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Abstract

The detection of a voltage transverse to both an applied current and a magnetic field is one of

the most common characterization techniques in solid-state physics. The corresponding component

of the resistivity tensor ρij can be separated into odd and even parts with respect to the applied

magnetic field. The former contains information, for example, about the ordinary or anomalous Hall

effect. The latter is typically ascribed to experimental artefacts and ignored. We here show that

upon suppressing these artefacts in carefully controlled experiments, useful information remains.

We first investigate the well-explored ferromagnet CoFeB, where the even part of ρyx contains

a contribution from the anisotropic magnetoresistance, which we confirm by Stoner–Wohlfarth

modelling. We then apply our approach to magnetotransport measurements in Mn5Si3 thin films

with a complex compensated magnetic order. In this material, the even part of the transverse

signal is sizable only in the low-spin-symmetry phase below ≈ 80 K and thus offers a simple and

readily available probe of the magnetic order.
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I. INTRODUCTION

The electrical resistivity tensor ¯̄ρ is defined as E = ¯̄ρj, where j and E are the current

density and electric field vectors. The measurement of ¯̄ρ as a function of the applied external

magnetic field is a fundamental characterization tool in solid-state physics. When performed

on lithographically defined thin-film microstructures, it allows disentangling the different

components of the resistivity tensor and relating them to particular physical phenomena,

such as magnetoresistance and the different Hall effects [1, 2].

Components of the resistivity tensor ¯̄ρ are usually classified based on how they transform

when the magnetic field H or magnetic moments are reversed [3, 4]. The so-called Onsager

relations state that ρij(H ,M ) = ρji(−H ,−M ). Here for simplicity, M denotes the gener-

alized magnetic order vector of the system (such as magnetization or the Néel vector). The

reversal of both the external magnetic field and all magnetic moments corresponds to the

time-reversal symmetry (TRS). From the Onsager relations, it follows that the symmetric

components of the resistivity tensor (ρSij = ρSji) are even under time-reversal, whereas the

antisymmetric components (ρAij = −ρAji) are odd. The antisymmetric components can thus

occur only when the time-reversal symmetry is broken. When TRS is broken by an external

magnetic field, it results in the ordinary Hall effect, which is commonly used to determine

the carrier type and density [5]. In a material with spontaneously broken TRS, the an-

tisymmetric terms can be non-zero also in zero magnetic field. This leads to a variety of

anomalous Hall effects [1, 6–8] in magnetically ordered materials, or topological Hall effects

[9, 10] arising from a non-zero spin chirality.

In contrast, the symmetric components of the resistivity tensor can exist in all materials.

In both magnetic and non-magnetic materials, the symmetric components typically depend

directly on the external magnetic field, which we will refer to as ordinary magnetoresis-

tance (OMR) [11]. In magnetic materials with finite spin-orbit coupling, the symmetric

components will also depend on the orientation of the magnetic order, which is known as

anisotropic magnetoresistance (AMR) [2]. Unlike the anomalous Hall effect, AMR is allowed

by symmetry in all magnetic materials [12].

The various contributions to resistivity can thus be, in principle, distinguished by their

relation to the symmetric or antisymmetric components of the resistivity tensor. Unfortu-

nately, doing this experimentally is not straightforward. Instead, different contributions are
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separated based on their odd/even symmetry with respect to the external magnetic field.

Although the anomalous Hall effect or the AMR do not directly depend on the applied

magnetic field, their experimental detection does, since the external magnetic field controls

the magnetic order. However, this makes the interpretation of the results complicated since

the effects that depend on the magnetic field directly (such as the OMR) can mix with

the effects that depend on it indirectly. Furthermore, effects that rely directly on both the

magnetic order and the magnetic field can also exist [13].

Experimentally, the different elements of the resistivity tensor are usually calculated from

the voltage measured along and perpendicular to the current direction. For example, if a

current applied along the x-axis induces finite voltage along the y-axis, then ρyx is non-zero.

Hereafter, we shall use the terms longitudinal and transverse resistivity to refer to the signal

measured in the respective orientation to the current flow. Note that these do not necessarily

correspond to the diagonal and off-diagonal components of the resistivity tensor expressed

in crystallographic axes since the current may flow in a general direction.

