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k-anti-power uniform morphisms

Francis Wlazinski

January 5, 2024

Abstract

Words whose every k(≥ 3) successive factors of the same length are all different, i.e., k-
anti-power words are natural extensions of square-free words (every two successive factors
of the same length are different). We give a way to verify whether a uniform morphism
preserves k-anti-power words, i.e., the image by this morphism of all k-anti-power words
are k-anti-power words.

A consequence of the existence of such morphisms is the possibility of generating an
infinite k-anti-power word.

1 Preliminaries

Let us recall some basic notions of Combinatorics of words.

1.1 Words

An alphabet A is a finite set of symbols called letters. A word over A is a finite sequence
of letters from A. The empty word ε is the empty sequence of letters. Equipped with the
concatenation operation, the set A∗ of words over A is a free monoid with ε as neutral element
and A as set of generators. Since an alphabet with one element is limited interest to us, we
always assume that the cardinality of considered alphabets is at least two. Given a non-empty
word u = a1 . . . an with ai ∈ A for any integer i from 1 to n, the length of u denoted by |u| is
the integer n that is the number of letters of u. By convention, we have |ε| = 0. We denote
by A+ the set of words of positive length over A, i.e., A+ = A∗ \ {ε}.
Given two words w and u, we denote by |w|u the number of different words p such that pu is
a prefix of w. For instance, if w = abaababa, we have |w|a = 5, |w|aba = 3.

An infinite word over A is a map from N to A that is an infinite sequence of letters a1 . . . an . . .
with ai ∈ A. And AN is the set of all infinite words over A.

The mirror image of u, denoted by ũ, is the word an....a2a1. In the particular case of the
empty word, ε̃ = ε.

A word u is a factor of a word v if there exist two (possibly empty) words p and s such that
v = pus. We denote Fcts (v) the set of all factors of v. If u ∈ Fcts (v), we also say that v
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contains the word u (as a factor). If p = ε, u is a prefix of v. If s = ε, u is a suffix of v. If
u 6= v, u is a proper factor of v. If u, p and s are non-empty, u is an internal factor of v.
Furthermore, alph(v) = {u ∈ Fcts (v) | |u| = 1} is the set of all the letters in v.

Let w be a non-empty word and let i, j be two integers such that 0 ≤ i − 1 ≤ j ≤ |w|. We
denote by w[i..j] the factor of w such that |w[i..j]| = j− i+ 1 and w = pw[i..j]s for two words
s and p verifying |p| = i − 1. When j > i, w[i..j] is simply the factor of w that starts at the
ith letter and ends at the jth. Note that, when j = i− 1, we have w[i..j] = ε. When i = j, we
also denote by w[i] the factor w[i..i] which is the ith letter of w. In particular, w[1] and w[|w|]
are respectively the first and the last letter of w.

Powers of a word are defined inductively by u0 = ε, and for any integer n ≥ 1, un = uun−1.
Given an integer k ≥ 2, since the case εk is of little interest, we call a k-power any word
uk with u 6= ε. And a word is k-power-free if it does not contain any k-power as factor. A
primitive word is a word which is not a `-power of another word whatever the integer ` ≥ 2.

Given two integers p > q ≥ 1 and two words x and y with xy 6= ε, a word of the form (xy)αx

with |(xy)αx|
|xy| = α + |x|

|xy| = p
q is called a p

q -power. For instance, the word anchorman is a

(1 + 2
7 =)97 -power and the word abaabaa is a (2 + 1

3 =)73 -power. In particular, a 3
2 -power is a

word of the form xyx with |x| = |y| 6= ε. For instance, the word antman is a 3
2 -power. A word

is p
q -power-free if it does not contain any `-power as factor with ` ≥ p

q . The word abcaba is

not 8
5 -power-free. Indeed, it contains the word abc ab which is a 5

3 -power.

A border of a word w is a factor v /∈ {ε, w} of w that is both a prefix and a suffix of w. When
|w| > 2|v|, we say that the bordered word w is a sesquipower or a Zimin word.

The two following propositions are well known. The first one is about bordered words.

Proposition 1.1 [8] Let A be an alphabet and u, v, w three non-empty words over A.

If vt = uv then there exist two words r and s over A and an integer n such that v = (rs)nr,
u = rs and t = sr.

Lemma 1.2 [6, 7] If a non-empty word v is an internal factor of vv, i.e., if there exist two
non-empty words x and y such that vv = xvy, then there exist a non-empty word t and two
integers i, j ≥ 1 such that x = ti, y = tj, and v = ti+j.

