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Abstract

In this paper, we extend estimation results on the R-convex hull of the points of a random sample from indepen-
dence to some dependent cases. Explicit convergence rates are obtained in that case; we deal with R-convex hulls
and its natural plug-in to estimate the support S or level-sets together with their volume and perimeter of the marginal
density f on Rd, of a strictly stationary process.

For this we assume some weak dependence conditions and different distributional assumption depending on the
estimation purpose (support or level sets estimation).

The loss with regard to the classical independent case depends on the current dependence structure.

Keywords: Strictly stationary process, strong mixing, weak dependence, multidimensional density, density
estimation, density support estimation, set estimation

1. Introduction

Set estimation has many applications. In ecology for instance, it may be used to study the home-range or the core-
area of species [25], based on the observation of the spatial distribution of species or the movement of one or more
representative members. Assimilating the position of a member to a random variable with a given density distribution
f : Rd → R, the home-range corresponds to the support S = {x, f (x) > 0} of f and the core-area to a level set of f
which is defined as the set Lt = {x, f (x) ⩾ t} for a given threshold t > 0. If

∫
Lt

f (x)dx = α then the level set Lt is also
interpreted as a multidimensional α−quantile, see [12, 17].
The estimation of a density support and of its related quantities -level sets, boundary, volume and perimeter- has
been the focus of several works for i.i.d. data sets. The historical Devroye-Wise estimator of S in [13, 16] (see also
references therein) has universal properties but non-optimal rates. If S is convex then optimal rates are achieved by
the convex hull estimator of the sample. More generally, under “convexity type” assumptions on S , optimal rates may
be achieved by estimators defined as some extensions of the convex hull. This is the case of the R-convex hull, studied
for example in [3, 7, 35–37, 40] (other estimators of S have also been proposed, as in [1] or [27]).
The R-convex hull of a set S is defined as :

CR(S ) =

 ⋃
B̊(x,R)∩S=∅

B̊(x,R)


c

,

where Ec and E̊ respectively denote the complement and the interior of the set E and B(x,R) is the closed ball of radius
R centered at x. The use of the R-convex hull to estimate the support of a density f admits the following heuristic
justification.
If S is regular enough, we have CR(S ) = S so that a natural estimator of S is Ŝ n = CR(Xn), where Xn = {X1, . . . , Xn} ⊂
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Rd denotes a n-sample with marginal density f having a support S and CR(Xn) =
(⋃

B̊(x,R)∩Xn=∅
B̊(x,R)

)c
.

The study of Ŝ n has been introduced by [40] and [35]. They derive convergence rates of the Hausdorff distance
dH(Ŝ n, S ) towards 0 and obtain the minimax rate of [27] under regularity assumptions on S . Similar rates are obtained
for dH(∂Ŝ n, ∂S ). Functionals of the R-convex hull may also be used to estimate related quantities such as the volume
[7, 8], the perimeter [3] and level sets [36] of S .
In the above results, the density f is bounded below on S by some positive constant and the sample Xn is i.i.d..
Hereafter we extend the study to densities which are not bounded below and to dependent settings. Indeed for real
life applications, independence hypothesis is generally unrealistic. This is the case for instance if the location of a
member of an animal specie is observed via GPS or if the sample consists of the trajectory of one or more members
observed over a given time period. Our hypothesis is that Xn is a n−sample from a strictly stationary process X.
Additionally, we assume some dependence condition: we consider here both strong mixing and θ-weak dependence
conditions, introduced respectively in [38] and [15].
Set estimation under dependence has been little studied. A few related works are those of [10], [11] and [9] who
consider continuous time trajectories of a reflected Brownian motion. In the recent paper of [29] the authors extend
results on reconstruction of density supports of i.i.d. random variables to supports of dependent stationary Rd-valued
random processes with the use of the Devroye-Wise estimator.
In this article, we study the asymptotic properties of Ŝ n and some of its natural plug-in as estimators of the support
(and boundary, perimeter, volume) in a non-independent framework: thus we extend the results of [3, 7, 8, 35, 36, 40]
to dependent cases. Plug-in estimates also lead to the case of level sets estimation. Namely, we derive convergence
rates in Hausdorff distance of those estimators. Finally we show that, with probability one for n large enough, the
estimated support (resp. level sets) is homeomorphic to the support (resp. to the level sets) of f .
The rest of the paper is organized as follows. Section 2 presents some notation and general useful results. Section
3 dedicates to asymptotic results for the R-convex hull and its natural plug-in as estimators of the density support
and of related quantities, such as volume and perimeter. Section 4 deals with the estimation of level-sets of f . As a
conclusion, Section 6 proposes some perspectives for data-driven tuning of the geometric parameter R. The proofs
are postponed to Section 5.

2. General framework

In this paper, we are interested in several geometric non-parametric estimation problems, based on a n−sample
Xn = {X1, . . . , Xn} ⊂ Rd of a strictly stationary weakly dependent sequence X. In this section, we first give some
notation and preliminary material that will be useful to settle and prove our main results.

2.1. Notation

• For each set E ⊂ Rd, we respectively denote by |E|d, ∂E and |∂E|d−1 its d-dimensional volume, its boundary
and the (d − 1)-dimensional volume of ∂E.

For the sake of simplicity, we sometimes refer to volume and perimeter when talking about |E|d and |∂E|d−1.

• B(x, r) ⊂ Rd denotes the closed ball of radius r ≥ 0 centered at x and S(x, r) is the surface area of its boundary,
i.e. the sphere of radius r centered at x.

For the sake of simplicity, we set ωd = |B(0, 1)|d the volume of B(0, 1) ⊂ Rd and σd = |S(0, 1)|d−1 the surface
of its boundary.

• For each E ⊂ Rd and each positive number r, we denote by E⊕rB and E⊖rB the Minkowski sum and difference:

E ⊕ rB = {x ∈ Rd, d(x, E) ⩽ r} =
⋃
a∈E

B(a, r), and E ⊖ rB = {x, B(x, r) ⊂ E}.

• For each compact set E ⊂ Rd and each x ∈ Rd we set d (x, E) = miny∈E ∥x − y∥2, where ∥ · ∥ denotes a norm on
Rd.
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• For two subsets E and F of Rd, we denote by dH(E, F) their Hausdorff distance:

dH(E, F) = max
(
sup
a∈E

d (a, F), sup
b∈F

d (b, E)
)
.

• We set E ≈ F if and only if E and F are homeomorphic, i.e. there exists a bi-continuous bijection ψ : E → F.

