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Abbreviations 
AA all-atom  Aβ amyloid 

CD44  a cell-surface glycoprotein  CG coarse-grained      
DAG diacylglycerol   DFT density functional theory 
MGD1monogalactosyldiacylglycerol synthase  DGDG digalactosyldiacylglycerol  
ECM extracellular matrix   GAG glycosaminoglycan 
HPC high-performance computing  IDP intrinsically disordered protein 
iEM inner envelope membrane  MD molecular   dynamics 
MGDG monogalactosyldiacylglycerol MM molecular mechanics 
PG phosphatidylglycerol  QM quantum   mechanics  
UDP uridine  diphosphate    VR virtual reality 

1. INTRODUCTION

This chapter is a perspective piece that aims to continue the trajectory of an 
ongoing body of work that explores simulation and theoretical approaches to 
characterizing and understanding glycans, or carbohydrates, and their interactions 
with proteins.1–17 These contributions and related articles form the basis of the 
current state of computational aspects of protein–carbohydrate interactions, as 
summarized in the following paragraphs. 

Computational techniques now cover a more comprehensive range of 
carbohydrate systems and assemblies in terms of types and sizes. They have 
contributed to the elucidation of the dynamics, interactions, and structures of 
complex carbohydrates. Understanding how the specificity and the strength of 
protein–carbohydrate interactions differ, depending on the kind of proteins 
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involved, is essential. For several reasons, interactions between proteins and 
carbohydrates are crucial.  

They are obligatory in maintaining life, holistic tissue, and homeostasis. They 
play a role in inflammation, cell proliferation, differentiation, aggregation, signal 
transduction, host–pathogen recognition, and protein structure stabilization. 
Additionally, they have numerous uses in the design of pharmaceuticals, including 
creating antibodies, vaccinations, and inhibitors. They also have broad 
applications in drug design, such as developing antibodies, vaccines, and 
inhibitors. 

Some examples of protein-carbohydrate interactions are as follows: 
Carbohydrate-active enzymes that catalyze biochemical reactions involving 
glycosylation, as well as the synthesis and hydrolysis of carbohydrates, lectins, 
antibodies, sugar transporters, glycosaminoglycans, and lipopolysaccharides.  

 The characterizations of protein–carbohydrate interactions are challenging 
from both a theoretical and an experimental point of view. Several theoretical 
models and their underlying approximations delineate the scope of applying 
computational methods to elucidate the structural and dynamical features. 
These range from ab initio to coarse-grained (CG) methods and from 
deterministic to heuristic approaches. They are as follows: (1) DFT-based ab 
initio simulations, (2) quantum mechanics/ molecular mechanics (QM/MM) and 
QM/QM hybrid methods, (3) semi-empirical methods, (4) molecular mechanics 
(MM) and molecular dynamics (MD) simulations, (5) heuristic methods (Monte 
Carlo and genetic algorithms), (6) coarse-grained methods, and (7) docking 
calculations. Molecular dynamics has become the method of choice in its all-
atom (AA) and coarse-grained (CG) representations.   

Theoretical and technological advances often accompany diffraction 
methods, high-resolution spectroscopy, and other spectroscopic methods.18 They 
provide a way to reconcile the experimentally available data and to predict 
structural and dynamical features that may not yet be accessible (Fig. 1).  

Carbohydrates are influenced by stereo-electronic effects, which can be 
understood using quantum chemical methods. These effects are also incorporated 
into force fields that allow many users to perform computational studies of their 
systems in conjunction with experimental work. Molecular simulation methods 
have become powerful and sophisticated enough to provide structural information 
that can explain or support experiments and lead to discoveries. High-
performance computing has also enhanced the role of molecular simulation 
methods in guiding experimental design and exploring new phenomena. 
Molecular simulation methods can access previously unreachable scales of space 
and time. In particular, atomistic MD simulations can capture the “true” 3D structure 

and dynamics of molecules as they occur in real-time. This can help to establish 
structure-function and structure-property relationships in some cases, as well 
as to characterize physicochemical and mechanical properties. 

