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Words

An alphabet A is a finite set of symbols called letters. A word over A is a finite sequence of letters from A. The empty word ε is the empty sequence of letters. Equipped with the concatenation operation, the set A * of words over A is a free monoid with ε as neutral element and A as set of generators. Since an alphabet with one element is limited interest to us, we always assume that the cardinality of considered alphabets is at least two. Given a non-empty word u = a 1 . . . a n with a i ∈ A for any integer i from 1 to n, the length of u denoted by |u| is the integer n that is the number of letters of u. By convention, we have |ε| = 0. We denote by A + the set of words of positive length over A, i.e., A + = A * \ {ε}.

Given two words w and u, we denote by |w| u the number of different words p such that pu is a prefix of w. For instance, if w = abaababa, we have |w| a = 5, |w| aba = 3.

An infinite word over A is a map from N to A that is an infinite sequence of letters a 1 . . . a n . . . with a i ∈ A. And A N is the set of all infinite words over A.

The mirror image of u, denoted by ũ, is the word a n ....a 2 a 1 . In the particular case of the empty word, ε = ε.

A word u is a factor of a word v if there exist two (possibly empty) words p and s such that v = pus. We denote Fcts (v) the set of all factors of v. If u ∈ Fcts (v), we also say that v contains the word u (as a factor). If p = ε, u is a prefix of v. If s = ε, u is a suffix of v. If u = v, u is a proper factor of v. If u, p and s are non-empty, u is an internal factor of v. Furthermore, alph(v) = {u ∈ Fcts (v) | |u| = 1} is the set of all the letters in v.

Let w be a non-empty word and let i, j be two integers such that 0 ≤ i -1 ≤ j ≤ |w|. We denote by w[i..j] the factor of w such that |w[i..j]| = j -i + 1 and w = pw[i..j]s for two words s and p verifying |p| = i -1. When j > i, w[i..j] is simply the factor of w that starts at the i th letter and ends at the j th . Note that, when j = i -1, we have w[i..j] = ε. When i = j, we also denote by w[i] the factor w[i..i] which is the i th letter of w. In particular, w [START_REF] Berstel | Axel Thue's papers on repetition in words: a translation[END_REF] and w [|w|] are respectively the first and the last letter of w.

Powers of a word are defined inductively by u 0 = ε, and for any integer n ≥ 1, u n = uu n-1 . Given an integer k ≥ 2, since the case ε k is of little interest, we call a k-power any word u k with u = ε. And a word is k-power-free if it does not contain any k-power as factor. A primitive word is a word which is not a -power of another word whatever the integer ≥ 2.

Given two integers p > q ≥ 1 and two words x and y with xy = ε, a word of the form (xy) α x with |(xy) α x| |xy| = α + |x| |xy| = p q is called a p q -power. For instance, the word anchorman is a (1 + 2 7 =) 9 7 -power and the word abaabaa is a (2 + 1 3 =) 7 3 -power. In particular, a 3 2 -power is a word of the form xyx with |x| = |y| = ε. For instance, the word antman is a 3 2 -power. A word is p q -power-free if it does not contain any -power as factor with ≥ p q . The word abcaba is not 8 5 -power-free. Indeed, it contains the word abc ab which is a 5 3 -power. A border of a word w is a factor v / ∈ {ε, w} of w that is both a prefix and a suffix of w. When |w| > 2|v|, we say that the bordered word w is a sesquipower or a Zimin word.

The two following propositions are well known. The first one is about bordered words. Proposition 1.1 [START_REF] Lothaire | Combinatorics on words[END_REF] Let A be an alphabet and u, v, w three non-empty words over A.

If vt = uv then there exist two words r and s over A and an integer n such that v = (rs) n r, u = rs and t = sr. Lemma 1.2 [START_REF] Keränen | On the k-freeness of morphisms on free monoids[END_REF][START_REF] Leconte | Codes sans répétition[END_REF] If a non-empty word v is an internal factor of vv, i.e., if there exist two non-empty words x and y such that vv = xvy, then there exist a non-empty word t and two integers i, j ≥ 1 such that x = t i , y = t j , and v = t i+j .

Given an integer k ≥ 2 and an integer j ≥ 1, a (k, j)-anti-power sequence or simply a kanti-power [START_REF] Fici | Anti-powers in infinite words[END_REF] is a concatenation of k consecutive pairwise different words of the same length j.