• For two non-negative sequences (un) and (vn) in RN, we set un ≲ vn if and only if there exists c > 0 such that,
for all n ⩾ 0, un ⩽ cvn. If un ≲ vn and vn ≲ un then we set un ≈ vn.

• For k ∈ N, we denote by Ck the set of k-times continuously differentiable functions f : Rd → R.
For f ∈ C1 we denote by f (i) its gradient and in case f ∈ C2 we denote by f (2) its Hessian matrix.

• We denote by ∥ · ∥op the operator norm on the set of n × p matrices.

• Let ρ ⩾ 2. We say that K is a kernel of order ρ if and only if
∫

P(x)K(x)dx = P(0) for each polynomial with
degree (strictly) less than ρ.

2.2. Dependence conditions
Let X = (Xt)t∈Z be a strictly stationary sequence on a given probability space (Ω,F ,P). For all −∞ ⩽ j ⩽ l ⩽ +∞,

we set F l
j = σ(Xk, j ⩽ k ⩽ l, k ∈ Z) the σ-field of events generated by the random variables (Xk) j⩽k⩽l. We denote by

Xn = {X1, . . . , Xn} ⊂ Rd a n-sample of X with marginal density f : Rd → R.
In this paper, we consider two weak dependence conditions for X. These conditions cover a broad class of classical

models of times series as in Remark 1.

Strong or α-mixing. Let (α(q))q>0 be the decreasing sequence of strong mixing coefficients of X, defined as

α(q) = sup
A∈F 0

−∞, B∈F ∞q

|P(A ∩ B) − P(A)P(B)|.

Note that the above expression can also be written as the supremum of | cov(1A, 1B)|. We say that X is strongly mixing,
α-mixing, if limq→∞ α(q) = 0.

θ-weak dependence. Let v ≥ 1 and let us define the Lipschitz modulus of a function h :
(
Rd

)v
→ R by

Lip (h) = sup
x,y

|h(x) − h(y)|
∥x1 − y1∥ + · · · + ∥xv − yv∥

.

The process X is θ-weakly dependent, [14], if there exists a decreasing sequence (θ(q))q>0 with limq→∞ θ(q) = 0 such
that ∣∣∣cov(W, h(Xi1 , . . . , Xiv ))

∣∣∣ ≤ v Lip (h) · θ(q) ,

for any v ∈ N∗ any sequence of indices i1, . . . , iv ⩾ q and any random variable W measurable with respect to F 0
−∞ and

such that ∥W∥∞ ≤ 1.
Notice that for v = 1 this simply writes:

∣∣∣ cov(W, h(Xq))
∣∣∣ ≤ Lip (h) · θ(q).

Remark 1. A large number of classical models which satisfy strong mixing conditions is provided in [18]; in par-
ticular the class of linear processes based on innovations with an absolutely continuous density function, such as
strictly stationary ARMA processes and also certain bi-linear, ARCH or GARCH models. Another example is that of
a stationary Gaussian process with a continuous positive spectral density. Notice also that this property remains valid
through images by measurable functions.
Some classical processes are not strongly mixing. A famous counterexample is displayed in [5], in which X is the
stationary solution of the recursion

Xt =
1
2 ·

(
Xt−1 + εt

)
, ∀t > 0,

where X0 is independent of (εt)t>0, which is a sequence of i.i.d. random variables with Bernoulli distribution of
parameter 1/2. This example and many others, such as linear processes with discrete innovations fit the θ-weak
dependence condition. Notice also that this property is hereditary through Lipschitz functions.
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2.3. A key result under dependence
Let E be a measurable subset of Rd with P(Xt ∈ E) = p > 0. If Xn is an i.i.d. sample, then

P(Xn ∩ E = ∅) = (1 − p)n. (1)

This is a key property to derive results on set estimation. This relation essentially extends for some dependent cases
of interest quoted in the following remark.

Remark 2. (Cases related with independence).

• Consider a negatively associated process, see [39]. In the proofs of Subsection 5.1, we let q = 1, and for
Zi = 1{Xi∈E} (∀i ≥ 0), cov(Z1 × · · · × Zk−1,Zk) ≤ 0, hence (1) holds.

The lemmas 7.1 and 7.2 in [30] entail that the same result (1) holds for two other cases of interest

• X is a m−dependent process, P(Xn ∩ E = ∅) ≤ (1 − p)
n
m ,

• X is a geometrically ergodic Markov process, P(Xn ∩ E = ∅) ≲ (1 − p)n.

In the dependence settings of Remark 2, we obtain the same rates as for the independent case when dealing with set
estimation.
We relax the independence assumptions to settings such that a weaker version of Equation (1) holds. Namely, we will
give some explicit values of EE(q) such that for each q ∈ N with 1 ≤ q ≤ n we have

P(Xn ∩ E = ∅) ≤ (1 − p)
n
q +
EE(q)

p
. (2)

Property (2) weakens (1) for several dependence structures and for some cases of sets E of interest. This allow to
derive convergence rates for the estimation of S , ∂S , |S |d and |∂S |d−1 in Section 3 and for level sets in Section 4.

Proposition 1. Let X = (Xt)t∈Z be a stationary strongly mixing sequence with mixing coefficients (α(q))q>0. Let
E ⊂ Rd be an arbitrary measurable set such that P(Xt ∈ E) = p > 0. Then (2) holds for each 1 ≤ q ≤ n with
EE(q) = α(q).

Proposition 2. Let X = (Xt)t∈Z be a stationary θ−weakly dependent sequence with dependence coefficients (θ(q))q>0,
then we restrict to two special cases of measurable sets E ⊂ Rd of interest.

1. For E = B(x, r), then there exists c > 0 such that (2) holds with

EE(q) ⩽ inf
ε∈(0,r)

(
θ(q)
ε
+ cωd2dεrd−1

)
. (3)

2. For E = B(x, rx) ∩ B(y, ry) with rx + ry − ∥x − y∥ = ℓ, and ℓ ⩽ rx ∧ ry, then there exists c > 0 such that (2) holds
with

EE(q) ⩽ inf
ε∈(0,ℓ/2)

(
2θ(q)
ε
+ cV(rx, ry, ℓ, ε)

)
and V(rx, ry, ℓ, ε) ∼

ℓ→0
4cωd−1ε

(
ℓ2rxry

rx + ry

) d−1
2

. (4)

In order to get explicit rates, we will propose in the sequel two scenarii:

• Exponential decays, α(q) ⩽ Bb−q, or θ(q) ⩽ Bb−q, for some b < 1.

• Polynomial decays, α(q) ⩽ Bq−b, or θ(q) ⩽ Bq−b, for some b > 0.