Given an integer k ≥ 2 and an integer j ≥ 1, a (k, j)-anti-power sequence or simply a k-
anti-power [5] is a concatenation of k consecutive pairwise different words of the same length
j.

For instance, if A = {a, b}, the words u = aa ba bb ab and v = aba bab abb aaa are respectively
(4, 2)-anti-power and (4, 3)-anti-power sequences. But the prefix abababab of v is not a 4-anti-
power sequence: it is even a 4-power.

Given an integer k ≥ 1, if Card (A) = α ≥ 2 then there exit αn different words in A∗ of
length n ≥ 1. Among the words of length k × n, there are αn different k-powers (of length

k × n) and Akαn =
(αn) !

(αn − k) !
different (k, n)-anti-power sequences if αn ≥ k and 0 otherwise.
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It particulary means that there exists an integer k0 such that there are no (k′, n)-anti-power
sequences over A for any k′ ≥ k0.
For any alphabet A with Card (A) = α ≥ 2 and for any integer k ≥ 2, there exists a smallest
integer p0 such that αp0 ≥ k. And, if p ≥ p0, the set of (k, p)-anti-power sequences is greater
than the set of k-powers of length p× k.

A 2-anti-power word is simply a square-free word. Given an integer k ≥ 3, a word w is a
k-anti-power word if it is a (k − 1)-anti-power word and, when |w| ≥ k, if any factor of w of

length k× j for every integer 1 ≤ j ≤
⌊
|w|
k

⌋
is a (k, j)-anti-power sequence. As precised, w can

contain a factor of length k only if |w| ≥ k. But, by the choosen definition, a word of length
n with 2 ≤ n < k is a k-anti-power word if and only if it is a n-anti-power word. Of course,
such a word exists only if Card (A) = α ≥ n.

In other words, for any integer 2 ≤ ` ≤ k, if we choose ` successive factors of the same length
of a k-anti-power word, they are all different.

A word w is not a k-anti-power word (k ≥ 2) if and only if it contains a factor of the form
U = u1u2 . . . u` for an integer 2 ≤ ` ≤ k and for some non-empty words u1, u2, . . . , u` of the
same length and such that u1 = u`. The word U is a `

`−1 -power. So, a word w that is not

a k-anti-power word contains at least a k
k−1 -power (when ` = k). The converse is false. For

instance, the word abcde abc is a 8
5(> 4

3) power. But it is a 4-anti-power word over a five-letter
alphabet.

Let AA,k, or Ak if no doubt exists for the alphabet A, be the set of all k-anti-power words
over A. By definition, we have Ak ⊂ Ak−1 . . . ⊂ A2. So let BA,k, or Bk, be the set Ak−1 \ Ak.

Remark 1.3 We have w ∈ Ak if and only if ũ ∈ Ak.

Lemma 1.4 [5]

Let v be a border of a word w and let u be the word such that w = uv.
If |w| > `|u| for an integer ` then u` is a prefix of w.

More precisely, by Proposition 1.1, if v is a border of a word w = uv( 6= ε), there exist two
words r and s over A and an integer n ≥ 0 such that u = rs and w = (rs)n+1r. When
|w| ≥ 2|u|, we get that w is a p

q -power with p
q ≥ 2. So, Proposition 1.1 and Lemma 1.4 mean

that a bordered word w that contains a border of length at least |w|2 is not a k-anti-power
word for all integers k ≥ 2. So, we will only be interested in Zimin words, i.e., p

q -powers with

1 < p
q < 2.

Lemma 1.5 Let A be an alphabet, let d ≥ 1 be an integer and let X,Y ∈ A∗ such that
XY 6= ε. If d||XY | and |Y | ≤ (d− 1)|X| then XYX /∈ Ak for all integers k > d.

Proof.

In fact, we will show that XYX /∈ Ad+1.
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If d = 1 then Y = ε, X 6= ε and XYX = X2 /∈ A2.

If d ≥ 2, we have |XY | > d−1
d |XY | ≥ |Y |. Let X2 be the suffix of X such that |X2Y | =

d−1
d |XY | and let X1 be the non-empty word such that X = X1X2. Since |X1| = |XY | −
|X2Y | = 1

d |XY |, the word [X1]X2Y [X1] /∈ Ad+1.

Taking d = gcd(|XY |; k), we get:

Corollary 1.6 Let A be an alphabet and let X,Y ∈ A∗ such that XY 6= ε.

