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Abstract
Virtual prototyping is increasingly used by businesses to streamline operations, cut costs, and enhance daily operations.
This often includes a variety of modeling techniques among which, complex, black-box models. The path from model
development to utilization in applied contexts is yet long. Domain experts need to be convinced of the validity of the
models and to trust their predictions. To be used in the field, model capabilities need to be affordable, i.e., allow rapid
and interactive scenario building, even for non-experts. Complex relations governed by statistical interactions must be
unveiled for users to understand unexpected predictions. We propose INTERACT, a model-agnostic, visual what-if tool
for regression problems, supporting 1) the visualization of statistical interactions between features, 2) the creation of
interactive what-if scenarios using predictive models, 3) the evaluation of model quality and building trust, and 4) the
externalization of knowledge through model explainability. While the approach applies in various industrial contexts,
we validate the application purpose and design with a detailed case study and a qualitative user study with engineers
in the tire industry. By unraveling statistical interactions between features, the INTERACT tool proves to be useful to
increase the transparency of black-box machine learning models. We also reflect on lessons learned concerning the
development of visual what-if tools for virtual product development and beyond.

Keywords
What-if analysis, statistical interactions, design study, visualization

Introduction

Modern organizations seek to exploit the data they collect
from their environment and activities, often aiming to
consolidate, enrich or improve internal decision-making
processes. Modeling techniques can be used to improve
these often suboptimal processes, and thus become a
companion technique guiding decision-making. Recently,
we have seen many examples of the use of Machine Learning
(ML) techniques, in various application contexts, to support
different processes or tasks. In this article, we focus on
the case where models support product design. Designing a
product is a decision-making activity, consisting in setting
a number of parameters, which will in the end determine
the characteristics of the designed product. The decision
can sometimes be difficult because desirable characteristics
can contradict one another. Flexibility or ease of use, for
example, is often the opposite of robustness or durability of a
product. This antagonism is reflected at the parameter level:
increasing the value of a parameter may affect another one,
such as by limiting its range. Such effects may be hard to
capture and describe, since parameter interdependencies are
widespread across the design space. Human expertise is thus
mandatory to assess the physical reality behind these effects,
and to help to identify parameter settings that correspond to
interesting and feasible solutions. In this article, we focus
on the need to exploit many inputs governing a single-output
model, therefore deliberately not overlapping with areas such
as multi-objective optimization.

Much research has looked at combining state-of-the-
art Machine Learning (ML) techniques with visualization

tools in various application fields, including healthcare1,2,
meteorology3,4, and social sciences5. Some of this work
falls under the umbrella of Explainable Artificial Intelligence
(XAI) research6, insofar that visualization can help to
audit and to build trust in the predictions given by AI
models. Techniques relying on model-specific and model-
agnostic approaches were developed to allow explainability
and interpretability7. Most efforts in XAI, however, have
focused on helping a user to understand a model. Aspects
involving practical, but complex, decision-making problems
in industrial contexts and, more specifically, in product
design are less covered. In this context, application domain
experts need to probe models to assess that they faithfully
embrace the physical characteristics of the objects being
designed. Additionally, they need help to comprehend why
some input parameter combinations lead to unexpected
outcomes and to recognize the underlying characteristic
relationships.

Our approach is inspired by the industrial context of tire
design. “Tires are highly engineered structural composites
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2 Information Visualization 2023, Vol.X(X)

whose performance can be designed to meet the vehicle
manufacturers’ ride, handling, and traction criteria, plus the
quality and performance expectations of the customer”8.
Incidentally, the required characteristics of a tire for a
sporty car differ very much from those required from a
tire intended for a sedan or electric car. Sporty tires will
have a high focus on handling11 while the others will focus
more on acoustics12 and fuel efficiency13. However, from a
physics perspective, these disciplines are quite diverse and
might be considered as entirely independent sciences14,15,
necessitating various modeling methodologies. This variety,
in our opinion, may be encountered in other sectors and is
not limited to the design of tires. In a broader context, our
approach is relevant whenever a model needs to reflect the
physical constraints inherent in a product, whether it is the
soles of sports shoes or the casting of steel, for example,
requiring experts to be able to assess the model’s ability to
reflect physical reality.

As an example of an engineering activity in the tire
design domain, an acoustics expert needs to understand
how a specific tire interacts with the road surface and with
the car, and how noise is propagated through air16 and
car structures17 to the passenger. She needs to understand
which design features can be tuned so that the final acoustic
comfort inside the car is reached. This task is complex as
these features interact, in the statistical sense18 as we shall
explain. Put simply, the influence of a design feature on
the outcome depends on one or multiple other features. For
instance, a known mechanical relation such as an increase
of noise as mass decreases19 might be invalidated when tire
parameters related to stiffness are changed simultaneously.
Such relations are at the border of recognized mechanical
behaviors and are hard to process, especially in industrial
contexts, in time-sensitive conditions. As building and
testing physical products is often costly, the engineers need
to be supported in virtual assessments.

The final design decision engineers will take often
has high financial, production, testing and planning
consequences. This is when state-of-the-art methods can help
the specialist to de-risk this virtual assessment process.

The contributions of this work are: 1 - INTERACT, a
what–if scenario system providing a novel combination
of ML-based regression models and statistical interaction
analysis. The system allows the user to: (a) Create
and compare what-if scenarios together with a measure
of confidence to support forecasting, (b) Understand
model predictions by making statistical interactions more
affordable; 2 - a case study and a qualitative user study
with participants from the tire industry. 3 - a report of
lessons learned concerning desirable characteristics of
what-if systems.

Related Work
INTERACT relates to various areas of research, including
visualization and explainable machine learning, statistical
interactions, what-if tools and decision making.

Visualization for model understanding
Recently, much work has focused on Explainable Artificial
Intelligence (XAI)20–24. Chatzimparmpas et al.7 organize

prior work on visualization for interpreting ML models in six
categories: Visual Analytics Pipelines, General ML models,
Predictive Visual Analytics (PVA), Interactive ML (IML),
Deep Learning and Dimensionality Reduction. Work in the
PVA and IML categories is closer to INTERACT. In another
extensive literature review, Chatzimparmpas et al.25 stress
the importance of trust in ML and introduce five levels of
trust directed to various aspects of IML.

Adadi and Berrada26 distinguish model-agnostic and
model-specifc XAI methods. Model-specific approaches
are usually bound to the specific type of model used to
fit the data. Examples of model-specific approaches are
iForest27 for Random Forests models, GAN Lab28 for
Generative Adversarial Networks or DQNViztool29 for Deep
Q Networks. Interested readers can refer to additional
papers on the visualization of neural networks1,30–32. Model-
specific solutions can be discounted with the advent of a new,
more effective type of ML model.

In INTERACT, we take a model-agnostic approach
for regression problems. Model-agnostic approaches are
independent of the type of model used to fit the data,
which makes them more likely to stand the test of time. As
discussed by Spinner et al.33, model-agnostic techniques can
be distinguished according to their explanation coverage. An
explanation is local when it is valid for a certain data sample,
or global when it holds for the entire data set.

LIME34 uses local surrogate models to explain predic-
tions, e.g., by using words, or parts of an image, that lead
to a certain model decision. SHAP35 provides both local
and global explanations. Its force plots depict which features
contribute to a single model output, whether positively or
negatively, and the global explanations are achieved by
rotating these plots and concatenating them horizontally
on a complete dataset. A feature overview helps to iden-
tify the most important features of the observed model.
RuleMatrix36 uses rule induction to provide explanations
to non-ML practitioners who need to understand and use
ML models. Going beyond the explanation of one model,
the comparative analysis of multiple models has been the
focus of Manifold37 and Clustervision38. In INTERACT, we
go beyond model-agnostic explainability by supporting the
creation of what-if scenarios on the fly, together with an
estimation of confidence for each prediction.

