k-anti-power uniform morphisms

Francis Wlazinski

To cite this version:

Francis Wlazinski. k-anti-power uniform morphisms. 2024. hal-04375742v2

HAL Id: hal-04375742
 https://hal.science/hal-04375742v2

Preprint submitted on 7 Mar 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

k-anti-power uniform morphisms

Francis Wlazinski

March 7, 2024

Abstract

Words whose every $k(\geq 3)$ successive factors of the same length are all different, i.e., k -anti-power words are natural extensions of square-free words (every two successive factors of the same length are different). We give a way to verify whether a uniform morphism preserves k-anti-power words, i.e., the image by this morphism of all k-anti-power words are k-anti-power words.

A consequence of the existence of such morphisms is the possibility of generating an infinite k-anti-power word.

1 Preliminaries

Let us recall some basic notions of Combinatorics of words.

1.1 Words

An alphabet A is a finite set of symbols called letters. A word over A is a finite sequence of letters from A. The empty word ε is the empty sequence of letters. Equipped with the concatenation operation, the set A^{*} of words over A is a free monoid with ε as neutral element and A as set of generators. Since an alphabet with one element is limited interest to us, we always assume that the cardinality of considered alphabets is at least two. Given a non-empty word $u=a_{1} \ldots a_{n}$ with $a_{i} \in A$ for any integer i from 1 to n, the length of u denoted by $|u|$ is the integer n that is the number of letters of u. By convention, we have $|\varepsilon|=0$. We denote by A^{+}the set of words of positive length over A, i.e., $A^{+}=A^{*} \backslash\{\varepsilon\}$.
Given two words w and u, we denote by $|w|_{u}$ the number of different words p such that $p u$ is a prefix of w. For instance, if $w=a b a a b a b a$, we have $|w|_{a}=5,|w|_{a b a}=3$.
An infinite word over A is a map from \mathbb{N} to A that is an infinite sequence of letters $a_{1} \ldots a_{n} \ldots$ with $a_{i} \in A$. And $A^{\mathbb{N}}$ is the set of all infinite words over A.
The mirror image of u, denoted by \tilde{u}, is the word $a_{n} \ldots . a_{2} a_{1}$. In the particular case of the empty word, $\tilde{\varepsilon}=\varepsilon$.

A word u is a factor of a word v if there exist two (possibly empty) words p and s such that $v=$ pus. We denote Fcts (v) the set of all factors of v. If $u \in \operatorname{Fcts}(v)$, we also say that v
contains the word u (as a factor). If $p=\varepsilon, u$ is a prefix of v. If $s=\varepsilon, u$ is a suffix of v. If $u \neq v, u$ is a proper factor of v. If u, p and s are non-empty, u is an internal factor of v. Furthermore, $\operatorname{alph}(v)=\{u \in \operatorname{Fcts}(v)| | u \mid=1\}$ is the set of all the letters in v.
Let w be a non-empty word and let i, j be two integers such that $0 \leq i-1 \leq j \leq|w|$. We denote by $w[i . . j]$ the factor of w such that $|w[i . . j]|=j-i+1$ and $w=p w[i . . j] s$ for two words s and p verifying $|p|=i-1$. When $j>i, w[i . . j]$ is simply the factor of w that starts at the $i^{\text {th }}$ letter and ends at the $j^{\text {th }}$. Note that, when $j=i-1$, we have $w[i . . j]=\varepsilon$. When $i=j$, we also denote by $w[i]$ the factor $w[i . . i]$ which is the $i^{\text {th }}$ letter of w. In particular, $w[1]$ and $w[|w|]$ are respectively the first and the last letter of w.
Powers of a word are defined inductively by $u^{0}=\varepsilon$, and for any integer $n \geq 1, u^{n}=u u^{n-1}$. Given an integer $k \geq 2$, since the case ε^{k} is of little interest, we call a k-power any word u^{k} with $u \neq \varepsilon$. And a word is k-power-free if it does not contain any k-power as factor. A primitive word is a word which is not a ℓ-power of another word whatever the integer $\ell \geq 2$.
Given two integers $p>q \geq 1$ and two words x and y with $x y \neq \varepsilon$, a word of the form $(x y)^{\alpha} x$ with $\frac{\left|(x y)^{\alpha} x\right|}{|x y|}=\alpha+\frac{|x|}{|x y|}=\frac{p}{q}$ is called $a \frac{p}{q}$-power. For instance, the word anchorman is a $\left(1+\frac{2}{7}=\right) \frac{9}{7}$-power and the word abaabaa is a $\left(2+\frac{1}{3}=\right) \frac{7}{3}$-power. In particular, a $\frac{3}{2}$-power is a word of the form $x y x$ with $|x|=|y| \neq \varepsilon$. For instance, the word antman is a $\frac{3}{2}$-power. A word is $\frac{p}{q}$-power-free if it does not contain any ℓ-power as factor with $\ell \geq \frac{p}{q}$. The word abcaba is not $\frac{8}{5}$-power-free. Indeed, it contains the word $a b c a b$ which is a $\frac{5}{3}$-power.
A border of a word w is a factor $v \notin\{\varepsilon, w\}$ of w that is both a prefix and a suffix of w. When v is the greatest border of w and $|w|>2|v|$, we say that the bordered word w is a sesquipower.

The two following propositions are well known. The first one is about bordered words.
Proposition 1.1 [8] Let A be an alphabet and u, v, w three non-empty words over A.
If $v t=u v$ then there exist two words r and s over A and an integer n such that $v=(r s)^{n} r$, $u=r s$ and $t=s r$.

Lemma 1.2 [6, 7] If a non-empty word v is an internal factor of $v v$, i.e., if there exist two non-empty words x and y such that $v v=x v y$, then there exist a non-empty word t and two integers $i, j \geq 1$ such that $x=t^{i}, y=t^{j}$, and $v=t^{i+j}$.

Given an integer $k \geq 2$ and an integer $j \geq 1$, a (k, j)-anti-power sequence or simply a k -anti-power [5] is a concatenation of k consecutive pairwise different words of the same length j.
For instance, if $A=\{a, b\}$, the words $u=a a b a b b a b$ and $v=a b a b a b a b b a a a$ are respectively $(4,2)$-anti-power and $(4,3)$-anti-power sequences. But the prefix $a b a b a b a b$ of v is not a 4 -antipower sequence: it is even a 4 -power.
Given an integer $k \geq 1$, if $\operatorname{Card}(A)=\alpha \geq 2$ then there exit α^{n} different words in A^{*} of length $n \geq 1$. Among the words of length $k \times n$, there are α^{n} different k-powers (of length $k \times n)$ and $A_{\alpha^{n}}^{k}=\frac{\left(\alpha^{n}\right)!}{\left(\alpha^{n}-k\right)!}$ different (k, n)-anti-power sequences if $\alpha^{n} \geq k$ and 0 otherwise.

