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ABSTRACT 

Accurate discharge prediction in hydrological forecasting relies on robust modeling. This study investigates the 
Long Short-Term Memory (LSTM) model's performance, focusing on training dataset size and 
hydrometeorological patterns. Convolutional Neural Networks (CNNs) and Artificial Neural Networks (ANNs) 
are also considered for spatial and temporal dependencies. Data is drawn from the CAMELS-GB dataset (1975-
2015, Saxons Lode, UK). Results show that LSTM performance varies, with years surrounding high water events 
(like 2004) performing poorly in training, and struggles in validation. Training with one year yields 23.03% NSE 
values above 0.7, but using three consecutive years improves this to 84.42%. Typological differences also affect 
model performance. This study reveals LSTM sensitivity to training periods, aiding the optimization of training 
duration for better discharge prediction accuracy. Future research will delve into year selection within 
typological clusters. 

1. INTRODUCTION 

The evolution of Artificial Intelligence (AI) has significantly reshaped the field of rainfall-runoff 
modelling, revolutionizing conventional approaches and bolstering predictive capabilities. Over time, 
AI techniques, including machine learning and deep learning, have gained widespread application in 
rainfall-runoff modelling, facilitating the development of highly accurate and efficient models capable 
of learning intricate patterns from data. These AI models hold the potential to yield superior runoff 
predictions based on rainfall inputs, further augmented by advancements in computational power and 
the availability of extensive hydrological datasets. As a result, the integration of AI into rainfall-runoff 
modelling offers substantial promise in supporting water resource management, flood forecasting, and 
data-driven decision-making, ultimately contributing to more sustainable and effective water 
management strategies. 
  
Rainfall-runoff modelling encompasses three broad categories: physical models, conceptual models, 
and AI models. Physical models adhere to the laws of physics to simulate hydrological processes in a 
basin, necessitating detailed basin-specific information. In contrast, conceptual models provide 
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simplified representations, emphasizing key processes and employing empirical relationships, offering 
computational efficiency but potentially demanding more calibration efforts. AI models, such as 
machine learning and deep learning, are data-driven and learn directly from historical data without 
explicitly incorporating physical processes. While these AI models deliver strong predictive accuracy 
and excel at handling complex relationships, they may sacrifice interpretability and generalization to 
new conditions. 
  
  
Artificial Neural Networks (ANNs) have emerged as pivotal tools within the water sector, 
revolutionizing hydrological modelling and analysis [4,5,6]. ANNs are adept at capturing complex 
nonlinear relationships inherent in hydrological processes, resulting in improved predictions for 
rainfall-runoff modelling, flood forecasting, and water quality prediction. Their adaptability and ability 
to learn from historical data make them well-suited for real-time applications. ANNs have also played a 
crucial role in optimizing water resource management, particularly in arid regions through 
groundwater level prediction, underscoring their significance in advancing hydrological research and 
management practices. 
  
Recurrent Neural Networks (RNNs) [7], a class of neural networks designed for processing sequential 
data with temporal dependencies, offer unique advantages. Unlike feedforward networks, RNNs can 
retain information from previous inputs [8], making them ideal for tasks involving temporal 
relationships. RNNs leverage a hidden state to capture long-term dependencies, enabling them to 
model complex temporal patterns. 
 
Obtaining historical data can be challenging, prompting the consideration of training models with 
years sharing similar hydrometeorological conditions. This approach is efficient when relationships 
can be established. While some studies [1,2,3] have investigated the influence of the training dataset 
length on the LSTM model performance, this study specifically investigates the interannual variability 
in hydrometeorological conditions during training years, highlighting its significant influence on model 
performance alongside training dataset size. The study's primary objectives are to assess the impact of 
training dataset size on LSTM model performance and explore how the hydrometeorological 
conditions during training years affect the performance of the rainfall-runoff LSTM model. 
 

2. METHODS & DATABASE 

2.1  Long Short-Term Memory 

Neural Network are known to be impersistent since they only receive input from the preceding 
iteration; as a result, Recurrent Neural Networks (RNN) came to address this issue. They can connect 
previous information to the present task. However, conventional RNNs are unable to learn long-term 
dependencies and struggle with vanishing gradients over extended sequences due to the nature of 
their architecture and the way gradients are propagated during training. As a consequence, Hochreiter 
et al. [9] introduced a special structure of RNN, the Long-Short Term Memory (LSTM) which is 
designed to avoid the long-term dependency problem in sequential data (Figure 1). 