Visualization of statistical interactions
Statistical interactions, or interaction effects, are widely stud-
ied in statistics39–42, but rarely in ML-enabled visualization
tools. They capture a non-additive influence of two variables
to a model outcome. Typically, while variable X may vary
monotonously to the dependent variable Y , the rate at which
it varies may depend on a second variable Z. The H-statistic
is a measure of interaction effects over the data distribution,
proportional to the power of the interaction, but it may yield
spurious interactions43. Partial Dependence (PD) models are
also used to evaluate interaction effects44, without raising
spurious interactions. SHAP35 evaluates interactions using
SHAP values. Save for a few exceptions45, the H-statistic
and the PD-based method were not often used to uncover
interaction effects in ML models. Interaction effects are
visualized using line charts, such as Individual Conditional
Expectation (ICE) lines46 and SHAP plots35. Individual

Prepared using sagej.cls. === Accepted manuscript DOI: https://doi.org/10.1177/14738716231216030 === === Demo video: clickable-link ===

https://doi.org/10.1177/14738716231216030
https://osf.io/94bzf?view_only=5da9f4a35d0c48c9963e13fb576ec1e6


Vers
ion

su
bm

itte
d to

pe
er-

rev
iew

Ciorna et al. 3

Figure 1. The graphical user interface of INTERACT showing the visualization for the first vertical resonance mode frequency9

model. A) Data input panel: A set of scented widgets10 for user control and display of the values of the most important model
features. B) Actual vs. predicted plot: a scatterplot augmented with a confidence (red) box and an histogram of the actuals (plotted
on the y-axis) for a given prediction. The legend shows the most important model features. C) Feature interaction matrix: Second
degree feature interactions based on either the H-statistic or the Partial Dependence (PD) score. D) Individual Conditional
Expectation (ICE) plots: a set of linecharts showing the individual contribution of each feature. The yellow to red curves show the
interaction between the selected pair of features from (C).

pairwise interaction effects are also visualized using 2D
contour maps45,47 and 2D surface curves in a 3D-coordinate
system43,47. The VINE45 tool uses clustering in ICE/PDP
line charts to visualize interaction effects in black-box mod-
els. Variable Interaction Networks (VIN) use small node-link
network diagrams48 to provide an overview of a dozen of
pairwise interaction effects. Unlike most tools, INTERACT
provides an interactive and scalable visual overview of all
pairwise interaction effects and their relative strength.

What-if tools

Amer et al.49 and Harries50 describe the scenario use as “the
creation of the description of alternative future realities”.
Golfarelli et al.51 defines a scenario as a simulation of
complex systems under a given hypothesis. What-if analyses
are deemed useful in many domains, e.g., healthcare52–54,
social sciences55–57, military58,59, and were used heavily
in the last couple of decades60,61. The most relevant
to our work, visual what-if tools are Prospector 62, The
What-If Tool63 and CoFFi64. All systems use partial
dependence (PD) concepts65 to support overall and/or
localized model inspection. While INTERACT proposes PD
lines, we extend the explainability part with Individual
Conditional Expectation (ICE) lines and Accumulated Local
Effects (ALE) lines65. INTERACT differs also by a main
focus on a fundamental new concept for what-if tools, which
is the identification and support for understanding statistical
interactions. Unlike previously cited tools, this aspect is
required and useful in the context of virtual product design.
Unlike other tools, INTERACT supports the comparative
analysis of multiple alternatives (Figure 6).

Decision making
According to Edwards66, the scope of the Decision Making
(DM) theory is to predict, given two states A and B, which
state will be chosen by an individual. Slovic et al. studied
DM with respect to the decision environment, the different
theories of DM and information processing in DM67.
Other fundamental work concerns DM and cognition68–71.
Milkman et al.72 stress that in the DM context, errors are
costly and will get even costlier, hence the need to improve
DM processes. It is believed that AI can improve human
analytical skills, DM abilities and creativity73. Along these
lines, Bastani et al.74 devised an ML algorithm that helps
human users in DM tasks by using tips. Khosravi et al.75

focus on combining DM and ML for flood susceptibility
modeling. Healthcare is also a key area for improving DM
with AI76–79. Duan et al.80 give an overview of AI for
DM and propose twelve directions for future research in
this area. Some of these directions are further enhanced by
Dwivedi et al.81. In both papers, the AI work is divided
into supporting, augmenting, replacing or automating human
tasks. INTERACT is designed to support and augment
engineers’ analytical abilities in their DM processes.

Tasks, data and users
Our research is based on frequent exchanges with domain
experts, over a period of two years, leading us to address
the formalization of user tasks as a primary step of our
design. Also, two of the authors are domain experts (8 and
25 years in the field) and act as a “liaison”, a role highlighted
by Simon et al.82, for a better definition of the tasks. The
overarching goal of our target users is to design a product,
i.e., a tire that meets a specific requirement, for example
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4 Information Visualization 2023, Vol.X(X)

a noise target. To do so, they need to factually decide on
multiple characteristics governed by complex relationships.

Following Munzner’s visualization design methodol-
ogy83, we provide below a characterization of data and tasks.

Data and users
Our work was conducted in collaboration with domain
experts in the tire industry. Throughout the paper, we will
illustrate our concept with the application of INTERACT
to support acoustics engineers in the tire industry. They
mainly ensure that the tire design meets all requirements in
terms of acoustic comfort. A typical example of an acoustic
engineer’s work is to analyze why an existing tire does
not meet the acoustic requirements and give tire design
recommendations to reach the customer’s acoustic target84.
Among many possible recommendations, the engineer might
propose to change the materials for a set of tire components,
e.g., the material of the tread band, or to optimize the
tread pattern design. Only two people among our domain
experts have created ML models in the past. For example,
the predictive model used in the case study (see page 8) was
created by a senior engineer from the acoustics team.

The data pipeline at hand starts from audio recordings
from various noise acquisition systems. These files are
processed by the engineers to extract specific acoustic
metrics quantifying acoustic comfort. These indicators are
stored in relational databases along with tire design features
and will be the focus of our study. The data used in
our work is therefore tabular. The models are essentially
serialized Python objects, but INTERACT can broadly query
any regression model callable from a command prompt.

Tasks
In this section, we present the Domain Specific Tasks (DST)
supported by INTERACT. The tasks are inspired by existing
task categorizations concerning predictive visual analytics85,
trust in ML25, visualization for ML86. We retained four high-
level tasks from the literature and propose a new one related
to the inspection of statistical interactions (DST2).

DST1: Visualize the most important features. While
senior engineers might know which features are the most
important and which “knobs” to turn first, a novice engineer
needs support in the more subtle parts of the design process.

DST2: Detect and analyze statistical interactions.
Statistical interactions complexify the iterative process of
reaching a target. Even senior engineers need assistance
when interactions arise. The support for identifying and
understanding how features interact in a statistical sense (see
definitions on page 2) is a required functionality.

DST3: Assess trust in predictions and model as a
whole. Firstly, the domain experts need to know how good
the underlying model is. General goodness-of-fit statistics
must be available. Secondly, the users need to know if an
input they use for model probing is in the training data.
If not, there is less evidence supporting the prediction.
Uncertainty presentation and cognitive load are also factors
that highly infuence trust and which need to be considered
when designing the system87.