It particulary means that there exists an integer k_{0} such that there are no $\left(k^{\prime}, n\right)$-anti-power sequences over A for any $k^{\prime} \geq k_{0}$.
For any alphabet A with $\operatorname{Card}(A)=\alpha \geq 2$ and for any integer $k \geq 2$, there exists a smallest integer p_{0} such that $\alpha^{p_{0}} \geq k$. And, if $p \geq p_{0}$, the set of (k, p)-anti-power sequences is greater than the set of k-powers of length $p \times k$.
A 2-anti-power word is simply a square-free word. Given an integer $k \geq 3$, a word w is a k-anti-power word if it is a $(k-1)$-anti-power word and, when $|w| \geq k$, if any factor of w of length $k \times j$ for every integer $1 \leq j \leq\left\lfloor\frac{|w|}{k}\right\rfloor$ is a (k, j)-anti-power sequence. As precised, w can contain a factor of length k only if $|w| \geq k$. But, by the choosen definition, a word of length n with $2 \leq n<k$ is a k-anti-power word if and only if it is a n-anti-power word. Of course, such a word exists only if $\operatorname{Card}(A)=\alpha \geq n$.
In other words, for any integer $2 \leq \ell \leq k$, if we choose ℓ successive factors of the same length of a k-anti-power word, they are all different.
A word w is not a k-anti-power word $(k \geq 2)$ if and only if it contains a factor of the form $U=u_{1} u_{2} \ldots u_{\ell}$ for an integer $2 \leq \ell \leq k$ and for some non-empty words $u_{1}, u_{2}, \ldots, u_{\ell}$ of the same length and such that $u_{1}=u_{\ell}$. It means that U is a $\frac{\ell}{\ell-1}$-power. So, a word w that is not a k-anti-power word contains at least a $\frac{k}{k-1}$-power (when $\ell=k$). The converse is false. For instance, the word $a b c d e a b c$ is a $\frac{8}{5}\left(>\frac{4}{3}\right)$ power. But it is a 4 -anti-power word over a five-letter alphabet.
Let $\mathcal{A}_{A, k}$, or \mathcal{A}_{k} if no doubt exists for the alphabet A, be the set of all k-anti-power words over A. By definition, we have $\mathcal{A}_{k} \subset \mathcal{A}_{k-1} \ldots \subset \mathcal{A}_{2}$. So let $\mathcal{B}_{A, k}$, or \mathcal{B}_{k}, be the set $\mathcal{A}_{k-1} \backslash \mathcal{A}_{k}$.

Remark 1.3 We have $w \in \mathcal{A}_{k}$ if and only if $\tilde{u} \in \mathcal{A}_{k}$.

Lemma 1.4 [5]
Let v be a border of a word w and let u be the word such that $w=u v$. If $|w|>\ell|u|$ for an integer ℓ then u^{ℓ} is a prefix of w.

More precisely, by Proposition 1.1, if v is a border of a word $w=u v(\neq \varepsilon)$, there exist two words r and s over A and an integer $n \geq 0$ such that $u=r s$ and $w=(r s)^{n+1} r$. When $|w| \geq 2|u|$, we get that w is a $\frac{p}{q}$-power with $\frac{p}{q} \geq 2$. So, Proposition 1.1 and Lemma 1.4 mean that a bordered word w that contains a border of length at least $\frac{|w|}{2}$ is not a k-anti-power word for all integers $k \geq 2$. So, we will only be interested in sesquipowers, i.e., $\frac{p}{q}$-powers with $1<\frac{p}{q}<2$.

Lemma 1.5 Let A be an alphabet, let $d \geq 1$ be an integer and let $X, Y \in A^{*}$ such that $X Y \neq \varepsilon$. If $d||X Y|$ and $| Y|\leq(d-1)| X \mid$ then $X Y X \notin \mathcal{A}_{k}$ for all integers $k>d$.

Proof.

In fact, we will show that $X Y X \notin \mathcal{A}_{d+1}$.

If $d=1$ then $Y=\varepsilon, X \neq \varepsilon$ and $X Y X=X^{2} \notin \mathcal{A}_{2}$.
If $d \geq 2$, we have $|X Y|>\frac{d-1}{d}|X Y| \geq|Y|$. Let X_{2} be the suffix of X such that $\left|X_{2} Y\right|=$ $\frac{d-1}{d}|X Y|$ and let X_{1} be the non-empty word such that $X=X_{1} X_{2}$. Since $\left|X_{1}\right|=|X Y|-$ $\left|X_{2} Y\right|=\frac{1}{d}|X Y|$, the word $\left[X_{1}\right] X_{2} Y\left[X_{1}\right] \notin \mathcal{A}_{d+1}$.

Taking $d=\operatorname{gcd}(|X Y| ; k)$, we get:

Corollary 1.6 Let A be an alphabet and let $X, Y \in A^{*}$ such that $X Y \neq \varepsilon$.
For any integer $k \geq 2$, if $\operatorname{gcd}(|X Y| ; k) \neq k$ and if $|Y| \leq(\operatorname{gcd}(|X Y| ; k)-1)|X|$, then $X Y X \notin$ \mathcal{A}_{k}.

Remark 1.7 When $d=2$ in Lemma 1.5, we get that if $|X Y|$ is even and if $|Y| \leq|X|$ then $X Y X \notin \mathcal{A}_{k}$ for all integers $k \geq 3$.

Lemma 1.8 Let A be the alphabet $\left\{a_{1}, a_{2}, \ldots a_{k}, \ldots\right\}$ and let $k \geq 3$ be an integer. The word $\left[a_{1} a_{2} \ldots a_{k-1}\right] a_{k}\left[a_{1} a_{2} \ldots a_{k-1}\right]$ is a k-anti-power word if and only if k is prime.

Proof.