 
Figure 1 : Visualization of the standard LSTM model cells. The LSTM's memory block is referred to as A (Adapted 
from [10]). 

 
In order to conduct a comprehensive analysis of the results, it is crucial to have a good understanding 
of the model components and functioning. Figure 2 illustrates the standard architecture of a LSTM 
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memory block. Here, the specific feature that allows the information to persist in RNNs, is the presence 
of a loop also referred to as a rolled model. In fact, the rolled model can be assimilated to a chain of 
identical Feed Forward ANNs, or unrolled model, as in Figure 3. These identical ANNs are 
characterized by having the same structure, weights and activation functions. 
 

 
Figure 2 : On the left, a rolled Recurrent Neural Network. On the right, an unrolled Recurrent Neural Network 
[10]. 
 

At each time step, denoted as  , the memory block receives three types of data. Firstly, there is an input 
vector   ,  originating from the previous layer. This vector represents the new information at time  . 
Secondly, the memory block receives a hidden state vector, denoted as      and a cell state vector, 
denoted as     , from the hidden layer at the previous time step    . These vectors carry sequential 
information from the preceding time steps. 
 
The memory block utilizes three multiplicative units, known as gates, to regulate the flow of 
information within the memory blocks: the forget gate   , the input gate   , and the output gate   . Each 
gate of the block is governed by a specific equation as the information moves from left to right,  
to control the information propagation within the LSTM architecture [11]. 

 
Figure 3 : LSTM memory block (Adapted from [10]). 

 

2.1.1  The forget gate 

First introduced by Gers et al. [17], the forget gate controls how much cell state information should be 
forgotten. It looks at      and    and attributes a number between 0 and 1 for each number in the cell 
state      (1 representing a complete keep while a 0 representing a complete delete) [10]. 
                       (1) 
Where       and    represent the adjustable matrices or vectors associated with the forget gate and 

     denotes the logistic sigmoid activation function, which is defined as follows: 

     
 

   - 
   (2) 

 

2.1.2  The input gate 

The input gate decides how much new information is taken into consideration in the cell state. It 
performs two steps. Initially, a sigmoid activation function determines the specific values that will be 
updated, calculated by equation (3) This function attributes numbers between 0 and 1 to describe how 
much information of each component should be let through. 
                       (3) 
Subsequently, a tangent hyperbolic (tanh) function generates a vector, denoted as    , comprising 
potential new candidate values that could be incorporated into the state. In the subsequent stage, 
these two components are combined to produce an update for the state, as represented in equation (4) 
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                              (4) 
As a result, the cell state      is updated to    using the following equation: 
                  (5) 
 

2.1.2  The output gate 

The output gate decides what information will flow into the new hidden state    and into the next 
layer through the sigmoid layer with the tanh function, as described by equations (6-7) [11]. 
                       (6) 
                (7) 
Knowing that we are basing the predictions on the previous   days of precipitation data, the 
information goes through all three gates   times before outputting predictions. 
 
In the context of this study, the Long Short-Term Memory's architecture, is underpinned by its 
aptitude to effectively capture the intricate temporal dynamics and sequential dependencies intrinsic 
to hydrological processes, such as those encountered in rainfall-runoff modelling. 
The LSTM's inherent ability to model temporal dependencies via recurrent connections is particularly 
relevant in hydrological modelling, aligning with the influence of past rainfall on runoff [9]. Moreover, 
LSTM's adaptability to variable-length sequences suits hydrological data with irregular time intervals 
[17]. Furthermore, its prowess in capturing intricate relationships enhances its utility for nuanced 
hydrological patterns [15]. While LSTM brings substantial advantages, certain considerations arise. 
The computational complexity of training LSTM models, especially with intricate architectures and 
extensive datasets, necessitates significant computational resource [18]. While LSTM mitigates 
vanishing gradient issues of traditional RNNs, capturing exceedingly long-term dependencies could 
remain challenging [19]. 
 

