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Abstract

Numerous satellite-based precipitation datasets have been successively made

available. Their precipitation estimates rely on clouds properties derived from

microwave and thermal sensors in a so-named ‘top-down’ approach. Recently,
a ‘bottom-up’ approach to infer precipitation from soil moisture (SM) estimates

has resulted in the release of two new precipitation datasets (P-datasets). One

uses satellite-based SM estimates from the European Spatial Agency (ESA) Cli-

mate Change Initiative (CCI) (SM2RAIN-CCI) while the other uses satellite-

based SM from European Organization for the Exploitation of Meteorological

Satellites (EUMETSAT) Advanced SCATterometer (ASCAT) (SM2RAIN-

ASCAT). This study assesses SM2RAIN-ASCAT and -CCI reliability over two

arid regions: Bolivian and Peruvian Altiplano and Pakistan (South Asia) using

(a) direct comparisons with rain gauges and (b) testing the sensitivity of

streamflow modelling to the P-datasets. Selecting two different regions and dif-

ferent indicators helps to assess whether the P-dataset reliability varies

depending on the assessment method and location. For comparison purposes,

the most reliable P-datasets from the literature are also considered (IMERG-E

v.6, IMERG-L v.6, IMERG-F v.6, CHIRPS v.2 and MSWEP v.2.2). Compared to

rain gauge observations and based on the modified Kling–Gupta Efficiency

(KGE) values, the SM2RAIN-ASCAT and -CCI are more accurate in the Alti-

plano than in Pakistan. This difference is explained by a more favourable phys-

ical context for satellite-based SM estimates in the Altiplano. Over the

Altiplano and despite an overall positive bias, SM2RAIN-ASCAT describes rain

gauges temporal dynamics as well as IMERG-F v.6, CHIRPS v.2 and MSWEP

v.2.2 and provides streamflow simulations very close to those obtained when

using IMERG-F v.6, CHIRPS v.2 and MSWEP v.2.2 as forcing data.
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1 | INTRODUCTION

1.1 | Precipitation monitoring challenge
across remote regions

Precipitation is a key component of the water cycle,
which is under unprecedented pressures due to the com-
bined effects of population growth and climate change.
Precipitation estimates are therefore essential to adapt
and for anticipating ongoing changes. However, precipi-
tation is generally collected from sparse and unevenly
distributed gauge networks, which are subject to large
uncertainties, especially in remote regions. Additionally,
most of the rain gauge data are still collected manually,
so the collection and digitization of these data are subject
to human error and are a source of delay in data avail-
ability. Data collection in trans-boundary basins is an
even more complex task due to potential conflicts related
to water use. In these difficult circumstances, satellite-
based precipitation products (SPPs), with a near-global
spatial coverage and free online availability, are a poten-
tially very effective alternative.

1.2 | Opportunities and limitations of
available SPPs

Several SPPs have been made available in recent decades
to provide precipitation estimates on regular grids and
over a continuous time scale. The first generation of SPPs
emerged in 1997 when the Tropical Rainfall Measuring
Mission (TRMM) was jointly launched by the National
Aeronautics and Space Administration (NASA) and the
Japan Aerospace Exploration Agency (JAXA). Over the
past 18 years, the TRMM Multisatellite Precipitation
Analysis (TMPA) (Huffman et al., 2007), the Climate Pre-
diction Centre MORPHing (CMORPH) (Joyce et
al., 2004), the Precipitation Estimation from Remotely
Sensed Information using Artificial Neural Networks
(PERSIANN) (Sorooshian et al., 2000) and the Global Sat-
ellite Mapping Precipitation (GSMaP) Kubota et al., 2007
SPPs have been developed on the basis of the TRMM mis-
sion. In 2014, the Global Precipitation Measurement
(GPM) mission was launched to ensure the continuity of
the TRMM mission. The launch of the GPM mission gave
rise to the second generation of SPPs, which includes the
Integrated Multi-SatellitE Retrievals for GPM (IMERG)
(Huffman et al., 2019b) and a new version of GSMaP
(Yamamoto and Shige, 2014).

At the same time, some works have explored previous
SPPs and missions to improve precipitation estimates and
widen time windows: the generation of long-term SPP.
This is the case of the PERSIANN-Climate Data Record

(PERSIANN-CDR) (Ashouri et al., 2015), the Multi-
Source Weighted-Ensemble Precipitation (MSWEP)
(Beck et al., 2018) and the Climate Hazards Group Infra-
Red Precipitation with Station data (CHIRPS) (Funk et
al., 2015).

The first, second and long-term SPPs have shortcom-
ings because precipitation estimates are inferred from
cloud properties retrieved from Passive Micro Waves
(PMWs) and/or Infra-Red (IR) observations using a so-
called ‘top-down’ approach. The PMWs-based precipita-
tion estimates are difficult in areas where significant land
cover variability leads to changes in emissivity and/or
temperature, which can produce background signals
quite similar to those generated by precipitation (see for
example, Ferraro et al., 1998; Levizzani et al., 2002; Tian
and Peters-Lidard, 2007). For instance, frozen areas
appear similar to upper ice precipitation in the scattering
signal resulting in an overestimate of precipitation (e.g.,
Mourre et al., 2016). Additionally, PMWs sensors are on
board Low Earth Orbital (LEO) satellites with irregular
sampling and limited passage that prevent the correct
capture of short-term and slight precipitation events
(Tian et al., 2009; Gebregiorgis and Hossain, 2013). This
feature introduces errors in precipitation estimates over
arid regions and/or during the dry season (e.g., Shen et
al., 2010; Prakash et al., 2014; Satgé et al., 2016). IR sen-
sors have difficulties detecting precipitation events based
on warm cloud because the temperature threshold used
to separate rainy clouds from others may be too low (e.g.,
Dinku et al., 2007, 2010; Hirpa et al., 2010; Gebregiorgis
and Hossain, 2013). This characteristic introduces errors
in precipitation estimates over mountainous regions
(Hussain et al., 2017; Satgé et al., 2017a). In this context,
the reliability of the SPPs based on the ‘top-down’
approach is expected to vary spatially depending on the
occurrence of the aforementioned factors (i.e., emissivity/
temperature contrast, arid context, mountains).