Let $w_{A, k}$ be the word $\left[a_{1} a_{2} \ldots a_{k-1}\right] a_{k}\left[a_{1} a_{2} \ldots a_{k-1}\right]$.
For any integer $2 \leq \ell<k$, by Corollary $1.6, w_{A, k}$ is a ℓ-anti-power word only if $\operatorname{gcd}(k ; \ell)=1$. Since $\mathcal{A}_{k} \subset \mathcal{A}_{\ell}$, the word $w_{A, k}$ is a k-anti-power word only if k is prime.
Let us now assume that k is prime and, by contradiction, let us assume that $w_{A, k} \notin \mathcal{A}_{k}$. It means that $w_{A, k}$ contains a factor of the form $U=u_{1} u_{2} \ldots u_{\ell}$ for an integer $2 \leq \ell \leq k$ and for some words $u_{1}, u_{2}, \ldots, u_{\ell}$ of the same length $\Lambda \geq 1$ with $u_{1}=u_{\ell}$. Let i_{0} be the integer such that $a_{i_{0}}$ is the first letter of u_{1} and let u_{1}^{\prime} be the word $u_{1}=a_{i_{0}} u_{1}^{\prime}$. So $a_{i_{0}} u_{1}^{\prime} u_{2} \ldots u_{\ell-1} a_{i_{0}} u_{1}^{\prime}$ is a factor of $w_{A, k}$. Since $a_{i_{0}}$ appears only twice in $w_{A, k}$, we get that $k=\left|a_{i_{0}} u_{1}^{\prime} u_{2} \ldots u_{\ell-1}\right|=(\ell-1) \times \Lambda$. Since k is a prime number, we get that $\ell=2$ and $\Lambda=k$. It follows that $\left|u_{1} u_{\ell}\right|=2 k>\left|w_{A, k}\right|:$ this is impossible.

Lemma 1.9 Let A be an alphabet and let $X, Y \in A^{*}$ such that $|X|_{a} \times|Y|_{a}=0$ for all letters $a \in A$. If $X \in \mathcal{A}_{k}$ and $Y \in \mathcal{A}_{k}$ and $|Y|>(k-2)|X|$ then $X Y X \in \mathcal{A}_{k}$ for any integer $k \geq 2$.

Proof.

By contradiction, let us assume that $X Y X \notin \mathcal{A}_{k}$ with $X \neq \varepsilon$. It means that $X Y X$ contains a factor of the form $U=u_{1} u_{2} \ldots u_{\ell}$ for an integer $2 \leq \ell \leq k$ and for some words u_{1}, u_{2}, \ldots, u_{ℓ} of the same length $\Lambda \geq 1$ with $u_{1}=u_{\ell}$.
Let a be the first letter of u_{1} and let u_{1}^{\prime} be the word such that $u_{1}=a u_{1}^{\prime}$.
If $|X|_{a}=0$ then $a u_{1}^{\prime} u_{2} \ldots a \in \operatorname{Fcts}(Y)$. We get that $U \in \operatorname{Fcts}(Y)$: a contradiction with the hypothesis that $Y \in \mathcal{A}_{k}$. Thus, $|Y|_{a}=0$ and it implies that $a u_{1}^{\prime}=u_{\ell} \in \operatorname{Fcts}(X)$. Since $U \notin \operatorname{Fcts}(X)$, it follows that $|Y| \leq\left|u_{2} \ldots u_{\ell-1}\right|=(\ell-2) \times \Lambda \leq(k-2) \times|X|$: a contradiction with the hypotheses.

An infinite k-anti-power word is an infinite word whose all finite factors are k-anti-power words. Obviously, the first question is whether such a word exists.

If $A=\{a, b\}$, the only 2-anti-power words are $a b a, b a b$ and their factors. But, for any $k \geq 3$, the only k-anti-power words are $a, b, a b$ and $b a$.
If $\operatorname{Card}(A) \geq 3$, there exist infinite 2 -anti-power (square-free) words [1, 10, 11].
If $k=3$ and $A=\{a, b, c\}$, the only 3 -anti-power words are $a b c a b$, the exchange of letters of this word and their factors. Let us note that the word $a b c a b$ is not $\frac{3}{2}$-power-free.
A $\frac{3}{2}$-power-free word contain neither a factor of the form $x y x$ with $|x|=|y|$, nor a factor of the form $x x$. Thus a $\frac{3}{2}$-power-free word is a 3 -anti-power word (but the converse does not hold). Thus a Dejean's word $[4,3,9]$ over a four-letter alphabet, which does not contain any ℓ-power with $\ell>\frac{7}{5}$-power-free, is a 3 -anti-power word.
More generally, if $k \geq 3$ is a prime number and if A is a k-letter alphabet $\left\{a_{1}, a_{2}, \ldots a_{k}\right\}$, the word $a_{1} a_{2} \ldots a_{k-1} a_{k} a_{1} a_{2} \ldots a_{k-1}$ is a k-anti-power word. But it contains a $\frac{2 k-1}{k}\left(>\frac{k}{k-1}\right)$ power. Furthermore, a Dejean's word over a $(k+1)$-letter alphabet that avoids any power greater than $\frac{k+1}{k}\left(\leq \frac{k}{k-1}\right)$ is a k-anti-power word.

Remark 1.10 If we had chosen not to add that a k-anti-power word must be a $(k-1)$-antipower word, we would have, for instance, that, for $A=\{a ; b ; c\}$, the word abcabcab would have been a 3-anti-power word but not a 2-anti-power word.
More precisely, without the condition that a k-anti-power word w must be a $(k-1)$-anti-power word, we only could say that all prefixes and all suffixes of w of length between $k-1$ and $\left\lfloor\frac{(k-1)|w|}{k}\right\rfloor$ are $(k-1)$-anti-power words.
For an infinite word, it does not change anything to add the condition that a k-anti-power word w must be a $(k-1)$-anti-power word. Indeed, every factor of w whose length is a multiple of $k-1$ can be extended to a factor of w whose length is a multiple of k. Obviously, if these k factors are different, the same holds for $k-1$ ones.

Corollary 1.11 Let $k \geq 2$ be an integer, let A be the alphabet $\left\{a_{0}, a_{1}, \ldots, a_{k+3}, \ldots\right\}$, and let w be a Dejean's word over $\left\{a_{0}, a_{1}, \ldots, a_{k}\right\}$. The word $a_{k+1} a_{k+2} w a_{k+1} a_{k+2}$ is a k-anti-power word if at least one of these conditions holds :
i. $|w| \geq 2 k-3$.
ii. $|w| \geq k-2$ and $|w|$ is not a multiple of 2

The word $a_{k+1} a_{k+2} a_{k+3} w a_{k+1} a_{k+2} a_{k+3}$ is a k-anti-power word if at least one of these conditions holds :
i. $|w| \geq 3 k-5$.
ii. $|w| \geq 2 k-4$ and $|w|$ is not a multiple of 3
iii. $|w| \geq k-3,\left|a_{k+3} w\right|$ is not a multiple of 2 and $|w|$ is not a multiple of 3

More generally, for any integer $p \geq 2$, let w_{p} be the word $a_{k+1} \ldots a_{k+p} w a_{k+1} \ldots a_{k+p}$. If $|w|+i$ is not a multiple of $p-i$ for every integer $0 \leq i \leq p-2$ and if $|w| \geq k-p$ then w_{p} is a k-anti-power word.