For instance, if A = {a, b}, the words u = aa ba bb ab and v = aba bab abb aaa are respectively (4, 2)-anti-power and (4, 3)-anti-power sequences. But the prefix abababab of v is not a 4-antipower sequence: it is even a 4-power.

Given an integer k ≥ 1, if Card (A) = α ≥ 2 then there exit α n different words in A * of length n ≥ 1. Among the words of length k × n, there are α n different k-powers (of length

k × n) and A k α n = (α n ) ! (α n -k) ! different (k, n)-anti-power sequences if α n ≥ k and 0 otherwise.
It particulary means that there exists an integer k 0 such that there are no (k , n)-anti-power sequences over A for any k ≥ k 0 .

For any alphabet A with Card (A) = α ≥ 2 and for any integer k ≥ 2, there exists a smallest integer p 0 such that α p 0 ≥ k. And, if p ≥ p 0 , the set of (k, p)-anti-power sequences is greater than the set of k-powers of length p × k.

A 2-anti-power word is simply a square-free word. Given an integer k ≥ 3, a word w is a k-anti-power word if it is a (k -1)-anti-power word and, when |w| ≥ k, if any factor of w of length k × j for every integer 1 ≤ j ≤ |w| k is a (k, j)-anti-power sequence. As precised, w can contain a factor of length k only if |w| ≥ k. But, by the choosen definition, a word of length n with 2 ≤ n < k is a k-anti-power word if and only if it is a n-anti-power word. Of course, such a word exists only if Card (A) = α ≥ n.

In other words, for any integer 2 ≤ ≤ k, if we choose successive factors of the same length of a k-anti-power word, they are all different.

A word w is not a k-anti-power word (k ≥ 2) if and only if it contains a factor of the form U = u 1 u 2 . . . u for an integer 2 ≤ ≤ k and for some non-empty words u 1 , u 2 , . . . , u of the same length and such that u 1 = u . The word U is a -1 -power. So, a word w that is not a k-anti-power word contains at least a k k-1 -power (when = k). The converse is false. For instance, the word abcde abc is a 8 5 (> 4 3 ) power. But it is a 4-anti-power word over a five-letter alphabet.

Let A A,k , or A k if no doubt exists for the alphabet A, be the set of all k-anti-power words over A. By definition, we have

A k ⊂ A k-1 . . . ⊂ A 2 . So let B A,k , or B k , be the set A k-1 \ A k . Remark 1.3 We have w ∈ A k if and only if ũ ∈ A k .
Lemma 1.4 [START_REF] Fici | Anti-powers in infinite words[END_REF] Let v be a border of a word w and let u be the word such that w = uv. If |w| > |u| for an integer then u is a prefix of w.

More precisely, by Proposition 1.1, if v is a border of a word w = uv( = ε), there exist two words r and s over A and an integer n ≥ 0 such that u = rs and w = (rs) n+1 r. When |w| ≥ 2|u|, we get that w is a p q -power with p q ≥ 2. So, Proposition 1.1 and Lemma 1.4 mean that a bordered word w that contains a border of length at least |w| 2 is not a k-anti-power word for all integers k ≥ 2. So, we will only be interested in Zimin words, i.e., p q -powers with 1 < p q < 2. Proof.

In fact, we will show that XY X / ∈ A d+1 .

If d = 1 then Y = ε, X = ε and XY X = X 2 / ∈ A 2 . If d ≥ 2, we have |XY | > d-1 d |XY | ≥ |Y |. Let X 2 be the suffix of X such that |X 2 Y | = d-1 d |XY | and let X 1 be the non-empty word such that X = X 1 X 2 . Since |X 1 | = |XY | - |X 2 Y | = 1 d |XY |, the word [X 1 ] X 2 Y [X 1 ] / ∈ A d+1 .
Taking d = gcd(|XY |; k), we get:

Corollary 1.6 Let A be an alphabet and let X, Y ∈ A * such that XY = ε. For any integer k ≥ 2, if gcd(|XY |; k) = k and if |Y | ≤ (gcd(|XY |; k) -1)|X|, then XY X / ∈ A k . Remark 1.7 When d = 2 in Lemma 1.5, we get that if |XY | is even and if |Y | ≤ |X| then XY X / ∈ A k for all integers k ≥ 3.
Lemma 1.8 Let A be the alphabet {a 1 , a 2 , . . . a k , . . .} and let k ≥ 3 be an integer. The word

[a 1 a 2 . . . a k-1 ] a k [a 1 a 2 . . . a k-1 ] is a k-anti-power word if and only if k is prime. Proof. Let w sp,k be the word [a 1 a 2 . . . a k-1 ] a k [a 1 a 2 . . . a k-1 ].
Since w sp,k is a -anti-power word for an integer 2 ≤ < k only if gcd(k; ) = 1, and, since A k ⊂ A , the word w sp,k is a k-anti-power word only if k is prime.