1.3 | Novel approach for precipitation
estimates based on soil moisture
measurements

Recently, the Soil Moisture (SM) to Rain (SM2RAIN)
algorithm (Brocca et al., 2013) was developed to deduce
precipitation estimates from SM measurements in a so-
called ‘bottom-up’ approach. The SM2RAIN algorithm
has been successfully applied to retrieve precipitation
estimates from (a) in situ SM measurements (Brocca et
al., 2013, 2015) and (b) satellite-based SM estimates as
the Soil Moisture Ocean Salinity Mission (SMOS) (Brocca
et al., 2014, 2016; Tarpanelli et al., 2017), the Advanced
Microwave Scanning Radiometer (AMSR) (Brocca et
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al., 2014; Tarpanelli et al., 2017), the Soil Moisture Active
and Passive (SMAP) (Koster et al., 2016; Tarpanelli et
al., 2017), the Advanced SCATterometer (ASCAT)
(Brocca et al., 2014; Ciabatta et al., 2015, 2017; Massari et
al., 2017; Tarpanelli et al., 2017).

The use of satellite-based SM estimates is of particular
interest to overcome the limitations of the ‘top-down’
approach used for the estimation of the clouds´ properties.
Furthermore, as a signature of accumulated precipitation
up to the time of satellite observation, the use of SM mea-
surements can mitigate the snapshot of the sensors
onboard LEO satellites (Ciabatta et al., 2018; Brocca et
al., 2019). In this context, the SM2RAIN algorithm was
used to release two precipitation datasets (P-datasets). The
first uses SM estimates from the European Spatial Agency
(ESA) Climate Change Initiative (CCI) dataset (Ciabatta et
al., 2018) (hereafter SM2RAIN-CCI) and the second uses
SM estimates from the European Organization for the
Exploitation of Meteorological Satellites (EUMETSAT)
Advanced SCATterometer (ASCAT) dataset (Brocca et
al., 2019) (here after SM2RAIN-ASCAT).

Despite the interest of the product developers (Brocca
et al., 2019), the SM2RAIN P-datasets reliability has only
been systematically reported in India (Prakash, 2019),
Brazil (Paredes-Trejo et al., 2019; Souto et al., 2019), Paki-
stan (Rahman et al., 2019), West Africa (Satgé et
al., 2020), Austria (Sharifi et al., 2019) and China (Zhang
et al., 2019). These studies used precipitation gauge obser-
vations as a reference to assess the potential benefits of
the SM2RAIN P-datasets (‘bottom-up’ approach) com-
pared to well-established state-of-the art SPPs. These
studies concluded that the relative performances of the
SM2RAIN P-datasets vary from region to region.

For instance, some studies show that previously
released SPPs are more reliable than SM2RAIN P-
datasets over specific regions. SM2RAIN-CCI monthly
estimates have a significant bias over India
(Prakash, 2019) and West Africa (Satgé et al., 2020) and
in these studies CHIRPS v.2 and MSWEP v.2.2 were more
reliable. Over Austria, MSWEP v.2.2 shows stronger
agreement with gauge observations than SM2RAIN-
ASCAT at daily and monthly time steps (Sharifi et
al., 2019). TMPA v.7 provides more reliable daily precipi-
tation estimates than SM2RAIN-ASCAT and -CCI in
Pakistan (Rahman et al., 2019). On the contrary, other
studies show that SM2RAIN P-datasets are more reliable
than the previously released SPPs. For example, both
SM2RAIN-ASCAT and -CCI have performed as well as or
better than TMPA v.7 over different Brazilian regions
(Paredes-Trejo et al., 2019). Similarly, SM2RAIN-ASCAT
daily precipitation estimates are more reliable than
IMERG daily precipitation estimates in the southern
hemisphere (Brocca et al., 2019) and so are monthly

precipitation estimates over China (Zhang et al., 2019). It
is worth mentioning that the divergent results reported
in the above-mentioned studies may be due to the differ-
ent methodological approaches adopted such as the pre-
processing P-dataset, the statistical metrics and the time
periods considered.

1.4 | Objectives

In accordance with the previously established state of the
art, this study evaluates the reliability of SM2RAIN-
ASCAT and -CCI over two arid regions, (a) the South
American Andean Plateau (hereafter called Altiplano)
and (b) Pakistan. Our objective is to assess the reliability
of SM2RAIN P-datasets in space without any potential
influence of the methodological steps used. The assess-
ment of reliability comprises two indicators: (a) gauge
observations and (b) streamflow simulation using sensi-
tivity analysis of a lumped hydrological model in differ-
ent basins. The purpose of using different indicators was
to assess their influence on the P-dataset reliability.

IMERG (-Early, -Late and -Final), MSWEP v.2.2 and
CHIRPS v.2 P-datasets for a common period of data avail-
ability were used to assess the potential improvement of
SM2RAIN P-datasets over the most efficient and cur-
rently available SPPs over the considered regions (Satgé
et al., 2017b; Satgé et al., 2019a; Satgé et al., 2019b). It is
also an opportunity to assess the potential benefits of the
‘bottom-up’ (SM2RAIN-CCI and -ASCAT) compared to
the ‘top-down’ approach using gauge-based (CHIRPS,
MSWEP and IMERG-Final) or satellite-only (IMERG-
Early and -Late) products.

2 | MATERIALS AND METHODS

2.1 | Study area

Two arid regions are considered in this study. The first
one, the Altiplano, is located southward of the equator
and covers an area of about 192,390 km2. The Altiplano
is an endorheic system situated at 4000 m.a.s.l. elevation.
It is bordered to the east and west by the Oriental and
Occidental Cordilleras,respectively (Satgé et al., 2015).
Estimated spatial mean precipitation is 405 mm year−1

with a strong north-south gradient (Satgé et al., 2019b)
and a wet season from October to March (Figure 1d). In
terms of land cover, the region is sparsely vegetated with
large cultivated areas in the north. The northern and cen-
tral parts host two important lakes (Lake Titicaca and
Poopó) and two big salt pans are located in the southern
part of the Altiplano (Uyuni and Coipasa).
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The second region studied is Pakistan, a country
north of the equator with an area of 803,940 km2. It is
divided into four climatic zones from north to south
(glacial, humid, arid and extremely arid) (Adnan et
al., 2017), with a wet season from June to September
(Figure 1e). The glaciated region is located at the
northern limit and is mainly covered by glaciers and
permanent snow at an average altitude of 4,158 m.a.s.l.
The humid region, next to the glacial region, is charac-
terized by the presence of very high mountains of the
Hindukush, Karakoram, and Himalaya (HKH) ranges,

with mean elevation and precipitation of 1,286 m.a.s.l.
and 825 mm year−1, respectively. The central arid
region consists in low-lying plains where the main
agricultural areas are located, with average altitude
and precipitation of 633 m.a.s.l. and 322 mm year−1,
respectively. Finally, at the southern boundary towards
the Arabian Sea, the extremely arid region receives
133 mm year−1 of rain. This barren and bare soil region
is located at a mean altitude of 444 m.a.s.l. and
includes low, high and dry mountain ranges (Satgé et
al., 2018).