DST4: Create what-if scenarios. In the tire development
context, building a physical tire is very costly and time

consuming. A virtual tire development process allows many
operations to be done in silico. INTERACT needs to support
the creation of multiple what-if scenarios to reduce prototype
manufacturing and testing cost and duration. For our domain
experts and field, this includes the need to compare two or
more virtual tires and make a factual decision on this basis.

DST5: Externalize knowledge through model explain-
ability. A complex model can capture interesting and
unknown forward paths that the engineer might explore to
reach her targets. Revealing the potential effect of certain
actions on reaching the target, like changing a specific tire
design element, is also of high interest.

System description
In this section, we describe the coordinated multiple views
of the INTERACT application (Figure 1). In line with the
third level of Munzner’s nested model83, we motivate the
proposed visual encodings and interactions supporting the
tasks listed above, and discuss alternative visual designs. We
also highlight the current practices of the target population
of tire engineers. A demo of the application with non-
confidential data is available at: https://viana.list.lu/interact.

Input space visualization
In DST4, the application domain expert needs to probe
the model with different candidate designs, by tuning any
available input parameter. We offer scented widgets: sliders,
dropdown menus, toggles, and calendar widgets to set
numerical, categorical, binary and date values respectively
(Figure 2). Scenting10 the sliders was crucial, as data is
mostly numerical in our use cases. Often, tire engineers
run exploratory data analyses in commercial software
like Minitab88 and SAS JMP89. They usually plot data
distributions as bar charts, a popular choice in many areas90.
Thus, INTERACT uses scented sliders showing the data
distribution of the training data as a bar chart. Instead of
using an arbitrary number of equally spaced bins, INTERACT
uses a Numpy function to compute the best binning for
each feature. We tested density plots too. The interpolated
segments of the line charts created spurious rise and fall
patterns, when a feature had gaps in its domain.

Towards DST1, the sliders are sorted top-down by feature
importance in the ML model. The top features are indeed
the ones that affect the predicted outcome the most; varying
their values may help in appraising the model. INTERACT
supports any regression ML model as long as feature
importance values are provided.

For DST5, the sliders carry a second scent as a (green) line
chart on top of the bar chart showing the expected prediction
trend. At the user’s discretion, the trend is computed using
either a partial dependence plot (PDP) or an accumulated
local effect (ALE) line65. These line charts share the same
scale across all sliders to ease the comparison of the impact
of features on the prediction. For boolean features, the
toggle is scented with feedforward information91: a red or
blue triangle shows the expected direction of change of the
prediction, should the toggle be flipped.

In the top right corner of Figure 2, we display a score
between 0 and 1 measuring the similarity of the current set
of inputs to the training data based on a kernel method92.
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Figure 2. Control pane. A: Two tabs to show either the inputs
panel or the comparative analysis panel. The similarity score of
the current set of inputs compared to training data is shown in
the top-right corner. B: Scented widgets10 for various data
types, sliders, dropdown menus, calendar widgets and toggles.
C: Widgets to reset, save combination for comparative analysis
or add features.

The lower the score, the more cautious should the expert be
regarding the prediction.

When the user finds a combination of input parameters
yielding an interesting outcome, she may add it to the
saved combinations for future reuse, e.g. comparative
analysis. To support comparative analyses, the “saved
combinations” tab (Figure 6) is laid out according to
an augmented juxtaposition strategy. Techniques part of
superposition or explicit encodings’ families were excluded
due to their known drawbacks in terms of visual clutter
and decontextualization93. The user must be able to easily
identify an alternative (virtual tire/product), and the latter
needs to use the same units and the same scales across all
dimensions as the original product (for instance, a control
tire).

Another argument in favor of juxtaposition is the common
practice and familiarity of our users with such designs within
the organization. We reached our final design (Figure 6) after
two iterations, while optimizing the layout and the scents.
We use the percentage of change of an input as a scent,
depicted by a triangle every 25%. The direction of change
is encoded by color and by the direction of the triangles.
The comparative panel can be set to only show the modified
inputs across all alternatives. Knowledge externalization
(DST5) can occur through questions like: “Which alternative
yields the best prediction?”, or “How do the inputs differ
across the saved combinations?”

Prediction visualization
In DST3, the goal is to build trust in individual predictions
and in the whole model. The trust we want to build with
our system, in DST3, corresponds to the first, fourth and the
fifth levels of trust of Chatzimparmpas et al.25, concerning
the raw data, the concrete model and the evaluation/user
expectation.

In our context, the domain experts need to appraise the
model for their decision-making process. Statistical software

Figure 3. Prediction panel matching Figure 2. A: Prediction for
current slider combination. B: Actual vs. predicted plot with
linked cursor to current prediction. C: Top 10 most important
features of the model.

like Minitab88 and SAS JMP89 use common metrics like
RMSE, R2 and MAE, and actual vs. predicted scatterplots
to assess goodness of fit. In terms of alternate visual design,
we wondered whether to plot predictions or actuals on the
Y -axis of the scatterplot. It turns out that plotting the actuals
on the Y -axis leads to a more correct model evaluation94.
Hence, we use this design in INTERACT as in Figure 3,
besides the popularity and suitability of scatterplots for
regression models. In INTERACT, the prediction is displayed
in textual form above the scatterplot and positioned as
a red cursor (vertical line) on the plot. The prediction
results from the current combination of inputs in Figure 2.
Below the prediction, we display standard goodness-of-fit
metrics, which provides the users with a way to gauge their
confidence in the model. The legend reminds the top 10 most
important features.

To trust a given prediction, the expert needs to situate it
in the point cloud. When it falls in a dense area of the cloud
near the identity line95 the prediction is fairly reliable. If not,
some caution may be needed. This calls for a confidence
interval around the prediction96. To help the user assess
such a confidence interval, INTERACT displays a red box
enclosing 95% (box height) of the actual data around the
prediction in the actual vs. predicted plot (Figure 3). A
tooltip shows the lower and upper bounds of the box. In
addition, a histogram alongside the Y -axis (in red) shows the
distribution of the actual data (Figure 3). This provides even
more context to assess the trustworthiness and reliability of
the prediction.

Overview visualization of feature interactions

In DST2, domain experts are wary of statistical interactions
between model features. The response of the model to an
input feature often depends on the value of another feature.
Ignoring feature interactions would instigate a tedious trial
and error strategy to reach a target, without understanding
how features interact. Current practice consists in modeling
with standard least squares fits97 in JMP or Minitab. The
user must specify manually which interactions, if any, to
include in the model fit98. In contrast, INTERACT computes
automatically all pairwise interactions using either the H-
statistic43 or the PD-based metric44.
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Figure 4. First four rows of the Interaction matrix. The yellow
cursor points to the strongest interaction. The name of the
features and the interaction score are displayed.

Since pairwise feature interactions may be modeled as a
weighted complete graph, possible visual designs include
node-link diagrams48 and matrix visualizations. By applying
a threshold on edge weights, we generated node-link
diagrams, which were yet too cluttered. Finally, we preferred
matrix visualizations, as they are better suited for link lookup
in dense graphs99. For example, Figure 4 shows the first
four rows of the interaction matrix for a modelled dataset
of the first vertical mode of a tire9. The darker the color,
the stronger the interaction between the pair of features. The
user can quickly spot the highest interactions and get details
on demand by hovering over a cell. This visual design scales
up to dozens of features on a regular desktop screen.