Proof. It directly comes from Lemma 1.9 and the fact that the word $S w$ is a k-anti-power word for any suffix S of $a_{k+1} \ldots a_{k+p}$.

1.2 Morphisms

Let A and B be two alphabets. A morphism f from A^{*} to B^{*} is a mapping from A^{*} to B^{*} such that $f(u v)=f(u) f(v)$ for all words u, v over A. When B has no importance, we say that f is a morphism on A or that f is defined on A.
Given an integer $L \geq 1, f$ is L-uniform if $|f(a)|=L$ for every letter a in A. A morphism f is uniform if it is L-uniform for some integer $L \geq 1$.
Let $k \geq 2$ be an integer and let A and B be two alphabets. A morphism f from A^{*} to B^{*} is a k-anti-power morphism if and only if $f(w)$ is a k-anti-power word over B for every k-anti-power word w over A, i.e., $f\left(\mathcal{A}_{A, k}\right) \subset \mathcal{A}_{B, k}$. For instance, the identity endomorphism $I d(\forall a \in A, \operatorname{Id}(a)=a)$ is a k-anti-power morphism.
In particular, a 2-anti-power morphism is a square-free morphism. These last morphisms have been characterized in [2].
Given a morphism f on A, the mirror morphism \tilde{f} of f is defined for all words w over A, by $\tilde{f}(w)=\widetilde{f(\tilde{w})}$. In particular, $\tilde{f}(a)=\widetilde{f(a)}$ for every letter a in A.

Remark 1.12 By remark 1.3, we get that f is a k-anti-power morphism if and only if \tilde{f} is a k-anti-power morphism.

A morphism on A is called prefix (resp. suffix) if, for all different letters a and b in A, the word $f(a)$ is not a prefix (resp. not a suffix) of $f(b)$. A prefix (resp. suffix) morphism is non-erasing. A morphism is bifix if it is prefix and suffix.
Proofs of the following lemmas are left to the reader.
Lemma 1.13 Let f be a bifix morphism on an alphabet A and let u, v, w, and t be words over A.
The equality $f(u)=f(v) p$ with p be a prefix of $f(w)$ implies $u=v w^{\prime}$ for a prefix w^{\prime} of w such that $f\left(w^{\prime}\right)=p$.
And the equality $f(u)=s f(v)$ with s a suffix of $f(t)$ implies $u=t^{\prime} v$ for a suffix t^{\prime} of t such that $f\left(t^{\prime}\right)=s$.

Lemma 1.14 Let f be a prefix morphism on an alphabet A, let u and v be words over A, and let a and b be letters in A. Furthermore, let p_{1} (resp. p_{2}) be a prefix of $f(a)$ (resp. of $f(b)$). If $\left(p_{1} ; p_{2}\right) \neq(\varepsilon ; f(b))$ and if $\left(p_{1} ; p_{2}\right) \neq(f(a) ; \varepsilon)$ then the equality $f(u) p_{1}=f(v) p_{2}$ implies $u=v$ and $p_{1}=p_{2}$.

Lemma 1.15 Let f be a suffix morphism on an alphabet A, let u and v be words over A, and let a and b be letters in A. Furthermore, let s_{1} (resp. s_{2}) be a suffix of $f(a)$ (resp. of $\left.f(b)\right)$. If $\left(s_{1} ; s_{2}\right) \neq(\varepsilon ; f(b))$ and if $\left(s_{1} ; s_{2}\right) \neq(f(a) ; \varepsilon)$ then the equality $s_{1} f(u)=s_{2} f(v)$ implies $u=v$ and $s_{1}=s_{2}$.

Taking $p_{1}=p_{2}=\varepsilon$ (resp. $s_{1}=s_{2}=\varepsilon$) in Lemma 1.14 (resp Lemma 1.15), we get that a prefix (resp. suffix) morphism is injective.

Definition 1.16 A morphism from A^{*} to B^{*} is a ps-morphism (Keränen [6] called f a ps-code) if and only if the equalities

$$
f(a)=p s, f(b)=p s^{\prime} \text { and } f(c)=p^{\prime} s
$$

with $a, b, c \in A($ possibly $c=b)$ and $p, s, p^{\prime}, s^{\prime} \in B^{*}$ imply $b=a$ or $c=a$.

Obviously, taking $c=b$, and $s=\varepsilon$ in a first time and $p=\varepsilon$ in a second time, we obtain that a ps-morphism is a bifix morphism.

Lemma $1.17[6,7]$ If f is not a ps-morphism then f is not a k-power-free morphism for every integer $k \geq 2$.

2 Main results

Proposition 2.1 Let $k \geq 2$ be an integer, let A and B be two alphabets with $\operatorname{Card}(A)=p \geq k$ and let f be a L-uniform morphism from A^{*} to B^{*} (with $L \geq 1$). If there exist five letters a, b, c, d and x (possibly equal) and four words p, s, π and σ such that s is a suffix of $f(a), p$ is a prefix of $f(b), \sigma$ is a suffix of $f(c), \pi$ is a prefix of $f(d),(\pi ; p) \neq(\varepsilon ; f(b)),(\sigma ; s) \neq(\varepsilon ; f(a))$ and sp $=\sigma f(x) \pi$ then f is not a k-anti-power morphism.

Proof.

In fact, we will show that there exists a square-free word of length at most two whose image by f contains a square (f is not a square-free morphism). Therefore, this word will be a k-anti-power-word for any $k \geq 2$ but its image will not be. This will mean that f is not a k-anti-power morphism.
Since $(\pi ; p) \neq(\varepsilon ; f(b)),(\sigma ; s) \neq(\varepsilon ; f(a))$ and $|s p|=L+|\sigma \pi|$, we get $|s|>|\sigma|$ and $|p|>|\pi|$.
Let s^{\prime} be the non empty prefix of $f(x)$ such that $s=\sigma s^{\prime}$ and let p^{\prime} be the non empty suffix of $f(x)$ such that $p=p^{\prime} \pi$.
If $x=a$ and $x=b$, then $f(x)$ is an internal factor of $f(x x)$. By Lemma 1.2, $f(x)$ is not primitive, i.e., f is not a k-anti-power morphism.
Therefore, at least one of the word $a x$ or $b x$ is not a square. But $f(a x)$ contains the square $s^{\prime} s^{\prime}$ and $f(x b)$ contains the square $p^{\prime} p^{\prime}$.

