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Optimal epidemic control under uncertainty: trade-offs
between information collection and other actions
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Abstract

Background: Recent epidemics and measures taken to control them — through
vaccination or other actions — have highlighted the role and importance of uncertainty
in public health. There is generally a trade-off between information collection and
other uses of resources. Whether this trade-off is solved explicitly or implicitly, the
concept of value of information is central in order to inform policy makers in an
uncertain environment.

Method: We use a deterministic SIR disease emergence and transmission model
with vaccination that can be administered as one or two doses. The disease pa-
rameters and vaccine characteristics are uncertain. We study the trade-offs between
information acquisition and two other measures: bringing vaccination forward, and
acquiring more vaccine doses. To do this, we quantify the expected value of perfect
information (EVPI) under different constraints faced by public health authorities,
i.e. the time of the vaccination campaign implementation and the number of vaccine
doses available.

Results: We discuss the appropriateness of different responses under uncertainty.
We show that in some cases, vaccinating later or with less vaccine doses but more
information about the epidemic and the efficacy of control strategies may bring better
results than vaccinating earlier or with more doses and less information respectively.

Conclusion: In the present methodological paper, we show in an abstract setting
how clearly defining and treating the trade-off between information acquisition and
the relaxation of constraints can improve public health decision making.

Keywords: value of information, EVPI, EVPPI, emerging infectious disease, epidemic
control, uncertain environment.
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Highlights:

e Uncertainties can seriously hinder epidemic control, but resolving them is costly.
Thus there are trade-offs between information collection and alternative uses of re-

sources.

e We use a generic SIR model with vaccination and a value of information framework

to explore these trade-offs.

e We show in which cases vaccinating later with more information about the epidemic
and the efficacy of control measures may be better — or not — than vaccinating earlier

with less information.

e We show in which cases vaccinating with less vaccine doses and more information
about the epidemic and the efficacy of control measures may be better — or not —

than vaccinating with more doses and less information.
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1 Introduction

Infectious disease control is steeped in uncertainty. Uncertainty may concern the natural
history of the pathogen, the successful development of prophylactic or curative treatments,
the ability to deliver control interventions, or the population characteristics, including
contact patterns and individual behaviors [1]. Since the spread of an infectious disease
is a dynamic and nonlinear phenomenon, uncertainties can seriously hinder control ef-
forts. Control measures taken at a certain time given available information may prove
sub-optimal as more information is gathered about the epidemic, but these measures are
usually irreversible and their cost is sunk.

Yet resolving uncertainties has a cost, so there is a trade-off between i) using resources
(money and time) to gain information about the uncertain parameters of an epidemic,
and ii) allocating the same resources to alternative uses meant to control that epidemic.
Alternative uses of resources include the production of more medical supplies and the
build-up of intervention capacity in general. They also include accelerating or bringing
interventions forward in time, it being understood that since epidemics spread over time,
acting swiftly will avoid further infection cases. How, then, to balance the benefit of
information collection against the benefits of these alternative resource uses — that is, better
informed decisions against faster and stronger interventions based on less information?
The objective of this article is to show how this can be done through value of information
analyses, and to provide a general understanding of these trade-offs.

Value of information analyses allow to quantify the benefit of reducing uncertainties.
They are widely used in the fields of public health and health economics [2, 3]. One
popular value of information metric is the expected value of perfect information (EVPI).
The outcome of a decision (in our case: an epidemic control strategy) typically depends on
both the decision itself, and the parameters that may be uncertain. EVPI is the difference
between i) the expected outcome obtained by making decisions knowing the true value
of all parameters, and ii) the expected outcome obtained by making decisions without
knowing the true values of uncertain parameters. Put differently, EVPI is the expected
additional value, given prior beliefs about the possible values of uncertain parameters, of
making decisions knowing the true value of these parameters.

Of course, the two terms of EVPI (the outcomes with and without additional infor-
mation) depend on feasible epidemic control strategies, that is on the constraints imposed
on decision making. Whether decisions are made with or without knowing the true pa-
rameter values, the achievable best policy depends obviously on how fast and how broadly
or strongly control measures can be implemented. Feasible strategies, in turn, depend
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on resource allocation: if, say, more medical supplies are produced, decision making will
be less constrained and will result in a better (or equivalent) outcome. Hence, value of
information analyses allow to compare the outcomes obtained with or without additional
information and with or without accelerating or strengthening control measures, that is to
balance the benefit of information collection against that of alternative uses of resources.

It should be kept in mind, however, that while EVPI is a popular metric allowing to
readily and consistently quantify the value of information, this metric only provides an
upper bound on the incremental benefit of collecting more information about uncertain
parameters — this is because it assumes that perfect knowledge of parameters is achievable,
which may of course not be the case. Other value of information metrics are useful in prac-
tice, in particular the expected value of sample information (EVSI), that is the expected
value of observing an additional sample of uncertain parameters. We leave EVSI outside
the scope of this article because it requires to actually define samples for each parameter
(their nature, size, method of collection), which is likely to be very case specific and at
any rate irrelevant to our point. All effects shown in this article will remain in an EVSI
based analysis, although with reduced magnitude. Yet EVPI does not address one relevant
issue, which is to determine what parameters are driving uncertainty i.e. those for which
resolution of uncertainty would be the most beneficial. Doing so is useful to set informa-
tion collection priorities. Hence, as a complement to EVPI, we also compute the expected
value of partially perfect information (EVPPI) for uncertain parameters. EVPPI measures
the additional benefit of knowing the true value of a subset of uncertain parameters. For
instance, the additional benefit of knowing the value of one of the parameters, the others
remaining uncertain.