For any integer k ≥ 2, if gcd(|XY |; k) 6= k and if |Y | ≤ (gcd(|XY |; k)− 1)|X|, then XYX /∈
Ak.

Remark 1.7 When d = 2 in Lemma 1.5, we get that if |XY | is even and if |Y | ≤ |X| then
XYX /∈ Ak for all integers k ≥ 3.

Lemma 1.8 Let A be the alphabet {a1, a2, . . . ak, . . .} and let k ≥ 3 be an integer. The word
[a1a2 . . . ak−1] ak [a1a2 . . . ak−1] is a k-anti-power word if and only if k is prime.

Proof.

Let wsp,k be the word [a1a2 . . . ak−1] ak [a1a2 . . . ak−1].

Since wsp,k is a `-anti-power word for an integer 2 ≤ ` < k only if gcd(k; `) = 1, and, since
Ak ⊂ A`, the word wsp,k is a k-anti-power word only if k is prime.

Let us now assume that k is prime and, by contradiction, let us assume that wsp,k /∈ Ak.
It means that wsp,k contains a factor of the form U = u1u2 . . . u` for an integer 2 ≤ ` ≤ k
and for some words u1, u2, . . . , u` of the same length Λ ≥ 1 with u1 = u`. Let i0 be
the integer such that ai0 is the first letter of u1 and let u′1 be the word u1 = ai0u

′
1. So

ai0u
′
1u2 . . . u`−1ai0u

′
1 is a factor of wsp,k. Since ai0 appears only twice in wsp,k, we get that

k = |ai0u′1u2 . . . u`−1| = (`− 1)× Λ. Since k is a prime number, we get that ` = 2 and Λ = k.
It follows that |u1u`| = 2k > |wsp,k|: this is impossible.

Lemma 1.9 Let A be an alphabet and let X,Y ∈ A∗ such that |X|a × |Y |a = 0 for all letters
a ∈ A. If X ∈ Ak and Y ∈ Ak and |Y | > (k − 2)|X| then XYX ∈ Ak for any integer k ≥ 2.

Proof.

By contradiction, let us assume that XYX /∈ Ak with X 6= ε. It means that XYX contains
a factor of the form U = u1u2 . . . u` for an integer 2 ≤ ` ≤ k and for some words u1, u2, . . . ,
u` of the same length Λ ≥ 1 with u1 = u`.

Let a be the first letter of u1 and let u′1 be the word such that u1 = au′1.

If |X|a = 0 then au′1u2 . . . a ∈ Fcts (Y ). We get that U ∈ Fcts (Y ): a contradiction with the
hypotheses. Thus, |Y |a = 0 and it implies that au′1 = u` ∈ Fcts (X). Since U /∈ Fcts (X),
it follows that |Y | ≤ |u2 . . . u`−1| = (` − 2) × Λ ≤ (k − 2) × |X|: a contradiction with the
hypotheses.

4



An infinite k-anti-power word is an infinite word whose all finite factors are k-anti-power
words. Obviously, the first question is whether such a word exists.

If A = {a, b}, the only 2-anti-power words are aba, bab and their factors. But, for any k ≥ 3,
the only k-anti-power words are a, b, ab and ba.

If Card (A) ≥ 3, there exist infinite 2-anti-power (square-free) words [1, 10, 11].

If k = 3 and A = {a, b, c}, the only 3-anti-power words are abcab, the exchange of letters of
this word and their factors. Let us note that the word abcab is not 3

2 -power-free.

A 3
2 -power-free word contain neither a factor of the form xyx with |x| = |y|, nor a factor of

the form xx. Thus a 3
2 -power-free word is a 3-anti-power word (but the converse does not

hold). Thus a Dejean’s word [4, 3, 9] over a four-letter alphabet, which does not contain any
`-power with ` > 7

5 -power-free, is a 3-anti-power word.

More generally, if k ≥ 3 is a prime number and if A is a k-letter alphabet {a1, a2, . . . ak},
the word a1a2 . . . ak−1aka1a2 . . . ak−1 is a k-anti-power word. But it contains a 2k−1

k

(
> k

k−1

)
power. Furthermore, a Dejean’s word over a (k + 1)-letter alphabet that avoids any power
greater than k+1

k (≤ k
k−1) is a k-anti-power word.

Remark 1.10 If we had chosen not to add that a k-anti-power word must be a (k − 1)-anti-
power word, we would have, for instance, that, for A = {a; b; c}, the word abcabcab would have
been a 3-anti-power word but not a 2-anti-power word.

