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Two-Dimensional Linear Implicit
Relaxed Scheme for Hyperbolic
Conservation Laws

Angelo Iollo, Gabriella Puppo, and Andrea Thomann

Abstract We present a two-dimensional extension to the linear implicit all-speed
finite volume scheme for hyperbolic conservation laws based on Jin-Xin relaxation
recently forwarded in [6]. It is based on stiffly accurate SDIRK methods in time and
a convex combination of Rusanov and centered fluxes in space making it asymptot-
ically consistent in the low Mach number regime and allows an accurate capturing
of material waves under large time steps. The scheme is numerically tested on the
Euler equations and a non-linear model for elasticity in the compressible and low
Mach number regime.

Keywords All-speed scheme · Relaxation method · Eulerian elasticity · Linearly
implicit schemes

1 Introduction

The importance of implicit schemes in the numerical integration of evolutionary
equations typically lies in the possibility of circumventing the limitations imposed
by the amplification of numerical instabilities from which explicit schemes suffer.
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Added to this motivation is, in the case of hyperbolic models, the need to preserve the
consistency and accuracy of the integration scheme when the propagation phenom-
ena described by the model have largely incomparable velocity scales. Nevertheless,
an implicit scheme involves the inversion of a large often non linear system and, what
is worse, the calculation of the Jacobian of the scheme residuals. The latter operation
can be (i) cumbersome—when the numerical flux is non linear and the constitutive
law complex; (ii) ill-posed—in presence of discontinuous solutions; (iii) limiting—if
one wishes to devise a scheme independent of the constitutive laws of the model.

This work is in the wake of previous contributions in which the hyperbolic model
considered is equivalent [2, 8], in the limit of an ad hoc relaxation, to a model in
which the differential operator is linear and where the nonlinearity is transferred into
the source term. This allows to resort to an implicit integration approach in which
part of the difficulties enunciated above (the linear system is still there) can be over-
come. Unlike other approaches, however, what is proposed below does not depend
on relaxation parameters since it is an implicit relaxed scheme. Moreover, unlike
previously, see [1, 7], the proposed implicit relaxed scheme does not involve addi-
tional relaxation variables due to a prediction-correction type technique projecting
the relaxation source terms on the zero relaxation limit.

In what follows, the main contribution with respect to the work of [6] is the
extension of the scheme to two-dimensional problems for compressible hyperelastic
material flows in all-Mach regimes.

2 The Jin-Xin Relaxation Method

We consider the following hyperbolic conservation law on the two-dimensional
domain Ω given by

∂tψ + ∂x f
x (ψ) + ∂y f

y(ψ) = 0, (1)

with the state vector ψ ∈ R
k , directional fluxes f x , f y : Rk → R

k . Following [5],
we introduce a vector of relaxation variables v ∈ R

k and consider the following
relaxation system given by

∂tψ + ∂xv + ∂yw = 0, (2a)

∂tv + A2
x∂xψ = −1

η

(
v − f x (ψ)

)
, (2b)

∂tw + A2
y∂xψ = −1

η

(
w − f y(ψ)

)
, (2c)

where η > 0 denotes the relaxation rate and A2
x , A2

y are diagonal matrices with
positive entries given by

A2
x = diag(a2x , · · · , a2x ), A2

y = diag(a2y, · · · , a2y). (3)
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The fluxes on the relaxation model are linear whereas the relaxation source terms on
the right hand side of (2a) are non-linear and stiff for small η. Rewriting Eqs. (2b),
(2c), using a Chapman-Enskog expansion of the relaxation variables for small η, we
find

v = f x (ψ) − η(∇ψ f x (ψ)2 − A2
x ))∂xψ, (4a)

w = f y(ψ) − η(∇ψ f y(ψ)2 − A2
y))∂yψ, (4b)

where ∇ψ f x (ψ),∇ψ f x (ψ) denote the Jacobians of the flux functions f x , f y

respectively. We have neglected the O(η2) terms in the expansion (4a), since we
are only interested in the first order diffusion terms in η. Inserting (4a) into (2a), we
have

∂tψ + ∂x f (ψ) = η
(
∂x

((
A2
x − ∇ψ f x (ψ)

)
∂xψ

) + ∂y
((
A2

y − ∇ψ f y(ψ)2
)
∂yψ

))
.