Individual feature contribution visualization
In DST1 and DST5, domain experts need to understand the
sensitivity of the model to each input feature. They often
use software to generate X vs. Y scatterplots to fit linear
regression models between the predicted outcome and input
features, along with statistical significance tests100. Even
with a few features, the analysis of the resulting matrix of
scatter plots is challenging101. Another practical limitation
results from the fact that the observed data is usually much
sparser than all possible combinations of a feature set, which
makes it difficult to clearly isolate the individual contribution
of a feature of interest. An alternate method that allows
the user to rapidly inspect the relation between a feature
of interest and a target is the partial dependence (PD) plot
(Figure 5). The equation corresponding to the first order fit
of the PD line and the Pearson’s correlation coefficient102 are
shown above the chart. In the presence of correlated features,
the Accumulated Local Effects (ALE) can be used instead65.
INTERACT provides both PD and ALE line charts to give an
overview of the full data set.

Beyond global methods, finer phenomena can be inspected
using the ICE lines (blue lines in Figure 5). For each point
in the dataset, a line is created by varying the independent
feature stepwise and fixing the values of all other features.

Figure 1 D shows two ICE plots with the Partial
Dependence (PD) line in bold green. The left plot presents a
general descending trend (PD) for TIRE WIDTH (green PD
line). The ICE lines (in blue) tend to agree with this trend.
This behavior is expected by experts and agrees with recent
literature103. The wider the tire, the heavier the tread and
the lower the first vertical resonance frequency. The vertical
spread of the ICE lines also gives an idea of the range in

Figure 5. Individual feature contribution panel. ICE lines in
blue. PDP in green. A click by the green cursor in Figure 4
populates the plot with second order interaction visualizations -
yellow/red lines.

which the prediction may lie with respect to the feature on
the X-axis. Tightly bundled ICE lines point to the lack of
interacting features and to a low influence of other features
on the prediction. As ICE lines spread out and form crossing
patterns, feature interactions are more likely65.

User Interaction
INTERACT is a coordinated multiple view system, designed
to support what-if analyses built on top of a predictive ML
model. More than a mere collage of the individual views
described so far, the linked views support a cohesive analytic
workflow driven by user interactions.

What-if query specification. Starting from Figure 1 A, the
user can express a what-if query by pulling a few sliders to
set the values of selected input features. The similarity score
in the top right corner of the data input panel (Figure 1 A)
shows how close the new input configuration is to the
training data. The underlying ML model is queried for a
prediction. Figure 1 B is updated to reflect the new prediction
textually at the top and graphically, by adjusting the position
of the red cursor, the related confidence box and histogram.
The values of the input features are also cascaded to any
related charts, e.g., the red cursor in each ICE line chart in
Figure 1 D. This helps the user to locate the prediction in the
feature space. While only the top most important features
are visible by default in Figure 1 A, the user can interactively
display more features (Figure 2 C). The interaction heatmap
in Figure 1 C is expanded accordingly to include additional
rows and columns. Likewise, the related ICE line charts are
added (Figure 1 D). Since what-if analyses are often based
on trial and error, INTERACT provides a save and reload
functionality. The final decision making usually considers
multiple saved candidates. We offer a simple yet effective
visualization to compare the chosen alternatives.

Figure 6 shows three candidate tire designs, yielding the
same prediction value (76.2). The user can decide which
alternative suits best her needs, based on other, unmodeled
criteria such as cost or manufacturing constraints.

Drilling down into statistical interactions. Continuing the
analysis in Figure 1 C, the user’s attention is drawn to a
few dark cells in the heatmap corresponding to pairs of
strongly interacting features. By clicking on any cell, the
individual feature contribution visualization in Figure 1 D is
overlaid with a set of new lines, colored using a yellow-to-red

Prepared using sagej.cls. === Accepted manuscript DOI: https://doi.org/10.1177/14738716231216030 === === Demo video: clickable-link ===

https://doi.org/10.1177/14738716231216030
https://osf.io/94bzf?view_only=5da9f4a35d0c48c9963e13fb576ec1e6


Vers
ion

su
bm

itte
d to

pe
er-

rev
iew

Ciorna et al. 7

Figure 6. Three combinations showing the same prediction
level (above red line) but with different solutions. The reference
is the active combination (first column); the scents (triangles)
and equality (>>) are with respect to the active combination.

gradient. While the X-axis of the line chart corresponds to
the selected row in the heatmap, the color encodes the level
of the second feature, i.e., the column in the heatmap. We
chose to display feature names on demand only when more
than five features are shown in the heatmap, to avoid label
clutter. We also do so because feature names tend to be very
long in our context of use, and truncating them is not helpful.
The color scale is shown on the right side of the plot. These
lines correspond to the second order partial dependence lines
according to a predefined grid, e.g., a decile-based grid. The
user may hence inspect the trends of these lines and identify
the regions where statistical interactions occur.

Technical implementation
INTERACT is implemented following a state-of-the-art Web
architecture with a FastAPI server at the backend, a
JavaScript middleware using Node.js, and a JavaScript front-
end using React, Redux and D3. To ensure high availability
of the application, the complete architecture is containerized
using Docker104 and orchestrated using Kubernetes and
Terraform in a cloud environment.

Evaluation
Our evaluation methodology was inspired from existing
efforts in categorizing and guiding evaluation in visualization
research83,105–111. Referring to Lam et al.105, we evaluated
INTERACT from two perspectives, namely Visual Data
Analysis and Reasoning (VDAR) and User Experience (UE).
We conducted a qualitative user study with a group of
acoustic engineers in the tire industry (see User study) and
a case study with two domain experts (see Case study). The
evaluation procedure and hypotheses were preregistered at
https://osf.io/-clickable. We also emphasize that user study
participants and experts involved in the case study do not
include any of this paper’s authors.

User study
Methodology. We ran a first pilot study with 11 engineers,
aiming to assess the usability of INTERACT. The first pilot
study was also registered at https://osf.io/-clickable.

This study led to a small-scale deployment of INTERACT
within the Goodyear organization, and many suggestions for
improvement.

Six months later, we ran a second pilot study, preregistered
at https://osf.io-clickable, to evaluate the improved software
in a real use context, i.e., with tire engineers and tire related
data. We started with a training session aiming to introduce
the main functionalities of INTERACT, train on solving tasks,
and get familiar with the tool through concrete examples.
Next, we organized the user study. User data and feedback
were collected through: 1) a survey of demographic and
occupational data, 2) a semi-structured focus group and,
3) an anonymous exit questionnaire. The training and user
study took two hours in total. The results of this second pilot
study are discussed below.

Participants. The training was organized with ten engineers,
all of whom were domain experts in tire acoustics from
the Goodyear organization. The median experience was 13
years with an inter-quartile range of 10 years. Two of them
have previously created ML models and two more have
participated in ML model validation. The remaining six
have no experience with ML. All participants were co-
located and used commodity 17” laptops. More demographic
information is provided in the supplemental material.

Focus Group. After the training, the domain experts took
part in a semi-structured focus group112, in the form of
an open discussion around prepared questions in relation
to our research objectives and domain-specific tasks. One
of the co-authors facilitated the discussion while another
one took notes. We also recorded participant voices, later
transcribed and analyzed question by question. Each answer
was split into one or multiple semantic units (one idea per
unit text)113. Following a ‘peer debriefing’ method114, three
independent coders labeled these units, and then met and
agreed on the following set of tags: utility, UX, learnability,
enjoyment, extensibility.

The utility tag was by far the most important tag in our
coding effort. All comments were positive and highlighted
how the features of the tool can support participants’
daily work. The tool was deemed an asset for discussing
what-if scenarios with internal and external customers,
for detecting and analyzing statistical interactions, for
knowledge externalization and model explainability.

