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Abstract
Background: Solutions have been proposed to accelerate the development and

rollout of vaccines against a hypothetical disease with epidemic or pandemic potential
called Disease X. This may involve resolving uncertainties regarding the disease and
the new vaccine. However the value for public health of collecting this information
will depend on the time needed to perform research, but also on the time needed to
produce vaccine doses. We explore this interplay, and its effect on the decision on
whether or not to perform research.

Method: We simulate numerically the emergence and transmission of a disease in
a population using a susceptible-infected-recovered (SIR) compartmental model with
vaccination. Uncertainties regarding the disease and the vaccine are represented by
parameter prior distributions. We vary the date at which vaccine doses are available,
and the date at which information about parameters becomes available. We use the
expected value of perfect information (EVPI) and the expected value of partially
perfect information (EVPPI) to measure the value of information.

Results: As expected, information has less or no value if it comes too late, or
(equivalently) if it can only be used too late. However we also find non trivial dy-
namics for shorter durations of vaccine development. In this parameter area, it can
be optimal to implement vaccination without waiting for information depending on
the respective durations of dose production and of clinical research.

Conclusion: We illustrate the value of information dynamics in a Disease X out-
break scenario, and present a general approach to properly take into account uncer-
tainties and transmission dynamics when planning clinical research in this scenario.
Our method is based on numerical simulation and allows us to highlight non trivial
effects that cannot otherwise be investigated.

Keywords: emerging infectious disease, EVPI, EVPPI, Disease X, clinical trial, value of
information.
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1 Introduction

A host of infectious diseases – the Spanish influenza, Ebola, COVID-19, to name a few –
were unknown to scientists or subject to substantial uncertainties when they emerged as
epidemic or pandemic threats [1]. In 2018, WHO introduced the placeholder “Pathogen X”
referring to an infectious agent with epidemic or pandemic potential that is not currently
known to cause human illness. The disease caused by Pathogen X was dubbed “Disease X”
[2]. The objective of investigating hypothetical disease Disease X is to prepare against
the emergence of yet unknown pathogens and accelerate the development of medical coun-
termeasures in case of outbreak. More recently, the Coalition for Epidemic Preparedness
Innovations (CEPI) set the challenge goal of being able to produce and distribute a vaccine
at scale within 100 days after a potentially pandemic pathogen is detected [3].

Technological, organizational, and regulatory solutions have been proposed to shorten
vaccine development in the event of a Disease X outbreak [3–5]. For instance, libraries
of immunization targets, adjuvants, or rapid-response vaccine platforms, as well as appro-
priate manufacturing approaches, could be developed and validated in advance for known
pathogens or broad families of pathogens. Similarly, clinical trial protocols could be de-
signed and approved in advance – suggested protocols would, for example, merge clinical
phases 1 and 2 or include rolling review of evidence.

In summary, these solutions consist in (i) accelerating the process of making vaccine
doses physically available, which involves detecting the pathogen, developing vaccine candi-
dates and producing doses at scale, and (ii) accelerating clinical trials to inform the decision
on whether and how to use a vaccine candidate based on its estimated safety and efficacy.
In a Disease X outbreak scenario, acceleration strategies of vaccine production and clinical
research are meant to be implemented in conjunction with emergency vaccination of target
risk groups [3]. This clearly raises the issue of balancing collection of clinical evidence and
swift vaccine rollout. Generally, resolving uncertainties regarding a vaccine or an emerging
disease can help control the outbreak more efficiently, but collecting information also takes
time and there is a risk that the epidemic gets out of hand [6]. Then, how do the costs and
benefits of a clinical trial – and more generally the value of collecting information about
Disease X – change as functions of (i) the time needed to produce vaccine doses, (ii) the
time needed to run the trial or collect information about the disease, and (iii) the overall
vaccine development time? In this respect, what is the interplay between the acceleration
of dose production and that of clinical research?