Remark 3. In Proposition 2, for both cases, the constant c > 0 is defined through:

P(Xt ∈ E) ≤ c |E|d. (5)

Notice that this condition holds for instance if the distribution of X0 admits a bounded density f w.r.t. Lebesgue
measure.

Remark 4. Our results may be extended to alternative dependence structures, yielding other values of EE(q), possibly
involving other methods of proofs.
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3. Support estimation

In this section, we derive convergence rates for the R-convex hull estimators of the support S , its boundary, and
their measures in the context of strictly stationary strong-mixing or θ-weakly dependent sequences X.

We first give in Subsection in 3.1 regularity conditions on S under which are derived our main theoretical results.
We then provide in Subsection 3.2 the main lines of the proofs by enlightening the differences between the independent
case and the dependence setting for which an additional term for a probability bound appears.

3.1. Distributional background
In order to obtain a consistent estimator CR(Xn) of the support S we will assume that S is compact and regular enough
in order that CR(S ) = S . More precisely, we need that S satisfies the following

Definition 1 (Rolling ball property). A closed compact set S ⊂ Rd satisfies the Ro-outside (resp. Ri-inside) rolling
ball property if and only if:

∀x ∈ ∂S , ∃Oo
x ∈ Rd, ∥x − Oo

x∥ = Ro, and B̊(Oo
x,Ro) ⊂ S̊ c

(resp. ∃Oi
x ∈ Rd, ∥x − Oi

x∥ = Ri, and B(Oi
x,Ri) ⊂ S ).

If S satisfies the Ro-outside (Ri-inside) rolling ball property, we also say that balls of radius Ro (resp. Ri) roll freely
outside (resp. inside) S .

Sets satisfying the rolling ball property have nice properties due to the generalization of Blaschke’s rolling ball’s
theorem, see [40]’s theorem 1. In particular, they satisfy CRo (S ) = S , which ensures the convergence of the plug-in
support estimator CRo (Xn) since dH(Xn, S )→ 0.
To derive explicit convergence rates, we have moreover to assume that the density decreases regularly enough. Specif-
ically, we will assume a power decay as in [27]:

Definition 2. A density f belongs to the classMRo,Ri, f0,α if it has a compact support S that satisfies the Ro-outside
rolling ball property and the Ri-inside rolling ball property and that

f (x) ⩾ f0 d (x, ∂S )α, ∀x ∈ S .

Notice that the special case α = 0, known as "close to uniform" hypothesis, corresponds to the classical class of lower
bounded densities on S .

3.2. Main Theoretical results

Hereafter, we provide explicit convergence rates that generalize to a dependent framework and to α ⩾ 0 in
Definition 2 the previous works of [3, 35] on the R-convex hull, obtained in the independent case and when α = 0. As
a reference point, we first extend these previous results to the i.i.d. case but with α ⩾ 0:

Theorem 1. Let Ri,Ro and f0 be positive constants and α ⩾ 0. Let Xn = {X1, . . . , Xn} be an i.i.d. n−sample with
density f ∈ MRo,Ri, f0,α supported by S and R < Ro. Thus, there exists a constant A(d, α, f0,R,Ri) such that for n large
enough, one has with probability 1

dH(∂CR(Xn), ∂S ) ⩽ εn, dH(CR(Xn), S ) ⩽ εn, (6)
∂CR(Xn) ≈ ∂S , CR(Xn) ≈ S , (7)∣∣∣|∂CR(Xn)|d−1 − |∂S |d−1

∣∣∣ ≲ εn,
∣∣∣|CR(Xn)|d − |S |d

∣∣∣ ≲ εn, (8)

with

εn = A(d, α, f0,R,Ri)
(

ln n
n

) 2
d+1+2α

.

Optimal results for several classes of dependent models leading to the same convergence rates as for independence
are obtained from Remark 2 in Proposition 3 below:
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Proposition 3. Let X = (Xt)t∈Z be a negatively associated or m−dependent or is a geometrically ergodic Markov
chain. Then P(Xn ∩ E = ∅) ≲ (1 − p)n and the conclusions of Theorem 1 also hold.

Theorem below extend Theorem 1 to samples Xn of a strictly stationary sequence which is either strong mixing
or θ−weakly dependent with either exponential decay or polynomial decay of the dependence coefficients.

Theorem 2. Let Ri,Ro and f0 be positive constants and α ⩾ 0. Let Xn = {X1, . . . , Xn} be a n−sample of a strictly
stationary process X = (Xt)t∈Z with marginal density f ∈ MRo,Ri, f0,α supported by S . Assume that X is strongly mixing
or θ-weakly dependent. Choose R < Ro.

• If the sequence of dependence coefficients of X has an exponential decay rate α(q) ⩽ Bb−q, or θ(q) ⩽ Bb−q,
for some b < 1, then, with probability 1 for large enough n, Equations (6), (7) and (8) are satisfied with the
following εn

εn = A(d, α, f0,R,Ri, b)
(

ln2 n
n

) 2
d+1+2α

,

where the constant A(d, α, f0,R,Ri, b) is explicit.

• If the sequence of dependence coefficients of X has a polynomial decay rate α(q) ⩽ Bq−b or θ(q) ⩽ Bq−b with
b > b0 then, with probability 1 for large enough n, Equations (6), (7) and (8) are satisfied with the following εn

εn =

(
lna n
n1−γ

) 2
d+1+2α

.

Explicit values of b0, a and γ are given by

– in the strongly mixing case: b0 = 1, λ =
3d + 1 + 2α
d + 1 + 2α

, a =
b − 2 − d

b − λ
and γ =

λ + 1
λ + b

,

– in the θ-weakly dependent case: b0 = 2, λ =
3d + 1 + 2α
d + 1 + 2α

, a =
b/2 − 2 − d

b/2 − λ
and γ =

λ + 1
λ + b/2

.

Theorem 2 firstly highlights that in the exponential decay case, the estimation error achieves, up to an additional
power of ln n, the same rate than in the independent setting whatever the dependence structure is (strong mixing or
θ− weak dependence). In the exponential decay case, the dependence structure only impacts constants. Secondly in
the polynomial decay the loss in convergence rate with respect to the independent case is of the order of an additional
power of n. Moreover, contrary to the exponential decay case, both the error and the loss depend on the dependence
structure.
Moreover, as in [36], our results highlight the different roles of the outside and inside radius Ro and Ri: in both cases,
the tuning parameter R must be less than Ro in order to achieve the convergence and the convergence rate depends on
Ri.