In the present conceptual and methodological article, we use a generic deterministic
SIR transmission model, with uncertain parameters, of an infectious disease emerging in
a population. The control intervention is vaccination, and the decision maker can choose
how many single and double dose vaccines to administer. The value of a vaccination
policy is the number of averted symptomatic infected individual-days over the entire course
of the epidemic compared to the no intervention scenario. We want to illustrate, first,
how vaccinating earlier with less information compares to vaccinating later with more
information and, second, how vaccinating with more vaccine doses but less information
compares to vaccinating with less doses and more information.

Uncertainty management and information collection are ubiquitous issues in public
health. In the present study, however, information collection is the result of active decision
making, and uncertainty management is therefore a strategic issue. This needs to be

contrasted with the way uncertainty is most often managed in infectious disease control
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studies.

It should first be noted that policy-oriented studies in the field of infectious disease
control rarely consider the value of acquiring more information (see [4] for an example
of study which does), and considering information collection as a strategic choice among
others is even less common. Most studies focus on available information only and disregard
the possibility of resolving uncertainties. A typical approach consists in using available data
to fit a disease transmission model. This task can be resource intensive and is the main
contribution of many studies. It results in estimates of the uncertain parameters (point
estimates or distribution estimates depending on the method used). In a second step, these
estimates are used to determine the best control policy either by comparing all relevant
options exhaustively or via optimization methods. Finally, uncertainties are managed in a
third step: the robustness of the chosen policy is tested by performing sensitivity analyses.
The objective of these sensitivity analyses is not so much to quantify uncertainties (e.g. by
using value of information metrics to estimate the benefit of reducing them) as to justify
the choice of a policy based on available data and the corresponding model fit. Available
information is assumed to be fixed and is used both to pick a policy, and to derive scenarios
in which to test the performance of that policy.! Even considering the objective of justifying
a policy given available information, sensitivity analyses can easily be incomplete (limited
sampling of the parameter space) or use misleading metrics (e.g. the probability that a
given policy will be the best instead of the expected value of that policy). We refer to
Houy and Flaig [5] for a discussion of these issues and examples from the field of hospital
epidemiology.

Other studies assume that more information is acquired over time and propose al-
gorithms to estimate parameters (see [6] and the articles reviewed therein) or to adapt
interventions (see |7, 8], for instance) in real-time. Yet in these studies just as in studies
assuming fixed information, information acquisition is seen as a passive process, and is
not stemming from active strategic decisions. Namely, there is no trade-off between data
collection and other uses of resources. Data is simply assumed to become available “for
free” over time, and the point of these articles is to show how to use it. In this respect,
whether information is assumed to be available at one point in time or to become available
over time makes little conceptual difference.

To some extent, testing or screening optimization could be seen as strategic (or active)
acquisition of information, however not in the sense of solving the trade-offs discussed in

1So the same information is used to choose a policy and to test its robustness. Notice that the cho-
sen policy already takes that information into account, hence a tautology. Contrast this with value of
information approaches: a policy chosen under uncertainty is deemed robust if knowing the true value of
parameters does not allow to pick a much better policy.
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this article, as testing optimization does not entail assessing the value of information (at
least not explicitly). In the context of infectious disease control, the objective of testing
optimization is usually to control the spread of a disease by finding and isolating infectious
individuals [9-13] or, less frequently, by finding recovered and immune individuals to end
their isolation [14, 15]. Framing the problem in terms of value of information, the uncertain
parameter would be the health statuses (susceptible, infectious, or recovered) of individuals.
Yet the decision made once this information is available is typically predefined and fixed:
it often simply consists in, say, isolating tested individuals found to be infectious, or in
following a more sophisticated threshold-based rule by isolating a tested individual based
also on other individuals’ test results. In both cases, the problem is to find how to test
(who and when) given that such or such predefined decision (isolate or not) rule is applied
depending on test results. By contrast, a value of information analysis would rather address
the issue of whether to test or not given that test information could be used to make better
decisions.

Our work is more closely related to several previously published studies. Cipriano and
Weber [16] solved the problem of deciding when to stop screening successive cohorts of
50-year-olds for an infectious disease, hepatitis C, and when to optimally collect additional
data to inform this decision. Their objective, however, was not to control the spread of the
disease but to find cases. They did not model hepatitis C transmission and assumed that
the prevalence decreased linearly over time. Closer to our work, some authors proposed
multi-stage control strategies allowing to actively include information collection in decision
making rather than passively adapt to new information. In the first example developed in
their study, Shea et al. [17] showed how anticipating that uncertainty will be resolved at a
later stage can influence decisions in earlier stages. The trade-off between acting early or
collecting information and acting later is solved implicitly, but it is not the main focus of
the article — the trade-off is solved for a single late (informed) intervention date. Similarly,
Atkins et al. [18] considered a scenario in which the efficacy of a vaccine is uncertain
but can be learned through vaccination campaigns. In this study as well, the focus is on
the comparison of active information collection versus passive adaptation, and trade-offs
are solved implicitly. The trade-off between trying to control an epidemic early with less
information and later with more information is treated explicitly and in more details by
Thompson et al. [19]. However they did not used an EVPI framework but proposed an
heuristic algorithm allowing to anticipate future learning. We want to bring the discussion
to a more general and elemental level. The relationship between logistical constraints (or
equivalently resource or budget constraints) and the value of information was investigated

by Shea et al. [17] (second example of the paper) and by Li et al. [20], however not in
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terms of the trade-off between relaxing these constraints and collecting information about
the epidemic. This trade-off is illustrated by Woods et al. [21] in the case of HIV, but not
for the full range of resource constraints. In this article, we address both implementation
time and resource constraints and focus on trade-offs more in-depth.