Let us now assume that k is prime and, by contradiction, let us assume that w sp,k / ∈ A k . It means that w sp,k contains a factor of the form U = u 1 u 2 . . . u for an integer 2 ≤ ≤ k and for some words u 1 , u 2 , . . . , u of the same length Λ ≥ 1 with u 1 = u . Let i 0 be the integer such that a i 0 is the first letter of u 1 and let u 1 be the word

u 1 = a i 0 u 1 . So a i 0 u 1 u 2 . . . u -1 a i 0 u 1 is a factor of w sp,k . Since a i 0 appears only twice in w sp,k , we get that k = |a i 0 u 1 u 2 . . . u -1 | = ( -1) × Λ. Since k is a prime number, we get that = 2 and Λ = k. It follows that |u 1 u | = 2k > |w sp,k |: this is impossible. Lemma 1.9 Let A be an alphabet and let X, Y ∈ A * such that |X| a × |Y | a = 0 for all letters a ∈ A. If X ∈ A k and Y ∈ A k and |Y | > (k -2)|X| then XY X ∈ A k for any integer k ≥ 2.
Proof.

By contradiction, let us assume that XY X /

∈ A k with X = ε. It means that XY X contains a factor of the form U = u 1 u 2 . . . u for an integer 2 ≤ ≤ k and for some words u 1 , u 2 , . . . , u of the same length Λ ≥ 1 with u 1 = u .

Let a be the first letter of u 1 and let u 1 be the word such that u 1 = au 1 .

If |X| a = 0 then au 1 u 2 . . . a ∈ Fcts (Y ). We get that U ∈ Fcts (Y ): a contradiction with the hypotheses. Thus, |Y | a = 0 and it implies that

au 1 = u ∈ Fcts (X). Since U / ∈ Fcts (X), it follows that |Y | ≤ |u 2 . . . u -1 | = ( -2) × Λ ≤ (k -2) × |X|: a contradiction with the hypotheses.
An infinite k-anti-power word is an infinite word whose all finite factors are k-anti-power words. Obviously, the first question is whether such a word exists.

If A = {a, b}, the only 2-anti-power words are aba, bab and their factors. But, for any k ≥ 3, the only k-anti-power words are a, b, ab and ba.

If Card (A) ≥ 3, there exist infinite 2-anti-power (square-free) words [START_REF] Berstel | Axel Thue's papers on repetition in words: a translation[END_REF][START_REF] Thue | Uber unendliche zeichenreihen[END_REF][START_REF] Thue | Uber die gegenseitige Lage gleigher Teile gewisser Zeichenreihen[END_REF].

If k = 3 and A = {a, b, c}, the only 3-anti-power words are abcab, the exchange of letters of this word and their factors. Let us note that the word abcab is not 3 2 -power-free. A 3 2 -power-free word contain neither a factor of the form xyx with |x| = |y|, nor a factor of the form xx. Thus a 3 2 -power-free word is a 3-anti-power word (but the converse does not hold). Thus a Dejean's word [START_REF] Dejean | Sur un théorème de Thue[END_REF][START_REF] Currie | A proof of dejean's conjecture[END_REF][START_REF] Rao | Last cases of dejean's conjecture[END_REF] over a four-letter alphabet, which does not contain any -power with > 7 5 -power-free, is a 3-anti-power word. More generally, if k ≥ 3 is a prime number and if

A is a k-letter alphabet {a 1 , a 2 , . . . a k }, the word a 1 a 2 . . . a k-1 a k a 1 a 2 . . . a k-1 is a k-anti-power word. But it contains a 2k-1 k > k k-1
power. Furthermore, a Dejean's word over a (k + 1)-letter alphabet that avoids any power greater than k+1 k (≤ k k-1 ) is a k-anti-power word.

Remark 1.10 If we had chosen not to add that a k-anti-power word must be a (k -1)-antipower word, we would have, for instance, that, for A = {a; b; c}, the word abcabcab would have been a 3-anti-power word but not a 2-anti-power word.

More precisely, without the condition that a k-anti-power word w must be a (k -1)-anti-power word, we only could say that all prefixes and all suffixes of w of length between k -1 and (k -1)|w| k are (k -1)-anti-power words.