In the following, we summarize the effects which can result in a finite contribution to

transverse resistivity and discuss their symmetry with respect to the applied magnetic field.

The AHE contribution is an odd function of the applied magnetic field when the material

is magnetically saturated. Similarly, in saturation, AMR has an even dependence on the

magnetic field. However, when the magnetic saturation is not reached, there might be odd

contributions arising from AMR and, vice versa, even contributions due to the AHE. That

is because the reversal of the magnetic field does not result in the reversal of the magnetic

order [14] while the Onsager relations only constrain the diagonal components of ¯̄ρ to be

even under reversal of both the magnetic field and the magnetic order.

In an isotropic material, the OMR contribution is present only in longitudinal resistivity.

However, OMR can also manifest in the transverse resistivity if the symmetry of the crystal is

low enough: For a general current direction, the OMR contribution to transverse resistivity

will necessarily exist in an anisotropic crystal where the longitudinal OMR is different along

two directions, as a result of the linearity of the resistivity. This typically is not observed

in an experiment because the anisotropy of the resistivity is weak, the electrical current is

often applied along one of the main crystallographic axes, or the crystallinity of the measured

samples is insufficient [15]. When the transverse OMR is negligible, the even component of

the transverse resistivity can indicate whether AMR is present since AMR contributes both
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to the diagonal and off-diagonal components of the resistivity tensor.

In a typical measurement of the anomalous Hall effect, the external magnetic field is

swept perpendicular to the current direction. In such a scenario, AMR is often assumed not

to contribute to the transverse resistivity which is justified for high-symmetry materials and

the magnetization exactly following the external magnetic field. Below the saturation field,

however, magnetization is not aligned with the external field even in a simple ferromagnet

and the assumption is thus not valid. Moreover, it is usually not true in more complex

materials with low symmetry, such as non-collinear antiferromagnets [16–18]. Therefore,

the even component of transverse resistivity can also indicate the presence of AMR. Other

even-in-field effects contributing to transverse resistivity have been considered in relation

to non-centrosymmetric Berry curvature [19]. Furthermore, note that a quadratic-in-field

contribution to transverse resistivity may arise when the anomalous and ordinary Hall angles

are sizable [20].

From the experimental point of view, additional effects can result in an even contribution

to transverse resistivity. One possible source is the geometrical misalignment of the trans-

verse contacts with respect to the current direction (see Fig. 1a), which yields a contribution

of longitudinal signal to transverse voltage. Since the longitudinal signal has typically an

even symmetry with respect to the applied field, this artefact is also even. Unfortunately,

the geometrical offset is almost unavoidable. Lithographically defined Hall bar microstruc-

tures are less sensitive to the contact misalignment artefacts as compared to the bulk crystal

samples with hand-soldered contacts. However, even during a lithographical process, small

imperfections might still arise from the resist or etching inhomogeneity and shadows. To

suppress these geometrical artefacts, the even part of the field-sweep data is often removed

[21, 22]. This approach isolates the dominant Hall signal that is straightforward to ana-

lyze. However, at the same time, part of the information is lost. Especially in materials

with a complex magnetic structure, the even component of transverse resistivity can provide

important information about their magnetic order.

In this paper, we discuss the symmetry of the experimentally measured transverse resis-

tivity in both a simple ferromagnet and a complex compensated magnet. All experiments

are performed with the magnetic field perpendicular to the electric current. We sweep the

magnetic field and detect the voltage transverse and longitudinal to the applied electric

current. We show that an even contribution to transverse resistivity can be present in per-
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fectly aligned contacts, cannot be correlated to the longitudinal voltage, and may reflect the

magnetic order. The structure of the paper is as follows: Firstly, we demonstrate possible

artefacts arising from an intentional offset of the contacts in a conventional ferromagnet

CoFeB. We propose an analysis scheme to remove these artefacts by defining a quantity

independent of the geometrical offset, and we show that the remaining even component of

transverse resistivity can be explained within the single domain Stoner–Wohlfarth model of a

ferromagnet. Finally, we apply this approach to the compensated magnetic material Mn5Si3

with a complex magnetic structure [22]. We show that the even component of transverse

resistivity arises in the low spin symmetry state of Mn5Si3 and cannot be correlated with

the longitudinal resistivity. We interpret this component in terms of finite magnetic-order-

dependent resistance in Mn5Si3.