The remainder of the paper is structured as follows. In Section 2 we introduce the SIR
disease transmission model (Section 2.1), model uncertainties (Section 2.2), control inter-
ventions (Section 2.3), and the value of information metrics used in the article (Section 2.4).
The simulation results are shown and discussed in Section 3. Sections 3.1 and 3.2 give pre-
liminary results. The core results of the paper are presented in Section 3.3. Section 4
concludes.

2 Materials and methods

2.1 Disease transmission model

We consider the emergence of an infectious disease in a closed population of N = 10,000
individuals. The spread of the disease is described by a SIR model with symptomatic
and asymptomatic infections, and vaccination. Individuals may receive 0, 1, or 2 doses of
vaccine. Vaccination is assumed to reduce infectiousness, susceptibility, and the probability
of symptomatic infection. For concision and illustrative purposes, we use a deterministic
model (with continuous population) and leave aside stochastic effects, although they can
be critical in the context of infectious disease emergence (see [19]). At time 0, no individual
is vaccinated and one individuals out of N is assumed to be infected. Simulations are run
until the epidemic is extinct. Since population is continuous in our framework, we need to
define a threshold number of infectious individuals below which the epidemic is assumed
to be extinct. We set this threshold to N x 107% = 10™* infectious individuals. In our
scenario, extinction is reached after some time for any model parameter values because we
assumed a SIR transmission model in a closed population.

The disease transmission model is illustrated in Figure 1 and the parameters are defined
in Table 1. The model equations are given in Appendix A and the model parameters in

Table 1. The unit of time is one day throughout the article.

2.2 Uncertainties

We assume the model structure to be known and focus on parameter uncertainties.
We also assume prior distributions to be available for all uncertain parameters. Prior

distributions represent i) the level of information (i.e. of certainty) about parameter values,
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Figure 1: Sketch of the transmission model. Dashed: possible vaccination. Grey dashed:
vaccination not considered in the present article (see vaccination strategies in section 2.3).
A is the force of infection for unvaccinated individuals.

and ii) expectations about these values at the time of decision. We show results for a set of
prior distributions which assumes that some information is available about the parameters
(there is some variance, but some values are more likely than others), and that double dose
vaccination is expected to provide markedly more protection than single dose vaccination.
The details of baseline prior distributions are given in Appendix B and Figure 2 shows
10,000 draws from these distributions. We assume the rate of recovery + to be known
and equal to 0.1 day, so that all uncertainty about the spread of the disease without
intervention is reflected by uncertainty about a single parameter, Ry, which in our case is
equivalent to an uncertain contact rate g = vRy. All other uncertain parameters concern

the efficacy of one dose and double dose vaccination.

2.3 Optimization problem and vaccination strategies

Our objective is to vaccinate the population so as to minimize the total number of
symptomatic infected individual-days over the entire course of the epidemic, that is from
time 0 until the epidemic is extinct. We assume no time discounting.

In our scenario, a vaccination strategy consists in administering n; vaccine doses as
single doses, and ny vaccine doses as double doses (i.e. to ny/2 individuals) to previously
unvaccinated individuals at a given time ¢t. The set of alternative vaccination strategies is
constrained by i) the time ¢,,;, from which vaccine doses can be administered, and ii) the
number of doses n,,.x available.

Clearly, tui, is the vaccination date since, other things being equal, vaccinating earlier
is better than vaccinating later. In the following, we will alternatively refer to ¢,,;, as the
vaccination date, and as a constraint on the vaccination date that may or may not be

relaxed.
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Parameter Description

Ry Reproduction number of unvaccinated individuals.

¥ Rate of recovery.

p1 Relative infectiousness of individuals having received 1 dose of
vaccine, compared to 0 dose.

P2 Relative infectiousness of individuals having received 2 doses of
vaccine, compared to 1 dose.

lopt Relative susceptibility of individuals having received 1 dose of
vaccine, compared to 0 dose.

lop) Relative susceptibility of individuals having received 2 doses of
vaccine, compared to 1 dose.

D1 Probability of symptomatic infection of individuals having re-
ceived 1 dose of vaccine.

D2 Reduction of the probability of symptomatic infection of indi-

viduals having received 2 doses of vaccine, compared to 1 dose.

Table 1: Transmission model parameters.

For concision, we assume that all n,,,, doses are available at once and administered at a
single date by bundles of 2,000 doses (n; and ny are multiples of 2,000). We can expect that
in real life, vaccine doses will be produced and administered at a certain rate, resulting in a
gradual increase of coverage. Also, the assumption that the number of individuals actually
getting vaccinated can be controlled loosely corresponds to a mandatory vaccination sce-
nario. Finally, notice that we assume that individuals are vaccinated irrespective of their
health status. In practice, vaccination campaigns could be made more efficient by using
information on who is symptomatically infected and who recovered from a symptomatic
infection and targeting individuals accordingly. In the following, we will denote the set of
feasible vaccination strategies as A(tmin, Pmax). A formal definition of A(tuyin, Nmax) 18 given
in Appendix C.

Optimization involves deciding whether to vaccinate more individuals with a single
dose, or less individuals with a double dose. Which option is better will depend on the
values of uncertain parameters (the relative efficacy of single and double dose vaccination

in particular) and on the set of feasible policies (ny.x in particular).