For an infinite word, it does not change anything to add the condition that a k-anti-power word w must be a (k -1)-anti-power word. Indeed, every factor of w whose length is a multiple of k -1 can be extended to a factor of w whose length is a multiple of k. Obviously, if these k factors are different, the same holds for k -1 ones.

Corollary 1.11 Let k ≥ 2 be an integer, let A be the alphabet {a 0 , a 1 , . . . , a k+3 , . . .}, and let w be a Dejean's word over {a 0 , a 1 , . . . , a k }. The word a k+1 a k+2 w a k+1 a k+2 is a k-anti-power word if at least one of these conditions holds :

i. |w| ≥ 2k -3.
ii. |w| ≥ k -2 and |w| is not a multiple of 2

The word a k+1 a k+2 a k+3 w a k+1 a k+2 a k+3 is a k-anti-power word if at least one of these conditions holds :

i. |w| ≥ 3k -5.

ii. |w| ≥ 2k -4 and |w| is not a multiple of 3

iii. |w| ≥ k -3, |a k+3 w| is not a multiple of 2 and |w| is not a multiple of 3

More generally, for any integer p ≥ 2, let w p be the word a k+1 . . . a k+p w a k+1 . . . a k+p . If |w| + i is not a multiple of p -i for every integer 0 ≤ i ≤ p -2 and if |w| ≥ k -p then w p is a k-anti-power word.

Proof. It directly comes from Lemma 1.9 and the fact that the word Sw is a k-anti-power word for any suffix S of a k+1 . . . a k+p .

Morphisms

Let A and B be two alphabets. A morphism f from A * to B * is a mapping from A * to B * such that f (uv) = f (u)f (v) for all words u, v over A. When B has no importance, we say that f is a morphism on A or that f is defined on A.

Given an integer

L ≥ 1, f is L-uniform if |f (a)| = L for every letter a in A. A morphism f is uniform if it is L-uniform for some integer L ≥ 1.
Let k ≥ 2 be an integer and let A and B be two alphabets. A morphism f from A * to B * is a k-anti-power morphism if and only if f (w) is a k-anti-power word over B for every k-anti-power word w over A, i.e., f (A A,k ) ⊂ A B,k . For instance, the identity endomorphism

Id (∀a ∈ A, Id(a) = a) is a k-anti-power morphism.
In particular, a 2-anti-power morphism is a square-free morphism. These last morphisms have been characterized in [START_REF] Crochemore | Sharp characterizations of squarefree morphisms[END_REF].

Given a morphism f on A, the mirror morphism f of f is defined for all words w over A, by f (w) = f ( w). In particular, f (a) = f (a) for every letter a in A.

Remark 1.12 By remark 1.3, we get that f is a k-anti-power morphism if and only if f is a k-anti-power morphism.

A morphism on A is called prefix (resp. suffix ) if, for all different letters a and b in A, the word f (a) is not a prefix (resp. not a suffix) of f (b). A prefix (resp. suffix) morphism is non-erasing. A morphism is bifix if it is prefix and suffix.

Proofs of the following lemmas are left to the reader.

Lemma 1.13 Let f be a bifix morphism on an alphabet A and let u, v, w, and t be words over A.

The equality f (u) = f (v)p with p be a prefix of f (w) implies u = vw for a prefix w of w such that f (w ) = p. And the equality f (u) = sf (v) with s a suffix of f (t) implies u = t v for a suffix t of t such that f (t ) = s.

Lemma 1.14 Let f be a prefix morphism on an alphabet A, let u and v be words over A, and let a and b be letters in A. Furthermore, let p 1 (resp. p 2 ) be a prefix of f (a

) (resp. of f (b)). If (p 1 ; p 2 ) = (ε; f (b)) and if (p 1 ; p 2 ) = (f (a); ε) then the equality f (u)p 1 = f (v)p 2 implies u = v and p 1 = p 2 .
Lemma 1.15 Let f be a suffix morphism on an alphabet A, let u and v be words over A, and let a and b be letters in A. Furthermore, let s 1 (resp. s 2 ) be a suffix of f (a