2.2 The conceptual hydrological model: SUPERFLEX 

SUPERFLEX is a conceptual hydrological model [13], based on the robust numerical implementations 
of generic building pieces including reservoirs, junctions and constitutive functions. The lumped model 
[14] based on observed precipitation and run-off data, is composed of three reservoirs (Figure 4): 

 an unsaturated soil reservoir with a storage SUR representing the upper root zone, 
 a fast reservoir with storage SFR representing the fast-responding components (e.g. the 

riparian zone),  
 a slow reservoir with storage SSR representing slow-responding components (e.g. deep 

groundwater).  
 

 
Figure 4 : SUPERFLEX Scheme [14] 

 
Precipitation R infiltrates the soil   , then the UR reservoir linearly percolates into the SR reservoir 
(Eq. (8)), whereas surplus     contributes directly to the     reservoir, governed by Eq. (9). In 
addition, to provide for a delayed hydrological response of the basin, a triangle lag function is used 
ahead of the     and     reservoirs. 

       
   

    
   (8) 

                        (9) 
with 

 

  
       

   
  

    

 
    (10) 
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The potential evapotranspiration    is converted into actual evapotranspiration according to Eq. (11): 

            
   

    

 

  
    (11) 

where    is the fraction of      below which    is constrained by    . 

 
The discharges through the reservoirs     and     are calculated according to the time scales     and 
   , respectively. 

    
   

   
         

   

   
   (12) 

 
The SUPERFLEX model is characterized by 6 state variables and composed of 8 parameters, as 
described in Table 1. 
 
 
 
Table 1 : Variables and parameters of the SUPERFLEX model 

 Parametres Units Meaning 
 
 
 
State variables 

    mm UR storage reservoir 
    mm FR storage reservoir 
    mm SR storage reservoir 
    mm/h UR discharge 
    mm/h Fast discharge 
    mm/h Slow discharge 

 
 
 
Parametres 

t rise 1/h Hydrograph lag time 
    1/h FR time scale 
    1/h SR time scale 
    1/h UR outflow rate scale 
     mm Maximum UR storage 

Beta - Limit for PET 
alpha Fr - FR power coefficient 
alpha Sr - SR power coefficient 

 
The modelling using the SUPERFLEX model presents distinctive advantages and challenges within the 
realm of hydrological modelling. One prominent advantage lies in its grounding in hydrological 
concepts, affording the explicit integration of domain expertise and hydrological processes. This 
characteristic enhances model interpretability, facilitating insights into the underlying mechanisms 
governing hydrological behavior. Fenicia et al. [15] emphasize the potency of conceptual models like 
SUPERFLEX in elucidating catchment response. However, this advantage is coupled with the potential 
demand for meticulous parameter calibration, a task that can prove labor-intensive and intricate due 
to the non-linear interactions inherent in hydrological systems. Furthermore, the SUPERFLEX model 
might encounter difficulties in capturing complex nonlinear relationships existing within observed 
data, potentially resulting in diminished predictive accuracy in scenarios where such relationships are 
pivotal. Moreover, Wagener et al. [16] expound on the challenges tied to model complexity and the 
associated parameter estimation. In summation, while the SUPERFLEX model offers a physically-
informed framework and heightened interpretability, its efficacy is contingent upon robust 
parameterization and the accommodation of intricate hydrological interactions. 
 
Through a comparative approach, the study's results involve a direct comparison between LSTM and 
the SUPERFLEX model. Where LSTM leverages data-driven learning, SUPERFLEX represents a 
conceptual model founded on domain-specific knowledge. The interpretability of SUPERFLEX enables 
insights into underlying hydrological processes [20]. However, its success relies on accurate 
parameterization and capturing complex nonlinear relationships within data [21]. In the Severn River 
study, the comparative evaluation of LSTM's data-driven approach against SUPERFLEX's physically-
informed methodology will provide valuable insights into their respective capabilities and limitations, 
contributing to advancing hydrological modelling practices. 
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2.4 Evaluation metrics 

In order to evaluate the efficiency and the robustness of both the LSTM and SUPERFLEX models, 
different efficiency criteria are available to quantify the adequacy between simulations and 
observations, such as the Nash–Sutcliffe efficiency [22]. 
 
Nash–Sutcliffe efficiency (NSE) 
The NSE is the most used metric in hydrology for its ability to normalize the model's performance[29] 
sing the equation (13). 