Proposition 2.2 Let $k \geq 2$ be an integer. Let A and B be two alphabets. Let f be a Luniform morphism from A^{*} to B^{*} (with $L \geq 2$). Let us assume that there exists a prime number p such that $\operatorname{Card}(A) \geq p \geq k$.
If there exists an integer $2 \leq d<k$ such that $d \mid L$ then f is not a k-anti-power morphism.

Proof.

Let us assume that $A=\left\{a_{1}, a_{2} \ldots a_{p}, \ldots\right\}$.
The word $w_{A, p}=a_{1} a_{2} \ldots a_{p-1} a_{p} a_{1} a_{2} \ldots a_{p-1} \in \mathcal{A}_{p} \subset \mathcal{A}_{k} \subset \mathcal{A}_{d+1}$. But, by Lemma 1.5 , the word $\left[f\left(a_{1}\right)\left(a_{2}\right) \ldots f\left(a_{p-1}\right)\right] f\left(a_{p}\right)\left[f\left(a_{1}\right)\left(a_{2}\right) \ldots f\left(a_{p-1}\right)\right] \notin \mathcal{A}_{d+1}$, i.e., $f\left(w_{A, p}\right) \notin \mathcal{A}_{k}$.

Proposition 2.3 Let $k \geq 3$ and $L \geq 2$ be two integers. Let A and B be two alphabets with $\operatorname{Card}(A) \geq k$ and let f be L-uniform morphism from A^{*} to B^{*}. Let us assume that there exist three letters a, b and c such that $a \notin\{b, c\}$ and $f(b a c)$ contains a square $T^{2}(\neq \varepsilon)$.
If there exists an integer $2 \leq d<k$ such that $d \| T \mid$ then f is not a k-anti-power morphism.

Proof.

If $b \neq c$ then $a b c$ is a k-anti-power word and f is not a k-anti-power morphism.
From now, let us assume that $f(b a b)=\pi T^{2} \sigma$ (with $|T| \geq 1$).
If $|\pi|>|f(b)|$ (resp. $|\sigma|>|f(b)|)$ then T^{2} is factor of $f(a b)$ (resp. $f(b a)$) with $a b$ (resp. $b a$) a k-anti-power word: f is not a k-anti-power morphism.

Thus there exist two words p and s such that $f(a)=p s, \pi T=f(b) p$ and $T \sigma=s f(b)$. Without loss of generality (using mirror image for instance), we may assume that $|p| \geq|s|$.
If $|T|=|L|$ then $T=s p, f(b)=p s$ and $f(b a)$ contains the square $(p s)^{2}: f$ is not a k-anti-power morphism.
If $|T|>|L|$, let Y be non-empty word such that $T=s Y p$. It follows that $f(b)=\pi s Y=Y p \sigma$. By Lemma 1.1, there exist two words u and v and an integer n such that $Y=u(v u)^{n}, p \sigma=v u$ and $\pi s=u v$. Moreover, since $Y \neq \varepsilon$, we get that $u v \neq \varepsilon$. If $n \geq 1$ then $f(b)$ contains $(u v)^{2}$ that is f is not a k-anti-power morphism. From now, $u=Y$ and $f(b)=Y v Y$. If $|p| \geq|v|$ (resp. $|s| \geq|v|)$ then p starts with v (resp. s ends with v) and $f(b a)$ (resp. fab) contains the square $(Y v)^{2}$ (resp. $(v Y)^{2}: f$ is not a k-anti-power morphism. When $|p|<|v|$ and $|s|<|v|$, the word v starts with p and ends with s. But $|v|<|f(b)|=|f(a)|=|p s|$. Thus there exist three words p^{\prime}, s^{\prime} and $Z \neq \varepsilon$ such that $v=p^{\prime} Z s^{\prime}, p=p^{\prime} Z$ and $s=Z s^{\prime}$. It means that $f(a)$ contains $Z^{2}: f$ is not a k-anti-power morphism.
If $0<|T|<|L|(=|s p|)$, since T starts with s and ends with p, let p^{\prime}, s^{\prime} and $Y \neq \varepsilon$ be the words such that $p=Y p^{\prime}, s=s^{\prime} Y$ and $T=s^{\prime} Y p^{\prime}$. It follows that $f(a)=Y p^{\prime} s^{\prime} Y$. Moreover, from the equality $f(b a b)=\pi T^{2} \sigma$, we get that $f(b)$ starts with p^{\prime} and ends with s^{\prime}. Thus, there exist a word B such that $|B|=2|Y|$ and $f(b)=p^{\prime} B s^{\prime}$.
We have $f(a b)=Y\left[p^{\prime}\right]\left[s^{\prime} Y\right]\left[p^{\prime}\right] B s^{\prime}$ and $f(b a)=p^{\prime} B\left[s^{\prime} Y\right]\left[p^{\prime}\right]\left[s^{\prime} Y\right]$. If there exist an integer $2 \leq d<k$ such that $d \| T \mid$, i.e., $d\left|\left|p^{\prime} s^{\prime} Y\right|\right.$, since either $| s^{\prime} Y\left|\leq\left|p^{\prime}\right| \leq(d-1)\right| p^{\prime} \mid$ or $\left|p^{\prime}\right| \leq\left|s^{\prime} Y\right| \leq$ $(d-1)\left|s^{\prime} Y\right|$, by Lemma 1.5, $f(a b) \notin \mathcal{A}_{B, k}$ or $f(b a) \notin \mathcal{A}_{B, k}: f$ is not a k-anti-power morphism.

Remark 2.4 Let B_{0} be the alphabet $\{a, b, c, d, e, f, g, h, i, j, k, l, m\}^{*}$.
Let f be a uniform morphism from $\{a, b\}^{*}$ to B_{0}^{*} such that $f(a)=$ abcdefghiab, $f(b)=$ cdefjklmghi.
Then $f(b a b)$ contains the square (ghiabcdef) ${ }^{2}$. Therefore, f is not a 2-anti-power morphism (is not a square-free morphism).
For any integer $k \geq 3$, the only k-anti-power words over $\{a, b\}$ are $a, b, a b$, and $b a$.
Moreover, $f(a b)$ and $f(b a)$ are 3-anti-power words: f is a 3-anti-power morphism.
But $f(b a)$ contains ghiabc def ghi. Thus f is not a k-anti-power morphism for any integer $k \geq 4$.