FIGURE 1 Location of the regions of interest across the world (a) with the considered 0.1� grid-cells locations and corresponding

gauges number (b,d), considered basins location (c) and mean regional monthly precipitation for the 2007–2015 period based on available

gauge observations for the Altiplano (e) and Pakistan (f) [Colour figure can be viewed at wileyonlinelibrary.com]
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2.2 | Datasets

2.2.1 | Hydro-meteorological stations

For the Altiplano region, precipitation data were pro-
vided by the Servicio Nacional de Meteorologia e
Hidrologia (SENAMHI) for the Bolivian part, while for
Peru, data were collected on the Peruvian SENAMHI
website. For Pakistan, precipitation data were provided
by the Pakistan Meteorological Department (PMD). A
total of 126 and 55 rain gauges were made available for
the Altiplano and Pakistan, respectively. Only the gauges
with more than 80% daily data available for the 2007–
2015 period (9 years) were included in the analysis. The
records were then aggregated to the 0.1� grid-cell size by
averaging the precipitation values of all gauges included
in the same 0.1� grid-cell. According to this procedure, 59
and 53 0.1� grid-cells were used as reference in the pre-
cipitation estimates for the Altiplano and Pakistan,
respectively (Figure 1). Most of the precipitation data
come from manned weather stations and are subject to
data quality problems. Many of these problems are due to
measurement errors by observers, but errors related to
instruments and station location are also common. Over
the Altiplano, the quality of the gauges has been previ-
ously checked (Satgé et al., 2016, 2019a) using the
Regional Vector Method (RVM) (Espinoza Villar et
al., 2009). Over Pakistan, the PMD follows the World
Meteorological Organization (WMO) standard code
WMO–N for the evaluation and correction of gauge-
based precipitation data (World Meteorological
Organization, 1994).

Streamflow observations records for a seven-year
period (2009–2015) were also available at two river basin
outlets in the Altiplano (Figure 1): the Katari (2,588 km2)
and the Ramis (14,560 km2). The basins have an average
annual discharge (precipitation) of 52 mm year−1

(584 mm .year−1) and 160 mm.year−1 (733 mm year−1),
respectively.

2.2.2 | Selected P-datasets

The SM2RAIN algorithm (Brocca et al., 2013) estimates
precipitation from SM measurements using the inverted
soil water balance equation where surface runoff and
evapotranspiration rates during the precipitation event
were assumed negligible. The SM2RAIN algorithm has
been applied (a) to the Climate Change Initiative (CCI)
active and passive SM datasets and (b) to SM derived
from the Advanced SCATterometer (ASCAT) on board
the Meteorological Operational satellites A and B
(MetOp-A and -B) to develop the SM2RAIN-CCI

(Ciabatta et al., 2018) and the SM2RAIN-ASCAT (Brocca
et al., 2019) daily P-datasets. In addition to the different
spatial resolutions, input SM and temporal coverage
(Table 1), SM2RAIN-CCI and SM2RAIN-ASCAT differ
for the SM2RAIN algorithm calibration. SM2RAIN-
ASCAT uses the latest ReAnalysis (ERA5) from the Euro-
pean Centre for Medium-Range Weather Forecasts
(ECMWF), while SM2RAIN-CCI uses the Global Precipi-
tation Climatology Centre Full Daily Data (GPCC-FDD)
dataset. Due to the different characteristics of the satellite
sensors used for creating both the CCI (active and pas-
sive) and ASCAT (Metop-A and Metop-B) SM datasets,
different calibration periods are taken into account. The
SM2RAIN-CCI is calibrated for the 1998–2001, 2002–
2006 and 2007–2013 periods, whereas SM2RAIN–ASCAT
is calibrated for the 2007–2012 and 2013–2018 periods.
Unlike SM2RAIN-CCI, SM2RAIN-ASCAT includes a
final climatological correction based on ERA5 to mitigate
part of the error coming from SM measurement and
retrieval algorithm SM2RAIN. For more information on
the SM2RAIN-CCI and -ASCAT P-datasets please refer to
Ciabatta et al. (2018) and Brocca et al. (2019), respec-
tively. The SM2RAIN-CCI and SM2RAIN-ASCAT P-
datasets are available online at https://zenodo.org/
record/1305021 and https://zenodo.org/record/3405563,
respectively.

IMERG is a product of the National Aeronautics and
Space Administration (NASA) that uses concepts and
components from previous algorithms: TMPA,
CMORPH, and PERSIANN. Precipitation estimates from
available LEO satellites' PMW sensors are assembled,
gridded, intercalibrated and combined with data from
GEO IR sensors using the Morphing-Kalman Filter,
CMORPH-KF, the Lagrangian time interpolation
scheme, and the PERSIANN Cloud Classification System
(PERSIANN-CCS). The IMERG P-datasets are currently
at version 6 (v.6) and are available at three levels: the
early-run (IMERG-E v.6) and late-run (IMERG-L v.6),
which are based only on satellite information and the
final-run (IMERG-F v.6), which also uses monthly pre-
cipitation data from the GPCC to perform a bias correc-
tion. For more information, readers are referred to
Huffman et al. (2019). The IMERG-E, -L and -F v.6 have
never been assessed in the Altiplano and Pakistan.