      
      

      
  

  
   

      
       

  
   

     (13) 

where   is the total number of time steps,     
  the simulated discharge at time  ,     

  the observed 

discharge at time  , and      the mean observed discharge. We differentiate between three values: 
 NSE=1 indicates a perfect match between model simulations and observed data 
 NSE=0 suggests that the model's predictive power is equivalent to the mean of the observed 

data 
 NSE < 0 indicates that the model performs less than the mean of the observed data 

 
A significant drawback of the Nash-Sutcliffe efficiency metric is its reliance on squared differences 
between observed and predicted values. This calculation method leads to an overweighting of larger 
values in a time series, while lower values tend to be overlooked or downplayed. 
 
In this study, the data from Saxons Lode gauging station is used to characterize the Severn riven 
upstream of its confluence with the Avon river. 

2.5 Study area: River Severn at Saxons Lode gauge 

The Severn River, running from its origin in the Welsh highlands of Plynlimon to the Bristol Channel, 
holds the distinction of being the longest river in England, with a total length of approximately 354 km. 
While urban centers like Worcester, Tewkesbury and Evesham are scattered along its course, the 
majority of the catchment area, which spans approximately 11,000 km², is rural in nature, making it 
the largest river basin in England. Figure 5 displays the catchment boundaries and river network, 
along with the position of the accessible gauging station of Saxons Lode at the Severn River. Moreover, 
the Severn basin is a vital source of water for drinking, irrigation and industry; it also supports a range 
of wildlife, including fish, birds and mammals[25].  
 

 
Figure 5 : Map of the Severn river: catchment boundaries and location of the Saxons Lode gauging station 
 

The focus of the study lies in the region near the Saxons Lode gauging station, upstream of the 
confluence between the Severn and Avon rivers. This area, has been prone to recurrent flooding due to 
intense rainfall, with significant floods recorded in 1947, 2000, 2007 and 2012 among others [26]. 
 

2.6 CAMELS-GB database 



SimHydro 2023: New modelling paradigms for water issues? 
8-10 November 2023, Chatou - Nadia Skifa & al. - Impact of training dataset size and its hydrometeorological typology on .. 

In Great Britain, open-source datasets including quality-controlled river flow data are readily available 
through the UK National River Flow Archive (NRFA) [23], there has been a lack of integration and 
standardized processing of these datasets across a consistent set of catchments. This has prevented 
the creation of a centralized resource that can be easily accessed by the public. 
Furthermore, these datasets are subject to constant changes, making it difficult to conduct consistent 
and repeatable analyses. Additionally, their range of variables and catchment attributes is more 
limited compared to larger-sample datasets like CAMELS (Catchment characteristics and MEteorology 
for Large-Sample Studies) [24]. 
 
To address this data gap, the CAMELS-GB dataset was developed. It combines hydrometeorological 
time series and catchment characteristics for 671 catchments throughout Great Britain. It is a high-
quality, large-sample, watershed-scale hydrometeorological dataset that provides data for over a wide 
range of climatic, hydrological, landscape and human management characteristics between 1970 and 
2015. 
 
Daily time series of hydro-meteorological data including rainfall, potential evapotranspiration, 
humidity and river flow. Additionally, other attributes such as topography, land cover, soils and human 
management are quantified. This publicly available and easily accessible dataset also provides 
estimates of discharge uncertainty. 
 
CAMELS started as a project to offer hydro-meteorological time series for the continuous United States 
as well as catchment characteristics comprising climatic indices, hydrologic signatures, land cover, soil 
and geology. Since then, the dataset has served as a valuable resource for researchers and 
practitioners in hydrology and related fields. Its large sample size and wide range of attributes make it 
a useful tool for analyzing and modelling water resources in Great Britain. The dataset's estimates of 
discharge uncertainty also provide a valuable resource for assessing the reliability and reusability of 
hydrological models and predictions. Overall, the CAMELS-GB dataset is a comprehensive and 
accessible resource for studying and managing water resources in Great Britain.  
 