More precisely, without the condition that a k-anti-power word w must be a (k−1)-anti-power
word, we only could say that all prefixes and all suffixes of w of length between k − 1 and⌊

(k − 1)|w|
k

⌋
are (k − 1)-anti-power words.

For an infinite word, it does not change anything to add the condition that a k-anti-power word
w must be a (k − 1)-anti-power word. Indeed, every factor of w whose length is a multiple of
k − 1 can be extended to a factor of w whose length is a multiple of k. Obviously, if these k
factors are different, the same holds for k − 1 ones.

Corollary 1.11 Let k ≥ 2 be an integer, let A be the alphabet {a0, a1, . . . , ak+3, . . .}, and let
w be a Dejean’s word over {a0, a1, . . . , ak}. The word ak+1ak+2w ak+1ak+2 is a k-anti-power
word if at least one of these conditions holds :

i. |w| ≥ 2k − 3.

ii. |w| ≥ k − 2 and |w| is not a multiple of 2

The word ak+1ak+2ak+3w ak+1ak+2ak+3 is a k-anti-power word if at least one of these condi-
tions holds :

i. |w| ≥ 3k − 5.

ii. |w| ≥ 2k − 4 and |w| is not a multiple of 3

iii. |w| ≥ k − 3, |ak+3w| is not a multiple of 2 and |w| is not a multiple of 3
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More generally, for any integer p ≥ 2, let wp be the word ak+1 . . . ak+pw ak+1 . . . ak+p. If
|w|+ i is not a multiple of p− i for every integer 0 ≤ i ≤ p− 2 and if |w| ≥ k − p then wp is
a k-anti-power word.

Proof. It directly comes from Lemma 1.9 and the fact that the word Sw is a k-anti-power
word for any suffix S of ak+1 . . . ak+p.

1.2 Morphisms

Let A and B be two alphabets. A morphism f from A∗ to B∗ is a mapping from A∗ to B∗

such that f(uv) = f(u)f(v) for all words u, v over A. When B has no importance, we say
that f is a morphism on A or that f is defined on A.

Given an integer L ≥ 1, f is L-uniform if |f(a)| = L for every letter a in A. A morphism f is
uniform if it is L-uniform for some integer L ≥ 1.

Let k ≥ 2 be an integer and let A and B be two alphabets. A morphism f from A∗ to
B∗ is a k-anti-power morphism if and only if f(w) is a k-anti-power word over B for every
k-anti-power word w over A, i.e., f(AA,k) ⊂ AB,k. For instance, the identity endomorphism
Id (∀a ∈ A, Id(a) = a) is a k-anti-power morphism.

In particular, a 2-anti-power morphism is a square-free morphism. These last morphisms have
been characterized in [2].

Given a morphism f on A, the mirror morphism f̃ of f is defined for all words w over A, by

f̃(w) = f̃(w̃). In particular, f̃(a) = f̃(a) for every letter a in A.

Remark 1.12 By remark 1.3, we get that f is a k-anti-power morphism if and only if f̃ is a
k-anti-power morphism.

A morphism on A is called prefix (resp. suffix ) if, for all different letters a and b in A, the
word f(a) is not a prefix (resp. not a suffix) of f(b). A prefix (resp. suffix) morphism is
non-erasing. A morphism is bifix if it is prefix and suffix.

Proofs of the following lemmas are left to the reader.

Lemma 1.13 Let f be a bifix morphism on an alphabet A and let u, v, w, and t be words
over A.
The equality f(u) = f(v)p with p be a prefix of f(w) implies u = vw′ for a prefix w′ of w such
that f(w′) = p.
And the equality f(u) = sf(v) with s a suffix of f(t) implies u = t′v for a suffix t′ of t such
that f(t′) = s.

Lemma 1.14 Let f be a prefix morphism on an alphabet A, let u and v be words over A, and
let a and b be letters in A. Furthermore, let p1 (resp. p2) be a prefix of f(a) (resp. of f(b)). If
(p1; p2) 6= (ε; f(b)) and if (p1; p2) 6= (f(a); ε) then the equality f(u)p1 = f(v)p2 implies u = v
and p1 = p2.
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Lemma 1.15 Let f be a suffix morphism on an alphabet A, let u and v be words over A, and
let a and b be letters in A. Furthermore, let s1 (resp. s2) be a suffix of f(a) (resp. of f(b)). If
(s1; s2) 6= (ε; f(b)) and if (s1; s2) 6= (f(a); ε) then the equality s1f(u) = s2f(v) implies u = v
and s1 = s2.