Coarse-grained simulations can be applied to various glycoscience 
systems, such as polysaccharides (from different sources, including animals, plants, 
bacteria, and marine organisms), N-linked and O-linked glycans, and glycolipids. 
Coarse-grained simulations can cover different length scales and model complex 
carbohydrate-based materials. Coarse-grained simulations can also overcome the 
limitations of experiments and all-atom simulations for highly complex 
systems. They are beneficial for studying the dynamic formation of glycolipid 
nanostructures, where carbohydrate-carbohydrate interactions are essential. 
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Fig. 1 Synopsis of the families of proteins interacting with carbohydrates along with their functions: 
transport, synthesis (glycosyl transferases), modification (auxiliaries, enzymes), degradations (glycosyl 
hydrolases, on a single glycan and semi-crystalline and crystalline glycans), carbohydrate-binding 

modules, antibodies, lectins, and chemokines.  Adapted From  P'erez,  S.;  Fadda,  E.;  Makshakova,  O.  
Computational  Modeling in Glycoscience. In Comprehensive Glycoscience, 2nd ed.; Barchi, J. J., Ed.; 
Elsevier: Amsterdam, 2021; pp 374-404. 

 
A key challenge for computational methods is to capture the multivalent 

effect that governs protein–carbohydrate assembly. Many carbohydrate-
binding proteins, such as adhesins and lectins, have low affinity and narrow 
carbohydrate recognition domains, but they achieve specificity by binding 
multiple identical glycoside units in different arrangements. This requires 
understanding the physicochemical principles that underlie such 
associations, such as the formation of glycolipid and glyco-surface patches 
that create a “glyco landscape” or “glycotope.” Computational tools should 
be able to model the glyco-surface resulting from the spatial distribution of 
glycolipids and their interaction with the glyco-canopy (analogous to the top 
layer of a forest formed by tree crowns). 

Computational methods can also help to study the enzymatic degradation 
of polysaccharides in the solid state, which is a challenging problem. 
Computer simulations have already contributed to revealing the chemical 
mechanisms of glycosyl hydrolases. They have helped to identify catalytic 
residues, complex conformational changes, and mechanistic details that are 
not accessible by experiments. This research area benefits from the 
availability of many crystal structures of proteins and their carbohydrate 
complexes. 

Despite the many advances reported, there are several interrelated 
challenges to the further development of the field. For this article, the 
presentation of challenges is divided into those that depend on general 
“methodological” developments and those that address specific “glyco-
oriented” issues. 
 

2. THE IMPETUOUS FORM METHODOLOGICAL ADVANCE 
 

2.1 Lessons learned from SARS-Cov2 

The imminent threat to global human health and socioeconomic stability 
posed by the novel coronavirus SARS-CoV-2 spurred an unprecedented effort by 
many communities, including a broad coalition ranging from virologists to 
computational scientists, to meet the challenge of rapidly building models of the 
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viral glycoproteins and complex they form. Over a million citizen-scientists 
collaborated through the Folding@home distributed computing project to create the 
first exascale computer and simulate 0.1 s of the viral proteome. In its ability to 
capture the entire ensemble of structures adopted by a glycoprotein, molecular 
dynamics simulation predicted the dramatic opening of the apo spike complex, far 
beyond that seen experimentally, explaining and predicting the existence of “cryptic” 
epitopes and helping to characterize crucial stages of infection.19 From a 
computational glycoscience perspective, the results highlight the incredible utility of 
the community-built computer to enable rapid understanding of health and disease, 
providing a rich source of structural data to accelerate the design of therapeutics. It 
established the soundness of the principles underlying molecular dynamics 
simulations. It brought to the attention of the largest community the essential role of 
the extensive N-glycosylation coat on viral fusion proteins.20 It exemplifies the 
endeavor which can and will be addressed through high-performance computing 
(HPC) based molecular simulations. 