The CHIRPS v.2 precipitation estimates are extracted
from the Globally Gridded Satellite (GridSat) and NOAA
Climate Prediction Center (CPC) Thermal Infra-Red
(TIR) using the Cold Global Duration (CCD) Method
(Funk et al., 2015). The CCD is first calibrated by using
the TRMM Multisatellite Precipitation Analysis (TMPA)
and then blended with rain gauge data from different
sources and CHPclim dataset. In this process, Coupled
Forecast System (CFS) reanalysis precipitation dataset is
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TABLE 1 Main characteristics and references of the considered P-datasets

Full name Acronym
Temporal
coverage

Temporal
resolution

Spatial
coverage

Spatial
resolution References

Soil Moisture to Rain from
Advanced SCATerometer

SM2RAIN-
ASCAT

2007–present Daily Global
(land)

12.5 km Brocca et
al. (2019)

Soil Moisture to Rain from ESA
Climate Change Initiative

SM2RAIN-
CCI v.2

1998–2015 Daily Global
(land)

0.25� Ciabatta et
al. (2018)

Climate Hazard Group InfraRed
Precipitation with Station

CHIRPS v.2 1981–present Daily 50� (land) 0.05� Funk et
al. (2015)

Multi–Source Weighted Ensemble
Precipitation v.2.2

MSWEP
v.2.2

1979–present 3 hr Global 0.1� Beck et
al. (2019)

IMERG–Early run v.6 IMERG-E
v.6

2000–present 30 min Global 0.1� Huffman et
al. (2019)

IMERG–Late run v.6 IMERG-
Lv.6

2000–present 30 min Global 0.1� Huffman et
al. (2019)

IMERG–Final run v.6 IMERG-
Fv.6

2000–present 30 min Global 0.1� Huffman et
al. (2019)

FIGURE 2 Mean annual

precipitation maps for the

2007–2015 period retrieved from all

P-datasets at 0.1� grid size. For each

P-datasets, only the grid cells with

more than 80% of available daily

data were retained. P-dataset names

underlined represent SM2RAIN

P-datasets (bottom-up), while

regular and italic fonts are used for

P-datasets based on ‘top-down’
approach, independently they may

or not may include gauge-based

information [Colour figure can be

viewed at wileyonlinelibrary.com]
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used to fill in the precipitation gaps from the TIR missing
observations. For more details, please refer to Funk et
al. (2015). The data are available at daily time steps at a
near global scale coverage (50�N–50�S).

The MSWEP v.2.2 combines precipitation estimates
based on satellites (CMORPH, GridSat, GSMaP, TMPA),
on reanalysis (ERA-Interim, JRA-55) and on gauges
(Worldclim2, GPCC, rain gauges). First, a correlation
matrix obtained by comparing satellite-based and
reanalysis estimates (previously adjusted with the
WorldClim2 database) with observations from rain
gauges is used to weight the average of their estimates
(Beck et al., 2018). Then the resulting precipitation esti-
mates are adjusted with rain gauge data from different
sources and the GPCC-FDD dataset. For more informa-
tion, readers are referred to Beck et al. (2019).

Figure 2 shows the mean annual precipitation for the
period 2007–2015, derived from the four P-datasets. For
the two regions (Altiplano and Pakistan), all P-datasets
captured typical north-south precipitation patterns. It is
worth mentioning that regions with high uncertainties in
CCI SM estimates are removed from the SM2RAIN-CCI
v.2 (Ciabatta et al., 2018). Therefore, for both the Altiplano
and Pakistan, many missing data are observed over glacial
regions, frozen soils, complex topography and rainforest
areas. In contrast, regions with high uncertainties in
ASCAT SM estimates are flagged to ensure data continuity
as required in many applications (Brocca et al., 2019).

2.2.3 | Comments on the selected P-
datasets

Among the selected P-datasets, SM2RAIN-CCI,
SM2RAIN-ASCAT, IMERG-E v.6 and IMERG-L v.6 are
based solely on satellite information using either ‘bot-
tom-up’ (SM2RAIN) or ‘top-down’ approach (IMERG).
CHIRPS v.2, MSWEP v.2.2 and IMERG-F v.6 also use a
‘top down’ concept but include a gauge based dataset for
final precipitation adjustment (IMERG-F v.6) or for the
recovery of precipitation estimates (CHIRPS v.2, MSWEP
v.2.2). Therefore, the selected P-datasets can be separated
into three groups:

1 P-datasets based on the ‘bottom-up’ approach and
using only satellite information (SM2RAIN-ASCAT,
SM2RAIN-CCI).

2 P-datasets based on the ‘top-down’ approach and using
only satellite information (IMERG-E v.6, IMERG-
L v.6)

3 P-datasets based on the ‘top-down’ approach using
both satellite and gauge information (CHIRPS v.2,
MSWEP v.2.2 and IMERG-F v.6)

It should be mentioned that precipitation estimates
from MSWEP v.2.2, CHIRPS v.2 and IMERG-F v.6 are
expected to be more accurate than the non-adjusted P-
datasets because some of the gauges data used as a refer-
ence are included in these P-datasets.

2.2.4 | GLEAM ETp

To implement the hydrological modelling proposed in
this study (see Section 2.2.3), the potential evapotranspi-
ration from the Global Land Evaporation Amsterdam
Model version 3 (GLEAM v.3) (ETp) datasets is taken
into account (Martens et al., 2017). Three GLEAM v.3
ETp datasets are available (a, b and c). These datasets dif-
fer in terms of spatial coverage, spatial resolution and
forcing data. The GLEAM v.3.a dataset was previously
validated in the Altiplano (Satgé et al., 2019b) and was
therefore selected for this study. GLEAM v.3.a uses the
Priestley and Taylor equation to calculate potential
evapotranspiration (ETp) using air temperature and net
surface radiation from the ERA-Interim reanalysis
dataset. GLEAM v.3.a ETp estimates are available for
global coverage, with a 0.25� grid and daily time step
from 1980 to 2016 (https://www.gleam.eu/).

2.3 | P-Datasets reliability assessment

2.3.1 | P-datasets against gauge
observations

SM2RAIN-ASCAT, SM2RAIN-CCI and CHIRPS v.2 P-
datasets are only available at daily time steps. The 24-
hour period used to accumulate daily rainfall for the P-
datasets differs from that used by the reference gauges.
This temporal mismatch leads to uncertainties in the
conclusions drawn from daily analysis (Satgé et al., 2020).
For this reason, in this study the assessment is carried
out only on a monthly time scale, as was previously done
in India (Prakash, 2019). To allow a consistent compari-
son, all P-datasets were resampled to the 0.1� grid-cell
size. The bilinear mean (interpolation) is used for P-
datasets at a grid-cell size <0.1� (>0.1�) (Beck et
al., 2019).