2.4 Value of information

EVPI is computed as follow. Put generally, a decision-maker chooses a strategy a in a
set A of alternatives to maximize a value function V' (e.g. the number of averted cases or
averted costs over the course of the epidemic) that also depends on uncertain parameters
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Figure 2: 10,000 draws from the baseline prior distributions.

denoted £. Under uncertainty about the true value of £, an alternative ag is usually picked
that maximizes the expected value over possible realizations of £: ay = arg max E¢ [V (a,§)].
ac

If there is no uncertainty and the true value £ of ¢ is known, an alternative a* can be
picked that simply maximizes the value V given £*: a* = arg max V(a,&"). The difference
ac

V(a*, &) — Viap, &) = majcV(a,f*) — V(ap,&") is the value loss due to making a deci-
ac

sion under uncertainty. EVPI is the expected value loss over possible realizations of &:

10
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E; max V(a, &) — Viap, f)] = E; {majc V(a, f)] — max E¢ [V(a,&)]. In other words, EVPI
ac ac ac
quantifies uncertainty as the expected benefit of resolving it, and hence gives an upper
bound on the cost one should be willing to pay to reduce it.
A simple tweak allows to use an EVPI framework to balance information acquisition
against other resource uses. The two terms of EVPI can be computed separately:

1. the ex ante maximum expected value max E¢ [V(a,&)], that is the expected value of
ac

controlling the epidemic without collecting more information (i.e. before the true

value of £ is known), and

2. the expected ex post maximum value E max V{(a, 5)1 , that is the expected value of
ac

controlling the epidemic with perfect knowledge of £ (i.e. after the true value of ¢ is

known).

Using resources for other uses than collecting information may, for instance, broaden the
set A of feasible policies (in our scenario, by decreasing t;, or increasing nmay). Thus,
computing the two terms of the EVPI for different sets A of feasible policies allows to
explore the trade-off between collecting information and alternative uses of resources.

For each of the 10,000 draws of parameter values ¢ (Figure 2), we compute the reduction
in symptomatic individual-days V' (a, §) allowed by each alternative policy in A(tmin, Pmax)-
Then, we estimate the maximum ex ante expected value and the expected ex post max-
imum value of epidemic control, that is the value of resolving uncertainties given the set
A(tmin, Pmax) of feasible policies. By considering different values for ¢, and np,x, we show
the trade-off between relaxing these constraints and resolving parameter uncertainties.

Like EVPI, EVPPI assumes that under uncertainty, a policy ag is picked that maxi-
mizes the expected value over possible values of uncertain parameters. It is then assumed
that uncertainties can be resolved for subsets of uncertain parameters, typically a single
parameter. Let 6 denote this subset of parameters. If the true value 8* of 6 is known, then
policy a; = arg max Eep- [V (a, §)] is picked. The value loss due to choosing a policy without
knowing the true value of 0 is V(ay, ") — V(ag,&*). The EVPPI is the expected loss over
possible values of &: E¢ [V (ap, &) — V(ao, €)] = Ey |:I£l€aj{ Eejg [V (a, f)]] — max E¢ [V (a,§)].

EVPPI estimation is resource intensive. We estimate the expected value
E¢ [V(ap, &) — V(ao, §)] over 3,500 “true” realizations £* of £. Policy ag is picked based on

1,000 other realizations of €. Policy ay is picked based on the same 1,000 draws, but using
the true value 0" of 6 (a subset of £*). Both EVPI and EVPPI are positive by definition.

11


https://doi.org/10.1101/2022.03.28.22273039
http://creativecommons.org/licenses/by-nd/4.0/

medRXxiv preprint doi: https://doi.org/10.1101/2022.03.28.22273039; this version posted November 10, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

It is made available under a CC-BY-ND 4.0 International license .

Notice that due to stochastic effects, EVPPI estimates can be negative or their confidence

intervals include negative values, while this is not the case of EVPI estimates.

3 Results

3.1 Decision under uncertainty

Without vaccination, the expected number of symptomatic infected individual-days
over possible parameter values is 99,926 with 95 % confidence interval (CI) 99,922.6 —
99,929.4. In our scenario, given a number of available vaccine doses ny,., and a time
from which vaccination is possible (i.e. a vaccination date in our case) ty;,, deciding on a
vaccination policy consists in deciding on the number of doses to be administered as single
and double doses. Double doses vaccination is expected to be more efficient, but in some
cases vaccinating more people with a single dose might be optimal from a public health
perspective.

Figure 3 shows the (ex ante) expected reduction in symptomatic infected individual-
days as a function of the number of vaccine doses distributed as single doses, the remaining
doses being distributed as double doses, for vaccination at time ¢,,;, = 0 and ny. = 10,000
available doses. Under uncertainty, in this case, the policy ay maximizing expected value
consists in administering all available 10,000 doses as single doses. This results in an
expected 36,274.5 (95 %CI: 35,799.6 — 36,749.4) averted symptomatic infected individual-
days on average, which is the ex ante maximum expected value. The worst policy consists
in administering 4,000 single doses and the remaining 6,000 doses as double doses to 3,000
individuals, and the performance of administering 5,000 double doses (0 single doses) lies
in between.