Taking p1 = p2 = ε (resp. s1 = s2 = ε) in Lemma 1.14 (resp Lemma 1.15), we get that a
prefix (resp. suffix) morphism is injective.

Definition 1.16 A morphism f from A∗ to B∗ is a ps-morphism (Keränen [6] called f a
ps-code) if and only if the equalities

f(a) = ps, f(b) = ps′ and f(c) = p′s
with a, b, c ∈ A (possibly c = b) and p, s, p′, s′ ∈ B∗ imply b = a or c = a.

Obviously, taking c = b, and s = ε in a first time and p = ε in a second time, we obtain that
a ps-morphism is a bifix morphism.

Lemma 1.17 [6, 7] If f is not a ps-morphism then f is not a k-power-free morphism for
every integer k ≥ 2.

Proposition 1.18 Let k ≥ 2 be an integer, let A and B be two alphabets with Card (A) =
p ≥ k and let f be a L-uniform morphism from A∗ to B∗ (with L ≥ 1). If there exist five
letters a, b, c, d and x (possibly equal) and four words p, s, π and σ such that s is a suffix
of f(a), p is a prefix of f(b), σ is a suffix of f(c), π is a prefix of f(d), (π; p) 6= (ε; f(b)),
(σ; s) 6= (ε; f(a)) and sp = σf(x)π then f is not a k-anti-power morphism.

Proof.

In fact, we will show that there exists a square-free word of length at most two whose image
by f contains a square. Therefore, this word will be a k-anti-power-word for any k ≥ 2 but
its image will not be. This will mean that f is not a k-anti-power morphism.

Since (π; p) 6= (ε; f(b)), (σ; s) 6= (ε; f(a)) and |sp| = L+ |σπ|, we get |s| > |σ| and |p| > |π|.
Let s′ be the non empty prefix of f(x) such that s = σs′ and let p′ be the non empty suffix of
f(x) such that p = p′π.

If x = a and x = b, then f(x) is an internal factor of f(xx). By Lemma 1.2, f(x) is not
primitive, i.e., f is not a k-anti-power morphism.

Therefore, at least one of the word ax or bx is not a square. But f(ax) contains the square
s′s′ and f(xb) contains the square p′p′.

Proposition 1.19 Let k ≥ 2 be an integer. Let A and B be two alphabets. Let f be a L-
uniform morphism from A∗ to B∗ (with L ≥ 2). Let us assume that there exists a prime
number p such that Card (A) ≥ p ≥ k.

If there exists an integer 2 ≤ d < k such that d|L then f is not a k-anti-power morphism.
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Proof.

Let us assume that A = {a1, a2 . . . ap, . . .}.
The word w(A,p) = a1a2 . . . ap−1apa1a2 . . . ap−1 ∈ Ap ⊂ Ak ⊂ Ad+1. But, by Lemma 1.5, the
word [f(a1)(a2) . . . f(ap−1)] f(ap) [f(a1)(a2) . . . f(ap−1)] /∈ Ad+1, i.e., f(w(A,p)) /∈ Ak.

Proposition 1.20 Let k ≥ 3 and L ≥ 2 be two integers. Let A and B be two alphabets with
Card (A) ≥ k and let f be L-uniform morphism from A∗ to B∗. Let us assume that there exist
three letters a, b and c such that a /∈ {b, c} and f(bac) contains a square T 2( 6= ε).

If there exists an integer 2 ≤ d < k such that d||T | then f is not a k-anti-power morphism.

Proof.

If b 6= c then abc is a k-anti-power word and f is not a k-anti-power morphism.

From now, let us assume that f(bab) = πT 2σ (with |T | ≥ 1).

If |π| > |f(b)| (resp. |σ| > |f(b)|) then T 2 is factor of f(ab) (resp. f(ba)) with ab (resp. ba) a
k-anti-power word: f is not a k-anti-power morphism.

Thus there exist two words p and s such that f(a) = ps, πT = f(b)p and Tσ = sf(b). Without
loss of generality (using mirror image for instance), we may assume that |p| ≥ |s|.
If |T | = |L| then T = sp, f(b) = ps and f(ba) contains the square (ps)2: f is not a k-anti-power
morphism.