) (resp. of f (b)). If (s 1 ; s 2 ) = (ε; f (b)) and if (s 1 ; s 2 ) = (f (a); ε) then the equality s 1 f (u) = s 2 f (v) implies u = v and s 1 = s 2 .
Taking p 1 = p 2 = ε (resp. s 1 = s 2 = ε) in Lemma 1.14 (resp Lemma 1.15), we get that a prefix (resp. suffix) morphism is injective. Obviously, taking c = b, and s = ε in a first time and p = ε in a second time, we obtain that a is a bifix morphism. Lemma 1.17 [START_REF] Keränen | On the k-freeness of morphisms on free monoids[END_REF][START_REF] Leconte | Codes sans répétition[END_REF] If f is not a ps-morphism then f is not a k-power-free morphism for every integer k ≥ 2. Proposition 1.18 Let k ≥ 2 be an integer, let A and B be two alphabets with Card (A) = p ≥ k and let f be a L-uniform morphism from A * to B * (with L ≥ 1). If there exist five letters a, b, c, d and x (possibly equal) and four words p, s, π and σ such that s is a suffix of f (a), p is a prefix of f (b), σ is a suffix of f (c), π is a prefix of f (d), (π; p) = (ε; f (b)), (σ; s) = (ε; f (a)) and sp = σf (x)π then f is not a k-anti-power morphism.

Proof.

In fact, we will show that there exists a square-free word of length at most two whose image by f contains a square. Therefore, this word will be a k-anti-power-word for any k ≥ 2 but its image will not be. This will mean that f is not a k-anti-power morphism. Let s be the non empty prefix of f (x) such that s = σs and let p be the non empty suffix of f (x) such that p = p π.

If x = a and x = b, then f (x) is an internal factor of f (xx). By Lemma 1.2, f (x) is not primitive, i.e., f is not a k-anti-power morphism.

Therefore, at least one of the word ax or bx is not a square. But f (ax) contains the square s s and f (xb) contains the square p p . Proposition 1.19 Let k ≥ 2 be an integer. Let A and B be two alphabets. Let f be a Luniform morphism from A * to B * (with L ≥ 2). Let us assume that there exists a prime number p such that Card (A) ≥ p ≥ k.

If there exists an integer 2 ≤ d < k such that d|L then f is not a k-anti-power morphism.

Proof.

Let us assume that A = {a 1 , a 2 . . . a p , . . .}. If there exists an integer 2 ≤ d < k such that d||T | then f is not a k-anti-power morphism.

The word w

(A,p) = a 1 a 2 . . . a p-1 a p a 1 a 2 . . . a p-1 ∈ A p ⊂ A k ⊂ A d+1 . But, by Lemma 1.5, the word [f (a 1 )(a 2 ) . . . f (a p-1 )] f (a p ) [f (a 1 )(a 2 ) . . . f (a p-1 )] / ∈ A d+1 , i.e., f (w (A,p) ) / ∈ A k .
Proof.

If b = c then abc is a k-anti-power word and f is not a k-anti-power morphism. We have

f (ab) = Y [p ][s Y ][p ]Bs and f (ba) = p B[s Y ][p ][s Y ]. If there exist an integer 2 ≤ d < k such that d||T |, i.e., d||p s Y |, since either |s Y | ≤ |p | ≤ (d -1)|p | or |p | ≤ |s Y | ≤ (d -1)|s Y |, by Lemma 1.5, f (ab) / ∈ A B,k or f (ba) / ∈ A B,k : f is not a k-anti-power morphism.
Remark 1.21 Let B 0 be the alphabet {a, b, c, d, e, f, g, h, i, j, k, l, m} * .

Let f be a uniform morphism from {a, b} * to B * 0 such that f (a) = abcdef ghiab, f (b) = cdef jklmghi.

Then f (bab) contains the square (ghiabcdef ) 2 . Therefore, f is not a 2-anti-power morphism (is not a square-free morphism).

For any integer k ≥ 3, the only k-anti power words over {a, b} are a, b, ab, and ba.

Moreover, f (ab) and f (ba) are 3-anti-power words: f is a 3-anti-power morphism.

But f (ba) contains ghi abc def ghi. Thus f is not a k-anti-power morphism for any integer k ≥ 4.

Let A = {a 1 , a 2 , . . . a α } be an alphabet. A trivial morphism from A * to B * is an injective 1-uniform morphism. That is, f (a i ) = b i for some letter b i ∈ B and b i = b j when i = j. Proposition 1.22 Let k ≥ 2 be an integer and let A be an alphabet. Let f be a non-trivial L-uniform morphism defined on A. If (alph(f (a))) a∈A are not pairwise disjoint sets and if L < k then f is not a k-anti-power morphism.

Proof.