To obtain a diffusive approximation of the original system of Eq. (1), it has to be
ensured that the diffusion term on the right hand side is non-negative. This yields the
so called sub-characteristic condition, that for all ψ it has to hold A2

x − ∇ψ f x (ψ) ≥
0 and A2

y − ∇ψ f y(ψ)2 ≥ 0. This positive semi-definite restriction is fulfilled for the
choice (3) with

ax = max
x∈�

max
j=1,...,k

|λx
j (ψ(x, t))|, ay = max

x∈�
max

j=1,...,k
|λy

j (ψ(x, t))|, (5)

where λx
j ,λ

y
j , j = 1, . . . , k are the characteristic speeds of the original Eq. (1) given

by the eigenvalues of the directional Jacobians∇ψ f x (ψ),∇ψ f y(ψ). Thus from (4a)
we recover at leading order the original system, namely

v = f x (ψ), w = f y(ψ), ∂tψ + ∂x f
x (ψ) + ∂y f

y(ψ) = 0, (6)

also referred to as the relaxation limit.

3 The Numerical Scheme

Following the lines of construction of the one-dimensional scheme introduced in
[6], we use stiffly accurate singular diagonally implicit Runge-Kutta (SA-SDIRK)
methods in a finite volume framework. To exploit the linear fluxes of the relaxation
system (2), we apply an operator splitting to separate the non-linear relaxation source
terms from the linear right hand side. For each stage k = 1, . . . , s of an s-stages
Runge-Kutta method we have
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⎧
⎪⎨

⎪⎩

ψ� = ψn

v� = vn − Δt
η

(
v� − f x (ψ�)

)
,

w� = wn − Δt
η

(
w� − f y(ψ�)

)
,

(7)

whereψ�, v�,w� denote the states after the relaxation process. Taking the limit η →
0, we obtain v� = f x (ψ�),w� = f y(ψ�) which is consistent with the relaxation
equilibrium solution (6). On the homogeneous left hand side of (2) we apply a
SDIRK method with weights α jl ,β j , j = 1, . . . , s, l = 1, . . . j − 1, yielding

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ψ( j) = ψn − Δt
∑ j

l=1 α jl
(
∂xv

(l) + ∂yw
(l)

)
,

v( j) = vn − Δt
∑ j

l=1 α jl A2
x∂xψ

(l),

w( j) = wn − Δt
∑ j

l=1 α jl A2
y∂yψ

(l),

(8a)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ψn+1 = ψn − Δt
∑s

j=1 β j
(
∂xv

( j) + ∂yw
( j)

)
,

vn+1 = vn − Δt
∑s

j=1 β j A2
x∂xψ

( j),

wn+1 = wn − Δt
∑s

j=1 β j A2
y∂yψ

( j).

(8b)

Note that this system has thrice as many variables per stage and update as the original
system (1). To reduce the computational overhead associated with these additional
auxiliary variables, we replace the stages v(l),w(l) in the update for ψ( j) in (8a) and
obtain the time-semi discrete stages

ψ( j) −Δt2α2
j j

(
A2
x∂

2
xψ

( j) + A2
y∂

2
yψ

( j)) =

ψn −Δtα j j∂xv
n − Δt

j−1∑

l=1

α jl∂xv
(l) + Δt2α j j

j−1∑

l=1

α jl A2
x∂

2
xψ

(l)

−Δtα j j∂yw
n − Δt

j−1∑

l=1

α jl∂yw
(l) + Δt2α j j

j−1∑

l=1

α jl A2
y∂

2
yψ

(l). (9)

Using the fact, that from the relaxation source terms we have vn = f x (ψn), v(l) =
f x (ψ(l)),wn = f y(ψn),w(l) = f y(ψ(l)) for all previous stages l = 1, . . . , j − 1,
it follows

ψ( j) −Δt2α2
j j

(
A2
x∂

2
xψ

( j) + A2
y∂

2
yψ

( j)) =

ψn −Δtα j j∂x f
x (ψn) − Δt

j−1∑

l=1

α jl∂x f
x (ψ(l)) + Δt2α j j

j−1∑

l=1

α jl A2
x∂

2
xψ

(l)

−Δtα j j∂y f
y(ψn) − Δt

j−1∑

l=1

α jl∂y f
y(ψ(l)) + Δt2α j j

j−1∑

l=1

α jl A2
y∂

2
yψ

(l),
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thus only depending on the state variable ψ and from the relaxation source term we
obtain v( j) = f x (ψ( j)),w( j) = f y(ψ( j)). Note, that the implicit system (10) decou-
ples into k implicit subsystems for each state variable in ψ, since Ax and Ay are
diagonal matrices. Moreover, the coefficient matrices for each implicit subsystems
are identical M-matrices since we use SDIRK methods. This drastically reduces the
computational overhead compared to coupled implicit systems based on lineariza-
tions of Jacobians, see e.g. [1, 7]. Finally we obtain for the update