In what-if discussions, the tool can be used to answer
customers on the spot rather than postponing the analysis.
“It will help create a data-driven way of replying to
customers”. Besides providing a prediction, “knowing the
uncertainty is very valuable”. This will further allow to
build trust in predictions (DST3). In this regard, the PD
line visualization also was appreciated, with a participant
saying: “Referring and following it would provide really
good feedback in conversations with customers”. Regarding
the what-if capabilities, the users liked the real-time model
probing and its smoothness (“I like the speed of the tool”).
This capability was even more interesting for younger
engineers, who say they “don’t have the knowledge base
to fall back on”. The visualization of statistical interactions
was perceived as having a high added value as it allows
going beyond guidelines. “More information on a specific
variable can be extracted if a guideline rule is wrong”.
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Knowledge externalization and model explainability “helps
from a fundamental understanding to better comprehend
the sensitivities and which factors are most important”.
Other comments on this topic include: “It provides a simple
way to understand a model” or “Leveraging data that I
never accessed expands my capabilities beyond my personal
knowledge/experience”.

The UX tag encompassed mainly request for improve-
ments of the user interface and requests for new function-
alities. The latter often concerned open research questions,
which we discuss thoroughly in the next section. Some bugs
were also reported and fixed soon after.

In terms of learnability, the users asked for more
contextual help and more training material. This was
particularly the case with novice engineers who were
somewhat new to statistical interactions. The concept is a bit
more complex to grasp initially. Yet, all participants deemed
INTERACT “intuitive after using it”.

The enjoyment tag was mainly assigned to comments
regarding the application as a whole. The users liked the
visualizations, the real-time model probing, but also the easy
identification of the most important statistical interactions.

Extensibility in terms of the number of models that
can be added to INTERACT was raised. Pending a formal
assessment, the tool can offer many more models, owing to
its cloud computing architecture and a caching mechanism.

Exit questionnaire. The post training questionnaire took the
form of a 7-level Likert scale survey115 (see supplemental
material): 1- Strongly disagree; 2- Disagree; 3- Somewhat
disagree; 4- Neutral; 5- Somewhat agree; 6- Agree;
7- Strongly agree. Its creation and analysis followed the
best practices116–118. Where suitable, the question replaced
(“Agree”) by (“Useful”). Each Likert scale was composed
of several Likert items (sub-questions) that were closely
related. We analyzed the results using the one-sample t-
test119 and its non-parametric equivalent, the one-sample
sign test120. This is due to conflicting opinions regarding
whether Likert scales should be considered as ordinal or
numerical116–118. We applied both strategies, and in each
case, INTERACT obtained statistically significant positive
outcomes (p< 0.05) in support of our Domain Specific Tasks
(see Tasks). The neutral point (mid-point of the Likert scale)
served as the benchmark against which we calculated the p-
value. Table 1 shows the results of the Likert scales only.
More details about the individual Likert items are provided
in supplemental material.

Case study
This case study aims to observe and report on how
INTERACT can be used by domain experts to address
real business needs. We ran this study with two senior
experts in tire acoustics, none of whom is an author of
this paper. We used the First Vertical Mode Model, shown
in Figure 1 as background data and model. We structure
the following account into two subsections arising from
the actions performed by the two experts. The problems
they wanted to solve with INTERACT were akin to their
daily tasks and are representative of two main challenges
acoustic engineers face in their work: 1) problem solving;
2) knowledge externalization and exploratory analysis.

Problem solving. Car manufacturers, provide tire perfor-
mance specifications including a list of metrics to be met
during the tire design phase, e.g., acoustics and mileage
for a tire fitment on a specific vehicle. This is a common
trait in all industries where users specify a set of desirable
product characteristics. In this section, we will focus on a
hypothetical yet realistic case where meeting the customer
target requires, for instance, the tire’s first vertical oscillation
mode (natural frequency) to be below 70 Hz. To the layper-
son, we highlight that all actions presented below relate to
influencing tire mass or stiffness. Classical mechanics show
that the natural frequency in a mass-spring set up can be

expressed in the form
√

k
m with k being the stiffness and

m the mass121. Increasing mass and decreasing the stiffness
will lower the natural frequency. This is what our expert
tried to achieve with INTERACT. To start with, the expert set
the mandatory values provided by the customer for tire size,
i.e., tire width, aspect ratio and rim diameter, using the input
sliders, hence obtaining a prediction of 77 Hz in Figure 1 B
(DST4). Next, he changed the rim width, a parameter which
could be changed in a limited range. Looking at the PD
line on top of the slider (5th input feature in Figure 1 A),
reducing the value would also lower the first vertical mode
frequency. Shrinking rim width from 7.5” to 7.0” led to a
predicted 74.3 Hz, which is a small improvement. Likewise,
the inflation pressure was reduced to 2.0 Bars to reach a mere
74.2 Hz. The next attempt consisted of adding a layer of
sealant material, which happens to make the tire heavier122

(first toggle in Figure 1 A). As shown by the red triangle
next to the toggle, adding a sealant would get us closer to
the target. This took us to 67.5 Hz, even better than the
customer request. While this effect is known to decrease
the first vertical mode frequency103, we might prefer a less
drastic design solution to achieve the same performance. He
changed the toggle back to investigate other options. One of
the top features in the list was tire weight. Despite a high
ranking (3rd), the PD line was quite flat. Looking at ICE lines
for this feature, typical crossing patterns pointed to statistical
interactions (DST2). He then inspected the interaction matrix
(Figure 1 C). The highest interaction was with seasonality
(3rd row, before-last cell). Winter tires exhibited a falling
trend, while summer tires were rather flat. Hence, he checked
the current status. INTERACT predicted 74.2 Hz for summer
tires. Toggling the season to winter took the prediction below
70 at 69.2 Hz. This could probably “make sense”, he said.
Across the market, winter tires typically have more rubber,
i.e., mass in the tread area (DST5). “In addition, the ICE
lines are useful to evaluate the feasible design space. We can
look at the range (thickness of blue lines) of ICE lines and
already estimate how challenging a target could be”, the
expert said. He then checked other statistical interactions,
acknowledging interesting information to be investigated
more in depth.

Knowledge externalization and exploratory analysis.
Engineers in tire acoustics must give recommendations to
reduce tire noise. They usually make suggestions based
on company guidelines or simulation tools. Often, these
guidelines can be generic and high-level. Other practices
include the comparison with previous projects, experience
sharing and potentially back-to-back analysis123,124. These
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The views/visualizations are useful
The application is useful
Identification of the most important features
Understanding of statistical interactions
Trust in model predictions
Interact supports what-if scenario creation
Interact allows to externalize knowledge

5.7

       Rating and statistics   Likert scale     Mean Median Stdev IQR Prob>t Sign p val N
1.1 2  50

 50

 20

 20
 40

 30

 30

6-Agree
6.6 0.6 16-Agree

6-Agree
6-Agree
6-Agree
6-Agree
6-Agree

5.7 1.3 2

5.5 1.5 2
5.7 1.2 2

5.7 1.1 1.3
6.1 0.8 1

<10-4

<10-4

D-- (1) A++ (7)D- (2) A+ (6)

<10-4

<10-4

<10-4
<10-4

<10-4

<10-4

<10-4

<10-4

<10-4

<10-4
<10-4

<10-4

D (3) A (5)N (4)

Table 1. Summary of the anonymous exit questionnaire. The columns comprise the Likert scale ratings: Strongly Disagree D--(1),
Disagree D-(2), Somewhat Disagree D(3), Neutral N(4), Somewhat Agree A(5), Agree A+(6), Strongly Agree A++(7). Descriptive
statistics are displayed in the following columns, including mean, median, standard deviation, interquartile range, one-sided t-test
p-value (prob>t), sign test p-value, and the number of items answered for each corresponding Likert scale (sub-questions ×
number of participants). Heatmap annotations are expressed in percentage out of N. The descriptive statistics, such as the mean,
are computed based on the rating values, i.e., Strongly disagree = 1 and Strongly agree = 7.