Importantly, the actual performance of policy ag picked under uncertainty depends on
the true values of uncertain parameters. In Figure 4, each dot corresponds to one of the
10,000 parameter draws shown in Figure 2. For each draw, we compare the performances
of two policies: policy ay consisting in administering a single dose to each of the 10,000
individuals in the population (x-axis), and the policy consisting in administering 5,000
double doses (y-axis). For most parameter values (dots below the y = z line), ay does not
perform better than administering 5,000 double doses. ag is the best policy for only 48.51 %
(95 % CI: 47.53 % — 49.49 %) of parameter values. Administering 5,000 double doses is
the best policy for 50.96 % (95 % CI: 49.98 % — 51.94 %) of parameter values. Other
policies perform better than the two shown here for 0.53 % (95 % CI: 0.41 % — 0.69 %) of
parameter values.

Notice the difference between choosing ay by maximizing the expected value over pos-
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Figure 3: Ex ante expected reduction in symptomatic infected individual-days (y-axis) as a
function of the number of administered single doses (x-axis) for ¢,,;, = 0 and nya, = 10,000.
Thin lines: 95 % CI.

sible parameter values, and choosing the policy that is expected to be the best for most
parameter values. With the latter approach, information about the relative performance
of policies is lost. Still, Figure 4 shows that ay will underperform for more than half of
possible parameter values. The motivation of value of information analyses is to deter-
mine whether the additional benefit of picking the right policy knowing the true parameter

values is worth the effort of investigating these true values.

60 1 |

0 ’ T T T T T T T T T
0 10 20 30 40 50 60 70 8 90 100

Figure 4: Reduction in symptomatic infected individual-days obtained with 10,000 sin-
gle doses (x-axis, thousands) and with 5,000 double doses (y-axis, thousands) for 10,000
parameter draws. t,;, = 0 and ny., = 10,000. Grey line: y = x.
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Parameters EVPPI 95 % CI
Ry 61.5472 -159.301 — 282.397
1 1,258.23 738.339 — 1,778.12
P2 88.7898  -95.7288 — 273.308
o1 430.563 -110.913 — 972.038
09 531.927  156.578 — 907.275
P1 4.428.99 3,911.86 — 4,946.12
s 1,743.02  1,257.25 — 2,228.79

p1, 01, p1 6,713.75  6,348.49 — 7,079.01
P2, 02, 2 2,153.61 1,637.81 — 2,669.41

Table 2: EVPPI in averted symptomatic infected individual-days for subsets of uncertain
parameters in the case t,,;, = 0 and n,,, = 10,000.

We refer to Appendix D for additional comments on Figures 3 and 4.

3.2 Value of information under constraints

Let us assume that true parameter values can be known and the best policy picked
for each particular parameter values. Then, still in the case t,;, = 0 and n,., = 10,000,
the expected burden reduction over possible parameter values obtained by picking the
right policy knowing the true parameter values is 43,701.4 (95 % CI: 43,322.1 — 44,080.8)
averted symptomatic infected individual-days. This is the expected ex post maximum
value. EVPI is the difference between the expected ex post maximum value, and the
ex ante maximum expected value: 43,701.4 — 36,274.5 = 7,426.94 (95 % CI: 7,226.78 —
7,627.09) averted symptomatic infected individual-days. Recall that EVPI depends on
prior parameter distributions, as shown in Appendix E. We give results for plausible prior
distributions that correspond to a high EVPI in order to magnify the trade-offs we want
to illustrate.

Table 2 shows EVPPI for subsets of uncertain parameters. Uncertainty is overwhelm-
ingly driven by vaccine parameters, in particular the efficacy of single dose vaccination
compared to no vaccination. Resolving uncertainty about Ry, that is uncertainty about
the spread of the disease without intervention, has comparatively little value. This may
have implications in terms of how the decision problem is framed. In the present article,
we focus on trade-offs between mutually exclusive options: resolving uncertainties, and
vaccinating faster or with more doses. However, in some cases, vaccinating might allow to
collect information about the vaccine’s properties. Whether this option should be retained
depends largely on technical feasibility, and of course on political and ethical acceptability.

This scenario is left outside the scope of the paper.
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The results presented so far only concerned the case t,;, = 0 and ng., = 10,000.
Figure 5 shows the EVPI as a function of the set A(tmin, 7max) of feasible policies with
variable constraints on the time of implementation t,;, and number of available doses
Nmax. Figures bb and Hc are sectional views for ny.c = 10,000 and t,;, = 0 respectively
of the heat map in Figure 5a. The EVPI is lower for later policy implementation dates
tmin (Figure 5b, x-axis in Figure 5a). As time passes, the epidemic spreads and resolving
uncertainties has less value. The number of available vaccine doses nya.x 1s shown on the
y-axis in Figure Ha and the x-axis in Figure 5c. When there is no vaccine dose available
(Nmax = 0), no individual can get vaccinated with or without information, and the EVPI
is zero. With 20,000 available vaccine doses, each of the N = 10,000 individuals in the
population can receive two doses, so that collecting information does not bring additional
value and the EVPI is zero. The EVPI is maximal for n,,, = 10,000 available vaccine
doses. Here, 10,000 individuals can receive one dose or 5,000 individuals two doses. When
less than 10,000 doses are available, the EVPI is lower because additional information
cannot be fully taken advantage of due to a lack of doses. When more than 10,000 doses
are available, the EVPI is lower because all individuals can receive a single dose and some of
them a double dose, so the performance of policies picked based on additional information
is closer to that of policies picked without resolving uncertainties.

3.3 Relaxing constraints v. resolving uncertainties

We illustrated how the set of available policy options, that is constraints on policies,
has an influence on the expected value of resolving uncertainties. In order to show the
trade-off between resolving uncertainties and relaxing policy constraints ¢, and ny.y, we
need to compute the ex ante maximum expected value and the expected ex post maximum
value separately for different levels of constraint.