ψn+1 = ψn − Δt
s∑

j=1

β j
(
∂x f

x (ψ( j)) + ∂y f
y(ψ( j))

)
. (10)

In space we consider the two-dimensional domain � ⊂ R
2 paved with rectangular

cells �I = [xi−/2, xi+1/2] × [y j−1/2, y j−1/2] of length Δx , Δy in x-and y-direction
respectively with barycenter (xi , y j ) = (iΔx, jΔy). According to the finite volume
framework, we evolve cell averages defined by

ψn
I = 1

|�I |
∫

�I

ψ(x, y, tn)d�. (11)

The finite volume scheme is then given by

ψ
( j)
I −Δt2α2

j j

(
A2
xD( j)

x + A2
yD( j)

y

) = (12)

ψn
I −Δtα j jFn

x − Δt
j−1∑

l=1

α jlF (l)
x + Δt2α j j

j−1∑

l=1

α jl A2
xD(l)

x

−Δtα j jFn
y − Δt

j−1∑

l=1

α jlF (l)
y + Δt2α j j

j−1∑

l=1

α jl A2
yD(l)

y ,

ψn+1 = ψn − Δt
s∑

j=1

β j
(F ( j)

x + F ( j)
y

)
(13)

with the discretized diffusion operators D and numerical fluxes F , given by

Dx = 1

Δx2
(
ψi+1, j − 2ψi, j + ψi−1, j

)
, Dy = 1

Δy2
(
ψi, j+1 − 2ψi, j + ψi, j−1

)
,

Fx = 1

Δx

(
f xi+1/2, j − f xi−1/2, j

)
, Fy = 1

Δy

(
f yi, j+1/2 − f yi, j−1/2

)
.

The fluxes at the interface are approximated by a convex combination between cen-
tered and Rusanov fluxes based on the local Mach number Mloc given by the ratio
between local fluid and sound speed. They read e.g.
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f xi+1/2, j = 1

2

(
f x (ψi+1, j ) + f x (ψi, j )

) − ai+1/2, jθ (Mloc) (ψi+1, j − ψi, j ),

(14)
with the local maximal characteristic speed

ai+1/2, j = max
l

(|λl(ψ(xi , y j , t
n))|, |λl(ψ(xi+1, y j , t

n))|)

and an indicator function, e.g.,

θ (Mloc) = sin

(
πMloc

2

)
for Mloc ∈ [0, 1] and θ (Mloc) = 1 for Mloc > 1.

This choice ensures the correct numerical diffusion for almost incompressible flows
(centered) in the low Mach number limit and compressible flows (upwind scheme
based on Rusanov fluxes with Mloc ≈ 1). This, together with SA-SDIRK time inte-
gration, ensures an accurate description of low Mach flows, as well as compressible
flows thus (12), (13) constitutes an all-speed scheme. In consequence, by construc-
tion, the numerical scheme is asymptotic preserving due to asymptotic stable time
integrators and centered numerical fluxes in the low Mach number limit.

4 Numerical Results and Discussion

In the following, we use a first order scheme consisting the backward Euler scheme
in time and a two stage second order SA-SDIRKmethod with α j j = 1 − √

2/2 with
a minmod reconstruction at the cell interfaces to ensure second order in space also
for compressible flows. We test the numerical schemes on the Euler equations with
an ideal gas law and a conservative model of non-linear elasticity given by

ψ =

⎛

⎜⎜
⎝

ρ
ρu

[∇Y ]
E

⎞

⎟⎟
⎠ , f (ψ) =

⎛

⎜⎜
⎝

ρu
ρu ⊗ u − σ
u · [∇Y ]I
u(E + p)

⎞

⎟⎟
⎠ (15)

from which the directional fluxes f x , f y in (2) can be deduced. It consists of
conservation of mass ρ, momentum ρu and total energy E = ρe + 1/2ρ|u|2 with
an additional evolution equation for the deformation gradient [∇Y ]. We con-
sider a neo-hookean equation of state ρe = (γ − 1)p + p∞ + χ(trB̄ − 2) where
p∞,χ are material constants and B̄ is the normalized Cauchy stress tensor B̄ =
det([∇Y ])([∇Y ]−1[∇Y ]−T ) and the stress tensor σ is given by

σ = −p + 2χdet([∇Y ])
(
B̄ − trB̄

2
I

)
. (16)
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Fig. 1 Riemann Problems for Euler equations in the compressible regime from [4] on a grid of
256 × 256 cells: Top panel: density for RP CRCS at time T f = 0.3. Bottom panel: density for RP
RCCS at time T f = 0.2. Left side: first order scheme. Right side: Second order scheme

For more details on the model and its derivation see [2, 8]. Note that for p∞ = 0 and
χ = 0. we recover the standard Euler equations with an ideal gas law.