3. MODEL SET-UP AND IMPLEMENTATION 

3.1 General methodology 

In order to investigate the influence of the learning data size on the performance of the prediction 
accuracy, multiple experiments were carried out with various data sizes for training. 
Two different rainfall-runoff models, an AI model (LSTM) and a conceptual model (SUPERFLEX),  were 
compared and put to the test for predicting discharge time series. While the implementations of each 
method differ, they both use historical data to build models that can predict the discharge with a 
sufficient level of accuracy. We study the Impact of the training data size on the performance of the 
LSTM Vs. SUPERFLEX. In an attempt to study how data length affects model efficiency, the learning 
phase is conducted using six variants. The first 39 years of datasets are used to produce the six 
versions that were analysed in the training process, and the last 10 years of the dataset serve for 
validation. The training periods are taken successively from 1976 in bands of 1, 3, 6, 9, 12 and 15 
years. 
 
To avoid the problem of overfitting that may occur when trying to maximize the performance of the 
model, instead of implementing a training/test split, a training/validation/test split is used. The 
objective of this method, also known as the holdout method, is to compute the network's error 
estimation after each iteration of validation data that hasn't been seen, and to halt training when the 
validation data's error rate starts to rise. 
 
The training dataset is considered to start from 1976 due to the presence of missing precipitation 
values in the dataset from 1971-1975. 
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3.2 Data pre-analysis 

One key aspect before starting rainfall-runoff modelling, is to first analyze the input data (precipitation 
and discharge). Possible precipitation trends and metadata can help set logical interpretations of the 
model results when simulating discharge. 
Daily  precipitation  and  discharge  data  of  45  years (1971-2015) were extracted from the CAMELS-
GB database for the Saxons Lode station at the Severn River (see section 2.5). 
 
To statistically assist the monotonic trends in the precipitation time series, the Mann-Kendall test [27] 
is performed. It's a non-parametric test, which means that the data doesn't have to follow a normal 
distribution. 
The test is based on two hypotheses [27]: 
- The null hypothesis    asserts that the time series is independently distributed.  
- The alternative hypothesis    states that there is a monotonic trend for the provided time series. 
 
The Mann-Kendall test yields a p-value of 0.1923, along with a test statistic of 1.304 and a Kendall's 
Tau value of 0.007. 
Overall, based on the obtained results in table 2, there is no significant trend observed in the 
precipitation data. The p-value is relatively high, indicating that the observed trend is likely due to 
random variation rather than a systematic pattern. 

3.3 Model Set-up 

To set up the models, the chosen programming language for the study is Python 3.10. In addition, 
common libraries were used such as Numpy for working with numerical data, Pandas for data analysis 
tasks, and Scikit-Learn for data postprocessing. Additionally, Matplotlib and Seaborn were used to 
represent the results in graphics. Finally, due to the high computation of the models, a high 
performance computing (HPC) system, Grid5000 was used to run the code. This large-scale and 
flexible testbed allows expensive computational experiments to be ran in a parallel or distributed 
computing including Cloud, HPC,  Big Data and AI. 
 

3.3.1  LSTM 

NeuralHydrology: Experimental design 
In this section, the LSTM model set up is introduced, in more details, following the structure that was 
adopted in the NeuralHydrology library [28]. 
With a strong emphasis on hydrological applications, NeuralHydrology is an open source Python 
library built on PyTorch that is dedicated to the development, use, and experiment with Deep Learning 
models. Pre-built models and data loaders enable quick experiments, but the framework is also easily 
extensible to new models, data sets, loss functions, or metrics to suit more sophisticated use-cases. The 
library was generalised and made available to anyone.  
The library was created for newcomers with minimal programming expertise in mind, which made its 
use practical and swift. For instance, NeuralHydrology enables the training of cutting-edge rainfall-
runoff models by only modifying a configuration file and without the use of any code. 
In the given study, the memory consists of seven types of dynamic data, namely precipitation, potential 
evapotranspiration, temperature, humidity, shortwave radiation, longwave radiation and wind speed. 
The output gate comprises the predicted volume discharge and specific discharge. 
 
Hyperparameters 
In addition to the adjustable matrices mentioned in section 2.1, there are various hyperparameters 
that need to be determined to define the structure and training characteristics of the LSTM model. 
These hyperparameters play a crucial role in shaping the LSTM's behavior. For instance, the number of 
hidden layers and the number of neurons within each hidden layer determine the overall structure of 
the LSTM. In this particular study, the LSTM architecture consisted of two hidden layers. The model 
was fine tuned via a trial and error approach using different values of hidden layer size, namely 2, 4, 8, 
16, 32, 64 and 128, along with different sequence lengths of 30, 90, 180, 270 and 360. 
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Table 2 : Configuration of the LSTM model used in this study 
Hyperparameter Meaning Value 
Layers The layer that seperates the 

input and output, in which the 
function gives the inputs 
weights and sends them 
through an activation function 
as the output. 