Monthly totals were computed only for months with
more than 80% common daily records for all datasets (ref-
erence and P-datasets). The accuracy of the monthly P-
dataset estimates was assessed using quantitative statisti-
cal analysis based on modified Kling–Gupta Efficiency
(KGE), an objective function combining correlation (R),
bias (Bias), and variability ratio (Vr) components (Gupta
et al., 2009; Kling et al., 2012) (Equation 1). We used
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KGE because water resource management requires reli-
able representation of the temporal dynamics of precipi-
tation (measured by R) and volume (measured by Bias
and Vr):

KGE=1−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R−1ð Þ2+ Bias−1ð Þ2+ Vr−1ð Þ2

q
ð1Þ

where R represents the Pearson coefficient (Equation 2),
Bias is the ratio between the mean estimated and
observed precipitation (Equation 2) and Vr is the ratio of
the estimated and observed coefficients of variation
(Equation 3):

R=
1
n

Xn

1

on−μoð Þ� sn−μsð Þ
σo �σs , ð2Þ

Bias=
μs
μo

, ð3Þ

Vr=
σs=μs
σo=μo

, ð4Þ

where μ and σ are the distribution mean and standard
deviation, respectively and s and o indicate the estimated
and the observed precipitation, respectively. KGE, Bias,
Vr and R have their optimum at unity.

The analysis was carried out for the period 2007–2015
considering all the months and the months constituting
wet and dry seasons separately (Figure 1d,e).

The values of KGE, Bias, R and Vr were computed at
each grid-cell location (53 and 59 for the Altiplano and
Pakistan, respectively) to assess the P-dataset reliability
over space and their median values were used to evaluate
it at the regional scale.

In view of the important gaps over space and time for
SM2RAIN-CCI v.2 (Figure 2), its performance was assessed
on a reduced number of 0.1� grid-cells (14 and 29 for the
Altiplano and Pakistan, respectively). To provide a fair com-
parison of SM2RAIN-CCI reliability with the other P-
datasets, the statistical scores are also computed by consid-
ering only the available grid-cells for SM2RAIN-CCI.

2.3.2 | P-datasets against streamflow
modelling

The sensitivity of streamflow modelling to the P-datasets
was assessed at the outlet of two Altiplano basins (Fig-
ure 1). The Pakistani basins were not evaluated because
most rivers are disturbed by dams that alter streamflow
in terms of magnitude and temporal dynamics. The GR4j
lumped hydrological model (Perrin et al., 2003), which

has given good results under various hydro-climatic con-
ditions (e.g., Perrin et al., 2003; Coron et al., 2012;
Grouillet et al., 2016; Dakhlaoui et al., 2017) particularly
in the Andean region (e.g., Hublart et al., 2016; Satgé et
al., 2019a), was chosen to carry out the analysis. The
model relies on P and ETp and includes four parameters
within specific ranges (Perrin et al., 2003). The area-aver-
aged P and ETp values were calculated from the 0.1�

grid-cells for each basin using a weighted average for the
grid-cells not fully included in the basins. To obtain con-
tinuous and spatialized reference precipitation series, the
precipitation recorded at the available gauges was previ-
ously interpolated using the Inverse Distance Weighted
method (IDW) on the 0.1� grid-cell resolution (same as the
P-datasets). Streamflow modelling was carried out using as
forcing data, each of the P-datasets considered in this
study and the Pref (obtained from the gauges) dataset. We
used the Modular Assessment of Rainfall–Runoff Models
Toolbox v.1.2 (MARRMOT), an open-source modular tool-
box for 46 conceptual hydrologic models (Knoben et
al., 2019a), to run the GR4j hydrological model. For each
run, model calibration was based on Nelder–Mead simplex
algorithm (Lagarias et al., 1998) by optimizing an objective
function. KGE (Equation 1) and Nash Shuttle Efficiency
score (NSE) (Equation 5) are commonly used as objective
functions for calibration of hydrological models (i.e., Jiang
and Bauer-Gottwein, 2019; Tarek et al., 2019; Fallah et
al., 2020; Zhang et al., 2020). However, KGE and NSE rela-
tionship is non-unique (Knoben et al., 2019b) so that the
P-dataset reliability for the streamflow simulation could
differ when using KGE or NSE criteria. In this context,
both KGE and NSE are used to avoid any influence of the
objective function (Dembélé et al., 2020) in the evaluation
of the P-dataset reliability. The parameters values are pro-
vided in appendice 1.

NSE=

PN
t=1 Qt

obs−Qt
sim

� �2
Qt
obs− �Qsim

� �2
( )

, ð5Þ

where NSE is the Nash–Sutcliffe Efficiency, Qobs and Qsim

are, respectively, the observed and simulated streamflow
and N is the number of time steps (t) for which observa-
tions are available.

The two basins have a seven-year common period
(2009–2015) of observed discharge data. For each precipi-
tation input (Pref and P-datasets), the model was cali-
brated over the 2010–2015 period (6 years) using the
2009 year as a spin-up period. No validation period was
chosen because the objective of this study was to assess
the sensitivity of the hydrological model to the precipita-
tion input and not to evaluate the robustness of the
hydrological model.
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3 | RESULTS

3.1 | P-dataset reliability compared with
gauge observations at the grid-cells level

Based on KGE, all considered P-datasets (except for
SM2RAIN-ASCAT) perform better in the Altiplano than
in Pakistan (Figure 3).

In the Altiplano, MSWEP v.2.2 and SM2RAIN-
ASCAT have the highest and lowest spatial consistency

respectively, as indicated by KGE. However, east of the
shore of the Lake Titicaca, MSWEP v.2.2 has the lowest
KGE score (Figure 3). For the few available grid-cells, the
estimates of SM2RAIN-CCI v.2 are more accurate than
those of SM2RAIN-ASCAT as observed north and south
of the Lake Titicaca (Figure 4b,c).