If |T | > |L|, let Y be non-empty word such that T = sY p. It follows that f(b) = πsY = Y pσ.
By Lemma 1.1, there exist two words u and v and an integer n such that Y = u(vu)n, pσ = vu
and πs = uv. Moreover, since Y 6= ε, we get that uv 6= ε. If n ≥ 1 then f(b) contains (uv)2

that is f is not a k-anti-power morphism. From now, u = Y and f(b) = Y vY . If |p| ≥ |v|
(resp. |s| ≥ |v|) then p starts with v (resp. s ends with v) and f(ba) (resp. fab) contains the
square (Y v)2 (resp. (vY )2: f is not a k-anti-power morphism. When |p| < |v| and |s| < |v|,
the word v starts with p and ends with s. But |v| < |f(b)| = |f(a)| = |ps|. Thus there exist
three words p′, s′ and Z 6= ε such that v = p′Zs′, p = p′Z and s = Zs′. It means that f(a)
contains Z2: f is not a k-anti-power morphism.

If 0 < |T | < |L|(= |sp|), since T starts with s and ends with p, let p′, s′ and Y 6= ε be the
words such that p = Y p′, s = s′Y and T = s′Y p′. It follows that f(a) = Y p′s′Y . Moreover,
from the equality f(bab) = πT 2σ, we get that f(b) starts with p′ and ends with s′. Thus,
there exist a word B such that |B| = 2|Y | and f(b) = p′Bs′.
We have f(ab) = Y [p′][s′Y ][p′]Bs′ and f(ba) = p′B[s′Y ][p′][s′Y ]. If there exist an integer
2 ≤ d < k such that d||T |, i.e., d||p′s′Y |, since either |s′Y | ≤ |p′| ≤ (d− 1)|p′| or |p′| ≤ |s′Y | ≤
(d− 1)|s′Y |, by Lemma 1.5, f(ab) /∈ AB,k or f(ba) /∈ AB,k: f is not a k-anti-power morphism.

Remark 1.21 Let B0 be the alphabet {a, b, c, d, e, f, g, h, i, j, k, l,m}∗.
Let f be a uniform morphism from {a, b}∗ to B∗0 such that f(a) = abcdefghiab, f(b) =
cdefjklmghi.
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Then f(bab) contains the square (ghiabcdef)2. Therefore, f is not a 2-anti-power morphism
(is not a square-free morphism).

For any integer k ≥ 3, the only k-anti power words over {a, b} are a, b, ab, and ba.

Moreover, f(ab) and f(ba) are 3-anti-power words: f is a 3-anti-power morphism.

But f(ba) contains ghi abc def ghi. Thus f is not a k-anti-power morphism for any integer
k ≥ 4.

Let A = {a1, a2, . . . aα} be an alphabet. A trivial morphism from A∗ to B∗ is an injective
1-uniform morphism. That is, f(ai) = bi for some letter bi ∈ B and bi 6= bj when i 6= j.

Proposition 1.22 Let k ≥ 2 be an integer and let A be an alphabet. Let f be a non-trivial
L-uniform morphism defined on A. If (alph(f(a)))a∈A are not pairwise disjoint sets and if
L < k then f is not a k-anti-power morphism.

Proof.

Let assume that Card (A) = α and A = {a1, a2, . . . aα}.
Since (alph(f(a)))a∈A are not pairwise disjoint sets, let x be a letter and let ` 6= m two integers
such that such that x ∈ alph(f(a`)) ∩ alph(f(am)).

We have f(a`) = A′`xA
′′
` and f(am) = A′mxA

′′
m for four words A′`, A

′′
` , A

′
m and A′′m such that

A′` +A′′` = A′m +A′′m = L− 1.

So f(a`am) = A′`xA
′′
`A
′
mxA

′′
m and f(ama`) = A′mxA

′′
mA
′
`xA

′′
` with either |xA′′`A′m| ≤ L ≤ k−1

or |xA′′mA′`| ≤ L ≤ k− 1. Since a`am and ama` are k-anti-power words, it means that f is not
a k-anti-power morphism.

A morphism f on A is k-anti-power up to ` (k, ` ≥ 2) if and only if f(w) is a k-anti-power
word for every k-anti-power word w over A of length at most `.

Remark 1.23 Let A and B be two alphabets with Card (A) ≥ k ≥ 3 and let f be a 1-uniform
morphism. Then f is a k-anti-power morphism if and only if f is trivial. So f is a k-anti-
power morphism if and only if it is a k-anti-power morphism up to 2.