 

2.2. A repository for MD-generated glycan and protein–glycan structures 

Despite its massive use of computational resources, the field of molecular 
modeling does not have a place where all deposited and documented results can be 
stored and made publicly available. It is, therefore, tempting to propose creating 
and organizing such a repository of 3D data. Ideally, the data would correspond to 
the most populated conformers identified by simulation analysis, with detailed 
information on relative populations and energetics. Along these lines, an 
ongoing development called GlycoShape3D aims to provide complete and 
consistent data on free (unbound) glycans from equilibrium MD simulations in a 
format accessible to expert and non-expert glycobiologists.21 In addition to 
providing the ability to reproduce published results, when unlocked, such a database 
would contribute to the wealth of publicly available resources in glycoscience. 

However, such a recent initiative does not cover the computationally 
intensive simulations performed to unravel specific molecular phenomena, essentially 
used for a single publication. When these MD simulation files are made available, due 
to the rise of open science, they accumulate in generalist data repositories that are 
neither indexed, curated, nor easily searchable. No central repository hosts all MD 
simulation files to date, creating a so-called “dark matter of MD.”22 Initiatives are 
being taken by scientists who have inferred metadata to propose a prototype 
search engine to explore the collected MD data. To pursue this direction, they call 
on the community to continue sharing MD data and to increase the filling and 
standardization of metadata to reuse this valuable matter. Their integration into meta-
databases would complement the experimental and computational data set that, with 
machine learning-based applications, will enable the rapid advancement of 
glycoscience and its contribution to understanding the many processes and 
architectures of these complex biomolecules. 

 Computational glycoscientists would benefit from joining such an 
initiative by creating and organizing a 3D data repository, where the stored data 
would correspond to the most populated conformers derived from the 
simulation with annotated details on energetics and relative populations and 
transition states,… The creation of such a structural database would allow the 
reproducibility of data, a feature that is currently lacking. It would provide users 
with the unique ability to monitor the actual volume of space-specific 
glycosylation patterns occupied on a membrane or a protein surface, allowing or 
preventing recognition from other receptors. 
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2.3 Deep learning methods and data management 

Due to the evolution of hardware, algorithms, and software, computational 
methods are receiving increasing attention. In particular, innovative approaches 
based on deep learning algorithms offer new ways to explore protein-carbohydrate 
interactions23 by analyzing the structural and functional features of proteins and 
carbohydrates and learning the patterns and rules that govern their binding, 
therefore extending the capacity of computational tools such as MD simulation, 
hybrid (QM/MM) methods, or molecular docking. Recent impressive progress 
in using deep learning methods such as AlfaFold,24 RoseTTAFold,25 RaptorX26 
and others to predict 3D protein structure illustrates the value of collecting well-
characterized data over a long period. Ultimately, standardized, structured, and well-
annotated data can accumulate and provide opportunities to train models and 
improve the prediction of complex carbohydrates in specific contexts or 
environments. This is not quite the case in computational glycan research, often 
hampered by glycan-related data complexity, sparsity, and diversity. Published 
studies report only a limited fraction of the data leading to the results. 

However, in a few cases, experimental data derived from X-ray resolution of 
crystalline protein–carbohydrate complexes are organized in curated and annotated 
databases.27 Their construction follows the generation of findable, accessible, 
interoperable and reusable (FAIR) biological data. This organization is essential to 
feed and train machine learning-based applications to predict different structural 
organization levels and characterize the unique features of recognition and binding 
of carbohydrate structures by specific proteins. Typically, such databases cross-
reference other databases that rely on different strategies to visualize the interaction 
between carbohydrate ligands and their protein environments.  

Beyond simply predicting protein–carbohydrate interactions, structural 
glycobioinformatics opens up a much broader field of exploration and prediction. 
Thousands of 3D structures of lectin–glycan complexes are available from X-ray 
crystallography and NMR studies. They are stored in a searchable database,28,29 
providing binding information to protein sequences and structures. The resulting 
mapping to a sequence-based lectin prediction application uniquely explores 
candidate lectins identified in available proteomes from all kingdoms and for all 
available lectin classes. Using machine learning algorithms to predict protein–
carbohydrate interactions is under active development.30 

 
2.4 Immersive molecular visualization and data analysis 

Structural biology and bioinformatics advances significantly increase data 
throughput, generation and complexity. In parallel to these developments, several 
innovative applications are being developed for immersive environments that 
promote direct interactions on semantically linked 2D and 3D heterogeneous data 
displayed in a shared workspace.31 Applying such generic tools to the fields of 
structural biology is likely to be relevant to glycobiology, which is firmly rooted in 
multidisciplinary approaches, often implemented orthogonally to compensate for the 
lack of genetic determinants for glycosylation. These approaches all produce rich 
catalogs of data, each of which is not sufficient to determine glycan types of 
glycosylation sites/populations but is necessary when put in context with 
additional complementary sets. 
 