3.3. Main arguments for Theorems 1 and 2.
The proofs are split into two parts.

• First, geometric and deterministic arguments allow to prove that:

∀O ∈ Rd,∀R ∈ (0,Ro),∃ ε > 0 : d (O, S ) ⩽ R − ε =⇒ B(O,R) ∩ Xn , ∅.

Then for each R < RO and for a convenient ε, we prove that if volume and perimeters are close of each other

dH(CR(Xn), S ) ⩽ ε, dH(∂CR(Xn), ∂S ) ⩽ ε,

and the homeomorphism property holds. Those results are stated in Proposition 6 and Corollary 1, which is a
part of theorem 4.1 from [3].
We defer the reader to the fourth point in the proof of Corollary 1 to explicit an homeomorphism S → CR(Xn).
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• As a consequence of Proposition 6 and Corollary 1, if there exists a sequence (εn)n such that

∞∑
n=1

pn < ∞, with pn = P
(
∃O, d (O, S ) ⩽ R − εn and B(O,R) ∩ Xn = ∅

)
, for each n ≥ 1,

then the Borel-Cantelli lemma allows to conclude.
Seeking suitable sequence (εn)n is the probabilistic part of the proof and make use of the key inequality (2).
A compactness argument allows to exhibit a coverage of {x, d(x, S ) ⩽ R − εn} by a finite number of balls
O1, . . . ,Oνn ∈ {x, d(x, S ) ⩽ R − εn} centred at Oi and with radius εn/ log n :

{
x, d(x, S ) ⩽ R − εn

}
⊂

νn⋃
i=1

B
(
Oi,

εn

ln n

)
, where a dimension argument implies νn ≲

(
ln n
εn

)d

.

Now for each n and i ∈ [1, νn] we set
Ei,n = B

(
Oi,R −

εn

ln n

)
.

From the triangular inequality, we infer

pn ⩽
νn∑

i=1

P
(
Ei,n ∩ Xn = ∅

)
.

– In the independent case:
P

(
Ei,n ∩ Xn = ∅

)
=

(
1 − P

(
Ei,n

))n

and the problem boils down to bound P(Ei,n) uniformly, with respect to i ∈ [1, νn], by using of the inside
rolling ball property combined with d (Oi, S ) ⩽ R − εn(1 − (ln n)−1) and the property on f assumed in
Definition 2.

We thus can exhibit a sequence (εn)n such that the series
∞∑

n=1

pn < ∞ are summable.

– Under dependence, the key inequality (2) yields an additional term,

P
(
Ei,n ∩ Xn = ∅

)
=

(
1 − P

(
Ei,n

)) n
qn +
EEi,n (qn)
P

(
Ei,n

)
for each qn ∈ N such that 1 ⩽ qn ⩽ n.
The probability bounds with the additional term for dependent data are set precisely in Subsection 2.3 and
they are proved in Subsection 5.1. In Subsection 5.3 we give detailed proofs of Theorems 1 and 2.

4. Level set estimation

We now focus on level set estimation. For a given t ∈ R+, the level set Lt is defined as

Lt =
{
z ∈ Rd, f (z) > t

}
.

If t = 0 we turn to the case of support estimation.
In the i.i.d. case, [36] introduced and studied the following empirical level set estimator

L̂t,R = CR

(
Xn ∩ {z, f̂ (z) ⩾ t}

)
,

where f̂n is a suitable density estimator of f .
In this section, we aim at extending [36]’s convergence rates to our dependence setting. We first recall the classical
assumptions when dealing with level set estimation. We prove Theorem 3 which explicits the convergence rates for
our level set estimator in the dependent case as the sum of two terms
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• a set estimation error εn, due to the use of the r-convex hull,

• a density estimation error term ε′n.

Possible values for ε′n in different contexts of dependence are given in Subsection 4.3. Finally, a sketch of the proof
of Theorem 3 is given in Subsection 4.4.

Remark 5. Suitable levels t defined in the sequel as regular levels see Definition 3 satisfy that Lt =
{
z ∈ Rd, f (z) ⩾ t

}
and ℓt is a (d − 1)-dimensional manifold, see [36].

4.1. Distributional background

In the context of level set estimation, we assume different distributional hypotheses than those required in the support
estimation problem.
Namely, the compactness of the support of the distribution is useless since Lt = {z, f (z) > t} is compact for all t > 0.
Moreover, the rate of decay of f near the boundary is no longer important. As a counterpart, we require that f ∈ Ck

for some k ⩾ 2 to derive uniform convergence rates for kernel density estimation. Also, for regular levels t, as defined
in Definition 3 below, and by Proposition 4, see theorem 2 in [40], we derive that the sets Lt naturally inherit the inside
and outside rolling ball properties.

Definition 3 (Regular levels). The level t > 0 is a regular level if there exist ∆t > 0 and mt > 0 such that

Lt−∆t ⊂ S̊ , and min
z∈Lt−∆t \L̊t+∆t

∥ f (1)(z)∥ = mt > 0.

A corollary of theorem 2 in [40] writes:

Proposition 4 ([40]). Let f ∈ C2, we assume that f (2)
max = supz∈S ∥ f

(2)(z)∥op < ∞. If t ∈ R+ is a regular level, then
there exists δt such that, for all t′ ∈ (t − δt, t + δt), Lt′ satisfies the inside and outside rolling ball properties for balls of
radius mt/ f (2)

max.

4.2. Main Theoretical results

Hereafter, we study the asymptotic behavior of L̂t,R, its boundary and its volume under weak dependence condi-
tions. We also obtain topological guarantees and perimeter estimation rates using ideas inspired from [3].
We focus here on the geometric part εn. Explicit rates taking into account all the parameters of the model are given in
Appendix C and Appendix B.

Theorem 3. Let Xn = {X1, . . . , Xn} be a n-sample of a strictly stationary sequence of a strong mixing or a θ-weak
dependent sequence X marginal class Ck density f on its support S .
Assume that supz∈S ∥ f

(1)(z)∥ = f (1)
max < +∞, and supz∈S ∥ f

(2)∥op = f (2)
max < +∞.