Let assume that Card (A) = α and A = {a 1 , a 2 , . . . a α }.

Since (alph(f (a))) a∈A are not pairwise disjoint sets, let x be a letter and let = m two integers such that such that x ∈ alph(f (a )) ∩ alph(f (a m )).

We have f (a ) = A xA and f (a m ) = A m xA m for four words A , A , A m and A m such that

A + A = A m + A m = L -1. So f (a a m ) = A xA A m xA m and f (a m a ) = A m xA m A xA with either |xA A m | ≤ L ≤ k -1 or |xA m A | ≤ L ≤ k -1.
Since a a m and a m a are k-anti-power words, it means that f is not a k-anti-power morphism.

A morphism f on A is k-anti-power up to (k, ≥ 2) if and only if f (w) is a k-anti-power word for every k-anti-power word w over A of length at most . Remark 1.23 Let A and B be two alphabets with Card (A) ≥ k ≥ 3 and let f be a 1-uniform morphism. Then f is a k-anti-power morphism if and only if f is trivial. So f is a k-antipower morphism if and only if it is a k-anti-power morphism up to 2. Proposition 1.24 Let k ≥ 3 be an integer and let A and B be two alphabets. Let us assume that there exists a prime number p such that Card (A) ≥ p ≥ k. Let f be a square-free L-uniform morphism from A * to B * . Then f is a k-anti-power morphism if and only if it is a k-anti-power morphism up to 2p -1.

Proof.

By definition of k-anti-power morphisms, we only have to prove the "if" part of Proposition 1.24.

By Lemma 1.17, f (square-free) is a ps-morphism and so injective.

We may assume that, if there exists an integer d ≥ 2 such that d|L then d ≥ k. Indeed (see the Proof of Proposition 1.19), if d|L and d < k then there exists a word w A,p ∈ A A,k such that |w A,p | = 2p -1 and f (w A,p ) / ∈ A B,k : f is not a k-anti-power morphism. It particularly means that if 2 ≤ ≤ k, then gcd(L, -1) = 1.

By contradiction, we assume that a shortest k-anti-power word w (not necessarily unique) such that f (w) contains a non-k-anti-power satisfies |w| ≥ 2p. We will show that this assumption leads to contradictions.

Since the length of w is minimal, we may assume that there exist an integer 2 ≤ ≤ k and some words p, s, u 1 , u 2 , . . . u such that f (w) = pu 1 u 2 . . . u s = p q=1 u q s where p is a prefix of f (w [START_REF] Berstel | Axel Thue's papers on repetition in words: a translation[END_REF]) different from f (w [START_REF] Berstel | Axel Thue's papers on repetition in words: a translation[END_REF]) and s is a suffix of f (w[|w|]) different from f (w[|w|]). Moreover, the words (u j ) j=1,.., have the same length Λ(≥ 1) and u 1 = u .

Let i 0 = 1 and, for all integers 1 ≤ j ≤ , let i j be the shortest integer such that p j q=1 u q is the prefix of f (w[1..i j ]). By definition, we have i = |w|.

If there exist two different integers j and j such that i j = i j then we get that Λ ≤ L. It implies that f (w) = |p| + |s| + × Λ ≤ (k + 2)L, i.e., |w| ≤ k + 2 < 2p: a contradiction. Thus 1 = i 0 < i 1 < . . . < i = |w|. If we denote a j the letter w[i j ] and x j the word w[i j-1 + 1..i j -1], we have w = a 0 x 1 a 1 x 2 a 2 . . . x a . And there exist some words p j and s j (0 ≤ j ≤ ) such that f (a j ) = p j s j with p 0 = p and s = s. By definition, the words s 0 , p 1 , p 2 , . . . , p are non empty and u j = s j-1 f (x j )p j for all 1 ≤ j ≤ .

Let us note that, for all integers 1 ≤ j 1 , j 2 ≤ , we have ||x j 1 | -|x j 2 || ≤ 1. Indeed, in the contrary, for instance if |x j 1 | ≥ |x j 2 | + 2 (obviously with j 1 = j 2 ), we get that Λ =

|u j 1 | = |s j 1 -1 f (x j 1 )p j 1 | > |f (x j 1 )| ≥ |f (x j 2 )| + 2L. Moreover Λ = |u j 2 | = |s j 2 -1 f (x j 2 )p j 2 | < |f (x j 2 )| + 2L: this is impossible. Since q=1 x q ≥ 2p --1 ≥ -1, it also implies that card{q | 1 ≤ q ≤ and x q = ε} ≤ 1.
If j 1 < j 2 and u j 1 = u j 2 with (j 1 , j 2 ) = (1, ) then w[i j 1 -1 ..i j 2 ] is a proper factor of w and f (w[i j 1 -1 ..i j 2 ]) contains the non-(j 2 -j 1 + 1)-anti-power word j 2 q=j 1 u q that is a non-k-antipower word: a contradiction with the hypothesis of the minimal length of w.