Interactive molecular simulations create, manipulate and visualize 
molecules in 3D and can be merged with virtual reality to create immersive and 
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interactive environments for exploring and manipulating molecular systems in 3D.31 
The “interactive molecular simulations” offer the possibility to visualize a running 
simulation in interactive time, i.e., a timeframe that is compatible with human 
perception and the possibility to manipulate and make changes during the 
simulation (Fig. 2). 
 

 

Fig. 2  Immersive visualization of the molecular shape of a complex carbohydrate actively docked 

in a protein extracted from a specialized database of 3D structures. 

 
A mixed-reality device superimposes holograms in the real world. Users can 
interact with the molecules using hand gestures, voice commands, or gaze tracking 
and explore various molecular properties such as electrostatic potential, hydrogen 
bonding, or molecular dynamics.32 Another method uses narrative techniques such as 
annotations, transitions, and interactivity to guide users through exploring scientific 
data in an immersive environment. Users can view and manipulate volumetric data 
using a VR headset and a handheld device, accessing a rich crosslinked database 
of biological information. The tool also supports multi-scale and multi-modal 
exploration of the data. Semantics for an integrative and immersive pipeline 
combining visualization and analysis of molecular data was proposed to create an 
intelligent system.34 

 

 

 

3. GLYCO-LANDSCAPE COMPLEXITY CHALLENGE 

 

  3.1 The glycocalyx: An overview      

The dense layer of glycoconjugates (glycolipids, glycoproteins and proteo- 
glycans) attached to the surface of various cell types, termed the glycocalyx, is an 
information-rich barrier that mediates many molecular interactions in cell–cell 
communication, recognition, adhesion, signal transduction, and host–pathogen 
interactions. As such, the glyocalyx influences the physicochemical properties of 
cell membranes. The study of glycocalyx components and their dynamics provides 
a playground where deciphering protein–carbohydrate interactions reaches a 
higher level of complexity through the interplay between membrane proteins, 
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their lipid environment, and the glycoconjugate. It provides some reference 
background for macromolecular interactions in highly crowded media. 

 
3.2 Glycosyl transferases at work 

 Subject to their association with the lipid bilayer, membrane-bound proteins 
can be either “peripheral” or “integral.” Peripheral membrane proteins transiently 
bind to one side of the membrane (monotopic interaction) or are bound to other 
proteins by weak, noncovalent interactions at the membrane interface. Integral 
membrane proteins tightly bind to the membrane, where they usually perform 
structural functions such as that of transporters, linkers, channels, and cell-adhesion 
proteins. Depending on how integral membrane proteins are embedded in the 
membrane, they are called monotopic, bitopic, or polytopic proteins. Monotopic 
integral membrane proteins are permanently associated with only one side of the 
membrane. In contrast, bitopic and polytopic integral membrane proteins have one or 
more transmembrane segments that cross the membrane at different levels. A limited 
number of computational explorations of such complex cases open the road to 
further investigations and shed light on some of the stunning features 
discovered.35,36 

Chloroplasts offer one of the first examples as molecular machines that convert 
the harvested photons into chemical energy. This conversion occurs throughout a 
unique spatial architecture resulting from the occurrence of and spatial organization 
of two monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol 
(DGDG) galactoglycerolipids, which are the main lipids. Most of the MGDG is 
synthesized in the inner envelope membrane (iEM) of the chloroplast by a 
glycosyltransferase, monogalactosyldiacylglycerol synthase, MGD1, a member 
of the GT-B family that possesses two distinct domains and an acceptor substrate that 
are typically bound in the cleft between these domains.37 