2 

Activation function An activation function 
determines whether a node's 
output is ON or OFF. By adding 
non-linearity to models, these 
functions enable the model to 
learn non-linear prediction 
bounds. 

Relu 

Optimiser It adjusts the learning rate 
during training by reducing the 
learning rate according to a 
pre-defined schedule, here the 
"Adaptive learning rate" is 
used. 

Adam 

Hidden cells size The number of neurons per 
hidden layer, this along with 
the number of layers decides 
whether the model is more 
likely to under/over-fit the 
data. 

64 

Epochs This determines the number of 
full dataset iterations to be 
conducted; it should be 
increased until the validation 
accuracy starts to drop while 
the training accuracy rises. 

50 

Dropout A layer that reduces the 
sensitivity to particular weights 
of the individual neurons and 
prevents overfitting in training 
by avoiding randomly chosen 
neurons. 

0.4 

Exprimental runs A number of runs that insure 
that the model's variance is 
taken into consideration. 

30 

Batch size It defines the number of 
samples to work on before the 
internal parameters of the 
model are updated. 

300 

Loss function A function that analyses how 
effectively the neural network 
represents the training data by 
comparing the target and 
predicted output values. 

MSE 

 
Implementation 
In this study, in order to evaluate the model performance for each training and validation year, the 
required parameters are contained in a YAML configuration file called "basin.yml", which defines the 
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training and validation periods. The year values in the "basin.yml" file are automatically changed for 
each training year in the dataset, and the model is trained 30 times to account for stochastic variance. 
The model's performance is assessed using the evaluation run during training, and NSE values are 
shown for each run to track convergence. 
 
For each iteration of the validation process, 30 sets of simulated discharge values are produced, 
encompassing the whole validation period. A histogram is created utilising the NSE values obtained 
from each simulation in order to integrate the results of the 30 runs. The "highest point" on the 
histogram, which denotes the maximum or peak frequency of NSE values, is use for further analyses. 
This peak acts as representative measure of the total outcome. 
The observed and simulated discharges are shown throughout the whole time period for each 
validation year to show the model's performance.  
 
Each training and validation year's NSE values are recorded in a CSV file and then postprocessed to get 
a heatmap and other statistics. This NSE matrix enables a thorough analysis of modelperformance 
throughout several training and validation years. The final outcomes show how reliable the model is 
and how well it can reproduce the temporal dynamics of the discharge time series. 
 

3.3.2  SUPERFLEX 

The SUPERFLEX model structure is built in the FLEX framework [14] utilising generic parts meant to 
simulate its numerical functions, as enumurated below: 
1. Reservoir element: represents the storage and release of water. 
2. Lag function element: reflects the transmission and delay of fluxes. 
3. Junction element: depicts the splitting, merging and/or rescaling of fluxes. 
 
The main pillars of several extant conceptual models are these elements. These components may be 
organised into various flow configurations in SUPERFLEX, where they are generalised to reflect 
various conceptual assumptions of catchment function. 
The hydrological model's inputs were obtained from the CAMELS-GB dataset as for the LSTM model 
(e.g., rainfall and 2 m air temperature and potential evapotranspiration data). The model was 
calibrated using data spanning from 1976 to 2004. The calibrated model's performance was then 
validated for the period from 2005 to 2014. 
All 8 parameters of the SUPERFLEX model are calibrated using a Monte Carlo approach. For each 
parameter, it defines behavioural intervals and iteratively generates parameter sets within these 
intervals. To achieve this, each parameter's random value is generated by our Python code at 
predetermined intervals and used in the SUPERFLEX model to simulate the discharge time series. The 
corresponding observation at the gauging stations on the same day is compared with simulated value 
and the NSE is therefore computed. In order to choose the ideal parameter set, 10.000 simulations are 
performed. The parameter set yielding the best NSE values is selected as optimal. 