II. SAMPLE PREPARATION AND EXPERIMENTAL SETUP

A ferromagnetic Co40Fe40B20 film with a thickness of 15 nm was deposited by magnetron

sputtering on a single-crystal MgO (100) substrate using a Bestec UHV deposition system

(with a sputtering pressure of 3 · 10−3mbar). The magnetization of CoFeB is approximately

1200 kA/m at room temperature [23]. Thin films of Mn5Si3 were grown by molecular beam

epitaxy on intrinsic Si (111) substrates with a Mn5Si3 thickness ranging from 12 to 20 nm

depending on the sample [24].

Both CoFeB and Mn5Si3 thin films were patterned into Hall bar microstructures using

optical lithography and plasma etching. A detail of a microscope image of the Hall bar

prepared on CoFeB is shown in Fig. 1a. This reference device consists of a set of Hall

crosses where each pair of transverse contacts has a different artificial offset δ of −10µm,

−5µm, 0µm, and 5µm.

A scheme of the experiment geometry is shown in Fig. 1b. The external magnetic field

was swept perpendicularly to the sample plane while measuring transverse voltages Vyx on

multiple transverse contact pairs. Simultaneously, the longitudinal voltage Vxx was detected.

All the presented magnetotransport data were obtained in an Oxford Instruments cryostat

Integra AC with a variable-temperature insert equipped with two thermometers to monitor

the sample base temperature with high precision. We use Keithley 2182 nanovoltmeters to

detect Vyx and Vxx. A DC current was applied along the x-axis by a Keithley 2450 source
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Figure 1. Reference CoFeB device: a) A microscope image of transverse contacts with an artificial

offset of δ in the range from −10µm to 5µm, b) schematics of the measurement, c) an example

of the dependence of longitudinal ρxx and transverse ρyx resistivity on an external magnetic field

applied along z- direction at 100 K. The data are shown as measured for δ = 0µm, only the voltage

was recalculated to the respective values of resistivity. The panel of longitudinal resistivity also

includes the result of the Stoner–Wohlfarth model for the ρxx(Hz) dependence.

measure unit, and the transverse voltage was measured as a function of the applied out-of-

plane magnetic field. An example of longitudinal and transverse resistivity data measured

on a 15-nm CoFeB sample is shown in Fig. 1c: The main contributions to the longitudinal

resistivity are from AMR and OMR, whereas the transverse resistivity is dominated by the

anomalous Hall effect.

III. RESULTS

A. CoFeB reference sample

The crucial step of our proposed method is isolating odd or even components of the

measured data with respect to the applied magnetic field. When considering a field-sweep

experiment, i.e. a measurement of resistivity as a function of an external magnetic field
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magnitude, the even and odd components ρeven and ρodd can be obtained as follows:

ρeven← (H) =
ρ←(H) + ρ→(−H)

2
, ρodd← (H) =

ρ←(H)− ρ→(−H)

2
, (1)

where ρ←(H) and ρ→(H) are the subsets of the ρ data corresponding to either descending

or ascending sweep direction (i.e. data taken for a decreasing or increasing magnetic field

magnitude), which we introduced to account for eventual hysteresis. The corresponding

ρeven→ (H) and ρodd→ (H) can be obtained by interchanging ρ←(H) and ρ→(H) in Eq. (1). For

clarity, the procedure is visualized in Appendix A.

The data measured on a CoFeB Hall bar for various offsets δ is shown in Fig. 2. The

first row corresponds to the measured transverse resistivity ρyx(Hz): The dominant part

of the field dependence is the odd component corresponding to the anomalous Hall effect

(AHE) measured along the magnetic hard axis and, therefore, showing no hysteresis. The

vertical offset of the data reflects the geometrical misalignment. There is also a clear even

part, as seen in the second line, which shows the even component of transverse resistivity

ρevenyx (Hz). The even component depends on the geometrical offset as expected since it

contains a contribution from longitudinal resistivity dominated by OMR and AMR. We,

therefore, introduce a quantity that is independent of the geometrical misalignment ρeven⊥ :

ρeven⊥ (H) = ρevenyx (H)− α · ρevenxx (H). (2)

In this definition, the quantity α = ⟨ρevenyx ⟩/⟨ρevenxx ⟩ is the ratio of the ρevenyx and ρevenxx mean

values with respect to the field H. α quantifies the projection of longitudinal resistivity

in the transverse resistivity. By subtracting the even component of longitudinal resistivity

ρevenxx scaled by α, only the even component of transverse resistivity free of any geometrical

misalignment and constant offset is left. Please note that the arithmetic mean is only one

of many possibilities of quantifying the ρevenyx and ρevenxx in the definition of the α coefficient.