methods work but are time-consuming and add a data
retrieval burden. Yet, drawing conclusions from few data
points is more risky. Experts need a vast domain knowledge
to answer such requests. Before using and trusting the
model (DST3), both experts sought to verify that the model
agrees with physics. They inspected and confirmed the most
important features (DST1) but also audited the actual vs.
predicted plot. Next, the PD lines (in green) were analyzed.
The amplitude and direction of change with various features
were inspected, looking for directly or inversely proportional
relations. “The green line is showing a trend which is already
good, this is something I was looking for!”, an expert
said. The directions and amplitudes made sense and were
confirmed for most features. Another observation was linked
to the inspection of the ICE lines (Figure 1 D) for tire width.
One can observe various patterns in the data. For instance, a
group of lines has a falling trend, reaches a minimum then
goes up. Others exhibit a plateau or a rising trend, then go
down. “This means that there are groups of tires that behave
in some way and others differently. Based on hundreds
of tires, it’s really good!”. To explain this difference, for
instance in Figure 5, we can see that these two trends are
reflected and are grouped by rim width.

One of the experts made another hypothesis linked to a
temporal evolution of another noise metric. In essence, she
thought that due to progress made in the past years, this
metric increased until it reached a peak and then plateaued.
This trend was easily confirmed in INTERACT (DST5).

Discussion and Conclusion

In the past decade, many visualization-assisted ML
tools have been proposed. While many techniques and
visualization tools can explain the learned model, or create
what-if scenarios, to our knowledge, none supports the
analysis of statistical interactions. INTERACT was proposed
to fill this gap and was validated in the context of virtual tire
design. INTERACT has new capabilities such as real-time,
interactive what-if scenarios, statistical interaction analysis,
comparative analysis for input-prediction pairs and means to
assess the trustworthiness of predictions. Besides having two
domain experts heavily involved in the tool design (the two
co-authors), INTERACT was evaluated by ten independent
domain experts who found it useful in their applied context
and provided feedback for further improvements.

Limitations
Currently, INTERACT supports regression models only. So
far, we developed scented widgets for numeric and binary
input features. Categorical and date-type features are also
supported by INTERACT, albeit with limited feedforward
information91. The computation of interaction scores for
categorical input variables has yet to be integrated in the
tool. Also, an alternative to ICE plots may be needed for
multilevel categorical features, as the levels might lack a
natural order. The tool can also be extended to support
classification models. Then, we could reuse some of the
current visual designs, e.g., the input panel (Figure 2), but
the other views may have to be redesigned.

INTERACT currently approaches the trust perspective from
three key angles: examining the raw data, assessing the
concrete model, and understanding user expectations (refer
to TL1,4,5 in Chatzimparmpas et al.25). In this paragraph,
we will outline the support provided in INTERACT to build
trust in the model as well as possible extensions that
might be required in other contexts. For raw data analysis
(TL1), we employ input feature distribution visualizations,
enabling us to visualize the data used to train the model and
determine whether its ranges align with the problem at hand.
Going beyond what is offered in INTERACT, more detailed
information such as point by point data inspection and data
attrributes descriptions could also be useful.
To evaluate the model’s quality, INTERACT presents standard
goodness-of-fit metrics. These metrics can help the user to
build trust in the model across the design space (TL4). Going
beyond building trust in a model, it might be desirable to be
able to compare multiple versions of a model, for example
when retraining the model as new data becomes available, as
mentioned in TL4.
Furthermore, we offer trust-building visualizations related
to the model, such as the PDP, ICE and ALE plots. The
latter allows users to quickly observe whether outcomes vary
as expected with specific inputs - TL5 (see Input space
visualization). Besides fostering trust in the model as a
whole, we provide localized goodness-of-fit information, as
illustrated in Figure 3. This information is generated based
on the distribution of actual data in the vicinity of the current
prediction. We supply a prediction interval that encompasses
95% of the actual data. However, it’s worth noting that
this interval isn’t solely based on the current prediction
but rather on all predictions within its neighborhood. To
further enhance the accuracy of individual predictions and
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reduce uncertainty, techniques like Gaussian processes can
be employed125. Addressing this specific limitation is a
part of our future development plans. Similarly, more work
for the development of visualization of causality126 can be
undertaken to further enhance trust.

The feature interaction metrics used by INTERACT can
scale up to higher-order interactions, but the current version
of the tool displays second-order (i.e., pairwise) interactions
only. The interpretation of second-order statistical interac-
tions is known to be hard, and things worsen in the case
of higher-order interactions47,127. This is why we chose
not to go beyond the second order. As the interpretation
of interactions relies also on domain expertise, INTERACT
puts the expert in the loop by affording her to visualize
interaction effects and anticipate the direction and magnitude
of their impact on predictions. The ease of use and the
snappy response achieved by INTERACT enables the expert
to examine thoroughly and build trust in the ML model
eventually.

Instead of shipping a closed list of pretrained ML models,
some of our study participants wanted to use the tool with
improvised models. Similarly, users might prefer a different
arrangement of the sliders, which are currently sorted based
on model’s feature importance metrics. Users might be
accustomed and/or grouped to some preferred order and
this poses visual search challenges. We will improve the
flexibility of INTERACT in these directions in the future.

Some users also wanted a more detailed instance-based
view of the data. The tool currently allows to inspect
individual data points only by mousing over the line plots
or scatter plots.

Applicability beyond tire design
INTERACT is a visual what-if tool based on regression
models with enhanced support for the analysis of statistical
interactions. The tool was developed in collaboration with
tire industry engineers. The validation of the tool was mainly
based on a user study and a case study in this industry,
presented earlier in this paper.

Nevertheless, it is reasonable to believe that our approach
is transferable to other application areas where regression
models are used to make predictions based on multiple
inputs. This is justified by the fact that four out of five
tasks (DST) that we support with INTERACT are well-
documented in the XAI litterature (see Tasks). This paper
puts forth one new task, which is the analysis of statistical
interactions (DST2). We believe this is an underexplored
area as, to our knowledge, no other what-if tools propose
such analysis (see Related Work). We propose a solution
that fits the tire industry needs and call for more work
in this direction. Although we cannot assert the relevance
of statistical interactions in general for every regression
problem, we strongly believe it is applicable within the
broader scope of product design, where physics laws often
induce such feature interactions. In this context, models
can be tested against the physics of objects, requiring from
experts to assess the behavior of models and hence their
trustworthiness and reliability. A number of questions may
guide the transfer of our approach to other fields: 1) Are
higher-order interactions important to the target fields? If so,
we still miss a way of visualizing them. 2) Are statistical

interactions for categorical features essential to the target
fields? If so, how can they be visualized? 3) Do other fields
need to combine statistical interactions with optimization?
Answering positively to any of these questions is grounds to
not use INTERACT in its current form.

Research opportunities

We base our thoughts for future work on our experience
while developing INTERACT, but also on the expert feedback
received at various occasions, such as the focus group.

Single vs. multi-model approaches. INTERACT activates
and queries one model at a time currently. It allows users
to understand the active ML model and use it, e.g., for
product design. Yet, in applied environments, experts usually
need to meet many, often antagonistic constraints, which
may take advantage of multiple models activated in parallel.
An example of such work is VisProm128. In the future, we
would like to test this system in our applied context, i.e.,
virtual tire development. We think more research is needed
to: 1) explore the suitable design space of visualizations for
multidimensional inputs together with multi-model outputs;
2) provide useful feedforward information in such contexts;
3) scale the visualizations of statistical interactions up for
multi-model approaches.