Figure 6 shows the ex ante maximum expected value and the expected ex post maxi-
mum value of control as a function of policy implementation date t,,;,, for 10,000 available
vaccine doses (see Appendix F for heat maps). For any given implementation time, more
information is better than less information (EVPI is positive or null by definition). For a
given level of information, vaccinating earlier is better than vaccinating later. This cor-
responds to the common intuition that early interventions prevent the subsequent spread
of pathogens. However, the figure also shows that vaccinating at time 0 without addi-
tional information (dashed line) allows to avert the same number of symptomatic infected
individual-days as vaccinating about 10 days later with perfect information (continuous
line). Thus, starting from time 0 under uncertainty, collecting information is a better
option than vaccinating at time 0 without additional information, as long as collecting in-
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Figure 5: EVPI in averted symptomatic infected individual-days as a function of
A(tmin7 nmax) .

formation allows to resolve uncertainties in less than 10 days. The graph can also be read
the other way round. Assume that vaccination was initially planned at time t,;, = 10,
e.g. because the 10,000 vaccine doses will only be ready at that time. In our scenario, it
is better to spend additional resources to resolve uncertainties before t.,;, = 10 and vacci-
nate at t,;, = 10 with perfect information, rather than spend them to accelerate vaccine
production and bring vaccination forward (but without additional information), that is to
relax the t,,;, constraint.

Similarly, Figure 7 shows the ex ante maximum expected value and the expected ex
post maximum value of control as a function of the number of available vaccine doses 1.,
for implementation date t.,;, = 0. For any number of available vaccine doses, more infor-
mation is better than (or equivalent to, for nya., = 0 and 1y = 20,000) less information.
For a given level of information, vaccinating with more doses is better than vaccinating

with less doses. However, starting for instance from n,,, = 10,000 available doses under
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Figure 6: Ex ante maximum expected value (dashed line) and expected ex post maximum
value (continuous line) as a function of ¢,,;, for nya, = 10,000. Thin lines: 95% CI.

uncertainty (dashed line), approximately the same number of averted symptomatic infec-
tious individual-days can be achieved by resolving uncertainties (continuous line) or by
acquiring approximately 2,000 more doses (dashed line), in other words by relaxing the
Nmax constraint. Thus, resolving uncertainties is a better option if it is less expensive than
acquiring or producing 2,000 doses of vaccine. Finally, though this is a rather far-fetched
scenario, up to 2,000 doses out of 12,000 could be sold if the benefit allowed to entirely

resolve uncertainties.
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Figure 7: Ex ante maximum expected value (dashed line) and expected ex post maximum
value (continuous line) as a function of nyay for ¢, = 0. Thin lines: 95% CIL.
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4 Conclusion

EVPI is typically used to estimate the value of resolving uncertainties regarding an
epidemic given a set of feasible control policies. In this article, we used an EVPI framework
to explore the trade-off between resolving uncertainties and relaxing policy constraints,
that is increasing the set of feasible control policies. We focused on two constraints: the
implementation date, and the number of available vaccine doses. We asked respectively “is
it better to use resources to bring vaccination forward or to resolve uncertainties?””, and “is
it better to use resources to acquire more vaccine doses or to resolve uncertainties?”. We
first reminded the rationale for value of information analyses by illustrating how decisions
made under uncertainty can underperform, then we showed how EVPI depends on policy
constraints. Finally, we compared the expected ex post value of control (after uncertainties
are resolved) with the ex ante expected value of control (before uncertainties are resolved)
for different levels of policy constraints in order to show how relaxing constraints compares
to resolving uncertainties.

Similar trade-offs have been presented in previously published studies, but most often
implicitly in the context of multi-stage epidemic control. Other studies discussed such
trade-offs explicitly, but only for a given type of policy constraint, not over the full range
of constraints, or in very special cases. We believe that the trade-offs between relaxing
policy constraints and resolving uncertainties deserved a more thorough discussion at a
more abstract level.

The main results of the paper are based on EVPI. We must emphasize that EVPI is
only one value of information metric among others. It assumes that uncertainties can be
entirely resolved, which is unlikely to be the case in real life. Thus it only provides upper
bounds on the value of collecting information. Besides, as noted by other authors [1],
the time and effort required to collect information may depend on the parameters. The
success of data collection may also be uncertain. In practice, we expect value of sample
information metrics such as the expected value of sample information (EVSI) to be of use,
since information is usually collected only partially e.g. through sampling (see for example
Cipriano and Weber [16]). We left the value of sample information outside the scope of
this article to avoid going into the technical specifics of information collection, e.g. through
lab experiments, clinical studies, or from real-life data depending on the case. Notice also
that for a given sample size, an EVSI analysis would give results qualitatively similar to
our EVPI analysis. To remain general, we did not look into the details of the cost of data
collection and of vaccination campaigns, including the fact that producing vaccine doses
may take time. These costs can be critical in practice and will depend on each specific
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case. Overlooking the cost details here does not make our results any less relevant since
we give results in terms of upper bounds of the value of information. We also assumed
that collection of information and, say, vaccination with more doses, are two mutually
exclusive uses of resources. Yet vaccinating more could actually bring information about
the vaccine’s properties [18], and our EVPPI analysis suggests that such scenarios might
indeed be worth consideration. Independently of EVPPI considerations, it is likely that
uncertainty about some parameters can only be resolved “by doing”, that is by vaccinating.
This would be the case, for instance, of the number of individuals accepting of refusing
vaccination (this parameter was not considered in the present article). Like EVSI, we left
these scenarios aside because they mostly concern uncertainty on some of the parameters
(the vaccine’s properties), and because they raise the question of how to collect information
in practice and to infer information from specific data, which is not the point of our article
(we merely look at the value of information).