In Pakistan, all P-datasets exhibit the lowest KGE
values over the northern Himalayan (Figure 3d). In the
southern region, MSWEP v.2.2 is the most reliable P-
dataset, while CHIRPS v.2, SM2RAIN-ASCAT and -CCI

FIGURE 3 P-datasets KGE at the regional and grid-cell level for the Altiplano (a,b) and Pakistan (c,d). In a and c the median KGE

values for all considered grid-cells taking wet, dry and all months separately is presented. The right and left edges of the box represent the

25th and 75th percentile values. The P-datasets are sorted from the highest (top) to the lowest (bottom) KGE values. Note that SM2RAIN-

CCI v.2 is always placed at the bottom because it is based on a reduced number of 0.1� grid-cells. In b and d, the KGE values at each grid-cell

location and considering all months is presented. P-dataset names underlined represent SM2RAIN P-datasets (bottom-up), while regular and

italic fonts are used for P-datasets based on ‘top-down’ approach, independently they may or not may include gauge-based information

[Colour figure can be viewed at wileyonlinelibrary.com]
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have KGE values lower than 0.5 in most of the consid-
ered grid-cells. IMERG-F v.6 has the highest KGE score
in the Northeast region.

Interestingly, on a seasonal scale, higher KGE are
observed during the wet season (excepting SM2RAIN-
CCI) in the Altiplano whereas the converse is true in the
case of Pakistan (excepting IMERG-E and -L v.6).

SM2RAIN-ASCAT (-CCI) overestimates (underesti-
mates) monthly precipitation in the Altiplano, with a
Bias value of 1.63 (0.85). Conversely, in Pakistan
SM2RAIN P-datasets Bias is small (close to 1), as for
CHIRPS v.2, IMERG-F v.6 and MSWEP v.2.2. All ver-
sions of IMERG overestimate precipitation in Pakistan.
The adjustment based on gauges information slightly
reduces the bias on IMERG-F v.6 compared to IMERG-E
and -L v.6. The same is observed over the Altiplano,
which confirms the positive effect of using gauge-based
information. However, for some grid-cells, the

precipitation estimates are less biased for the satellite-
only versions (IMERG-E v.6, IMERG-L v.6) than for the
adjusted versions (IMERG-F v.6). Interestingly, CHIRPS
v.2 presents the least biased estimates over the northern
region of Pakistan and especially over the Himalayan
relief (Figure 4d). Finally, weak seasonal variations are
observed for Bias in both locations and for all P-datasets
(Figure 4a–c).

All considered P-datasets are more correlated with
the reference precipitation in the Altiplano than in Paki-
stan (Figure 5a–c). This is particularly true for
SM2RAIN-ASCAT with most of the studied grid-cells
having an R value higher (lower) than 0.8 in the Alti-
plano (Pakistan) (Figure 5b–d). Interestingly IMERG-F
v.6 presents high R value in both regions.

Over the Altiplano, MSWEP v.2.2 presents the highest
proportion (80%) of grid-cells with R > 0.9 followed by
SM2RAIN-ASCAT (73%), CHIRPS v.2 (51%), IMERG-F

FIGURE 4 Same as Figure 3 but for bias values [Colour figure can be viewed at wileyonlinelibrary.com]
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v.6 (42%), IMERG-E v.6 (25%), IMERG-L v.6 (12%). Over
Pakistan, IMERG-F v.6 has the highest proportion (38%)
of grid-cells with R > 0.9, followed by MSWEP v.2.2
(13%), CHIRPS v.2 (5%), IMERG-E v.6 (2%) and IMERG-
L v.6 (2%), while SM2RAIN-ASCAT does not have any
grid-cells (Figure 5 d). Across Pakistan, the gauge adjust-
ment clearly improves the R-value of IMERG versions
(IMERG-E, IMERG-L, IMERG-F v.6).

Interestingly, on a seasonal scale, higher R values are
observed during the wet season (excepting SM2RAIN-
CCI) in the Altiplano whereas the reverse is true in the
case of Pakistan (excepting IMERG-E and -L v.6).

SM2RAIN-ASCAT underestimates the precipitation
variability (Vr < 1) in both the Altiplano and Pakistan,
while SM2RAIN-CCI overestimates (underestimates) the
precipitation variability in the Altiplano (Pakistan)

(Figure 6 a–c). MSWEP v.2.2 is the most effective in rep-
resenting the precipitation variability with Vr closer to
one for the majority of grid-cells (Figure 6b). CHIRPS v.2
and all IMERG v.6 P-datasets have much lower Vr values
over Pakistan than over the Altiplano (Figure 6 b-d).
Finally, Vr only has weak seasonal variations in both
locations and for all P-datasets (Figure 6 a-c).

3.2 | P-datasets for streamflow
modelling

The simulated monthly and daily streamflow obtained
using the different P-datasets as forcing data and their
associated efficiency scores (KGE, NSE) when compared
with the observed streamflow are presented in Figure 7.

FIGURE 5 Same as Figure 4 but for R values [Colour figure can be viewed at wileyonlinelibrary.com]
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At monthly time steps, the P-dataset consistency for
streamflow modelling varies over time. Indeed, some P-
datasets over- or underestimate the peak discharge for
specific years as observed in the Katari basin for 2010,
2011 and 2014 (Figure 7a). None of the considered P-
datasets provide a more accurate streamflow simulation
than that obtained with Pref for the Katari (KGE = 0.93)
and Ramis (KGE = 0.96) basins. However, the
streamflow simulation obtained when using MSWEP
v.2.2 or IMERG-F v.6 as forcing data is close to that
obtained using Pref as forcing data (KGE > 0.9) with
MSWEP v.2.2 (IMERG-F v.6) performing best over the
Ramis (Katari) basin. For the Ramis basin, SM2RAIN-
ASCAT and SM2RAIN-CCI monthly streamflow simula-
tions are relatively accurate (KGE = 0.9 and 0.89, respec-
tively). For the Katari basin, SM2RAIN-ASCAT has a
KGE value equal to 0.9 which is close to those obtained

with the P-datasets using gauge-based information
(MSWEP v.2.2, CHIRPS v.2 and IMERG-F v.6).
SM2RAIN-ASCAT achieves higher KGE scores than sat-
ellite-only P-datasets IMERG-E v.6 for both basins and
IMERG-L v.6 for the Katari basin.