Catalysis requires two substrates, hydrophilic sugar-bearing UDP- 
galactose and hydrophobic fatty acid tails bearing diacylglycerol (DAG); at least one 
activator, anionic lipid molecule, phosphatidylglycerol (PG), to be bound by MGD1. 
Molecular dynamics simulations [coarse-grained (CG) and all-atom (AA)] revealed 
the compelling interactions between MGD1 and the lipid bilayers and the lipid 
capture by self-assembly. Without protein, rafts of PG and DAG molecules 
spontaneously form. When MGD1 is embedded in the membrane, the protein 
interacts with the PG/DAG rafts and accumulates DAG by lateral and transverse 
diffusion. A concomitant change in membrane curvature induces intrinsic dynamics 
of the protein, which is essential for catalytic activity.38 

A similar case was reported for the glycosyltransferase synthesizing 
glycoglycerolipids in Mycoplasma genitalium membranes.39 The authors invoke the role 
played by an amphiphilic peptide undergoing helix formation and its subsequent 
influence on catalysis. 
 
3.3 The extracellular matrix 

Glycosaminoglycans (GAGs) are complex carbohydrates ubiquitously and 
abundantly expressed on the cell surface and in the extracellular matrix (ECM). 
Their extraordinary structural diversity allows them to interact with various 
biological molecules. Through macromolecular interactions, GAGs modulate various 
biological processes, particularly as signaling molecules, and regulate the presentation 
of protein ligands to their respective receptors. GAGs, however, do not self-
associate on their own under physiological conditions, and the self-organization of 
GAGs is intimately related to the proteins they bind and the core proteins to which 
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they are attached.40 
Despite their functional importance, little is known about the structure and 

dynamics of the crosslinking nodes in all the many GAG-containing matrices. For 
example, how is the degree of crosslinking regulated to achieve matrices with the 
desired morphology and biophysical properties? Intercellular signaling molecules 
(e.g., morphogens/growth factors for tissue development/repair and chemokines for 
immune cell trafficking) rely on GAGs for their precise distribution throughout the 
extracellular space. It has long been thought that the primary function of GAGs is 
to control the presentation of intercellular signaling proteins to their cognate 
cell-surface receptors (and the downstream intracellular signaling process). However, 
recent evidence suggests that many signaling proteins can also crosslink 
GAGs.41,42 Thus, these proteins may also exert their functions independently of 
cognate receptors by dynamically reorganizing the GAG-rich extracellular matrix 
and modulating matrix morphology and biophysical properties.43 This promising 
new research field requires new tools and mindsets.44 

 Understanding the molecular and physical mechanisms underlying the 
functions of GAGs under the influence of proteins is still at an early stage of 
development. More convergent approaches are needed, ranging from biophysics 
to high computational simulations, including appropriate analytical tools and 
methods to reconstitute multi-partner GAG-protein interactions and protein-
mediated GAG self-assembly in vitro. Such molecularly defined environments will 
enable new studies of structure–property functional relationships that are 
impossible with the more complex, less defined, and less tunable matrices 
produced by cells and tissues.45 

 

   3.4  Intrinsically disordered protein-carbohydrate interactions 

For glycoscience, it is essential to consider the macromolecular interactions 
that occur in highly crowded media, as partially illustrated in the previous 
sections, where various macromolecules evolve to function with minimal available 
space and limited free water. Among them, a class of intrinsically disordered 
proteins (IDPs) lack regular secondary or well-defined tertiary structures; they can 
be highly flexible under native physiological conditions. While largely or partially 
unstructured, they are susceptible to change and adopt a conformation upon 
binding. to an interacting partner that undergoes a coupled-folding-and-binding 
mechanism.46–48 IDPs can interact with different partners and modulate their 
functions through various mechanisms such as electrostatic interactions, hydrogen 
bonding, hydrophobic interactions, and conformational changes. Some examples of 
interactions between carbohydrates and IDPs involve glycogenin amyloid beta 
and mucins. 

Several systematic bioinformatics studies have shown that IDPs constitute a 
significant fraction of every known proteome, with the number of IDPs per 
proteome increasing with the organism's complexity. 