These questions can be addressed through value of information analyses or clinical
trials design methods. Value of information analyses quantify the additional value of a
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clinical trial given current uncertainties, while trial design determines a specific trial im-
plementation that meets an objective (e.g. a sample size that satisfies a given statistical
power conditionally on a treatment effect). Both are closely related since value of informa-
tion analyses provide upper bounds on the cost of clinical trial designs. Early studies in
these areas typically focused on choosing a sample size to maximize utility, minimize costs,
or equivalent [7–14]. Interestingly, several of these studies properly took uncertainty – a
defining feature of Disease X – into account by considering parameter prior distributions
[8–10, 12, 14]. However they were not specific to infectious disease countermeasures and
most often sought to provide analytical results in static (not depending on time) settings.
This, of course, is inappropriate in emerging infectious disease scenarios [15]. The dynam-
ics of disease transmission proved particularly critical in designing clinical trials during
the 2013–2016 Ebola crisis, because the epidemic was already waning when vaccines were
ready for testing, which made sampling challenging [16, 17]. There is a rich literature us-
ing numerical simulations of dynamic disease transmission models to design Ebola vaccine
clinical trials [18–22] – see also [23–25] for other diseases. While these studies take the
dynamic of disease transmission into account, they mostly ignore uncertainties regarding
the disease and countermeasures, or they treat them somewhat superficially by considering
a range of scenarios. True treatment effects, in particular, are typically assumed. Besides,
this literature usually takes the perspective of a statistician rather than a public health
perspective: the performance of a clinical trial is measured in terms, e.g, of its statistical
power rather than in terms of averted costs or disutility, that is in terms of the full value
of the trial ([23] is an exception in this respect).

In this article, we illustrate the effect of the duration of vaccine development, that is
the time needed to produce doses and to conduct clinical research, on the public health
value of a clinical trial in a Disease X outbreak scenario. We consider both the epidemic
dynamics, and uncertainties regarding Disease X and the vaccine in our reasoning. We
model the spread of Disease X using a susceptible–infectious–recovered (SIR) model with
vaccination. The disease parameters are assumed to be uncertain, as well as vaccine efficacy
and safety – see [26, 27] for examples of adverse events discovered only at a late stage
of vaccine development. Both infection and vaccine adverse effects have a cost and our
goal is to minimize the total cost at the population level over the course of the epidemic.
Clinical research is seen as a way to collect information about the disease and the vaccine to
implement vaccination optimally. We use the expected value of perfect information (EVPI,
see [28]) to estimate the value of entirely resolving all uncertainties, and the expected value
of partial perfect information (EVPPI) to estimate the value of resolving uncertainties
regarding subsets of parameters, in particular vaccine parameters that would typically be
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investigated by a clinical trial. We estimate EVPI and EVPPI for different durations of
vaccine development. This value of information approach only provides upper bounds on
the cost of clinical research. While actual costs are important in practice, they are highly
context-specific. We believe that investigating upper bounds and their dynamics (as a
function of development duration) is relevant for Disease X preparedness. Notice also that
the reasoning presented in this article applies to any medical countermeasure and not only
to vaccines.

Our method is detailed in Section 2: the transmission model in Section 2.1, and model
uncertainties in Section 2.2. In Section 2.3, we formally derive an expression of EVPI and
EVPPI in our scenario. The simulation results are gathered in Section 3. We start with an
illustrative example of the trade-off between vaccinating under uncertainty and waiting for
clinical research outcomes, and we provide cost breakdowns for this example (Section 3.1).
Then we show simulations of decision making under uncertainty and perfect information
(Sections 3.2 and 3.3 respectively). Finally, Section 3.4 gives the dynamics of EVPI and
EVPPI as a function of the duration of clinical research and of vaccine dose production.
Section 4 concludes.

2 Materials and methods

2.1 Disease transmission model

We consider the emergence of Disease X in a closed homogeneous population of N = 108

individuals. At time 0, a single individual is infectious and the population is unvaccinated.
We assume that the epidemic can be described by a deterministic SIR model with basic
reproduction number R0 and mean duration of infectiousness 1/γ.

At time Tv, a vaccine is available for rollout. Only susceptible individuals are vac-
cinated. Vaccination is successful with probability p – in our case, this parameter corre-
sponds to vaccine efficacy and is equivalent to vaccine effectiveness. Successfully vaccinated
individuals are immediately and fully protected, and there is no waning of vaccine protec-
tion. Independently of vaccination success, vaccinated individuals develop adverse events
with probability ε. The delay between vaccination and adverse events is exponentially
distributed with mean δ. Figure App-1 shows a sketch of the transmission model.