Compressible Riemann ProblemsWe consider two 2D Riemann Problems (RPs) for
the Euler equations with an ideal gas law and γ = 1.4 taken from [4] containing
contact discontinuities. Since both cases are in the compressible regime, we apply
an acoustic CFL condition with CFL number 0.9 to follow all waves in the model.
The first test consists of a contact, shock, contact and rafaction wave (RP CSCR)
in counterclockwise rotation starting from the top right quarter. The second one
consists of a rarefaction, two contacts and a shock wave (RP RCCS), both displayed
in Fig. 1. Since the scheme contains the full upwind diffusion, the first order scheme
is quite diffusive on all waves, whereas the second order scheme captures all waves
accurately.

Gresho Vortex Next, we consider the Gresho vortex, which is a solution to the incom-
pressible Euler equations with a divergence free velocity field and constant initial
density and is a stationary exact solution to the Euler equations. For the set-up see
e.g. [3]. We run it for three different Mach regimes on a gird of 40 × 40 on the
domain [0, 1]2 withΔt = 2.2 · 10−2. It is especially suited to verify the AP property,
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Table 1 Gresho vortex: L1 error of the density at final time T = 1 with respect to initial constant
density ρ(x, 0) = 1 and ratio of kinetic energy over the computational domain [0, 1]2 for different
Mach number regimes

Scheme Mmax = 10−2 Mmax = 10−4 Mmax = 10−6

L1 error ρ First order 9.91e-8 8.77e-12 1.43e-15

Second order 6.88e-7 2.11e-11 3.64e-15

ET
kin/E

0
kin First order 0.998128 0.999945 0.999946

Second order 0.999941 0.999945 0.999952

since the kinetic energy is preserved. Thus the loss of kinetic energy indicates the
diffusiveness of the numerical scheme reported in Table 1. As we see, for all Mach
regimes, the loss due to diffusion is almost equal and the numerical solutions resem-
ble quite accurately the initial exact solution of the vortex. Moreover we present the
L1 error of the density at the final time with respect to the initial density which is, due
to the stationary aspect of the test case, even of order M3 thus the solution formally
converges to the incompressible limit solution as the Mach number decreases which
numerically verifies the AP property of the scheme.

Deformation of hyperelastic solids Finally, we consider two RPs concerning the
deformation of compressible solids (15) taken from [1] which exhibits two longi-
tudinal, two shear waves and a material wave. We consider two materials, copper
with p∞ = 3.42 · 1010, γ = 4.33 and shear modulus χ = 5 · 1010 which lies in the
low acoustic and low shear Mach number regime, i.e. the longitudinal and shear
waves are considerably faster than the material wave. The initial condition consists
of a jump in pressure from 109 to 105 in the bottom right quarter of the domain
under constant density of 8900 and a zero velocity field. The second material under
consideration is rubber (p∞ = 6.8 · 108, γ = 4.4, χ = 8 · 105) which lies in the
low acoustic Mach number regime where the longitudinal waves are significantly
faster than the shear and material waves. The initial condition consists of a jump
in pressure from 108 to 9.8 · 107 and velocities from 0 to 20 in the bottom right
quarter of the domain under constant density of 1000. The numerical results for our
implicit first and second order scheme, as well as an explicit SSP-RK2 scheme, with
2562 grid cells on a [0, 2]2 domain are presented in Fig. 2 with Δt = 1.17 · 10−5 for
copper and Δt = 2.08 · 10−5 for rubber. Note, that the second order explicit upwind
scheme requires a time step of Δt = 3.3 · 10−7 for copper and 1.8 · 10−6 for rub-
ber. Our implicit first and second order schemes capture the resulting contact wave
in the density accurately, in contrast to the explicit method, while diffusing shear
and longitudinal waves. Due to the higher order approximation, we observe small
oscillations on the negligible fast waves in our second order scheme.
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Fig. 2 Riemann Problem elastic solids on the domain [0, 2]2: Top panel: Copper density at time
T = 10−4. Bottom panel: Rubber density at time T = 3 · 10−4. Left: Explicit second order scheme.
Middle: Our first order scheme. Right: Our second order scheme
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