At daily time steps, the ability of the P-datasets to
reproduce the streamflow simulation is higher for the
Ramis basin than for the Katari basin (Figure 7e,f).
Similarly to monthly time steps, MSWEP v.2.2,
CHIRPS v.2 and IMERG-F v.6 achieve the highest KGE
scores for both basins, with MSWEP v.2.2 ranking first.
Interestingly, the MSWEP v.2.2 streamflow simulation
is slightly more reliable than the one using Pref for the
Katari basin, and than all other P-datasets for both
basins. The latter may be partly due to the inclusion of
an adjustment based on daily gauge records compared
to IMERG-L v.6 and CHIRPS v.2 which use an

FIGURE 6 Same as Figure 3 but for Vr values [Colour figure can be viewed at wileyonlinelibrary.com]
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adjustment based on monthly gauge ones. SM2RAIN-
CCI has the lowest (second lowest) KGE score for the
Ramis (Katari) basins while SM2RAIN-ASCAT

achieves KGE values similar to higher than the satel-
lite-only based P-datasets IMERG-E and -L v.6 for both
basin (Figure 7e).

FIGURE 7 Observed versus simulated streamflow using Pref and P-datasets as input data in the hydrological model: monthly

streamflow simulation at the Katari (a) and Ramis outlets (c); daily streamflow simulation (represented in the form of mean daily values for

the 2010–2015 period to alleviate the figure) at the Katari (b) and Ramis outlets (d); efficiency (KGE and NSE scores) of simulated versus

observed streamflow at monthly (e) and daily time step (f). P-dataset names undelined represent SM2RAIN P-datasets (bottom-up), while

regular and italic fonts are used for P-datasets based on ‘top-down’ approach, independently they may or not may include gauge-based

information [Colour figure can be viewed at wileyonlinelibrary.com]
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In spite of the overall lower NSE compared to KGE
scores, both indices rank similarly the reliability of the P-
datasets for streamflow modelling. Indeed, the P-datasets
using gauge information show the best performance for
both basins and time scales, with MSWEP v.2.2 and
IMERG v.6 performing best. At monthly and daily time
scales and for both basins, SM2RAIN-ASCAT shows the
closest NSE scores to those obtained with CHIRPS v.2,
MSWEP v.2.2 and IMERG-F v.6 and a higher NSE than
those obtained with the satellite-only based P-datasets
IMERG-E and -L v.6. Therefore, when comparing the P-
dataset reliability for streamflow modelling, using KGE
or NSE leads to very similar conclusions.

The SM2RAIN-CCI low score (KGE and NSE) for
each basin and time step (daily, monthly) is partly attrib-
utable to significant gaps in space and time (Figure 2a),
which hinder a robust representation of the average pre-
cipitation for the two basins.

4 | DISCUSSION

4.1 | P-datasets seasonal consistency

In term of KGE, P-datasets globally perform better during
the wet season in the Altiplano, the opposite is observed
in Pakistan. In the Altiplano, the monthly precipitation
totals are well (badly) distributed between the maximum
and minimum values during the wet season (dry season)
(Figure 1e). This feature tends to increase the R value
during the wet season in that region. The converse occurs
in Pakistan (Figure 1f) resulting in higher R values dur-
ing the dry season. Similar observations were made in
Brazil (Salles et al., 2019) and West Africa (Satgé et
al., 2020) regions. As weak seasonal variations are
observed for Bias and Variability ratios in both locations,
the KGE value is mainly influenced by the R value and
follows its seasonal variation (Equation 1).

It is worth to mention that over Pakistan IMERG-E
and -L v.6 present a different seasonal variation com-
pared to other P-datasets (higher KGE during the wet
season). This could be related to the very high Bias value
observed for IMERG-E (1.71) and -L (1.73), thus signifi-
cantly increasing the KGE value. As these P-datasets are
less biased during the wet than the dry season (Figure 4c),
KGE is higher in the wet season than in the dry season
(Figure 3c).

4.2 | P-datasets spatial consistency

At the regional level, P-datasets are more reliable in the
Altiplano than in Pakistan, with systematically higher

KGE and R values (Figures 3 and 4). P-dataset reliability
depends on the precipitation retrieval method adopted
and its sensitivity to the regional meteorological, topo-
graphic and land cover characteristics. From this perspec-
tive, Pakistan can be divided into two parts: (a) the
southern part comprising arid to extremely arid regions
and (b) the northern part entailing the Himalayan moun-
tainous region with permanent snow cover (Adnan et
al., 2017; Satgé et al., 2018). Mountainous regions, snow
covered areas and arid context are well known shortcom-
ings in precipitation estimates derived from PMWs and/
or IR observations (see for example, Ferraro et al., 1998;
Levizzani et al., 2002; Tian and Peters-Lidard, 2007; Tian
et al., 2009; Gebregiorgis and Hossain, 2013; Mourre et
al., 2016). Conversely, the Altiplano consists of a semi-
arid and relatively flat region surrounded by mountains
(Satgé et al., 2015; Satge et al., 2016), which is more
favourable for PMWs and/or IR precipitation estimates.
This fact may partly explain the higher reliability of the
‘top-down’ based P-datasets (IMERG-E v.6, IMERG-L v.6,
IMERG-F v.6, MSWEP v.2.2 and CHIRPS v.2) over the
Altiplano than over Pakistan.

Similarly, satellite-based SM estimates are still limited
over regions with high topographic complexity, the pres-
ence of frozen areas and the occurrence of snowfall
(Ciabatta et al., 2018; Brocca et al., 2019) as observed over
northern Pakistan. In addition, significant agricultural
activities take place all around the Indus River, which
could affect the satellite-based SM signal due to plant cul-
tivation and irrigation practices. It is noteworthy that this
drawback is currently used for the detection and quantifi-
cation of irrigation practices (Brocca et al., 2018;
Zaussinger et al., 2019). The specific Pakistani context
reduces the efficiency of satellite-based SM estimates and
thus of the SM2RAIN P-datasets (Figure 3).