We denote the cost per infectious day by ci, and the cost per adverse event by ca. cv
is the cost of one administered vaccine dose, which includes production and operational
costs. We ignore fixed costs for concision, and because we can plausibly assume that these
costs have already been incurred at time 0 in our scenario.
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2.2 Uncertainties

The model structure as well as the vaccine mechanism (all-or-nothing without loss of
protection) are assumed to be known. This assumption can easily be relaxed by extending
the model as appropriate. At time 0, transmission parameters, vaccine parameters, and
costs are uncertain. This uncertainty is represented by parameter prior distributions. For
the sake of illustration and discussion, we picked prior distributions yielding a range of
results of interest while at the same time assuming plausible values.1 Figure 1 shows
10,000 draws from the parameter prior distributions. Disease transmission parameters R0

and γ are biologically plausible. The prior distributions of δ and ε are assumed. We also
assume low prior information regarding the efficacy parameter p. The order of magnitude
of the cost ca of an adverse event broadly corresponds to that of damage payments, with
the lower range corresponding to mild adverse events without compensation [29, 30]. The
cost ci of an infectious days is of the order of magnitude of daily wages in high-income
countries [31]. For the order of magnitude of the cost of a vaccine dose, see e.g. [32, 33].
We assume no parameter correlations.

We assume that the true value of parameters can be known at time Tv+Tc ≥ 0. Tc > 0

means that this information is available after vaccine doses are available for rollout (at
time Tv), and Tc < 0 means that relevant information is available before completion of
dose production. We are interested in the relationship between Tv, Tc, and the value of
information brought by clinical research. We will therefore run simulations and estimate
the value of information for different values of Tv and Tc, assuming both to be known.
Notice that considering uncertain Tv would only make decisions conditional on this value,
whereas considering uncertain Tc would not add any technical complexity while adding
complexity for the sake of interpretation of our results.

2.3 Optimization problem and value of information

Our objective is to minimize the total cost over the course of the epidemic by decid-
ing whether and when to vaccinate the population. For concision, we consider possible
vaccination dates by increments of 30 days, and we assume that the whole susceptible
population is vaccinated at once if we decide to vaccinate. These assumptions allow us to
perform optimizations by exhaustively running all possible strategies when necessary.2 Let
A(t) be the set of available vaccination policies consisting in vaccinating after date t or
never vaccinating, and C(a, ξ) the total cost of policy a given parameter values ξ. Under

1The details of prior distributions are provided in Appendix B.
2Notice that optimization techniques are not the main point of our study.
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(a) R0 (b) γ (c) ε

(d) δ (e) p (f) ca

(g) ci (h) cv

Figure 1: Frequency distributions for 10,000 draws of the parameters. Vertical lines show
average values. The unit of time is one day. Costs are in thousand USD.

uncertainty, a policy a is picked that minimizes the expected cost over parameter prior
distributions. In this case, the set of available policies is A(Tv) since vaccination can only
be implemented after doses are available at time Tv. The expected cost under uncertainty
is then

EC−(Tv) = min
a∈A(Tv)

Eξ [C(a, ξ)] . (1)

If parameter values are known at time Tv + Tc, a policy minimizing the cost given
these values can be picked. In our scenario, if we assume that information can only be
used once both vaccine doses and information are available, the set of available informed
policies is A(max(Tv, Tv + Tc)). In practice, however, decision making in the case Tc < 0

is very context-dependent – e.g. is it possible to stop vaccine production at Tc depending
on available information? – so we will focus on the case Tc ≥ 0 and consider the set of
available informed policies A(Tv + Tc). The expected cost of informed decision making is
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then
EC+(Tv, Tc) = Eξ

[
min

a∈A(Tv+Tc)
C(a, ξ)

]
. (2)

The difference EC−(Tv)−EC+(Tv, Tc) is the expected value of using information about
parameter values. Clearly, this value can be negative. If the expected cost of waiting for
information is greater than that of vaccinating earlier under uncertainty, information is
ignored.3 Thus the expected value of perfect information is in our case