The field of Multi-Criteria Decision Making (MCDM)
is very rich (see Related Work). Many MCDM techniques
were devised to help domain experts. We believe that this line
of work can be even more useful, for instance, if combined
with state-of-the-art multi-model XAI visualization tools.
MCDM is by default multi-model and multidimensional
and fits many problem-solving techniques encountered
in product design. We call for more visualization work
integrating MCDM with multi-model explainable ML
approaches in various fields, not limited to product design.

Provenance and storytelling. When using what-if tools,
users typically aim to reach one or a few working solutions to
their problem. Often, beyond the interaction with the system,
these outcomes are discussed, in other contexts with other
colleagues or with management representatives. To mantain
a consistent and structured dialogue, information related
to the provenance129 of the solutions is beneficial. The
presentation of these solutions as a narrative storytelling130

can further increase the cohesion of the solutions with
the overarching goal. Therefore, we call for more work in
integrating provenance analysis and storytelling with what-if
tools.

Feature importance in ML methods is defined differently
across model types, which makes it hard to understand or
compare feature importance metrics131. Researchers might
invent ways to design visualizations to allow the user to
construct and visualize her own feature importance metric.

Dimensionality reduction (DR). INTERACT currently
provides ICE lines for the analysis of individual features.
Recent work has proposed to use clustering to aggregate
these lines45. We wish to understand how DR techniques
could be combined from a visualization perspective with
supervised learning. Is DR useful in what-if analyses?
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Lessons learned for what-if tools
Reflecting on 30 months of development of INTERACT, the
following takeaways may interest visualization researchers.

Instant feedback. Systems such as INTERACT need to
provide instant feedback. When multiple scenarios need to
be assessed rapidly, the expert cannot wait long to obtain a
prediction. In contrast to the “What-If Tool”63, INTERACT
computes predictions on-the-fly as the user moves input
sliders, without waiting for the user to hit a “run” button.
Users get, hence, a smoother experience.

Explainability mechanism. When exploiting complex mod-
els, their outcomes might be unpredictable or conflicting
with expected behavior. What-if tools need to support the
end users in understanding how the application reached its
output. This will further enhance their trust in the system and
allow for constructive criticism, for example for improving
the underlying models. In our case, besides the classical
ICE, ALE and Partial Dependence visualizations, we use the
concept of statistical interactions to support this goal.

Comparative analysis. The ability to create and save
multiple scenarios is essential in the context of what-if tools.
The users need to be able to effectively visualize and reload
previous states effortlessly during a working session and
beyond. In the context of product design, we relate such
a need to the creation of several virtual designs before
manufacturing. Iterating from a previously saved virtual
design and comparing it to the current design is a standard
need in such contexts. The selection of a saved design among
multiple prior designs needs to be affordable. The user needs
to be supported in the choice of one of the saved alternatives
for instance by having some visualization that helps in
assesing the related model prediction or its configuration
compared to others. We could even argue that the history or
provenance information of the saved virtual designs could be
of interest.

Feedforward information. The simplest what-if tool could
probably allow for the creation of multiple scenarios by
trial-and-error. We argue that this method would be too
tedious in the context of product design and could lead
to a loss of user engagement. We believe that the user
needs to be accompanied in their search for a solution. We
use and recommend the use of scented widgets displaying
feedforward information to guide the user in the design
space. Visual cues need to be available and affordable to the
user for reaching their final goal and anticipate on actions.

Automation and need. Another consideration that needs to
be taken into account when creating what-if tools is whether
there is a real need for such a tool. We think typically
of situations where optimization engines could provide
successfully the expected results and the need for a what-
if tool is not fully justified. Like data visualization is not
always the most-suited solution for data-centric problems, a
what-if tool is suitable when an algorithm (e.g. optimization
algorithm) would require more information than is available
to solve the problem, and/or the task is not fully clear (see the
information location and task clarity dimensions described
by Sedlmair et al.132). However, users need to benefit of
as much automation as possible to reach their goals. They

should focus on their decision making process without being
distracted by usability issues. Nonetheless, automation must
be carefully designed to not alter the exploratory nature of
the what-if tool.

Realism. Often, models will provide a prediction even if the
inputs do not make sense in reality. For example, a model
that predicts maximum speed of a car based on a number of
inputs such as car brand, engine type and, year of production,
could accept an input such as a V8 diesel engine from
1992 on an electric car. While such an input is semantically
void, the model will still provide a prediction. The industry
is gradually adopting virtual design to reduce waste and
needs to provide new and virtual inputs to models which can
fairly interpolate/extrapolate. Users need an indication of the
realism of such an input in light of the existing data/reality,
or even the ability to compare and interactively select the
most similar, yet realistic data points. Today, INTERACT
uses a similarity metric (with respect to training data) which
puts equal weights on the full set of inputs. Given the high
dimensionality of the data, the resulting similarity scores
lack sensitivity. Future research might focus on assigning
weights to features, like in WeightLifter133, and guiding the
user towards feasible design spaces, similar to the TOP-
slider134. This was a strong feedback from the focus group
that we would like to tackle in the future.

Maintainability of what-if tools. What-if tools use models
behind the scene. While model-agnostic approaches provide
a good separation of concerns between the visual user
interface and the underlying models, an obstacle still exists
in the way of long-term deployment of what-if tools.
Indeed, such deployment raises classic software architecture
considerations in terms of versionning and compatibility
issues for both the what-if tool and the models. An even
better separation of concerns and maintainability could be
achieved through a miscroservices architecture135, i.e. use
individual APIs for each of its models to avoid such issues in
future.

Interoperability. Lastly, what-if tools need to be integrated in
broader ecosystems where other software solutions are used
by domain experts. What-if tools need to be interoperable,
for example by their ability to load and export common
data formats. Users could, for instance, extract data from the
system and use it in their own presentations and storytelling.

General lessons learned
Visualization guidelines and preregistration. When design-
ing visualization systems together with domain experts, the
visualization researcher needs to exploit existing practical
guidance. Throughout our project, we proactively recog-
nized and confirmed most of Sedlmair et al.’s pitfalls132,
which helped greatly in our collaboration and developments.
In addition, we found it helpful to preregister our eval-
uation/validation protocols. This allowed us to be better
prepared and to spot potential methodological flaws early on.

Pre-existing software environment. When creating a new
visualization system, the visualization researcher should
analyze the software already in use by the target population,
including commercial applications. This simplifies the
discussion with domain experts, as they often refer to

Prepared using sagej.cls. === Accepted manuscript DOI: https://doi.org/10.1177/14738716231216030 === === Demo video: clickable-link ===

https://doi.org/10.1177/14738716231216030
https://osf.io/94bzf?view_only=5da9f4a35d0c48c9963e13fb576ec1e6


Vers
ion

su
bm

itte
d to

pe
er-

rev
iew

12 Information Visualization 2023, Vol.X(X)

visualizations and methods available in this type of
software. This will also facilitate discussions about change
management with the target users. The risk of having a
comment such as “but this already exists in software X”
is hence mitigated. An example of this in our case was
the JMP statistical software89. This might also help to
delineate the new contribution. Knowledge about company
software development practices is also important to facilitate
the deployment of the new application, e.g., to ensure its
compatibility with existing orchestration tools.

