-martingales on F
It follows from Proposition 5.3 that any strictly positive G-martingale LG = (LG

t )t≥0 admits the
equivalent representation (36) and, being a G-optional process, it admits the decomposition

LG
t = 11{τ>t} L

0
t + 11{τ≤t} L

1
t (τ), ∀t ≥ 0 ,

where the process L0 is F-optional and the process L1 is O(F)⊗B(R+)-measurable. By similar
arguments, it follows that its F-optional projection L = (Lt)t≥0 admits the integral representa-
tion

Lt = LG
0 +

∫ t

0

Ls−

∫
R
σs(z) µ̃(ds, dz), ∀t ≥ 0 ,

where σ(z) = (σt(z))t≥0 is an F-predictable process. In order to derive σ, it su�ces to apply
Proposition 5.3 with Y G = LG, (L−(κ(z) − 1))0 = α0(z), L−(κ(z) − 1) = α(z) and L−σ(z) =
ξ(z), for all z ∈ R, so that Y 0 = L0 and Y = L. The equality (L−(κ(z)−1))0 = L0

−(κ0(z)−1),
for all z ∈ R, follows from the de�nition of predictable reduction. Therefore, we conclude, after
easy simpli�cations, that

σt(z) =
1

Lt−

(
L0
t−

(
κ0

t (z)
(
φt(z) +Gt−

)
−Gt

)
+

∫ t

0

L1
t (u)

((
κt(u, z)− 1

) (
ft(u, z) + pt−(u)

)
+ ft(u, z) pt−(u)

)
ρ(du)

)
, ∀t ≥ 0 ,∀z ∈ R .

6.4 The equivalent martingale measures

Let us now consider a model of a �nancial market in which the risky asset price process S =
(St)t≥0 follows the stochastic di�erential equation

dSt = St δt dt+ St−

∫
R
ht(z) µ̃(dt, dz) ,

where h belongs to P(F) ⊗ B(R) and is greater than −1 (to satisfy the positivity of S). We
also assume that the riskless asset has a zero interest rate and δ is F-adapted.
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Change of probability in F: A change of the probability measure in F has a Radon-
Nikodym density process L = (Lt)t≥0 satisfying the stochastic di�erential equation given from
the weak predictable representation property [24, Pro. 2.1] by

dLt = Lt−

∫
R

(
αt(z)− 1

)
µ̃(dt, dz), L0 = 1 , (39)

for a strictly positive P(F)⊗ B(R)-measurable process α.
This Radon-Nikodym density process will correspond to an equivalent martingale measure

if SL is an F-martingale. From the integration-by-parts formula, we have

St Lt = S0 +

∫ t

0

Ls− dSs +

∫ t

0

Ss− dLs + [S, L]t, ∀t ≥ 0 ,

where the quadratic variation4 is given by[
S, L

]
t
=

∑
Tn≤t

STn− LTn− hTn(Zn) (αTn(Zn)− 1)

=

∫ t

0

Ss− Ls−

∫
R
hs(z)

(
αs(z)− 1

)
µ̃(ds, dz)

+

∫ t

0

Ss− Ls−

∫
R
hs(z)

(
αs(z)− 1

)
ηs(dz) ds, ∀t ≥ 0 ,

and

St Lt = S0 +

∫ t

0

Ls− dSs +

∫ t

0

Ss− dLs + [S, L]t,

= S0 +

∫ t

0

Ls−Ss−

(
δs +

∫
R
hs(z)

fs(τ, z)

ps−(τ)
ηs(dz)

)
ds

+

∫ t

0

Ss− Ls−

∫
R
hs(z)

(
αs(z)− 1

)
ηs(dz) ds+M t, ∀t ≥ 0 ,

where the process M = (M t)t≥0 is an F-martingale.
We now de�ne

θt = δt +

∫
R
ht(z)

ft(τ, z)

pt−(τ)
ηt(dz)

and we obtain that the process SL is an F-martingale if and only if α (see (39)) satis�es the
equality

θt +

∫
R
ht(z)

(
αt(z)− 1

)
ηt(dz) = 0, ∀t ≥ 0 .

4For any two semimartingales X = (Xt)t≥0 and Y = (Yt)t≥0, one has

[X,Y ]t = ⟨Xc, Y c⟩t +
∑

0≤s≤t

∆Xs ∆Ys, ∀t ≥ 0 ,

whereXc and Y c are continuous (local) martingale parts ofX and Y , while∆Xt = Xt−Xt− and∆Yt = Yt−Yt−
(see Chapter VIII, De�nition 8.2, page 209 in [16]).
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(see Section 2.1 in [24] for similar results). This equivalent martingale measure is unique in
that case.