Let $A=\left\{a_{1}, a_{2}, \ldots a_{\alpha}\right\}$ be an alphabet. A trivial morphism from A^{*} to B^{*} is an injective 1-uniform morphism. That is, $f\left(a_{i}\right)=b_{i}$ for some letter $b_{i} \in B$ and $b_{i} \neq b_{j}$ when $i \neq j$.

Proposition 2.5 Let $k \geq 2$ be an integer and let A be an alphabet. Let f be a non-trivial L-uniform morphism defined on A. If $(\operatorname{alph}(f(a)))_{a \in A}$ are not pairwise disjoint sets and if $L<k$ then f is not a k-anti-power morphism.

Proof.

Let assume that $\operatorname{Card}(A)=\alpha$ and $A=\left\{a_{1}, a_{2}, \ldots a_{\alpha}\right\}$.
Since $(\operatorname{alph}(f(a)))_{a \in A}$ are not pairwise disjoint sets, let x be a letter and let $\ell \neq m$ two integers such that such that $x \in \operatorname{alph}\left(f\left(a_{\ell}\right)\right) \cap \operatorname{alph}\left(f\left(a_{m}\right)\right)$.

We have $f\left(a_{\ell}\right)=A_{\ell}^{\prime} x A_{\ell}^{\prime \prime}$ and $f\left(a_{m}\right)=A_{m}^{\prime} x A_{m}^{\prime \prime}$ for four words $A_{\ell}^{\prime}, A_{\ell}^{\prime \prime}, A_{m}^{\prime}$ and $A_{m}^{\prime \prime}$ such that $A_{\ell}^{\prime}+A_{\ell}^{\prime \prime}=A_{m}^{\prime}+A_{m}^{\prime \prime}=L-1$.
So $f\left(a_{\ell} a_{m}\right)=A_{\ell}^{\prime} x A_{\ell}^{\prime \prime} A_{m}^{\prime} x A_{m}^{\prime \prime}$ and $f\left(a_{m} a_{\ell}\right)=A_{m}^{\prime} x A_{m}^{\prime \prime} A_{\ell}^{\prime} x A_{\ell}^{\prime \prime}$ with either $\left|x A_{\ell}^{\prime \prime} A_{m}^{\prime}\right| \leq L \leq k-1$ or $\left|x A_{m}^{\prime \prime} A_{\ell}^{\prime}\right| \leq L \leq k-1$. Since $a_{\ell} a_{m}$ and $a_{m} a_{\ell}$ are k-anti-power words, it means that f is not a k-anti-power morphism.

A morphism f on A is k-anti-power up to $\ell(k, \ell \geq 2)$ if and only if $f(w)$ is a k-anti-power word for every k-anti-power word w over A of length at most ℓ.

Remark 2.6 Let A and B be two alphabets with $\operatorname{Card}(A) \geq k \geq 3$ and let f be a 1-uniform morphism. Then f is a k-anti-power morphism if and only if f is trivial. So f is a k-antipower morphism if and only if it is a k-anti-power morphism up to 2.

Proposition 2.7 Let $k \geq 3$ be an integer and let A and B be two alphabets. Let us assume that there exists a prime number p such that $\operatorname{Card}(A) \geq p \geq k$. Let f be a square-free L-uniform morphism from A^{*} to B^{*}.
Then f is a k-anti-power morphism if and only if it is a k-anti-power morphism up to $2 p-1$.

Proof.

By definition of k-anti-power morphisms, we only have to prove the "if" part of Proposition 2.7.
By Lemma 1.17, f (square-free) is a ps-morphism and so injective.
We may assume that, if there exists an integer $d \geq 2$ such that $d \mid L$, then $d \geq k$. Indeed (see the Proof of Proposition 2.2), if $d \mid L$ and $d<k$ then there exists a word $w_{A, p} \in \mathcal{A}_{A, k}$ such that $\left|w_{A, p}\right|=2 p-1$ and $f\left(w_{A, p}\right) \notin \mathcal{A}_{B, k}: f$ is not a k-anti-power morphism. It particularly means that if $2 \leq \ell \leq k$, then $\operatorname{gcd}(L, \ell-1)=1$.

By contradiction, we assume that a shortest k-anti-power word w (not necessarily unique) such that $f(w)$ contains a non- k-anti-power satisfies $|w| \geq 2 p$. We will show that this assumption leads to contradictions.
Since the length of w is minimal, we may assume that there exist an integer $2 \leq \ell \leq k$ and some words $p, s, u_{1}, u_{2}, \ldots u_{\ell}$ such that $f(w)=p u_{1} u_{2} \ldots u_{\ell} s=p\left(\prod_{q=1}^{\ell} u_{q}\right) s$ where p is a prefix of $f(w[1])$ different from $f(w[1])$ and s is a suffix of $f(w[|w|])$ different from $f(w[|w|])$. Moreover, the words $\left(u_{j}\right)_{j=1, ., \ell}$ have the same length $\Lambda(\geq 1)$ and $u_{1}=u_{\ell}$.
Let $i_{0}=1$ and, for all integers $1 \leq j \leq \ell$, let i_{j} be the shortest integer such that $p \prod_{q=1}^{j} u_{q}$ is the prefix of $f\left(w\left[1 . . i_{j}\right]\right)$. By definition, we have $i_{\ell}=|w|$.
If there exist two different integers j and j^{\prime} such that $i_{j}=i_{j^{\prime}}$ then we get that $\Lambda \leq L$. It implies that $f(w)=|p|+|s|+\ell \times \Lambda \leq(k+2) L$, i.e., $|w| \leq k+2<2 p$: a contradiction.
Thus $1=i_{0}<i_{1}<\ldots<i_{\ell}=|w|$. If we denote a_{j} the letter $w\left[i_{j}\right]$ and x_{j} the word $w\left[i_{j-1}+1 . . i_{j}-1\right]$, we have $w=a_{0} x_{1} a_{1} x_{2} a_{2} \ldots x_{\ell} a_{\ell}$. For all integers $0 \leq j \leq \ell$, there exist some words p_{j} and s_{j} such that $f\left(a_{j}\right)=p_{j} s_{j}$ and $u_{j}=s_{j-1} f\left(x_{j}\right) p_{j}$. In particular, we have $p_{0}=p$ and $s_{\ell}=s$. Moreover, by definition, the words $s_{0}, p_{1}, p_{2}, \ldots, p_{\ell}$ are non empty.
Let us note that, for all integers $1 \leq j_{1}, j_{2} \leq \ell$, we have $\left\|x_{j_{1}}|-| x_{j_{2}}\right\| \leq 1$. Indeed, in the contrary, for instance if $\left|x_{j_{1}}\right| \geq\left|x_{j_{2}}\right|+2$ (obviously with $j_{1} \neq j_{2}$), we get that $\Lambda=\left|u_{j_{1}}\right|=$ $\left|s_{j_{1}-1} f\left(x_{j_{1}}\right) p_{j_{1}}\right|>\left|f\left(x_{j_{1}}\right)\right| \geq\left|f\left(x_{j_{2}}\right)\right|+2 L$. Furthermore, $\Lambda=\left|u_{j_{2}}\right|=\left|s_{j_{2}-1} f\left(x_{j_{2}}\right) p_{j_{2}}\right|<$ $\left|f\left(x_{j_{2}}\right)\right|+2 L$: this is impossible. Since $\sum_{q=1}^{\ell} x_{q} \geq 2 p-\ell-1 \geq \ell-1$, it also implies that $\operatorname{card}\left\{q \mid 1 \leq q \leq \ell\right.$ and $\left.x_{q}=\varepsilon\right\} \leq 1$.
If $j_{1}<j_{2}$ and $u_{j_{1}}=u_{j_{2}}$ with $\left(j_{1}, j_{2}\right) \neq(1, \ell)$ then $w\left[i_{j_{1}-1} . . i_{j_{2}}\right]$ is a proper factor of w and $f\left(w\left[i_{j_{1}-1} . . i_{j_{2}}\right]\right)$ contains the non- $\left(j_{2}-j_{1}+1\right)$-anti-power word $\prod_{q=j_{1}}^{j_{2}} u_{q}$ that is a non- k-antipower word: a contradiction with the hypothesis of the minimal length of w.
In particular, we have $s_{0} f\left(x_{1}\right) p_{1}=u_{1}=u_{\ell}=s_{\ell-1} f\left(x_{\ell}\right) p_{\ell}$.