Glycosylation patterns can influence the conformational preferences of the 
IDP interactions, as reflected by their stability and activity. Examples include the 
following: 

• Glycosylation patterns can modulate the conformational ensemble of 
IDPs by introducing steric hindrance, electrostatic repulsion, or hydrogen 
bonding between the sugar chains and the protein backbone or side 
chains. For example, glycosylation of the N-terminal region of amyloid 
beta (Aβ), a peptide implicated in Alzheimer’s disease, reduces its propensity 
to form β-sheets and aggregates by increasing its conformational 
heterogeneity and disorder. 
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• Glycosylation patterns can affect the interactions of IDPs with other 
molecules, such as proteins, lipids, carbohydrates, or metals, by altering their 
binding affinity, specificity, or selectivity. For example, glycosylation of 
mucins, glycoproteins that form a protective layer on the surface of various 
tissues, affects their interactions with pathogens and immune cells by 
modulating their recognition and adhesion properties. 

• Glycosylation patterns can influence the stability of IDPs by protecting 
them from degradation, denaturation, or aggregation. For example, the 
glycosylation of glycogenin, a self-glycosylating enzyme that initiates 
glycogen synthesis, enhances its stability by preventing its proteolysis and 
oxidation. 

• Glycosylation patterns can affect the solubility of IDPs by increasing their 
hydrophilicity, hydration, or viscosity. For example, glycosylation of 
prothrombin, a blood coagulation factor that undergoes a disorder-to-order 
transition upon activation, increases its solubility by reducing its 
aggregation tendency and facilitating its folding. 

• Glycosylation patterns can regulate the activity of IDPs by modulating 
their catalytic efficiency, substrate specificity, or allosteric regulation. 

 
In the context of crucial interactions involving some GAGs and proteoglycans,  

the case of syndecan49 and the case of CD44 provide an example of a protein 
possessing both ordered domains and functionally important intrinsically 
disordered protein regions. The ordered region consists of the extra-cellular 
domain, which binds to hyaluronic acid (hyaluronan) and other ligands, and the 
transmembrane domain, which anchors the protein to the cell membrane. The 
disordered region of the cytoplasmic tail is considered an IDP because it does 
not have a well-defined structure and can adopt different conformations 
depending on its environment and interactions. It plays a significant role in the 
function of the receptor. 

The cytoplasmic tail of CD44 is involved in regulating the activity, stability, 
solubility, and interactions of the receptor with other molecules, such as the 
ezrin-radixin-moesin protein family, which connects the actin cytoskeleton with 
the membrane receptor. Palmitoylation can modulate the affinity of CD44 for 
lipid rafts and affects the activity, stability and trafficking of CD-44.50 Part of the 
cytoplasmic tail undergoes various regulations and modifications, interacting 
with various signaling molecules and experiencing post-translational 
modifications. Several ligands of CD44 can affect its structure and function in 
various physiological and pathological processes. Examples include (1) 
osteopontin, a glycoprotein involved in inflammation, wound healing, and bone 
remodeling; (2) collagens; (3) matrix metalloproteinases; and (4) hyaluronic acid 
(hyaluronan), which interacts through the N-terminal domain and modulates 
various cellular functions, such as adhesion, migration, proliferation and 
survival. The delineation of those interactions and their structural features that 
occur either in the ordered region of CD44 or in the disordered region of its 
cytoplasmic tail represents a complementary line of research in the study of 
macromolecular crowding in structural glycoscience. Recent experimental 51 and 
computational approaches are already setting up the basis for deeper 
investigations. 
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Conclusions 

 In this short perspective article, I have shared my current opinion and 
vision of the prevailing status of some issues concerning protein–carbohydrate 
interactions and beyond and how the HPC technology revolution and machine learning 
algorithms, which lead to integrative immersion, would provide a step change in the 
global fields of chemistry and biology. The wave will impact the glycoscience community 
in general, addressing the role of carbohydrates in health disease and environmental 
issues to a complexity never before attained or imagined. 

 Among the few examples described, properly considering intrinsically 
disordered proteins will require the development of new concepts and tools to 
deal with their spatiotemporal heterogeneity and high conformational flexibility. 
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