Change of probability in G: In the �ltration G, using the equality (14), we have

dSt = St δt dt+ St−

∫
R
ht(z)

(
νG(dt, dz)− ν(dt, dz)

)
+ St−

∫
R
ht(z) µ̃

G)(dt, dz)

= St−

(
δt +

∫
R
ht(z)

(
11{τ≥t}

φt(z)

Gt−
+ 11{τ<t}

ft(τ, z)

pt−(τ)

)
ηt(dz)

)
dt+ St−

∫
R
ht(z) µ̃

G(dt, dz)

= St− θ
G
t dt+ St−

∫
R
ht(z) µ̃

G(dt, dz) ,

where the last term is an G-martingale and

θGt = δt +

∫
R
ht(z)

(
11{τ≥t}

φt(z)

Gt−
+ 11{τ<t}

ft(τ, z)

pt−(τ)

)
ηt(dz) .

Using the fact that any positive G-martingale has the form

dLG
t = LG

t−

∫
R

(
κG(z)− 1

)
µ̃G(dt, dz) + ξ0t dM

G
t

for some strictly positive P(G)⊗ B(R)-measurable process κG (see Proposition 4.6 and that

[
S, LG]G

t
=

∫ t

0

∫
R
hs(z)

(
κG

t (z)− 1
)
ηGt (dz), ∀t ≥ 0 ,

the set P(G) of (locally) equivalent martingale measures on G corresponds to the set of Radon-
Nikodym density processes of the form

dLG
t = LG

t−

(∫
R

(
κG

t (z)− 1
)
µ̃G(dt, dz) + ξ0s dM

G
t

)
with κG such that

θGt +

∫
R
ht(z)

(
κG

t (z)− 1
)
νG(dt, dz) = 0, ∀t ≥ 0 .

This change of probability is not unique, ξ0 is to be chosen.

Change of probability in F(τ): In the �ltration F(τ), using the representation (7), we
have

dSt = St δt dt+ St−

∫
R
ht(z)

(
ν(τ)(dt, dz)− ν(dt, dz)

)
+ St−

∫
R
ht(z) µ̃

τ (dt, dz)

= St−

(
δt +

∫
R
ht(z)

ft(τ, z)

pt−(τ)
ηt(dz)

)
dt+ St−

∫
R
ht(z) µ̃

(τ)(dt, dz) ,

and the last term is an F(τ)-martingale.
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As it is seen in Proposition 4.2, a change of probability in F(τ) has the Radon-Nikodym
density process L(τ) = (Lt(τ))t≥0 satisfying the stochastic di�erential equation given in (35)
which can be written in the form

dLt(τ) = Lt−(τ)

∫
R

(
Θt(τ, z)− 1

)
µ̃(τ)(dt, dz), L0(τ) = ℓ(τ) ,

for a strictly positive P(F(τ))⊗ B(R)-measurable process Θ and a strictly positive Borel func-
tion ℓ(u), for u ≥ 0. This Radon-Nikodym density process will correspond to an equivalent
martingale measure if SL(τ) is an F(τ)-martingale. Using the fact that

[
S, L(τ)

]
t
=

∫ t

0

Ss− Ls−(τ)

∫
R
hs(z)

(
Θs(τ, z)− 1

)
µ̃(τ)(ds, dz)

+

∫ t

0

Ss− Ls−(τ)

∫
R
hs(z)

(
Θs(τ, z)− 1

) fs(τ, z)
ps−(τ)

ηs(dz) ds, ∀t ≥ 0 ,

and the F(τ)-martingale property of the �rst term above, we obtain that the process SL(τ) is
an F(τ)-martingale if and only if Θ satis�es the equality

δt +

∫ ∞

t

ht(z)
ft(τ, z)

pt−(τ)
ηt(dz) +

∫ ∞

t

ht(z)
(
Θt(τ, z))− 1

) ft(τ, z)
pt−(τ)

ηt(dz) = 0, ∀t ≥ 0 ,

which can be simpli�ed to

δt +

∫ ∞

t

ht(z)Θt(τ, z)
ft(τ, z)

pt−(τ)
ηt(dz) = 0, ∀t ≥ 0 .

This change of probability is not unique, ℓ being to be chosen.
Let P∗ be the set of G-optional projections L∗,G of L∗(τ), which satis�es (36) where the

processes κG and ξ0 given by equalities (37) and (38). More precisely, one has

κG
t (z)− 1 = 11{τ≥t}

1

L∗,0
t− (φt(z) +Gt−)

(40)

×
∫ ∞

t

L∗
t−(u)

(
Θt(u, z)

(
ft(u, z) + pt−(u)

)
−
(
φt(z)

Gt−
+ 1

)
pt−(u)

)
ρ(du)

+ 11{τ<t}
(
Θt(τ, z)− 1

)
, ∀t ≥ 0 , ∀z ∈ R ,

ξ0t =
p,F(L∗

t−(t))

L∗,0
t−

− 1, ∀t ≥ 0 , (41)

L∗,0
t− =

1

Gt−

∫ ∞

t

L∗
t−(u) pt−(u) ρ(du), ∀t ≥ 0 , (42)

where L∗,0 is the F-predictable reduction of L∗,G. Here, each element of P∗ is a (locally)
equivalent martingale measure on G. Note that κG does not depend on the choice of L∗

0 (see
(40)), whereas ξ0 depends on it.