EV PI(Tv, Tc) = max
[
EC−(Tv)− EC+(Tv, Tc), 0

]
. (3)

Clinical studies typically investigate only subsets of parameters (e.g. vaccine parameters
in the case of vaccine clinical trials). The expected cost of choosing a policy knowing the
true values for parameter subset θ is

EC+
θ (Tv, Tc) = Eθ

[
min

a∈A(Tv+Tc)
Eξ|θ [C(a, ξ)]

]
, (4)

and the expected value of partially perfect information for θ is

EV PPIθ(Tv, Tc) = max
[
EC−(Tv)− EC+

θ (Tv, Tc), 0
]
. (5)

3 Results

3.1 An illustrative example

Table 1 and Figure 2 show the expected cumulative total cost over the course of the
epidemic for three vaccination policies – no vaccination, vaccination at date 300, and
vaccination at date 900 – and the cumulative total cost when parameters are set at their
average value. Under uncertainty, in our scenario, vaccinating at date 300 would therefore
be picked out of these three policies based on expected costs. With vaccination at date 900,
the expected costs of vaccination and adverse events are lower compared to vaccination at
time 300 because less individuals are still susceptible and eligible to vaccination by that
time. Yet the expected overall cost of vaccinating at 900 is close to that of not vaccinating
at all, the late policy implementation implying a higher number of infected individuals.
Notice that if the vaccination decision was based on computations with parameters at their
average value, vaccination would not be implemented.

Let us now consider a scenario where vaccine doses are available at date 300 (Tv = 300),
and a hypothetical research program lets us know the exact value of all parameters at date

3Notice that, for the sake of conciseness, we consider no cost for acquiring information.
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Vaccination Vaccination
No vaccination at date 300 at date 900

Expected costs over prior distributions

Infections 44.02 6.09 16.09
(43.11 – 44.94) (5.73 – 6.45) (15.53 – 16.65)

Doses 0 12.55 11.21
– (12.39 – 12.70) (11.06 – 11.35)

Adverse events 0 18.81 16.86
– (18.34 – 19.29) (16.42 – 17.29)

Total 44.02 37.45 44.15
(43.11 – 44.94) (36.84 – 38.07) (43.48 – 44.82)

Costs for average parameter values
Infections 28.24 2.82× 10−3 25.83

Doses 0 12.99 9.50
Adverse events 0 19.59 14.33

Total 28.24 32.58 49.66

Table 1: Cumulative total costs (billion USD) for three vaccination policies. Expected
costs are estimated over 10,000 draws from the prior distributions. 95% CIs are shown in
parentheses.

(a) No vaccination (b) Vaccination at date 300 (c) Vaccination at date 900

Figure 2: Cumulative total costs (thousand USD) as a function of time. Grey-black area
for percentiles of simulations (10,000 draws from the prior distributions). Dashed line:
expected cost over all simulations. Dotted line: simulation with parameters at their average
values.

900 (Tv + Tc = 900). Under uncertainty for Tv = 300, the best policy is to vaccinate at
date 300 (see Figure 4 infra). Should we rather vaccinate at date 300 or wait and make
a decision at date 900 knowing the true parameter values? Not vaccinating until date 900

and making a decision at date 900 knowing the true parameter values leads to vaccinating
at date 900 for 32.88% of parameter values (95% CI: 31.96% – 33.80%) and not vaccinating
for other parameter values. The expected cost of informed decision at date 900 is USD
29.03 billion (95% CI: 28.47 – 29.60), to be compared with the expected cost of decision
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under uncertainty at date 300 (Table 1): waiting for information leads to a gain of USD
8.42 billion (95% CI: 7.84 – 9.01). This is the maximum amount one should be willing to
allocate to the considered research program.