In particular, we have s

0 f (x 1 )p 1 = u 1 = u = s -1 f (x )p . • Case 1 : |s 0 | = |s -1 | and (s 0 , s -1 ) = (f (a 0 ), ε) Since card{q | 1 ≤ q ≤ and x q = ε} ≤ 1, we have either x 1 = ε or x = ε. If s -1 = ε and (0 <)|s 0 | < |s -1 |
, by a length criterion, we necessarily have x 1 = ε. Let χ be the first letter of x 1 and let x 1 be the word such that x 1 = χx 1 . If x = ε, let P = p and if x = ε, let P = f (γ) where γ is the first letter of x . In particular, we have P non-empty. Let π be the non empty prefix of f (x 1 )p 1 such that s 0 f (χ)π = s -1 P . By Proposition 1.18, this last equation implies that f is not a square-free morphism: a contradiction with the hypotheses.

The case s -1 = ε with |s 0 | > |s -1 | and the case s -1 = ε with s 0 = f (a 0 ) are solved as previous one using Proposition 1.18.

• Case 2 : (s 0 , s -1 ) = (f (a 0 ), ε)

We get that f (a 0 x 1 )p 1 = f (x )p . By Lemma 1.14, we get a 0 x 1 = x and p 1 = p . It implies that |s

1 | = |s |. It follows that ( -1) × Λ = q=2 u q = |s 1 f (x 2 a 2 x 3 a 3 . . . x )p | = |f (x 2 a 2 x 3 a 3 . . . x a )| = L × |x 2 a 2 x 3 a 3 . . . x a | = L × ( -1) + L × q=2 |x q |. Since gcd(L, -1) = 1, we get that q=2 |x q | (≥ 1) is a multiple of -1. But ||x j 1 | -|x j 2 || ≤ 1 for all integers 2 ≤ j 1 , j 2 ≤ , so it implies that |x j 1 | = |x j 2 | = |x 1 | + 1, Λ = L × (|x 1 | + 2) and |s j-1 p j | = L for all 1 ≤ j ≤ .
For all integers 2 ≤ q ≤ , we have |u q | = |f (a 0 x 1 )p 1 | = |f (x )p | = |s q-1 f (x q )p q | and so |s q-1 p q | = |p |. It means that all the (|s q |) q=1.. are equal to 0 and that all the (|p q |) q=1.. are equal to L, i.e., p q = f (a q ).

In particular, we get that f (a 1 ) = p 1 = p = f (a ) and thus a 1 = a . It follows that w = a 0 x 1 a 1 x 2 a 2 . . . x -1 a -1 x 1 a 1 with |a q x q | = |x 1 a 1 | for all integers q ∈ [[2; -1]], i.e., w is not a k-anti-power word: a contradiction.

• Case 3 :

|s 0 | = |s -1 |
As previous case, we obtain, as a first step, that Λ is a multiple of L. Indeed, we have ( -1) × Λ = As previous case, it means that all the (|s q |) q=0.. are equal and, consequently, all the (|p q |) q=0.. are also equal.

From the equalites s 0 f (x 1 )p 1 = s -1 f (x )p and |s 0 | = |s -1 |, we get s -1 = s 0 ( = ε). By Lemma 1.14, it also implies x = x 1 and p 1 = p ( = ε).

In particular, since all the (|x i |) i=1.. are equal and since w = a 0 x 1 a 1 x 2 a 2 . . . x -1 a -1 x 1 a is a k-anti-power word, we have a 0 = a -1 and a 1 = a .

If a 0 = a 1 then we get p 0 = p 1 (= p ), f (a 0 ) = p 0 s 0 , f (a -1 ) = p -1 s -1 = p -1 s 0 and f (a ) = p s = p 0 s . It means that f (a -1 a 0 a ) contains (s 0 p 0 ) 2 with a -1 a 0 a square-free since a 0 = a -1 and a 0 = a 1 = a : a contradiction with the hypothesis that f is a square-free morphism.