Assume that the density estimator f̂n satisfies supx | f̂n(x) − f (x)| ⩽ ε′n for a sequence ε′n such that ε′n → 0.
Let t > 0 be a regular level. Let R be a constant such that 0 < R < mt/ f (2)

max and define X+n (t) = Xn ∩ { f̂ (z) ⩾ t} and
L̂t,R = CR(X+n (t)). Then, with probability 1 and for n large enough, one has

dH(∂L̂t,R, ∂Lt) ≲ εn + ε
′
n, dH(L̂t,R, Lt) ≲ εn + ε

′
n,

∂L̂t,R ≈ ∂Lt, L̂t,R ≈ Lt,

| |L̂t,R|d − |Lt |d | ≲ εn + ε
′
n, ||∂L̂t,R|d−1 − |∂Lt |d−1| ≲ εn + ε

′
n,

With

• If the sequence of dependence coefficients of X has an exponential decay rate α(q) ⩽ Bb−q, or θ(q) ⩽ Bb−q,
for some b < 1, then:

εn = (ln2 n/n)
2

d+1 .

8



• If the sequence of dependence coefficients of X has a polynomial decay rate α(q) ⩽ Bq−b or θ(q) ⩽ Bq−b with
b > b0, then:

εn = (lna n/n1−γ)2/(d+1).

Explicit values of b0, γ1 and γ2 are respectively:

– Strong mixing: b0 = 1, a =
b − 2 − d

b − λ
, and γ =

λ + 1
λ + b

, with λ =
3d + 1
d + 1

.

– θ-weak dependence: b0 = 2, and a = 2 ·
2 − d + b/2

b/2 − λ
, and γ =

λ + 1
λ + b/2

, with λ =
5d − 1

2(d + 1)
.

4.3. Explicit rates for uniform consistency of kernel density estimators under dependence
Density estimation is an important question and it is a widely investigated problem in the literature. We defer

the reader to [26] under independence and e.g. [20] under strongly mixing and [22] for the weakly dependent case.
Indeed the density is a d−th order partial derivative of the c.d.f. which is easily fitted from the empirical c.d.f. F
and describes the marginal distribution of a stationary process. Each functional of F, including f , is thus of a main
importance for statistics. Anyway the herein assumptions do not fit the current setting, see Remark 6. The density
estimation error relies on the dependence structure, and on the regularity of the density and the dimension d.

To obtain results on level set estimation, we need an upper bound on

ε′n = sup
x∈Rd

∣∣∣∣ f̂n(x) − f (x)
∣∣∣∣,

where f : Rd → R as above is the marginal density of the strictly stationary Rd-valued process X and f̂n is its kernel
density estimator:

f̂n(x) =
1

nhd
n

n∑
t=1

K
(

Xt − x
hn

)
. (9)

We provide below bounds for ε′n in the α-mixing and θ-weakly dependent cases. Proposition 5 concerns exponential
and polynomial decays. For that task, we first introduce some regularity assumptions on f and K:

(K1) K : Rd → R is a bounded function with compact support and integral one.

(K2) K : Rd → R is of order k for some k ⩾ 2.

(M1) For some k ⩾ 2, f ∈ Ck and ∥ f (k)∥op is bounded.

(M2) The marginal density f is bounded on Rd.

(M3) The joint densities fi of (X0, Xi) are bounded, uniformly with respect to i > 0.

(M4) E∥X0∥
c < ∞ for some c > 2.

Proposition 5. Let Xn be a n-sample of a strictly stationary sequence X and f̂n be defined by (9). Assume that (K1),
(M2), (M3) and (M4) hold, and that (K2) and (M1) hold for some k ⩾ 2.

• If the sequence of dependence coefficients of X has an exponential decay rate

(A1) In the strong mixing case α(q) ⩽ Bb−q, for some b < 1,

– If k > d + 3, the choice hn = O
(

ln n
n

) 1
d+2k

yields ε′n = Oa.s.

( ln n
n

) k
2k+d

 .
– If k ⩽ d + 3, any choice hn = O

(
ln n
n

) 1−γ
3d+6

with γ ∈ (0, 1) yields ε′n = Oa.s.

( ln n
n

) k(1−γ)
3d+6

 .
(T1) In the θ-weak dependent case, θ(q) ⩽ Bb−q, for some b < 1,

9



– If k > d + 2, the choice hn = O
(

ln n
n

) 1
d+2k

yields ε′n = Oa.s.

( ln n
n

) k
2k+d

 .
– If k ⩽ d + 2, any choice hn = O

(
ln n
n

) 1−γ
3d+4

with γ ∈ (0, 1) yields ε′n = Oa.s.

( ln n
n

) k(1−γ)
3d+4

 .
• If the sequence of dependence coefficients of X has a polynomial decay rate then,

(A2) In the strong mixing case α(q) ⩽ Bq−b for some b > max(2 + 3/d, d + 2).

Let γ0 =
d + 2 − d(d−2)

2k+d

b + 1 − d(d−2)
2k+d

, then the choice hn = O
(

ln n
n1−γ

) 1
d+2k

for any γ ∈ (γ0, 1), yields ε′n = Oa.s.

( ln n
n1−γ

) k
2k+d

 .
(T2) In the θ-weak dependent case θ(q) ⩽ Bq−b for some b > 3(d + 2).

Let γ0 =
d + 2 − d(d−2)

2k+d

2⌊ b+3
6 ⌋ −

d(d−2)
2k+d

, then the choice hn = O
(

ln n
n1−γ

) 1
d+2k

for any γ ∈ (γ0, 1), yields ε′n = Oa.s.

( ln n
n1−γ

) k
2k+d

 .
Remark 6. Comments on the assumptions and on the results.

• The (ln n)-terms may be omitted in the above mentioned rates because the presence of an additional power term
make them essentially non optimal.

• In the strong mixing case with polynomial or geometric decreasing rates, [20] achieved optimal asymptotic
rates for ε′n that generalize [26]’s theorem 2.3. Such rates are also achieved in [22] and [23]) in the θ−weakly
dependent case with polynomial and geometric decreasing rates of the coefficients. However, the assumptions
on f , hn and the rate of decay of the dependence coefficients under which such rates may be achieved are more
demanding than ours. Namely, it is required some Hölder conditions on f . Note that in case of strong mixing
coefficients decaying at a polynomial rate to 0 not quickly enough, [6] also provide convergence results.

• To have a control of the error term on the whole set Rd, we need that the marginal density f satisfies (M5) :
lim∥x∥→∞ f (x) = 0. Remark that if (M1) and (M2) hold with some k ⩾ 2 thus every derivative of order less or
equal to k are bounded and this entails (M5), see [31].

• (M2) and (M3) are necessary in particular to have an equivalence of the variance σ2
n = var( f̂n). (M2) can be

dispensed with at the cost of additional technicality. To cancel the singularities, one may for instance consider
g = v f with v(x) = (x1 × · · · × xd)ε and an estimator ĝn = v f̂n of g. Thus the variance term admits the convenient
decay rate.