- Case 1: $\left|s_{0}\right| \neq\left|s_{\ell-1}\right|$ and $\left(s_{0}, s_{\ell-1}\right) \neq\left(f\left(a_{0}\right), \varepsilon\right)$

Since $\operatorname{card}\left\{q \mid 1 \leq q \leq \ell\right.$ and $\left.x_{q}=\varepsilon\right\} \leq 1$, we have either $x_{1} \neq \varepsilon$ or $x_{\ell} \neq \varepsilon$.
If $s_{\ell-1} \neq \varepsilon$ and $(0<)\left|s_{0}\right|<\left|s_{\ell-1}\right|$, by a length criterion, we necessarily have $x_{1} \neq \varepsilon$. Let χ be the first letter of x_{1} and let x_{1}^{\prime} be the word such that $x_{1}=\chi x_{1}^{\prime}$. If $x_{\ell}=\varepsilon$, let $P=p_{\ell}$ and if $x_{\ell} \neq \varepsilon$, let $P=f(\gamma)$ where γ is the first letter of x_{ℓ}. In particular, we have P non-empty. Let π be the non empty prefix of $f\left(x_{1}^{\prime}\right) p_{1}$ such that $s_{0} f(\chi) \pi=s_{\ell-1} P$. By Proposition 2.1 (see also its proof), this last equation implies that f is not a square-free morphism: a contradiction with the hypotheses.

The case $s_{\ell-1} \neq \varepsilon$ with $\left|s_{0}\right|>\left|s_{\ell-1}\right|$ and the case $s_{\ell-1}=\varepsilon$ with $s_{0} \neq f\left(a_{0}\right)$ are solved as previous one using Proposition 2.1.

- Case 2 : $\left(s_{0}, s_{\ell-1}\right)=\left(f\left(a_{0}\right), \varepsilon\right)$

We get that $f\left(a_{0} x_{1}\right) p_{1}=f\left(x_{\ell}\right) p_{\ell}$. By Lemma 1.14, we get $a_{0} x_{1}=x_{\ell}$ and $p_{1}=p_{\ell}$. It implies that $\left|s_{1}\right|=\left|s_{\ell}\right|$.
It follows that $(\ell-1) \times \Lambda=\left|\prod_{q=2}^{\ell} u_{q}\right|=\left|s_{1} f\left(x_{2} a_{2} x_{3} a_{3} \ldots x_{\ell}\right) p_{\ell}\right|=\left|f\left(x_{2} a_{2} x_{3} a_{3} \ldots x_{\ell} a_{\ell}\right)\right|=$ $L \times\left|x_{2} a_{2} x_{3} a_{3} \ldots x_{\ell} a_{\ell}\right|=L \times(\ell-1)+L \times \sum_{q=2}^{\ell}\left|x_{q}\right|$. Since $\operatorname{gcd}(L, \ell-1)=1$, we get that $\sum_{q=2}^{\ell}\left|x_{q}\right|(\geq 1)$ is a multiple of $\ell-1$. But $\| x_{j_{1}}\left|-\left|x_{j_{2}}\right|\right| \leq 1$ for all integers $2 \leq j_{1}, j_{2} \leq \ell$, so it implies that $\left|x_{j_{1}}\right|=\left|x_{j_{2}}\right|=\left|x_{1}\right|+1, \Lambda=L \times\left(\left|x_{1}\right|+2\right)$ and $\left|s_{j-1} p_{j}\right|=L$ for all $1 \leq j \leq \ell$.
For all integers $2 \leq q \leq \ell$, we have $\left|u_{q}\right|=\left|f\left(a_{0} x_{1}\right) p_{1}\right|=\left|f\left(x_{\ell}\right) p_{\ell}\right|=\left|s_{q-1} f\left(x_{q}\right) p_{q}\right|$ and so $\left|s_{q-1} p_{q}\right|=\left|p_{\ell}\right|$. It means that all the $\left(\left|s_{q}\right|\right)_{q=1 . . \ell}$ are equal to 0 and that all the $\left(\left|p_{q}\right|\right)_{q=1 . \ell}$ are equal to L, i.e., $p_{q}=f\left(a_{q}\right)$.
In particular, we get that $f\left(a_{1}\right)=p_{1}=p_{\ell}=f\left(a_{\ell}\right)$ and thus $a_{1}=a_{\ell}$. It follows that $w=a_{0} x_{1} a_{1} x_{2} a_{2} \ldots x_{\ell-1} a_{\ell-1} x_{1} a_{1}$ with $\left|a_{q} x_{q}\right|=\left|x_{1} a_{1}\right|$ for all integers $q \in \llbracket 2 ; \ell-1 \rrbracket$, i.e., w is not a k-anti-power word: a contradiction.