In the same way, if a -1 = a , we get that f (a 0 a a 1 ) contains (s p ) 2 with a 0 a a 1 square-free. If a 0 = a , we get that f (a -1 a a 1 ) contains (s p ) 2 with a 0 a a 1 square-free. And, if a 1 = a -1 , we get that f (a 0 a 1 a ) contains (s 1 p 1 ) 2 with a 0 a 1 a square-free. All theses cases lead to the same contradiction.

Thus a 0 , a 1 , a -1 and a are four different letters. It means that a 0 a 1 a -1 a is a k-anti-power word of length lower that 2p. But f (a 0 a 1 a -1 a ) contains the non-3-anti-power sequence s 0 p 1 s 1 p -1 s -1 p = s 0 p 1 s 1 p -1 s 0 p 1 : a (final) contradiction with the minimality of |w|.

Lemma 1 . 5

 15 Let A be an alphabet, let d ≥ 1 be an integer and let X, Y ∈ A * such that XY = ε. If d||XY | and |Y | ≤ (d -1)|X| then XY X / ∈ A k for all integers k > d.

Definition 1 .

 1 16 A morphism f from A * to B * is a ps-morphism (Keränen [6] called f a ps-code) if and only if the equalities f (a) = ps, f (b) = ps and f (c) = p s with a, b, c ∈ A (possibly c = b) and p, s, p , s ∈ B * imply b = a or c = a.

  Since (π; p) = (ε; f (b)), (σ; s) = (ε; f (a)) and |sp| = L + |σπ|, we get |s| > |σ| and |p| > |π|.

Proposition 1 .

 1 20 Let k ≥ 3 and L ≥ 2 be two integers. Let A and B be two alphabets with Card (A) ≥ k and let f be L-uniform morphism from A * to B * . Let us assume that there exist three letters a, b and c such that a / ∈ {b, c} and f (bac) contains a square T 2 ( = ε).

  From now, let us assume that f (bab) = πT 2 σ (with |T | ≥ 1). If |π| > |f (b)| (resp. |σ| > |f (b)|) then T 2 is factor of f (ab) (resp. f (ba)) with ab (resp. ba) a k-anti-power word: f is not a k-anti-power morphism. Thus there exist two words p and s such that f (a) = ps, πT = f (b)p and T σ = sf (b). Without loss of generality (using mirror image for instance), we may assume that |p| ≥ |s|. If |T | = |L| then T = sp, f (b) = ps and f (ba) contains the square (ps) 2 : f is not a k-anti-power morphism. If |T | > |L|, let Y be non-empty word such that T = sY p. It follows that f (b) = πsY = Y pσ. By Lemma 1.1, there exist two words u and v and an integer n such that Y = u(vu) n , pσ = vu and πs = uv. Moreover, since Y = ε, we get that uv = ε. If n ≥ 1 then f (b) contains (uv) 2 that is f is not a k-anti-power morphism. From now, u = Y and f (b) = Y vY . If |p| ≥ |v| (resp. |s| ≥ |v|) then p starts with v (resp. s ends with v) and f (ba) (resp. f ab) contains the square (Y v) 2 (resp. (vY ) 2 : f is not a k-anti-power morphism. When |p| < |v| and |s| < |v|, the word v starts with p and ends with s. But |v| < |f (b)| = |f (a)| = |ps|. Thus there exist three words p , s and Z = ε such that v = p Zs , p = p Z and s = Zs . It means that f (a) contains Z 2 : f is not a k-anti-power morphism. If 0 < |T | < |L|(= |sp|), since T starts with s and ends with p, let p , s and Y = ε be the words such that p = Y p , s = s Y and T = s Y p . It follows that f (a) = Y p s Y . Moreover, from the equality f (bab) = πT 2 σ, we get that f (b) starts with p and ends with s . Thus, there exist a word B such that |B| = 2|Y | and f (b) = p Bs .

- 1 q=1 1 q=1 1 q=1

 111 u q = |s 0 f (x 1 a 1 x 2 a 2 . . . x -1 )p -1 | = |f (x 1 a 1 x 2 a 2 . . . x -1 a -1 )| = L × |x 1 a 1 x 2 a 2 . . . x -1 a -1 | = L × ( -1) + L × -|x q |. Since gcd(L, -1) = 1, we get that -|x q | (≥ 1) is a multiple of -1. So |x j | = |x 1 |, Λ = L × (1 + |x 1 |) and |s j-1 p j | = L for all 1 ≤ j ≤ .