4.4. Main arguments for Theorem 3.
In Subsection 4.3 we obtained explicit decay rates (ε′n)n>0 such that supx | f̂n(x) − f (x)| ⩽ ε′n with ε′n → 0.
This entails: Lt+ε′n ∩ Xn ⊂ X+n (t) ⊂ Lt−ε′n , thus, for any R ⩾ 0 we have CR(Lt+ε′n ∩ Xn) ⊂ CR(X+n (t)) ⊂ CR(Lt−ε′n ).

First notice that, using the regularity of the level t we have that, for n large enough

1. By Proposition 4 Lt−ε′n and Lt+ε′n admit the R-rolling ball property (in other world CR(Lt−ε′n ) = Lt−ε′n and
CR(Lt+ε′n ) = Lt+ε′n

2. By use of the mean value theorem, we also derive Lt−ε′n ⊂ Lt ⊕
2ε′n
mt

and Lt ⊖
2ε′n
mt
⊂ Lt+ε′n .

The proof is then divided into two parts.

1. Firstly notice that we yet have L̂t,R = CR(X+n (t)) ⊂ CR(Lt−ε′n ) = Lt−ε′n ⊂ Lt ⊕
2ε′
mt

B.
2. By the r-convex hull properties, as in the section § 3 devoted to support estimation part, we have:(

∀O, d (O, Lt+ε′n ) ⩽ R − ε⇒ B(O,R) ∩ (Lt+ε′n ∩ Xn) , ∅
)
=⇒ dH(Lt+ε′n ,CR(Lt+ε′n ∩ Xn)) ⩽ ε

To bound the probability pn that there exists O with d(O, Lt+ε′n ) ⩽ R − εn and P(B(O,R) ∩ (Lt+ε′n ) ∩ Xn) = ∅ we
morally proceed as in the proof of results for the support estimation with an additional initial step.
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(a) By use of the inner rolling ball property we can find O′ such that ∥O−O′∥ = 2R− εn and B(O′,R) ⊂ Lt+ε′n
thus B(O′,R) ∩ B(O,R) ∩ Xn = ∅. We thus have

pn ⩽ P
(
∃O, d (O, Lt+ε′n ) ⩽ εn,∃O′, B(O′,R) ⊂ Lt+ε′n , ||O − O′|| ⩽ 2R − εn, B(O′,R) ∩ B(O,R) ∩ Xn = ∅

)
(b) As for the support estimation, we define coverings O1, . . . ,Oνn and O′1, . . . ,O

′
ν′n

on Rd such that (Lt+ε′n ⊕

(R − εn)B) \ Lt+ε′n and Lt+ε′n ⊖ RB are covered with balls with radius εn/ ln n. Let us introduce Bi, j(R, εn) =
B(O′j,R−εn/ ln n)∩B(Oi,R−εn/ ln n), as for the case of support estimation then using (2) then the display
in the point (a) may be written as:

pn ⩽
∑
i, j

1{
∥Oi−O′j∥⩽2R−εn(1−2/ ln n)

} P (
B(O′j,R − εn/ ln n) ∩ B(Oi,R − εn/ ln n) ∩ Xn = ∅

)
⩽

∑
i, j

1{
∥Oi−O′j∥⩽2R−εn(1−2/ ln n)

} P (
Bi, j(R, εn) = ∅

)
⩽

∑
i, j

1{
∥Oi−O′j∥⩽2R−εn(1−2/ ln n)

} {(1 − P((Bi, j(R, εn)))n/qn +
EBi, j(R,εn)(qn)
P(Bi, j(R, εn))

}
The additional term EBi, j(r,εn)(qn) writes α(qn) in the strong mixing case and it is given by (4) in Proposition
2 for the θ-weak dependent case.
In order to conclude, we work out sequences εn and qn such that

∑
n pn < +∞.

(c) With such εn we conclude by arguing that Lt+ε′n ⊂ CR(Lt+ε′n ∩Xn)⊕εnB ⊂ L̂t,r⊕εnB. Then, the preliminary
remark entails Lt⊖

2ε′n
mt

B ⊂ L̂t,R⊕εnB, that, with regularity of the level finally implies Lt ⊂ L̂t,R⊕
(
εn +

2ε′n
mt

)
B.

5. Detailed Proofs

5.1. Proofs of Propositions 1, 2, 3

Set first k = ⌊n/q⌋ and ti = iq for 1 ≤ i ≤ k. Define Zi = 1{Xti<E} and pk = E(Z1 × · · · × Zk). Then

pk = E(Z1 × · · · × Zk−1)E(Zk) + cov(Z1 × · · · × Zk−1,Zk).

The propositions will result from bounds of cov(Z1 × · · · × Zk−1,Zk) by some EE(q) then applying a recursion on
pk ≤ (1 − p)pk−1 + EE(q). We obtain pk ≤ (1 − p)k−1 p1 +

∑k
i=1(1 − p)iEE(q) that is

pk ⩽ (1 − p)k +
EE(q)

p

Proof of Proposition 1. From the heredity of strong mixing, the sequence (Zt)t is still strong mixing with mixing
coefficients less than α(q), and the fact that Z1 × · · · ×Zk−1 writes as the indicator function of

⋂
1≤i≤n/q(Xti < E) implies

| cov(Z1 × · · · × Zk−1,Zk)| ≤ α(q). We thus have pk ≤ (1 − p)pk−1 + α(q) hence a recursion yields

pk ≤ (1 − p)k +
α(q)

p
.

Indeed, if the above relationship holds for k − 1 then

pk ≤ (1 − p)
(
pk−1 +

α(q)
p

)
+ α(q) ≤ (1 − p)k +

α(q)
p
.

Proof of Proposition 2. Under θ−weak dependence we have by definition | cov(Z1 × · · · × Zk−1, h(Xk))| ≤ θ(q) Lip (h)
for any Lipschitz function h and we specialize the function for the two cases considered in the Proposition.
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1. Case E = B(x, r).
Now as in the lemma 4.1 page 68 of [15] we consider H−x,r,ε and H+x,r,ε two Lipschitz approximations Rd → R
of 1{u<E}, with

H−x,r,ε(u) ≤ 1{u<E} ≤ H+x,r,ε(u),

then

cov(Z1 × · · · × Zk−1,Zk) ≤ E(Z1 × · · · × Zk−1H+x,r,ε(Xk)) − E(Z1 × · · · × Zk−1)E(H−x,r,ε(Xk))
≤ cov(Z1 × · · · × Zk−1,H+x,r,ε(Xk)) + E(H+x,r,ε(Xk) − H−x,r,ε(Xk))

Now we build such Lipschitz functions with Lip (H±x,r,ε) ≲ 1/ε. More precisely, we introduce intermediary
functions:

m−r,ε(s) =


1, s < (r − ε)
r − s
ε

, s ∈ [r − ε, r]

0, s > r

and m+r,ε(s) =


1, s < r

1 −
s − r
ε

, s ∈ [r, r + ε]

0, s > r + ε

Then the functions m±r,ε are piecewise linear and satisfy Lip m±r,ε = 1/ε.
Now we define H+x,r,ε(u) = 1 − m−r,ε(∥u − x∥) and H−x,r,ε(u) = 1 − m− + r, ε(∥u − x∥), thus we get:

• H+x,r,ε(u) = 1 if u < B(x, r) and H+x,r,ε(u) = 0 if u ∈ B(x, (r − ε)+).