- Case 3: $\left|s_{0}\right|=\left|s_{\ell-1}\right|$

As previous case, we obtain, as a first step, that Λ is a multiple of L. Indeed, we have $(\ell-1) \times \Lambda=\left|\prod_{q=1}^{\ell-1} u_{q}\right|=\left|s_{0} f\left(x_{1} a_{1} x_{2} a_{2} \ldots x_{\ell-1}\right) p_{\ell-1}\right|=\left|f\left(x_{1} a_{1} x_{2} a_{2} \ldots x_{\ell-1} a_{\ell-1}\right)\right|=L \times$ $\left|x_{1} a_{1} x_{2} a_{2} \ldots x_{\ell-1} a_{\ell-1}\right|=L \times(\ell-1)+L \times \sum_{q=1}^{\ell-1}\left|x_{q}\right|$. Since $\operatorname{gcd}(L, \ell-1)=1$, we get that $\sum_{q=1}^{\ell-1}\left|x_{q}\right|(\geq 1)$ is a multiple of $\ell-1$. So $\left|x_{j}\right|=\left|x_{1}\right|, \Lambda=L \times\left(1+\left|x_{1}\right|\right)$ and $\left|s_{j-1} p_{j}\right|=L$ for all $1 \leq j \leq \ell$.
As previous case, it means that all the $\left(\left|s_{q}\right|\right)_{q=0 . . \ell}$ are equal and, consequently, all the $\left(\left|p_{q}\right|\right)_{q=0 . . \ell}$ are also equal.
From the equalites $s_{0} f\left(x_{1}\right) p_{1}=s_{\ell-1} f\left(x_{\ell}\right) p_{\ell}$ and $\left|s_{0}\right|=\left|s_{\ell-1}\right|$, we get $s_{\ell-1}=s_{0}(\neq \varepsilon)$. By Lemma 1.14, it also implies $x_{\ell}=x_{1}$ and $p_{1}=p_{\ell}(\neq \varepsilon)$.
In particular, since all the $\left(\left|x_{i}\right|\right)_{i=1 . . \ell}$ are equal and since $w=a_{0} x_{1} a_{1} x_{2} a_{2} \ldots x_{\ell-1} a_{\ell-1} x_{1} a_{\ell}$ is a k-anti-power word, we have $a_{0} \neq a_{\ell-1}$ and $a_{1} \neq a_{\ell}$.
If $a_{0}=a_{1}$ then we get $p_{0}=p_{1}\left(=p_{\ell}\right), f\left(a_{0}\right)=p_{0} s_{0}, f\left(a_{\ell-1}\right)=p_{\ell-1} s_{\ell-1}=p_{\ell-1} s_{0}$ and $f\left(a_{\ell}\right)=p_{\ell} s_{\ell}=p_{0} s_{\ell}$. It means that $f\left(a_{\ell-1} a_{0} a_{\ell}\right)$ contains $\left(s_{0} p_{0}\right)^{2}$ with $a_{\ell-1} a_{0} a_{\ell}$ square-free since $a_{0} \neq a_{\ell-1}$ and $a_{0}=a_{1} \neq a_{\ell}$: a contradiction with the hypothesis that f is a square-free morphism.
In the same way, if $a_{\ell-1}=a_{\ell}$, we get that $f\left(a_{0} a_{\ell} a_{1}\right)$ contains $\left(s_{\ell} p_{\ell}\right)^{2}$ with $a_{0} a_{\ell} a_{1}$ square-free. If $a_{0}=a_{\ell}$, we get that $f\left(a_{\ell-1} a_{\ell} a_{1}\right)$ contains $\left(s_{\ell} p_{\ell}\right)^{2}$ with $a_{0} a_{\ell} a_{1}$ square-free. And, if $a_{1}=a_{\ell-1}$, we get that $f\left(a_{0} a_{1} a_{\ell}\right)$ contains $\left(s_{1} p_{1}\right)^{2}$ with $a_{0} a_{1} a_{\ell}$ square-free. All theses cases lead to the same contradiction.
Thus $a_{0}, a_{1}, a_{\ell-1}$ and a_{ℓ} are four different letters. It means that $a_{0} a_{1} a_{\ell-1} a_{\ell}$ is a k-anti-power word of length lower that $2 p$. But $f\left(a_{0} a_{1} a_{\ell-1} a_{\ell}\right)$ contains the non-3-anti-power sequence $s_{0} p_{1} s_{1} p_{\ell-1} s_{\ell-1} p_{\ell}=s_{0} p_{1} s_{1} p_{\ell-1} s_{0} p_{1}:$ a (final) contradiction with the minimality of $|w|$.

References

[1] J. Berstel. Axel Thue's papers on repetition in words: a translation. Technical Report 20, Laboratoire de Combinatoire et d'Informatique Mathématique, Université du Québec, Montréal, 1995.
[2] M. Crochemore. Sharp characterizations of squarefree morphisms. Theoretical Computer Science, 18:221-226, 1982.
[3] James D. Currie and Narad Rampersad. A proof of dejean's conjecture. Mathematics of computation, 80:1063-1070, 2011.
[4] F. Dejean. Sur un théorème de Thue. J. Comb. Theory, 13:90-99, 1972. series A.
[5] Gabriele Fici, Antonio Restivo, Manuel Silva, and Luca Q. Zamboni. Anti-powers in infinite words. Journal of Combinatorial Theory, Series A, 157:109-119, 2018.
[6] V. Keränen. On the k-freeness of morphisms on free monoids. Annales Academiae Scientarium Fennicae 61, Series A, 1986.
[7] M. Leconte. Codes sans répétition. PhD thesis, LITP Université Paris 6, october 1985.
[8] M. Lothaire. Combinatorics on words, volume 17 of Encyclopedia of Mathematics. Addison-Wesley, 1983. Reprinted in 1997 by Cambridge University Press in the Cambridge Mathematical Library, Cambridge, UK, 1997.
[9] Michaël Rao. Last cases of dejean's conjecture. Theoretical Computer Science, 412(27):3010 - 3018, 2011. Combinatorics on Words (WORDS 2009).
[10] A. Thue. Uber unendliche zeichenreihen. Kristiania Videnskapsselskapets Skrifter Klasse I. Mat.-naturv, 7:1-22, 1906.
[11] A. Thue. Uber die gegenseitige Lage gleigher Teile gewisser Zeichenreihen. Kristiania Videnskapsselskapets Skrifter Klasse I. Mat.-naturv, 1:1-67, 1912.