Proposition 1.24 Let k ≥ 3 be an integer and let A and B be two alphabets. Let us assume
that there exists a prime number p such that Card (A) ≥ p ≥ k. Let f be a square-free
L-uniform morphism from A∗ to B∗.

Then f is a k-anti-power morphism if and only if it is a k-anti-power morphism up to 2p− 1.

Proof.

By definition of k-anti-power morphisms, we only have to prove the ”if” part of Proposi-
tion 1.24.

By Lemma 1.17, f (square-free) is a ps-morphism and so injective.
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We may assume that, if there exists an integer d ≥ 2 such that d|L then d ≥ k. Indeed (see
the Proof of Proposition 1.19), if d|L and d < k then there exists a word wA,p ∈ AA,k such
that |wA,p| = 2p − 1 and f(wA,p) /∈ AB,k: f is not a k-anti-power morphism. It particularly
means that if 2 ≤ ` ≤ k, then gcd(L, `− 1) = 1.

By contradiction, we assume that a shortest k-anti-power word w (not necessarily unique) such
that f(w) contains a non-k-anti-power satisfies |w| ≥ 2p. We will show that this assumption
leads to contradictions.

Since the length of w is minimal, we may assume that there exist an integer 2 ≤ ` ≤ k and

some words p, s, u1, u2, . . .u` such that f(w) = pu1u2 . . . u`s = p
(∏`

q=1 uq

)
s where p is a

prefix of f(w[1]) different from f(w[1]) and s is a suffix of f(w[|w|]) different from f(w[|w|]).
Moreover, the words (uj)j=1,..,` have the same length Λ(≥ 1) and u1 = u`.

Let i0 = 1 and, for all integers 1 ≤ j ≤ `, let ij be the shortest integer such that p
∏j
q=1 uq is

the prefix of f(w[1..ij ]). By definition, we have i` = |w|.
If there exist two different integers j and j′ such that ij = ij′ then we get that Λ ≤ L. It
implies that f(w) = |p|+ |s|+ `× Λ ≤ (k + 2)L, i.e., |w| ≤ k + 2 < 2p: a contradiction.

Thus 1 = i0 < i1 < . . . < i` = |w|. If we denote aj the letter w[ij ] and xj the word
w[ij−1 + 1..ij − 1], we have w = a0 x1a1 x2a2 . . . x`a`. And there exist some words pj and sj
(0 ≤ j ≤ `) such that f(aj) = pjsj with p0 = p and s` = s. By definition, the words s0,
p1, p2, . . . , p` are non empty and uj = sj−1f(xj)pj for all 1 ≤ j ≤ `.
Let us note that, for all integers 1 ≤ j1, j2 ≤ `, we have ||xj1 | − |xj2 || ≤ 1. Indeed, in
the contrary, for instance if |xj1 | ≥ |xj2 | + 2 (obviously with j1 6= j2), we get that Λ =
|uj1 | = |sj1−1f(xj1)pj1 | > |f(xj1)| ≥ |f(xj2)| + 2L. Moreover Λ = |uj2 | = |sj2−1f(xj2)pj2 | <
|f(xj2)| + 2L: this is impossible. Since

∑`
q=1 xq ≥ 2p − ` − 1 ≥ ` − 1, it also implies that

card{q | 1 ≤ q ≤ ` and xq = ε} ≤ 1.

If j1 < j2 and uj1 = uj2 with (j1, j2) 6= (1, `) then w[ij1−1..ij2 ] is a proper factor of w and

f(w[ij1−1..ij2 ]) contains the non-(j2 − j1 + 1)-anti-power word
∏j2
q=j1

uq that is a non-k-anti-
power word: a contradiction with the hypothesis of the minimal length of w.

In particular, we have s0f(x1)p1 = u1 = u` = s`−1f(x`)p`.

• Case 1 : |s0| 6= |s`−1| and (s0, s`−1) 6= (f(a0), ε)

Since card{q | 1 ≤ q ≤ ` and xq = ε} ≤ 1, we have either x1 6= ε or x` 6= ε.

If s`−1 6= ε and (0 <)|s0| < |s`−1|, by a length criterion, we necessarily have x1 6= ε. Let χ be
the first letter of x1 and let x′1 be the word such that x1 = χx′1. If x` = ε, let P = p` and if
x` 6= ε, let P = f(γ) where γ is the first letter of x`. In particular, we have P non-empty. Let π
be the non empty prefix of f(x′1)p1 such that s0f(χ)π = s`−1P . By Proposition 1.18, this last
equation implies that f is not a square-free morphism: a contradiction with the hypotheses.