However, the choice does not influece the resulting ρ⊥ in our case, as the relative variations

of ρevenyx (H) and ρevenxx (H) are small.

The last row of Fig. 2 reveals that ρeven⊥ is identical for all transverse contacts as expected,

and does not depend on the geometrical offset. Because in our polycrystalline sample the

contribution of OMR is not expected in transverse resistivity, the origin of the remaining

signal can be attributed to AMR. This is also in agreement with the saturation of ρeven⊥ at

high magnetic fields. We note that in our experimental geometry, transverse AMR would not
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Figure 2. Field sweeps measured on a reference CoFeB device at 100 K using multiple contacts

with different geometrical offset: The first row shows raw transverse data, the second row its even

component, and the third row depicts the offset-independent quantity ρeven⊥ with the corresponding

α coefficients shown in the header. The last row also shows a model for the even component of

ρyx. For the ρxx data, see Fig. 1c.

be expected, and thus our data reveals that the magnetization does not follow the external

magnetic field entirely. The field dependence of the longitudinal AMR and the transverse

AMR in our polycrystalline sample is distinct (compare Fig. 1c and the last row of Fig. 2)

because the former solely depends on the angle between magnetization and current direction,

whereas the latter also on the in-plane projection of the magnetization.

In order to describe the origin of ρeven⊥ in CoFeB, we implemented a single domain model.

We obtain the uniaxial anisotropy constant by fitting the dependence of longitudinal resis-

tivity on the applied magnetic field direction within the Stoner–Wohlfarth model (see for

example [25]). To describe the complex trajectory of the magnetization in the vicinity of

zero magnetic field, we allow the magnetization to develop a finite projection in the sam-

ple plane described by the angles θ and φ. The angle θ describes the angle between the

z-axis and the magnetization and the inplane direction is determined by φ as defined in
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Fig. 1b. The magnetization is aligned with the out-of-plane external magnetic field at high

magnetic fields. Once the magnetic field is reduced below the anisotropy field (1.6 T, see

Fig. 1c), the magnetization vector continuously cants towards the sample plane, and it con-

comitantly changes its in-plane orientation constrained by the weak in-plane anisotropy. In

this notation, we calculate transverse resistivity ρyx as follows:

ρyx(θ, φ) = a1 cos θ + a2 cos
3 θ + a3 sin

2 θ sinφ cosφ, (3)

where a1,2,3 are coefficients which we identified with the following values using the Stoner–

Wohlfarth model: a1 = 11.62µΩcm, a2 = −0.28µΩcm, a3 = 1.00µΩcm. The first two

terms in Eq. (3) describe the anomalous Hall effect and its anisotropy [26], whereas the

a3 coefficient quantifies the contribution of transverse AMR [2]. The value of a3 we found

falls within the range typical for CoFeB alloys (for example, Co60Fe20B20 was reported to

have 2.5µΩcm [27]). The finite magnetization projection in the sample plane is required to

understand the field dependence of ρeven⊥ , as shown in Fig. 2 (the red line is the model).

Although the longitudinal and the transverse signal shape is seemingly very different, the

same model can also fit the longitudinal AMR (see Fig. 1c). Both the measured data and the

modelling confirm that the AMR is non-zero, although the magnetic field is perpendicular

to the current and voltage detection direction (the Hall geometry).