It is interesting to note that on the Altiplano,
SM2RAIN-ASCAT provides the highest R value at 32% of
the grid-cell locations (Figure 8a,c). This is the case for
the grid-cells located on the eastern shore of the Lake
Titicaca in the foothills of the oriental cordillera. There,
the large variations in land cover (in term of emissivity
and surface temperature) and warm cloud precipitation
events introduce greater uncertainties in the ‘top-down’
approach than in the ‘bottom-up’ approach. This example
highlights the complementarity of the ‘bottom-up’
approach with the ‘top-down’, as previously reported in
different regions (Brocca et al., 2016, 2019; Ciabatta et
al., 2017; Chiaravalloti et al., 2018; Massari et al., 2019;
Zhang et al., 2019). Similarly, SM2RAIN-ASCAT has the
highest R value in the western part of the Altiplano (Fig-
ure 8a). Compared to the northern region, the western
region is almost isolated from any human footprint that
could affect SM (cities, agriculture activities).
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Finally, Figure 8 clearly shows that the reliability rank-
ing of P-datasets varies from region to region, with
MSWEP v.2.2 and IMERG-F v.6 being performing the best
for most grid-cells in the Altiplano (59%) and Pakistan
(66%), respectively (Figure 8). Therefore, the results
obtained in one region cannot be directly extrapolated to
another region and selection of P-datasets should rely on a
full reliability assessment. Ideally, different P-datasets are
to be used depending on the location where the precipita-
tion estimates are required (Figure 8a,b). In this regard,
some studies have already proposed different methods for
merging several P-datasets to obtain more reliable precipi-
tation estimates than if a single P-dataset was to be used
(i.e., Baez Villanueva et al., 2020; Ehsan Bhuiyan et al.,
2019; Muhammad et al., 2018; Rahman et al., 2018).

These studies could be used as guidelines to take
advantage of the most reliable P-datasets.

4.3 | Gauges versus streamflow
assessment

In order to assess the influence of the indicators used for
the P-dataset reliability assessment, the KGE obtained for
streamflow simulation is compared with the KGE
obtained by comparing average basin precipitation derived
from the P-dataset with that obtained with Pref (Figure 9).

On a general way, the P-datasets are better to estimate
streamflow than precipitation on a daily or monthly basis
(Figure 9). This is consistent with previous results (Satgé
et al., 2019a). As precipitation varies spatially, many pre-
cipitation events observed at the grid-cell level (areal
measurement) may be lost or underestimated at the
gauge level (point measurement). Therefore, the P-
datasets reliability (based upon a gauge-based evaluation)
increases with the number of gauges used to represent
the spatial average of the grid-cell measurement (Tang et
al., 2018; Salles et al., 2019). In this study, most of the
grid-cells have only one gauge, resulting in a ‘poor’ repre-
sentation of the areal grid-cell P-datasets estimates. Con-
versely, the streamflow measurement at the outlet of the
basin is ‘highly’ representative of the basin scale P-
dataset estimates. The ability of the indicator used (Rain
gauges vs. streamflow gauges) to represent the variable to
be assessed (precipitation) influences the evaluation.
Therefore, higher KGE are obtained for all P-datasets
when using streamflow-based assessment rather than
gauge-based assessment (Figure 9).

This difference is more striking for SM2RAIN-
ASCAT. Indeed, from gauges-based to streamflow-based
assessments, the daily (monthly) KGE value increased
from 0.4 to 0.7 (0.53 to 0.9) and from 0.13 to 0.88 (0.23 to
0.90) for the Katari and Ramis basin, respectively.
SM2RAIN-ASCAT KGE value obtained for the gauge-

FIGURE 8 Best P-datasets

evaluated by R at each considered

grid-cell location across the

Altiplano (a) and Pakistan (b) with

the corresponding number of grid-

cells expressed in percent (c)

[Colour figure can be viewed at

wileyonlinelibrary.com]
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based assessment is particularly low because of the large
bias in the precipitation estimates (Figures 3 and 5a).
When used as forcing data for streamflow modelling, the
P-dataset bias is partially corrected through an optimum
hydrological model parameterization. Since the bias has
a significant influence on KGE value (Satgé et al., 2020)
(Equation 1), its correction increases the KGE. This
works as long as the P-dataset describes well the tempo-
ral dynamics of the precipitation for the region studied,
as measured by the R coefficient. Along this line some
authors proposed the use of hydrological modelling to
adjust P-datasets estimates (i.e., Zhan et al., 2015;
Román-Cascón et al., 2017).

5 | CONCLUSIONS

The reliability of newly released SM2RAIN-ASCAT and
-CCI P-datasets to reproduce ground-based precipitation
records over 2007–2015 and the streamflow records at
two basin outlets for the 2010–2015 period were evalu-
ated in the regions of the Altiplano and Pakistan.

Divergent spatial results were obtained. Both
SM2RAIN-ASCAT and -CCI replicate the precipitation
records in the Altiplano better than in Pakistan. This fact
is explained by more favourable meteorological, topo-
graphic and land cover characteristics for satellite-based
SM estimates in the Altiplano than Pakistan. SM2RAIN-
ASCAT and -CCI reliability substantially increases if they
are used as forcing data for hydrological models to repro-
duce streamflow records. This fact comes from (a) the sig-
nificant bias in the precipitation estimates, which is
counterbalanced by the hydrological model parameteri-
zation and (b) a better spatial coherence between the P-
datasets and the reference (precipitation gauges vs.
streamflow gauges).

Despite an important bias, SM2RAIN-ASCAT ability
to replicate temporal dynamics of the Altiplano precipita-
tion, evaluated through R, is similar that of the well-
established state of the art CHIRPS v.2, MSWEP v.2.2
and IMERG-F v.6 P-datasets and even better in some sub
regions. Therefore, a suitable bias correction or a specific
calibration of SM2RAIN algorithm over the considered
regions should considerably increase SM2RAIN-ASCAT

FIGURE 9 KGE value obtained based on the gauges-based and streamflow-based assessment for each basin and at both daily and

monthly time step. P-dataset names underlined represent SM2RAIN (bottom-up), while regular and italic fonts are used for ‘top-down’
approach based P-datasets using or not gauge-based information [Colour figure can be viewed at wileyonlinelibrary.com]
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reliability. For instance, the consideration of actual ET
into the SM2RAIN algorithm is a good option as it
enhances SM2RAIN-ASCAT estimates over areas in
which evapotranspiration is important, as shown in the
south-western United States and central western Austra-
lia (Brocca et al., 2019). Unfortunately, SM2RAIN-CCI
has too many gaps in space and time to be used as a reli-
able precipitation dataset over both the Altiplano and
Pakistan.

In an end-user perspective, this study shows that the
choice of the best P-datasets must rely on assessments
carried out on the target region and involving indicators
that take into account the foreseen use of the results.
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