4. RESULTS & DISCUSSION 

In this section, the outcomes of our experiments are presented, focusing on the effects of varying 
training data size and the influence of hydrometeorological typology on the performance of the LSTM 
and SUPERFLEX models. 
To elucidate this, the size of training data was systematically adjusted while maintaining constant 
values for other parameters. The models was trained over various training duration, specifically 1, 3, 
6, 9, 12 and 15 years, within the training period from 1976 to 2004. Then,         l’s performance 
was evaluated for each individual year within the validation period, between 2005 and 2014. 
The outcomes reveal a notable trend in how these models react to alterations in the training dataset's 
magnitude. 
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The variation of runoff (observed and simulated) in the Severn River for the  year 2010 is provided in 
Figure 8 in order to illustrate the impact of the learning data size on the hydrograph components of 
both the LSTM and the SUPERFLEX models. The year 2010, represents the validation year with the 
lowest performance of the SUPERFLEX model. The training periods represented in the figure are the 
first periods of each training case (for instance for 3 years the period is 1976-1978, and for 6 years the 
period is 1976-1981...). 
 
The learning data size is generally increased to provide more stability. However, when increasing the 
data size to 15 years, both models fail to capture almost all the peaks. 
When comparing the two models, it becomes evident that the LSTM model outperforms SUPERFLEX in 
recreating      (observed discharge) when increasing the training data size. Specifically, for the 12 
and 15 years training data durations, the LSTM model consistently exhibits superior predictive 
capabilities in replicating      values. This behavior can be attributed to the model's inherent capacity 
to exploit larger datasets for learning intricate dependencies within the temporal data. These 
observations are consistent with the existing literature, it is conventionally anticipated that the 
performance of the LSTM model will either reach a plateau after a certain threshold of training data or 
exhibit an enhancement as the training dataset size is increased. 
 
In contrast, SUPERFLEX demonstrates a more consistent behavior across the various training data 
sizes, as evidenced by its similar performance for the year 2010 across the range of training data sizes 
examined.  
This highlights a key distinction in the models' responses to training data sizes: while LSTM benefits 
from an increased training data history, SUPERFLEX maintains a relatively stable performance 
regardless of the data volume. 
 

 
Figure 6 : Hydrograph of observed and predicted discharge of the year 2010 for different training data size 
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In Figure 11 and 12, The x-axis represents the training years and the y-axis contains the validation 
years. The color grading indicates the NSE range: the greener the matrix cells, the higher the NSE 
value.  
 

 
Figure 7 : 1-year training NSE heatmap for the SUPERFLEX model 

 

 
Figure 8 : 1-year training NSE heatmap for the LSTM model 
 

The LSTM model suggests significant fluctuations compare to SUPERFLEX model for 1 training year, 
this could be explained by its sensitivity to data availability. 
 
In Figure 9, a visual representation of the results of the learning processes for the LSTM and 
SUPERFLEX approaches is shown (the y-axis values are different for each subplot for better 
representation of the boxes). The data duration used to train both models  ranged from 1 to 15 years. 
In terms of NSE statistics, there is a significant difference between the two models under investigation. 
Analyzing the box plots, indicates that there are two aspects that need to be addressed: the whiskers of 
the boxes and the presence of outliers. On the one hand, when training the LSTM model for 3 and 6 
years,  there is a high variability in the NSE values, which may indicate an inconsistent performance of 
the model. On the other hand, increasing the training size to 12 and 15 years, shortens the whiskers 
and improves the values of the median NSE. Conversely, the SUPERFLEX model reveals many outliers, 
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in all test cases, this suggests that its performance varies across the different validation years. 
Accordingly, the model reveals a unique behaviour when validated against the year 2010, here 
represented by the outliers. This can be explained by the low number of simulations (10000 
simulations) compared to the number of parameters to calibrate (8 parameters). 
The 1, 3, and 6 years of training data are the tests where the SUPERFLEX model outperforms the LSTM 
model. Numerous presumptions might account for such scenarios, with small amount of data being the 
main reason for this modelling case. However, the most rationale reason behind SUPERFLEX's 
superiority over LSTM in scenarios with limited data (such as 1 year) is attributed to the significantly 
higher parameter count within LSTM compared to SUPERFLEX. Notably, SUPERFLEX possesses a 
substantially reduced parameter set, allowing for effective parameter determination even with modest 
data availability. Once established, this parameter configuration reaches a state of relative optimality, 
leading to a stagnation in performance enhancement as observed in SUPERFLEX. This characteristic 
elucidates why incremental increases in the training period do not notably enhance SUPERFLEX's 
performance. In contrast, the LSTM model, with its larger parameter space, necessitates a more 
substantial volume of data to identify its optimal configuration. In essence, this phenomenon is 
predominantly an issue of aligning the model's degrees of freedom (parameters) with the constraints 
imposed by the training data, rather than merely a matter of encountering local minima. 
In the 15 years training data size the NSE values stagnate in both models with a slight difference 
compared to the 12 years training data size matrix. This could imply that the models reach a stage of 
saturation, where additional training data doesn't significantly improve their predictive performance. 
Further investigation needs to be conducted to confirm weither the models will reach a plateau of NSE 
values, and that an increase in the training years will have low to no impact on the performance. 
 