B. Application to Mn5Si3

In the previous section, we have shown that in the Hall geometry, the even component

of transverse resistivity can be present even in a common ferromagnet regardless of the

geometrical offset. In the case of CoFeB, a simple polycrystalline ferromagnet, it originates

in the AMR. The AMR in ferromagnets can be relatively easily measured and identified

because it saturates with the saturation of the magnetization. The AMR is, however, not

well understood and described in material systems with a more complex spin structure. In

many cases, it is challenging to distinguish the AMR from the OMR. This is mainly because

magnetic order in more complex magnets does not necessarily saturate in an achievable

magnetic field, and, therefore, the saturation of the AMR is often not reached. If we apply

current along a high-symmetry crystallographic axis, the ordinary magnetoresistance does

not contribute to the even part of the transverse resistivity after removing the geometrical
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offset (ρeven⊥ ). The quantity ρeven⊥ could, therefore, serve as a good indicator of more complex

magnetoresistance signals. In the following, we test this approach in a compensated magnetic

system with a complex spin structure and phase transitions — Mn5Si3 [22, 28]. Our Mn5Si3

films show a transition between a low-temperature non-collinear magnetic phase AM1 and

a high-temperature collinear magnetic phase AM2 at 70 K. The films become paramagnetic

at 240 K [22]. It was shown that due to their particular spin and crystal symmetry, the

epitaxial Mn5Si3 thin films are altermagnetic candidates [22, 29] and can exhibit anomalous

Hall effect despite their vanishing magnetization [22]. Interestingly, the Hall effect (the odd

part of the transverse voltage) has the same magnitude in the whole temperature range (10–

240 K) and, therefore, is insensitive to the magnetic phase transitions [22]. Such behaviour

is distinct from bulk and polycrystalline Mn5Si3 where the anomalous Hall effect is present

only in their non-collinear magnetic phase below ≈ 60 K [30]. Furthermore, these systems

show a Néel temperature of 100 K which is very different from the one in our epitaxial layers
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Figure 3. Field sweeps measured on Mn5Si3 epitaxial films at 50 K and 190 K: a) Measured

longitudinal and transverse resistivity ρxx and ρyx for two temperatures. Odd and even components

of ρyx with respect to the applied magnetic field are separated. b) Misalignment-independent

quantity ρeven⊥ .
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[30, 31].

An example of transverse resistivity ρyx(Hz) measured at 190 K and 50 K is shown in

Fig. 3a, together with its odd and even components with respect to the magnetic field.

For illustration, also the longitudinal resistivity ρxx(Hz) is included in Fig. 3a. It can

be seen that the transverse resistivity has a clear even component which is pronounced

in the low temperature (low spin symmetry) regime. To remove the effect of geometrical

misalignment, we use the approach described above, and we evaluate the offset-independent

value ρeven⊥ . This component is substantially higher at 50 K than at 190 K, as shown in

Fig. 3b. The hysteresis behaviour observed in the ρeven⊥ highlights its difference to the ρxx.

In the hexagonal lattice of Mn5Si3, in the absence of the magnetic order, and for current

along a high symmetry direction, the transverse OMR is not allowed by symmetry [32].

Therefore the ρeven⊥ must arise from the magnetic properties of the material.

This approach reveals its potential if we apply it to a set of temperatures and samples.
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Figure 4. Temperature dependence of a) the maximum change of the misalignment-independent

quantity ρeven⊥ (H) as defined in Fig. 3b, b) the magnitude of spontaneous Hall resistivity, i.e. the

value of ρoddyx in zero magnetic field, and c) magnetoresistance measured at 5 T for five Mn5Si3

samples. Note the different temperature dependence of the usual ρyx treatment (panel b) and

the method we propose (panel a). The individual samples differ by their crystal quality and the

proportion of a spurious MnSi phase on the Mn5Si3/Si interface. The data in Fig. 3a are from the

sample #1.
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We evaluated the ρeven⊥ in the temperature range of 10–190 K for several Mn5Si3 samples that

differ in their parameters, such as layer thickness or composition of spurious phases [22]. In

Fig. 4a, we show the absolute amplitude of the ρeven⊥ (Hz) dependence extracted directly from

the detected hysteresis loops (see Fig. 3b) for different sample temperatures. It can be seen

that the signal is sizable in the AM1 phase (5–70 K), where low spin symmetry is expected.