Importantly, EVPI depends on modeling choices, some of which involve not only sci-
entific but also political and ethical considerations. Determining the possible values of
uncertain parameters and their likelihood is primarily a scientific or technical issue. The
choice of a policy performance metric, by contrast, is also a political and ethical question:
consider for instance the difference between maximizing the number of avoided deaths and
saving a maximum of life-years. The same applies to the chosen objective. In this, we
assumed that the objective is to maximize the expected value over uncertain parameter
values. The value of information framework can be adapted to alternative objectives such
as minimizing the probability of extreme adverse events (see the examples provided by
Shea et al. [17]).

We used a generic transmission model and a generic value of information metric to
make a very general argument. In this article, the SIR model, EVPI, and fast vaccination
of the population on a given date, should be understood as minimal working examples of
a disease transmission model, value of information metric, and vaccination intervention
respectively. The approach presented here is entirely based on numerical simulations of
markovian models and is therefore highly versatile. Implementing the appropriate com-
partmental model, using the right value of information metric, or modeling a vaccination
campaign with, say, a ramp-up phase and target age-groups is a mere problem of engineer-
ing and computing. The trade-offs illustrated in this article will still hold, although they
will most likely be trivial in some special cases, e.g. if EVPI is zero or close to zero for any
level of policy constraints.

Hitting fast and hard is commonly regarded as a sensible policy in the face of an

epidemic. Using resources to acquire information instead, it might be argued, raises issues
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of ethical and political acceptability somewhat reminding of the colloquial trolley problem.
Yet arguably any political or ethical constraint (or objective) can be included in a value
of information analysis e.g. by choosing a performance metric and setting an objective
(maximizing the expected value over uncertain parameters, minimizing the probability of
adverse outcome, etc.). Thus, waving information collection aside a priori and without
further consideration can hardly be passed off as a deliberate ethical or political stance. It
rather indicates flawed decision making.
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Appendix

A Compartmental model

Let S; and I; denote the number of susceptible and infectious individuals who received
i € {0,1,2} doses of vaccine, and R the number of recovered individuals. We assume a
closed population of N individuals.

Individuals get infected with contact rate § and they recover at rate . The basic
reproduction number is Ry = /7. Individuals who received i € {1,2} vaccine doses are
less susceptible by a factor o; and less infectious by a factor p; compared to individuals
who received 7 — 1 doses. We assume that vaccination is instantaneous and that there is no

waning of vaccine protection. The epidemic dynamics is described by Equations (1)—(7).

Do sy 1)
e )
% = — 01\S] (3)
% =0 AS1 —vh (4)
dd_i? = — 0109)\S% (5)
% =0109ASy — v15 (6)

2
= (7

=0

where

A= Bo+ pili + pip212)/N. (8)

Let p; the relative probability of symptomatic infection for infected individuals who
received i € {1,2} doses of vaccine, compared to individuals who received i — 1 doses. We
assume that all infected individuals who did not vaccinate become symptomatic. The in-
cidence rates of symptomatic cases among unvaccinated individuals is Zf = ppASy. Among
individuals who received 1 and 2 doses of vaccine, incidence rates of symptomatic cases are
I} = p1o1ASy and 75 = p1p20102ASs, and the incidence rates of asymptomatic cases are
I = (1 — p1)o1ASy and Z5° = (1 — p1pa)o102ASs.
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Parameter Distribution Valid values

Ry N(82,2) [1.1, 00]
v N(0.1,0) [0.02, o0
P N(0.9,0.1)  [0.02,1]
P2 N(0.6,0.1)  [0.02,1]
o1 N(0.9,0.1)  [0.02,1]
o N(0.6,0.1)  [0.02,1]
P N(0.9,0.1)  [0.02,1]
P N(0.6,0.1)  [0.02,1]

Table App-1: Prior distribution for parameters. N'(u, o?): normal distribution with mean
u and variance . Distributions are truncated with support shown in the last column.

B Prior distributions for parameters
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C Vaccination policies

C.1 Definition

We define a vaccination session as a tuple (¢,d,d’,n) where t is the vaccination date
of the target population, d is the number of doses received by individuals in the target
population prior to the vaccination session, d’ > d is the number of doses received by each
individual in the target population after the vaccination session, and n is the total number
of doses administered in the target population. For instance, (2,0, 2,4000) reads: at time
t =2, give d —d =2 doses to n/(d — d) = 2,000 individuals that have not received any
dose previously (d = 0) — a total of n = 4000 doses of vaccine are administered for this
session.

Notice that a target population is only defined by the number d of previously received
doses. For simplicity, individuals to be vaccinated during the session are randomly drawn
in the target population. In practice, though, vaccination campaigns could be made more
efficient by using information on who is symptomatically infected and who recovered from
a symptomatic infection and targeting individuals accordingly.

In general, a vaccination policy is made up of several consecutive or simultaneous vacci-
nation sessions. Vaccination session and policies are subject to several feasibility constraints
(e.g. there should be enough individuals in target populations). These constraints are given
formally in Appendix C.2. In this article, we consider the sets of feasible alternative policies

A(tmin, max) = {{(¢,0,1,n1),(¢,0,2,n2)} |
teN
U 2 tmin
ny € {k x 2,000 |k € N},
ny € {k x 2,000 |k € N},
n + % <N,

ny + 12 < Nax} -

where t,,;, is the earliest date at which the vaccination sessions can be implemented and
Nmax 1S the maximum number of vaccination doses administered. Trivially, vaccination is

implemented at time t,,;, in our case.