• H−x,r,ε(u) = 1 if u < B(x, (r + ε)) and H−x,r,ε(u) = 0 if u ∈ B(x, r).

Those functions inherit Lipschitz property Lip (H±x,r,ε) = 1/ε. Moreover, because H+x,r,ε−H−x,r,ε is bounded above
by the indicator function of an annulus with radius r and thickness ε.

E
(
H+x,r,ε(Xk) − H−x,r,ε(Xk)

)
≤ c · ωd

(
(r + ε)d − ((r − ε)+)d

)
≤ c · ωdrd

(
(1 + ε/r)d − ((1 − ε/r)+)d

)
≤ c · ωd2d+1rd−1ε

for all ε ⩽ r, since a binomial expansion entails (1 + x)d − (1 − x)d ⩽ 2x
∑d

k=1

(
d
k

)
⩽ 2d+1x if x ∈ [0, 1].

Thus, setting A′ = cωd2d+1, we derive for all ε ⩽ r : cov(Z1 × · · · × Zk−1,Zk) ≤ 1
ε
θ(q) + A′εrd−1.

For the reverse inequality, we obtain analogously for all ε ∈ [0, r] cov(Z1 × · · · × Zk−1,Zk) ≥ − 1
ε
θ(q) − A′εrd−1

Indeed

cov(Z1 × · · · × Zk−1,Zk) ≥ E(Z1 × · · · × Zk−1H−x,r,ε(Xk)) − E(Z1 × · · · × Zk−1)EH+x,r,ε(Xk)
≥ cov(Z1 × · · · × Zk−1,H−x,r,ε(Xk)) − E(H+x,r,ε(Xk) − H−x,r,ε(Xk))

and thus:
EE(q) ⩽ min

ε∈[0,r]

θ(q)
ε
+ A′εrd−1 .

2. Case E = B(x, rx) ∩ B(y, ry) with rx + ry − ∥x − y∥ = ℓ.
Consider the two 2/ε-Lipschitz functions: H

+
(u) = H+x,rx,ε

(u) ∧ H+y,ry,ε
(u) and H

−
(u) = H−x,rx,ε

(u) ∧ H−y,ry,ε
(u). By

the concentration inequality (5), we have for some c > 0 :

E
(
H
+
(Xk) − H

−
(Xk)

)
≤ c

∣∣∣B(x, rx + ε) ∩ B(y, ry + ε) \ (B(x, rx − ε) ∩ B(y, ry − ε)
∣∣∣
d .

Thus according to Proposition 7 in Appendix A, if ℓ ⩽ rx ∧ ry and ε ⩽ rx ∧ ry : E(H
+
(Xk) − H

−
(Xk)) ≤

cV(rx, ry, ℓ, ε). As in case 1, this allows to conclude that cov(Z1 × · · · × Zk−1,Zk) ≤ 2
ε
θ(q) + cV(rx, ry, ℓ, ε). As

in the end of the proof for case 1 we infer | cov(Z1 × · · · × Zk−1,Zk)| ≤ 2
ε
θ(q) + cV(rx, ry, ℓ, ε), which concludes

the proof of point 2 in Proposition 2.

Proof of Proposition 3. This proof is based on the inequality pn ≥ pn, and it is left to the reader.
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5.2. Preliminary results for the R-convex hull
In this section, we give some technical tools on the R-convex hull and the rolling ball condition. That will allow

us to derive asymptotic properties of the R-convex hull estimator for the support S of the density of Xn, as well as that
of its related quantities. In this preliminary section we mostly only present rephrasing of results obtained in [40], [35]
and [3]. Thus proofs might be either left for the reader -as for Properties 1 and 2-, or only sketched -as for Corollary
1. To have a self content paper we retate those results, also we aim at presenting deterministic results that emphasize
the difference between dependent and independent settings.
For a set S ∈ Rd, recall that its R-convex hull CR(S ) is defined as:

CR(S ) =

 ⋃
B̊(x,R)∩S=∅

B̊(x,R)


c

.

Hereafter, we recall some obvious properties of the R-convex hull:

Property 1. Let CR(S )c be the complement of CR(S ) on Rd, then CR(S )c =
{
x ∈ Rd, ∃O ∈ Rd such that x ∈ B̊(O,R)

and S ∩ B̊(O,R) = ∅
}

so that

1. If R < R′, then CR(S ) ⊂ CR′ (S ).
2. If S ′ ⊂ S , then CR(S ′) ⊂ CR(S ).
3. Let H(S ), be the convex hull of S a convex set, then

lim
R→+∞

CR(S ) = C∞(S ) = H(S ).

w.r.t. the Hausdorff distance.

Sets satisfying the inside and outside rolling ball properties have nice properties listed in theorem 1 of [41]; we recall
them below in Property 2, together with some hints; they are illustrated in the Figure 1.

Property 2. If S satisfies the inside and outside rolling ball property for some positive Ri and Ro then

1. For all R < Ro, CR(S ) = S .
2. For all R < min(Ro,Ri) we have (S ⊖ RB) ⊕ RB = S = (S ⊕ RB) ⊖ RB, in fact the second part of the equality

does not involve rolling ball conditions.
3. For each z ∈ ∂S , the unit vector ηz normal to ∂S and pointing outside S is well defined and ηz = (Oo

z − z)/Ro.
4. For each x ∈ S with d (x, ∂S ) ⩽ Ri, the projection π∂S (x) onto ∂S is well defined and x = π∂S (x)−d (x, ∂S )ηπ∂S (x),

Oi
x = π∂S (x) − Riηπ∂S (x).

5. For all y ∈ S c with d (y, ∂S ) ⩽ Ro, the projection π∂S (y) onto ∂S is well defined and y = π∂S (y)+d (y, ∂S )ηπ∂S (y),
Oo

y = π∂S (y) + Roηπ∂S (y).