Now, if information is made available at date Tv + Tc = 3000 instead of 900, the best
policy at Tv+Tc is to vaccinate immediately for 9.86% of parameter values (95% CI: 9.28% –
10.44%) and to not vaccinate for other parameter values. The resulting expected cost of
informed decision is USD 41.04 billion (95% CI: 40.16 – 41.93), which corresponds to an
expected loss of USD 3.59 billion (95% CI: 2.65 – 4.52) compared to vaccinating at date
Tv = 300. With Tv + Tc = 3000, information would come too late so resources should
not be allocated to the considered research program. Figure 3 shows the distributions of
costs over parameter values when vaccination is implemented at date Tv = 300 (uninformed
decision), and when an informed decision is made at date Tv+Tc = 900 and Tv+Tc = 3000.

(a) Tv = 300, Tv + Tc = 900. (b) Tv = 300, Tv + Tc = 3000.

Figure 3: Cumulative distribution of total costs (thousand USD) for different values of Tv
and Tv + Tc. Black line: vaccination at Tv. Grey line: informed decision at Tv + Tc.

3.2 Without information

Let us look into uninformed decision making in more details. In Figure 4, we display
the expected cost difference between vaccinating at date t and not vaccinating at all as a
function of t. For small vaccination dates, the epidemic is still at an early stage and the
best policy is to vaccinate. As the epidemic spreads, the advantage of vaccination decreases
and it becomes optimal not to vaccinate (under uncertainty). Formally, if we denote by at
the policy consisting in vaccinating at time t and by a∞ the no vaccination policy, Figure 4
shows Eξ [C(at, ξ)− C(a∞, ξ)] as a function of t. If vaccine doses are only available at time
Tv, we decide whether to vaccinate and at what date by considering the points such that
t ≥ Tv.
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Figure 4: Expected cost difference (thousand USD) between vaccinating at date t and not
vaccinating estimated over 10,000 parameter draws. x-axis: t. Dashed line: 95% CI.

3.3 With information

Now, let us assume that both the vaccine and true parameter values are available at date
Tv+Tc and that the population is not yet vaccinated. At date Tv+Tc, we can then decide
whether to vaccinate and at what date t ≥ Tv + Tc based on parameter values. Figure 5
shows the proportion of parameter values for which no vaccination is the best policy as
a function of Tv + Tc. Again, vaccination becomes less advantageous as the epidemic is
allowed to spread in our scenario. In Figure 6, we show the difference between the expected
cost of making an informed decision, formally EC+(Tv, Tc), and the expected cost of not
vaccinating, formally Eξ [C(a∞, ξ)]. For all Tv+Tc, making an informed decision is expected
to be a better option than arbitrarily not vaccinating but the difference decreases over time.

3.4 Value of information

From Equations 3 and 5 the value of information depends on both the time Tv from
which vaccine doses are available and the time Tv+Tc from which information is available.
The EVPI dynamics is illustrated in Figure 7, and Figure 8 shows sectional views of the
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Figure 5: Expected proportion of cases for which no vaccination is implemented when
information is available at date Tv + Tc and the decision maker has not yet vaccinated the
population as a function of Tv + Tc. Estimation over 10,000 parameter draws. Dashed
lines: 95% CI.

heatmap in Figure 7. A vaccine clinical trial would focus on vaccine parameters. In
Figure 9, we display EVPPI for vaccine parameters. See Appendix D for EVPPI of other
subsets of parameters. EVPPI was estimated following [34].

In our scenario, value of information dynamics for fixed Tv as a function of Tc is intuitive.
From Figures 8a and 9a, we see that for any date Tv at which vaccine doses are available,
information has more value if it comes earlier rather than later. Value of information
dynamics as a function of Tv is less straightforward. We see from Figures 8b and 9b that
it can be non monotonic. As expected, information becomes irrelevant for large values of
Tv, that is if vaccine doses are available too late – and this remains true even if clinical
research can be performed quickly. For small values of Tv, it can be optimal to vaccinate
under uncertainty rather than wait for information if Tc is too large (light grey curves in
Figure 8a). However if Tc is not too small and Tv small enough, this effect can be reversed
and the value of information increases again as Tv decreases.
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Figure 6: Expected difference (thousand USD) between the cost of the strategy consisting
in vaccinating with information at date Tv+Tc and the strategy consisting in not vaccinating
as a function of Tv + Tc. Estimation over 10,000 parameter draws. Dashed lines: 95% CI.
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Figure 7: Expected value of perfect information (color scale, thousand USD) as a function
of Tv (x-axis) and Tv + Tc (y-axis). The black triangle Tc < 0 reads “not defined”.