 
Figure 9 : Box plot of NSE for LSTM and SUPERFLEX prediction for the each test period. 
 

For additional insights through the performances of both models, Figure 10 provides more indepth 
comparison between the median, min-max and number of outliers of the LSTM and SUPERFLEX 
models. The LSTM exceeds the SUPERFLEX model and is resilient to all data learning sizes. As training 
dataset length increases from 1 to 6 years, the median NSE for the LSTM model quickly rises. Later, the 
growth rate slows as the median NSE gets closer to a value of one. However, SUPERFLEX's median 
slightly decreases once it surpasses 6 years of training data. 
The first LSTM's NSE statistics (medians, min-max and number of outliers) are slightly higher in the 
span of 9 to 15 years than those of the second model. For instance, the LSTM's medians vary from 0.86 
to 0.92, whereas the SUPERFLEX's medians are in the range [0.86-0.88].  
Plotting the difference between the maximum and minimum NSE values for each training year in 
relation to the total number of training years is shown in Figure 10. For a particular number of training 
years, this difference measures the consistency of NSE across distinct validation years and training 
years. Throughout the validation years, we can observe a gradual improvement in the consistency of 
both models' performance. The difference in NSE between the poorest and best validation years is 
about 0.2 after 15 years of training. A median NSE of 0.91 is attained by the LSTM model after 15 years 
of training, surpassing SUPERFLEX by the time the number of training years reaches 6 years. Figure 10 
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shows the number of outliers in respect to the training years. Although the number of outliers for the 
SUPERFLEX model is larger after 1 year of training, this count rapidly drops after 6 years and finally 
drops to zero after 15 years, suggesting better consistency in the model's performance over time. This 
observation reveals that the decreasing frequency of outliers, which indicates improved consistency in 
the model's performance over time, is an indication of how the SUPERFLEX model benefits from 
extensive training. 

 
 
Figure 10 : NSE metrics in respect to the training data size. On the left figure the median of NSEs, in the middle 
figure max-min NSE values and on the right figure number of outliers of NSEs, with respect to the training data 
size. 
 

 

5. CONCLUSION AND FUTURE WORK 

In conclusion, this research provides significant insights into the performance dynamics of the LSTM 
model in the context of rainfall-runoff modelling. The study demonstrates a clear relationship between 
training data size and model performance, highlighting the positive impact of larger training datasets 
on LSTM's predictive capability. Notably, the performance improvement saturates beyond a certain 
training data size, suggesting the existence of a plateau beyond which additional data may yield 
marginal benefits, which calls for further investigation. 
 
Building upon the findings of this research, several avenues for future investigations emerge. Future 
research could delve deeper into the intricate relationships between model performance, training data 
characteristics, and hydrometeorological typology, ultimately refining the predictive capabilities in the 
domain of hydrological modelling. Further analysis could offer a more explicit relationship between 
the hydromeorological typology of the years and the LSTM model. Additional tests should be 
conducted, such as selecting a different validation period, other training years combinations of the 
same cluster, and choosing a different dataset other than CAMELS. 
 
Additionally, extending the study to encompass a broader range of climatic and hydrological contexts 
might enhance the generalizability of the conclusions. Incorporating advanced techniques, such as 
attention mechanisms or ensemble methods, could refine predictive accuracy even further. Moreover, 
investigating the scalability and transferability of the identified trends to different geographical 
regions or watersheds could provide a broader perspective on the models' adaptability. Ultimately, 
this research lays the groundwork for a dynamic array of future endeavors aimed at refining 
hydrological modelling techniques and unraveling the intricate interplay between model architecture, 
training data, and environmental factors. 
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