The case s`−1 6= ε with |s0| > |s`−1| and the case s`−1 = ε with s0 6= f(a0) are solved as
previous one using Proposition 1.18.

• Case 2 : (s0, s`−1) = (f(a0), ε)
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We get that f(a0x1)p1 = f(x`)p`. By Lemma 1.14, we get a0x1 = x` and p1 = p`. It implies
that |s1| = |s`|.

It follows that (` − 1) × Λ =
∣∣∣∏`

q=2 uq

∣∣∣ = |s1f(x2a2 x3a3 . . . x`)p`| = |f(x2a2 x3a3 . . . x`a`)| =

L × |x2a2 x3a3 . . . x`a`| = L × (` − 1) + L ×
∑`

q=2 |xq|. Since gcd(L, ` − 1) = 1, we get that∑`
q=2 |xq| (≥ 1) is a multiple of `− 1. But ||xj1 | − |xj2 || ≤ 1 for all integers 2 ≤ j1, j2 ≤ `, so

it implies that |xj1 | = |xj2 | = |x1|+ 1, Λ = L× (|x1|+ 2) and |sj−1pj | = L for all 1 ≤ j ≤ `.
For all integers 2 ≤ q ≤ `, we have |uq| = |f(a0x1)p1| = |f(x`)p`| = |sq−1f(xq)pq| and so
|sq−1pq| = |p`|. It means that all the (|sq|)q=1..` are equal to 0 and that all the (|pq|)q=1..` are
equal to L, i.e., pq = f(aq).

In particular, we get that f(a1) = p1 = p` = f(a`) and thus a1 = a`. It follows that
w = a0x1a1 x2a2 . . . x`−1a`−1 x1a1 with |aqxq| = |x1a1| for all integers q ∈ [[2; ` − 1]], i.e., w is
not a k-anti-power word: a contradiction.

• Case 3 : |s0| = |s`−1|
As previous case, we obtain, as a first step, that Λ is a multiple of L. Indeed, we have

(` − 1) × Λ =
∣∣∣∏`−1

q=1 uq

∣∣∣ = |s0f(x1a1 x2a2 . . . x`−1)p`−1| = |f(x1a1 x2a2 . . . x`−1a`−1)| = L ×

|x1a1 x2a2 . . . x`−1a`−1| = L × (` − 1) + L ×
∑`−1

q=1 |xq|. Since gcd(L, ` − 1) = 1, we get that∑`−1
q=1 |xq| (≥ 1) is a multiple of `− 1. So |xj | = |x1|, Λ = L× (1 + |x1|) and |sj−1pj | = L for

all 1 ≤ j ≤ `.
As previous case, it means that all the (|sq|)q=0..` are equal and, consequently, all the (|pq|)q=0..`

are also equal.

From the equalites s0f(x1)p1 = s`−1f(x`)p` and |s0| = |s`−1|, we get s`−1 = s0( 6= ε). By
Lemma 1.14, it also implies x` = x1 and p1 = p`(6= ε).

In particular, since all the (|xi|)i=1..` are equal and since w = a0x1a1x2a2 . . . x`−1a`−1x1a` is
a k-anti-power word, we have a0 6= a`−1 and a1 6= a`.

If a0 = a1 then we get p0 = p1(= p`), f(a0) = p0s0, f(a`−1) = p`−1s`−1 = p`−1s0 and
f(a`) = p`s` = p0s`. It means that f(a`−1a0a`) contains (s0p0)

2 with a`−1a0a` square-free
since a0 6= a`−1 and a0 = a1 6= a`: a contradiction with the hypothesis that f is a square-free
morphism.

In the same way, if a`−1 = a`, we get that f(a0a`a1) contains (s`p`)
2 with a0a`a1 square-free.

If a0 = a`, we get that f(a`−1a`a1) contains (s`p`)
2 with a0a`a1 square-free. And, if a1 = a`−1,

we get that f(a0a1a`) contains (s1p1)
2 with a0a1a` square-free. All theses cases lead to the

same contradiction.

Thus a0, a1, a`−1 and a` are four different letters. It means that a0a1a`−1a` is a k-anti-power
word of length lower that 2p. But f(a0a1a`−1a`) contains the non-3-anti-power sequence
s0p1 s1p`−1 s`−1p` = s0p1 s1p`−1 s0p1: a (final) contradiction with the minimality of |w|.
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