(a) Tv (color scale), Tc (x-axis)(b) Tc (color scale), Tv (x-axis)

Figure 8: Expected value of perfect information (thousand USD) as a function of Tc and
Tv for varying Tv and Tc respectively. Estimation over 10,000 parameter draws. 95% CI:
see Figure App-2 in Appendix.
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(a) Tv = 0, varying Tc (x-axis) (b) Tc = 0, varying Tv (x-axis)

Figure 9: Expected value of partially perfect information (thousand USD) for vaccine
parameters (α, ε, δ, cv, and ca) as a function of Tc for Tv = 0 and as a function of Tv for
Tc = 0. Estimation over 10,000 parameter draws. Dotted lines: 95% CI.
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4 Conclusion

We illustrated two critical – if not defining – features of clinical research in a Disease X
outbreak scenario. First, the dynamic nature of the problem of allocating resources to
research. The Ebola crisis already showed that the disease transmission dynamics influences
the cost of clinical trials e.g. if cases become rare or difficult to locate due to a vanishing
or bursty epidemic. Here, we showed with an example that the value of information itself,
that is an upper bound on the costs, depends on the date from which this information
is available, but also on the date from which it can actually be used (in our scenario:
the date from which vaccine doses are available). The second critical point highlighted in
this article is the role of uncertainties – a central issue for Disease X preparedness. The
objective of clinical research is to resolve uncertainties regarding a disease and medical
countermeasures. Yet these uncertainties influence resource allocation to research. In
some circumstances, making a decision under uncertainties can be optimal. While this
simple idea is at the core of value of information analyses, a common approach in the fields
of public health and health economics, many studies seek to design clinical trials satisfying
some properties (e.g. statistical power) conditional on parameter values that would most
likely be uncertain in a Disease X scenario. The reasoning in this article takes uncertainties
fully into account.

Once again, all results presented in this article depend on the assumed prior beliefs or
prior information. This includes parameter prior distributions, but also our assumptions re-
garding the transmission model structure (SIR) and the vaccine mechanism (all-or-nothing
protection, no waning). Our assumptions are meant (i) to be plausible, (ii) to be concise
and straightforward (we want to develop a minimal example), and (iii) to illustrate effects
of interest (i.e. avoid trivial instances of the problem). We show results obtained with
alternative parameter prior distributions in Appendix E. Similarly, we used an EVPI ap-
proach for concision and generality. In practice, other value of information metrics such as
the expected value of sample information could be relevant, but they would require to de-
fine and discuss the details of how information is acquired (technically) for each parameter
or subset of parameters, which is outside the scope of our article.

Importantly, while our study is by no way predictive of the magnitude or relevance
of specific effects, our reasoning is valid in general. Moreover, our approach is based on
numerical simulations of standard epidemiological models and can thus easily be adapted
to pathogens or families of pathogens of interest. Replacing our illustrative SIR model by
a more realistic model, modelling more realistic vaccination policies, or considering several
medical countermeasures in parallel are a mere technical issues and have no bearing on the
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general approach. We hope that the approach developed in this article will help researchers
properly take uncertainties and transmission dynamics into account when planning for
Disease X clinical research and medical countermeasure development.
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A Additional figure: transmission model

S I R
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Figure App-1: Sketch of the transmission model. Dashed: possible vaccination (instanta-

neous). λ = γR0
I

N
is the force of infection.

B Parameter prior distributions

Table App-1 shows the parameter prior distributions used in the article.

Parameter Distribution Truncation
N Constant: 108

Tv Variable
Tc Variable
R0 Gamma distribution with mean 1.05 and standard de-

viation 0.2
[1.01;∞]

γ Lognormale distribution with mean 0.1 and standard
deviation 0.1

[0.02;∞]

α Uniform distribution [0, 1]
ε Lognormale distribution with mean 0.003 and stan-

dard deviation 0.003
[0; 1]

δ Normal distribution with mean 40 and standard devi-
ation 20

[0;∞]

cv Normal distribution with mean 0.1 and standard devi-
ation 0.1

[0;∞]

ci Normal distribution with mean 0.1 and standard devi-
ation 0.03

[0;∞]

ca Normal distribution with mean 50 and standard devi-
ation 50

[0;∞]

Table App-1: Model parameter prior distributions.
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C Additional figures: EVPI confidence intervals

In Figure App-2, we show two curves from Figure 8 with 95% confidence intervals.