C.2 Feasibility

Let a = {(to,do, dy,no), - - - (tx—1,dk—1,dy%_1,nKx_1)} a vaccination policy made up of
K vaccination sessions. For the sake simplicity, we restrict to the case where time is
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discontinuous — i.e. Vs; = (t;,d;, d.,n;) € a,t; € N — and where individuals can received
n;) € a,(d;,d;) € {(0,1),(1,2),(0,2)}.
For the sake of simplicity and with a slight abuse of notation, we say that (¢,d,d’) ¢ a
if Vn € N, (t,d,d',n) ¢ a. We define A(t,d,d') = Z Iy—tlg—ala—gni, where T
si=(t;,ds,d}ns)€a
is the indicator function. Hence, A(t,d, d’) is the number of doses administered at time ¢

up to 2 vaccine doses — i.e. Vs; = (t;,d;, d;,

to individuals who previously received d doses and currently receive d’ — d doses.
We call N(d,t) with d € {0,1,2} and ¢ € {—1} UN, the number of individuals who

received d doses before date t. Formally, we define N recursively with:

N(0,-1) = N,

N(1,-1) = 0,

N(2,-1) = 0,
VieN, N(0,t) = N(0,t—1)— A(t,0,1) — A(t,0,2)/2,
vteN, N(1,t) = N(1,t—1)+A(t,0,1) — A, 1,2),
ViteN,  N(2,t) = N(@2,t—1)+ A(t,1,2) + A(t,1,2)/2.

We say that a is feasible if the following constraint is met: V¢ € N, N(0,¢) > 0, N (1,¢) >
0, N(2,t) > 0. Notice that by definition V¢t € N, N (0,¢) + N'(1,t) + N'(2,t) = N so that it
is unnecessary to check that each vaccination state subpopulation is inferior to N.
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D Additional comments: decision under uncertainty

The curve in Figure 3 is convex:

e For high numbers of protected individuals (e.g. 8,000 single doses and 1,000 double
doses), the burden reduction is mostly driven by the number of protected individuals,
so it is marginally better to increase that number with more single doses and less
double doses.

e For low numbers of protected individuals (e.g. 2,000 single doses and 4,000 double
doses), the burden reduction is mostly driven by the higher efficacy of double doses,
so it is marginally better to increase the number of double doses even by decreasing
the total number of protected individuals.

The distribution of dots in Figure 4 can be explained as follow. Recall that symp-
tomatically infected individuals are symptomatic during 10 days on average (v = 0.1)
and the population is N = 10,000 individuals, so at most 100,000 symptomatic infected
individual-days can be averted. The direct protection offered by vaccination (reduction of
symptom probability) dominates indirect protection (reduction of transmission). For this
reason, administering 5,000 double doses (y-axis) allows to avert at most 50,000 symp-
tomatic infected individual-days for most parameter values. The few dots lying above the
line y = 50,000 correspond to parameter values such that Ry is low enough for indirect
protection to have an impact. Most points are above the line y = 0.5x for the same reason,
that the direct vaccine protection dominates indirect effects in our scenario. Only 5,000
individuals are treated with double doses (y-axis) versus twice as many with single doses
(x-axis). Dots that are close to the line y = 0.5z correspond to parameter values such
that double dose vaccination does not significantly reduce symptom probability compared
to single dose vaccination. In this case, the burden reduction with single doses is about
twice the burden reduction with double doses simply because twice as many individuals are
protected. Most points are above the line because double dose vaccination offers additional
direct protection for most parameter values. If indirect protection played a significant role,
we would not see a frontier at y = 0.5x. Points below the line y = 0.5z correspond to
parameter values such that indirect effects are significant with one dose of vaccine. In
such cases, vaccinating half as many individuals with a marginally more efficient double
vaccine dose offers less that half the benefit of single dose vaccination of twice as many
individuals.
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Parameter Distribution of ; Distribution of ¢°

Ro U(2,10) (0, 5)
~ 24(0.02,0.5) U(0,1)
p1 4(0.02,1) U(0,1)
pa 4(0.02,1) U(0,1)
o1 2(0.02,1) U(0,1)
o3 2(0.02,1) U(0,1)
n 2(0.02,1) U(0,1)
P2 4(0.02,1) 4(0,1)

Table App-2: Distributions of prior distributions’ parameters x and o?. U(a,b): uniform
distribution on [a, 0]

E Sensitivity of EVPI to prior distributions

We compute EVPI for 2000 prior distributions of uncertain parameters (see Table App-1
for the baseline prior distributions). The 2000 prior distributions are generated by drawing
parameters 4 and o in the uniform distributions shown in Table App-2. Figure App-1
shows the 2000 EVPIs sorted by in increasing order.
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5000 + N

4000 - B

3000 + r
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Figure App-1: EVPIs for 2000 randomly generated prior distributions of random parame-
ters. Grey: 95% CI.
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F Additional figures: ex ante maximum expected value
v. expected ex post maximum value

Figure App-2 shows the ex ante maximum expected value max E¢ [V(a,€)] and the
ac

expected ex post maximum value E {maj( V(a, 5)1 as a function of A(tmin, Nmax)-
ac
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Figure App-2: Ex ante maximum expected value and expected ex post maximum value as
a function of A(fmin, "max). X-label: policy implementation date tym. y-label: npax.
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