Since in (6.4), there are no constraints on ξ0, the set P(G) is strictly greater than P∗.
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7 Appendix

Using the same methodology as in [14] we prove the martingale property of the two local
martingales used in the proof of Proposition 5.1.
• We �rst prove that the F(τ)-local martingale M̃(τ) = (M̃t(τ))t≥0 de�ned by

M̃t(τ) =

∫ t

0

Υs− dYs(τ), ∀t ≥ 0 ,

is a true martingale. This will be the case when, for any T > 0 �xed, the property

E
[

sup
0≤t≤T

∣∣M̃t(τ)
∣∣] <∞

holds (see Chapter I, Theorem 51, page 38 in [26]). By Burkholder-Davis-Gundy's inequality5,
this condition is satis�ed if

E
[(
⟨M̃(τ)⟩F(τ)

T

)1/2]
<∞ .

Note that we have

E
[(
⟨M̃(τ)⟩F(τ)

T

)1/2]
= E

[(∫ T

0

Υ2
s− ψ

2
s(τ, z) ν

(τ)(ds, dz)

)1/2]
≤ E

[
sup

0≤s≤T

∣∣Υs

∣∣ ( ∫ T

0

∫
R
ψ2
s(τ, z) ν

(τ)(ds, dz)

)1/2]
≤ E

[
sup

0≤s≤T

∣∣Υs

∣∣2]+ E
[ ∫ T

0

∫
R
ψ2
s(τ, z) ν

(τ)(ds, dz)

]
,

where we have used the fact that |ab| ≤ (a2 + b2), for any a, b ∈ R. Using again Burkholder-
Davis-Gundy's inequality Υ de�ned in (28) being a martingale, we obtain that

E
[

sup
0≤s≤T

∣∣Υs

∣∣2] ≤ C̃ E
[ ∫ T

0

(γGs )
2 ν(τ)(ds, dz)

]
<∞ ,

for some constant C̃ > 0. Moreover, by the assumption of square integrability of the F(τ)-
martingale Y (τ), we have

E
[ ∫ T

0

∫
R
ψ2
s(τ, z) ν

(τ)(ds, dz)

]
<∞ ,

so that the process M̃(τ) is a martingale.

• We now prove that the F(τ)-local martingale M̂(τ) = (M̂t(τ))t≥0 de�ned by

M̂t(τ) =

∫ t

0

Ys(τ) dΥs, ∀t ≥ 0 ,

5Burkholder-Davis-Gundy's inequality states that, if M is a local martingale, for any p ≥ 1, then the
expression

E
[

sup
0≤t≤T

∣∣Mt

∣∣p] ≤ Cp E
[
(⟨M⟩T )p/2

]
holds, for some Cp > 0 depending on p only (see, e.g., Chapter IV, Section 4, Theorem 48, page 195 in [26]).
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is a true martingale. As above, by Burkholder-Davis-Gundy's inequality, this will be the case
when, for any T > 0 �xed

E
[(
⟨M̂(τ)⟩F(τ)

T

)1/2]
<∞ .

Note that we have

E
[(
⟨M̂(τ)⟩F(τ)

T

)1/2]
= E

[(∫ T

0

Y 2
s (τ)

(
γGs (z)

)2
ν(τ)(ds, dz)

)1/2]
≤ E

[
sup

0≤s≤T

∣∣Ys(τ)∣∣ ( ∫ T

0

∫
R

(
γGs (z)

)2
ν(τ)(ds, dz)

)1/2]
≤ E

[
sup

0≤s≤T

∣∣Ys(τ)∣∣2]+ E
[ ∫ T

0

∫
R

(
γGs (z)

)2
ν(τ)(ds, dz)

]
.

It follows, using again Burkholder-Davis-Gundy's inequality, that

E
[

sup
0≤s≤T

∣∣Ys(τ)∣∣2] ≤ Ĉ E
[ ∫ T

0

ψ2
s(τ, z) ν

(τ)(ds, dz)

]
<∞ ,

for some constant Ĉ > 0. Moreover, by the assumption of square integrability of the F(τ)-
martingale Υ, we have

E
[ ∫ T

0

∫
R

(
γGs

)2
ν(τ)(ds, dz)

]
<∞ ,

so that the process M̂(τ) is a martingale.
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