(a) Tc (x-axis), Tv = 0 (b) Tv (x-axis), Tc = 0

Figure App-2: Expected value of perfect information as a function of Tc and Tv for Tv = 0
and Tc = 0 respectively. Estimation over 10,000 parameter draws. Dotted lines: 95% CI.

D EVPPI

In Figures App-3 and App-4, we show EVPPI for different subsets of parameters as a
function of Tc and Tv. Qualitatively, the EVPPI dynamics is similar to the EVPI dynamics.
As expected, EVPPI is 0 for parameter δ, the average delay between vaccination and
adverse event (plot not shown).

E Alternative prior distributions

Here we provide results for alternative prior distribution, for illustration only. The prior
distributions are described in Tables App-2 and ?? and the corresponding EVPI estimates
are displayed in Figure E.
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(a) ca (b) ci (c) cv

(d) R0 (e) γ (f) ε

(g) α (h) R0, γ, ci (i) α, ε, δ, cv, ca

Figure App-3: EVPPI as a function of Tc in the case with Tv = 0. Estimation over 10,000
parameter draws. Dotted lines: 95% CI.
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(a) ca (b) ci (c) cv

(d) R0 (e) γ (f) ε

(g) α (h) R0, γ, ci (i) α, ε, δ, cv, ca

Figure App-4: EVPPI as a function of Tv in the case with Tc = 0. Estimation over 10,000
parameter draws. Dotted lines: 95% CI.
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Parameter Distribution Truncation
N Constant: 108

Tv Variable
Tc Variable
R0 Gamma distribution with mean 1.05 and standard de-

viation 0.2
[1.01;∞]

γ Lognormale distribution with mean 0.1 and standard
deviation 0.1

[0.02;∞]

α Uniform distribution [0, 1]
ε Lognormale distribution with mean 0.003 and stan-

dard deviation 0.003
[0; 1]

δ Normal distribution with mean 40 and standard devi-
ation 20

[0;∞]

cv Normal distribution with mean 0.1 and standard devi-
ation 0.1

[0;∞]

ci Normal distribution with mean 0.1 and standard devi-
ation 0.03

[0;∞]

ca Normal distribution with mean 100 and standard de-
viation 50

[0;∞]

Table App-2: Alternative parameter prior distributions 1.

Parameter Distribution Truncation
N Constant: 108

Tv Variable
Tc Variable
R0 Gamma distribution with mean 1.05 and standard de-

viation 0.2
[1.01;∞]

γ Lognormale distribution with mean 0.1 and standard
deviation 0.1

[0.02;∞]

α Uniform distribution [0, 1]
ε Lognormale distribution with mean 0.003 and stan-

dard deviation 0.003
[0; 1]

δ Normal distribution with mean 40 and standard devi-
ation 20

[0;∞]

cv Normal distribution with mean 0.1 and standard devi-
ation 0.1

[0;∞]

ci Normal distribution with mean 0.1 and standard devi-
ation 0.03

[0;∞]

ca Normal distribution with mean 20 and standard devi-
ation 20

[0;∞]

Table App-3: Alternative parameter prior distributions 2.
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(a) (b)

(c) (d)

(e) (f)

Figure App-5: Expected value of perfect information (thousand USD) as a function of Tc
and Tv for alternative parameter prior distributions 1 (left panels) and 2 (right panels).
Figures App-5a and App-5b: EVPI (color scale) as a function of Tv (x-axis) and Tv + Tc
(y-axis). Figures App-5c and App-5d: EVPI (y-axis) as a function of Tc (x-axis) Tv (color
scale). Figures App-5e and App-5f: EVPI (y-axis) as a function of Tv (x-axis) Tc (color
scale). Estimations over 10,000 parameter draws.
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