Unlike the usual treatment of the transverse resistivity, i.e. considering the spontaneous or

saturated Hall signal ρoddyx (see Fig. 4b), our even signal ρeven⊥ reflects the phase transition

precisely, and is vanishingly small in the AM2 phase (70–240 K). Note that we include only

data measured below 190 K to avoid even-in-field contributions from the finite conductivity

of the silicon substrate above this temperature. Although the general trend of increased

ρeven⊥ in the AM1 phase is common for all samples, we stress that not all the samples exhibit

the hysteretic behaviour shown in Fig. 3b.

The presence of magnetoresistance related to the magnetic order would be, in principle,

in agreement with the longitudinal resistivity ρxx signals which reveal a similar tempera-

ture dependence (see Fig. 4c). Interestingly, when comparing multiple samples, ρxx and

ρeven⊥ cannot be correlated as follows from Fig. 4: The maximal value of the longitudinal

magnetoresistance was observed in a different sample than the maximum of ρeven⊥ . In a

ferromagnet, this difference could be caused by appreciable crystalline AMR [33]. Further-

more, the different magnetic domain structures occurring in different samples cannot be

ruled out. When attributed to AMR, ρeven⊥ and its complex behaviour may be related to the

particular magnetic structure of Mn5Si3: Below the Néel temperature, Mn5Si3 shows only

four magnetically ordered Mn atoms in a unit cell with the remaining six Mn atoms being

disordered and with more Mn atoms getting ordered in the low-temperature AM1 phase.

These disordered moments might then contribute to the even-in-field transverse signal via

AMR if ordered by external magnetic field.

IV. SUMMARY

In this work, we discussed the origin of the even-in-field component of transverse resis-

tivity, and we showed that the transverse magnetotransport signals need to be evaluated

carefully. In the Hall geometry, the even part of transverse resistivity does not necessarily

result from measurement artefacts, such as the geometrical misalignment. We define the

13



even part of the transverse resistivity ρeven⊥ which is independent of the geometrical offset.

The ρeven⊥ can contain useful information about the existence of the AMR or even about the

nature of the magnetic structure. We demonstrate this approach in a simple polycrystalline

ferromagnet, where we approximate the ρeven⊥ by a single domain model. We show that

longitudinal and transverse AMR measured in the magnetic field sweep do not have to show

the same magnitude and symmetry due to the complex magnetization trajectory.

We further test this approach on a compensated magnet with a complex magnetic struc-

ture — Mn5Si3. We isolate ρeven⊥ signals in a series of measurements, and we show that

the ρeven⊥ can serve as a probe of the magnetic phase transition between its individual mag-

netic orderings that are hidden in the conventional magnetic characterization methods. The

different magnitude of ρeven⊥ in low- and high-temperature magnetic phases of Mn5Si3 may

reflect the proposed magnetic ordering of the thin films [22].

Compared to other magnetotransport methods used for the confirmation of the magnetic

phase transitions (such as the measurement of the resistivity temperature dependence), ρeven⊥

appears to be a more robust indicator as it is less prone to be influenced by e.g. structural

transitions in the material.

Appendix A: Extraction of odd and even components of the resistivity field depen-

dence

The procedure of separating odd- and even-in-field components of a field-sweep experi-

ment which we describe by Eq. (1) is illustrated in Fig. A.1 on ρxy measured in our Mn5Si3

sample at 50 K. Panel a) shows the raw data separated into two subsets ρ← and ρ→ cor-

responding to descending (blue) and ascending (red) magnetic field, respectively. For the

odd-in-field component in panel b), we separately calculate its field-descending ρodd← (cyan)

and field-ascending ρodd→ (magenta) sections. The ρodd← section is determined by directly ap-

plying Eq. (1), whereas ρodd→ is defined by interchanging ρ← and ρ→ in the equation. For

the even-in-field component in panel c), we use an analogous procedure to find ρeven← (yellow)

and ρeven→ (green).
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raw data odd-in-field component even-in-field componenta) b) c)

Figure A.1. Extraction of odd-in-field and even-in-field contributions from field-sweep data as

illustrated on a ρyx(Hz) sweep measured on a Mn5Si3 thin film at 50 K. a) Transverse resistivity

field dependence as measured. The figure shows the definition of ρ← and ρ→ encoded in color. b)

The odd-in-field component of the dependence in panel a). c) The even-in-field component of the

dependence in panel a).
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