Be or work with a liaison. The design of effective
visualizations relies on a sufficient knowledge of the field
for which the software is intended. When the visualization
researchers have no background in the target field, it’s crucial
to be immersed in the domain and work with field experts.
Sitting in a few meetings to gather requirements is not
enough. Such collaboration must result in a team member
taking the role of the liaison82, i.e., a person with sufficient
knowledge of both the target field and the visualization field
to facilitate the interdisciplinary communication required for
a successful project.
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qualitative multi-attribute decision models in health care.
Int J Medical Informatics 2000; 58-59. DOI:10.1016/
S1386-5056(00)00087-3.

Prepared using sagej.cls. === Accepted manuscript DOI: https://doi.org/10.1177/14738716231216030 === === Demo video: clickable-link ===

1809.01587
1704.01942
2001.09395
1710.10777
1908.00087
1705.07874
1807.06228
1808.00196
1805.04755
1904.00561
1309.6392
https://doi.org/10.1177/14738716231216030
https://osf.io/94bzf?view_only=5da9f4a35d0c48c9963e13fb576ec1e6


Vers
ion

su
bm

itte
d to

pe
er-

rev
iew

14 Information Visualization 2023, Vol.X(X)

54. Card AJ, Ward JR and Clarkson PJ. Beyond FMEA: The
structured what-if technique (SWIFT). Journal of Healthcare
Risk Management 2012; 31(4): 23–29. DOI:https://doi.
org/10.1002/jhrm.20101. https://onlinelibrary.

wiley.com/doi/pdf/10.1002/jhrm.20101.
55. Swart RJ, Raskin P and Robinson J. The problem of

the future: Sustainability science and scenario analysis.
Global Environmental Change 2004; 14(2). DOI:10.1016/j.
gloenvcha.2003.10.002.

56. Reilly M and Willenbockel D. Managing uncertainty: A
review of food system scenario analysis and modelling.
Philosophical Trans Royal Soc B: Biological Sciences 2010;
365(1554). DOI:10.1098/rstb.2010.0141.

57. van Sluisveld MA, Hof AF, Carrara S et al. Aligning
integrated assessment modelling with socio-technical transi-
tion insights: An application to low-carbon energy scenario
analysis in Europe. Technological Forecasting and Social
Change 2020; 151. DOI:10.1016/j.techfore.2017.10.024.

58. Salas E, Priest HA, Wilson KA et al. Scenario-Based
Training: Improving Military Mission Performance and
Adaptability. In Military life: The psychology of serving
in peace and combat (Vol. 2): Operational Stress. Praeger
Security International, 2006. pp. 32–53.

59. Karvetski CW, Lambert JH and Linkovz I. Scenario
and multiple criteria decision analysis for energy and
environmental security of military and industrial installations.
Integrated Environmental Assessment and Management 2011;
7(2). DOI:10.1002/ieam.137.

60. Huss WR and Honton EJ. Scenario planning-What style
should you use? Long Range Planning 1987; 20(4). DOI:
10.1016/0024-6301(87)90152-X.

61. Huss WR. A move toward scenario analysis. Interna-
tional Journal of Forecasting 1988; 4(3). DOI:10.1016/
0169-2070(88)90105-7.

62. Krause J, Perer A and Ng K. Interacting with predictions:
Visual inspection of black-box machine learning models. In
Proceedings of the CHI Conference on Human Factors in
Computing Systems. pp. 5686–5697. DOI:10.1145/2858036.
2858529.

63. Wexler J, Pushkarna M, Bolukbasi T et al. The what-if
tool: Interactive probing of machine learning models. IEEE
Transactions on Visualization and Computer Graphics 2020;
DOI:10.1109/TVCG.2019.2934619. 1907.04135.

64. Sohns JT, Garth C and Leitte H. Decision boundary
visualization for counterfactual reasoning. In Computer
Graphics Forum. Wiley Online Library. DOI:10.1111/cgf.
14650.

65. Molnar C. Interpretable Machine Learning. 2 ed.
2022. URL https://christophm.github.io/

interpretable-ml-book.
66. Edwards W. The theory of decision making. Psychological

bulletin 1954; 51(4): 380. DOI:10.1037/h0053870.
67. Slovic P, Lichtenstein S and Fischhoff B. Decision making.

In Stevens’ handbook of experimental psychology 2nd ed,
volume 2. Wiley, 1988. pp. 673–738. URL http://hdl.

handle.net/1794/22321.
68. Kahneman D and Tversky A. Prospect theory: An analysis

of decision under risk. In Handbook of the fundamentals of
financial decision making: Part I. World Scientific, 2013. pp.
99–127. DOI:10.1142/9789814417358 0006.

69. Tversky A and Kahneman D. The framing of decisions and
the psychology of choice. In Behavioral decision making.
Springer, 1985. pp. 25–41. DOI:10.1126/science.7455683.

70. Tversky A and Kahneman D. Rational choice and the framing
of decisions. In Multiple criteria decision making and risk
analysis using microcomputers. Springer, 1989. pp. 81–126.
DOI:https://doi.org/10.1007/978-3-642-74919-3 4.

71. Kahneman D, Slovic SP, Slovic P et al. Judgment under
uncertainty: Heuristics and biases. Cambridge university
press, 1982. ISBN 0 521 284147.

72. Milkman KL, Chugh D and Bazerman MH. How can decision
making be improved? Perspectives on psychological science
2009; 4(4): 379–383. DOI:10.1111/j.1745-6924.2009.01142.
x.

73. Wilson HJ and Daugherty PR. Collaborative intelligence:
Humans and AI are joining forces. Harvard Business Review
2018; 96(4): 114–123.

74. Bastani H, Bastani O and Sinchaisri WP. Improving human
decision-making with machine learning. arXiv preprint
arXiv:210808454 2021; DOI:10.48550/arXiv.2108.08454.

75. Khosravi K, Shahabi H, Pham BT et al. A comparative
assessment of flood susceptibility modeling using multi-
criteria decision-making analysis and machine learning
methods. Journal of Hydrology 2019; 573: 311–323. DOI:
10.1016/j.jhydrol.2019.03.073.

76. Secinaro S, Calandra D, Secinaro A et al. The role of artificial
intelligence in healthcare: a structured literature review. BMC
Medical Informatics and Decision Making 2021; 21(1): 1–23.
DOI:10.1186/s12911-021-01488-9.

77. Veropoulos K. Machine learning approaches to medical
decision making. PhD Thesis, University of Bristol, England,
2001.

78. Sahoo AK, Pradhan C and Das H. Performance evaluation of
different machine learning methods and deep-learning based
convolutional neural network for health decision making. In
Nature Inspired Computing for Data Science. Springer, 2020.
pp. 201–212. DOI:10.1007/978-3-030-33820-6 8.

79. Thirumalai C, Duba A and Reddy R. Decision making system
using machine learning and pearson for heart attack. In
International Conference on Electronics, Communication and
Aerospace Technology, volume 2. IEEE, pp. 206–210. DOI:
10.1109/ICECA.2017.8212797.

80. Duan Y, Edwards JS and Dwivedi YK. Artificial intelligence
for decision making in the era of big data–evolution,
challenges and research agenda. International Journal of
Information Management 2019; 48: 63–71. DOI:10.1016/j.
ijinfomgt.2019.01.021.

81. Dwivedi YK, Hughes L, Ismagilova E et al. Artificial
intelligence (ai): Multidisciplinary perspectives on emerging
challenges, opportunities, and agenda for research, practice
and policy. Int J Information Management 2021; 57: 101994.
DOI:10.1016/j.ijinfomgt.2019.08.002.
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The supplemental material, including the demo video is located at: 

https://osf.io/94bzf?view_only=5da9f4a35d0c48c9963e13fb576ec1e6 

The Latex source code is located at: 

https://osf.io/7tgmp/?view_only=49b7d66f5a384fa7a0ca68362aa1cab1 
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