6. For all z, z′ ∈ ∂S , ∥ηz − ηz′∥ ⩽
∥x − y∥

min(R0,Ri)
. Thus ∂S has a positive reach min(Ro,Ri) and π∂S |∂S (⊕(min(Ri,Ro))B is

continuous (this follows from theorem 4.8 in [24]).

Moreover, using the arguments of [35], we can prove the following result which will be a key point for the study of
the asymptotic properties of the R-convex hull estimator.

Proposition 6. Let S ′ ⊂ S ⊂ Rd. Assume that balls of radius Ro roll freely outside S and that balls of radius Ri

roll freely inside S . Let R < Ro and ε < min(Ri,R). If for each O ∈ Rd such that d (O, S ) ⩽ R − ε, we have that
B(O,R) ∩ S ′ , ∅, then

S ⊖ εB = {x ∈ S , d (x, ∂S ) ⩾ ε} ⊂ CR(S ′) ⊂ S .

Proof of Proposition 6. The second inclusion is a direct consequence of S ′ ⊂ S ⊂ Rd thus CR(S ′) ⊂ CR(S ) then,
because R ⩽ Ro and due to the outside rolling ball condition we have CR(S ) = S .

Now let prove the first inclusion by contradiction. Suppose that there exists x ∈ S with d (x, ∂S ) = ε′ ⩾ ε and
x ∈ CR(S ′)c. As x ∈ CR(S ′)c there exists O, ∥O − x∥ < R with B(O,R) ∩ S ′ = ∅. Introduce z = [0, x] ∩ S(x, ε′) we
have z ∈ S then, because ∥O − x∥ ⩽ R we have d (O, S ) ⩽ R − ε′ that contradicts B(O,R) ∩ S ′ = ∅.
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Fig. 1: All you have to have in mind concerning the rolling ball property

From Proposition 6 and by using theorem 4.1 in [3] we derive general deterministic results on the R-convex hull:

Corollary 1. Let S ′ ⊂ S ⊂ Rd be a finite set. Assume that balls of radius Ro roll freely outside S and that balls of
radius Ri roll freely inside S . Let R < Ro and ε < min(Ri,R). If, for all O ∈ Rd such that d (O, S ) ⩽ R − ε we have
that B(O,R) ∩ S ′ , ∅, then we have

dH(∂CR(S ′), ∂S ) ⩽ ε, dH(CR(S ′), S ) ⩽ ε,∣∣∣|CR(S ′)|d − |S |d
∣∣∣ ⩽ |∂S |d−1ε(1 + o(1)), as ε→ 0.

Moreover if dH(S ′, S ) ⩽
1
2

R min(Ri,Ro)
R +min(Ri,Ro)

, and ε is small enough with regards to d, R and min(Ri,Ro), one has

∂CR(S ′) ≈ ∂S , CR(S ′) ≈ S

and there exists some constant Cd,R,R0,Ri > 0 depending on d,R,R0 and Ri such that

||∂CR(S ′)|d−1 − |∂S |d−1| ≲ Cd,R,R0,Riε(1 + o(1)), when ε→ 0.

Proof of Corollary 1. Here we provide the main arguments. By Proposition 6 we have

S ⊖ εB ⊂ CR(S ′) ⊂ S (10)

• Since ε ⩽ min(Ri,R) and R ⩽ Ro we have ε ⩽ min(Ri,Ro) and by application of point 2 in proposition 2
S ⊂ CR(S ′) ⊕ εB, the fact that CR(S ′) ⊂ S ⊂ S ⊕ εB yields dH(CR(S ′), S ) ⩽ ε.

• To get a upper bound of dH(∂CR(S ′), ∂S ) we quote that:

– By inclusion (10), for all x ∈ ∂CR(S ′) we have x ∈ S . Suppose first that x ∈ S̊ and set δx = d (x, ∂S ) > 0.
For each 0 < t < δx there exits xt < CR(S ′) with ∥x − xt∥ ⩽ t, thus xt ∈ S . Therefore, by the first part
of inclusion (10), we have d (xt, ∂S ) < ε. Thus d (x, ∂S ) < ε + t and we have d (x, ∂S ) ⩽ ε as t → 0.
Secondly, if x ∈ ∂S then d (x, ∂S ) = 0 so we conclude that for all x ∈ ∂CR(S ′): d (x, ∂S ) ⩽ ε.

– For all x ∈ ∂S , let y = x − εηx with ηx defined in Property 2, then by the inside rolling ball property of S ,
we have y ∈ S ⊖ εB and thus the segment (x, y) intersects ∂CR(S ′) so that d (x, ∂CR(S ′)) ⩽ ε.

• |CR(S ′)|d ⩽
∣∣∣∣S \ (S ⊖ εB)

∣∣∣∣
d
≈ ε|∂S |d−1, indeed it is the inner Minkowski content of a set with positive reach,

its asymptotic behaviour can be deduced from the Minkowski content of a set with positive reach, see [24], and
for its outer part see [4].
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• ∂CR(S ′) ≈ ∂S and ||∂CR(S ′)|d−1 − |∂S |d−1| ≲ Cd,R,R0,Riε(1 + o(1)) are direct consequences of theorem 4.1 in [3].
In [3] it is proved that ψ : ∂CR(S ′) → ∂S defined as x 7→ π∂S (x) is an homeomorphism, as it is mentioned in
Property 2 point 4, πS the projection onto ∂S is well define since ε ⩽ Ri. The Figure 2 supports the construction
of φ : CR(S ′) → S and the proof that it is an homeomorphism. To get a proper definition of φ, introduce, for
x ∈ S , d (x, ∂S ) ⩽ Ri, T0(x) = π∂S (x) − 2εηπ∂S (x) where ηz is defined in Property 2 and T1(x) = ψ−1(π∂S (x)).
Then φ : CR(S ′)→ S is defined as

φ(x) = x, if x ∈ S ⊖ 2εB,

φ(x) = T0(x) + 2ε
∥x − T0(x)∥
∥T1(x) − T0(x)∥

· η∂S (x), if x ∈ CR(S ′) \ (S ⊖ 2εB).
.

Also define g : S → CR(S ) as followsg(x) = x, if x ∈ S ⊖ 2εB,

g(x) = T0(x) + ∥T1(x) − T0(x)∥
∥x − T0(x)∥

2ε
η∂S (x), if x ∈ S \ (S ⊖ 2εB).

.

Arguments to prove that φ is an homeomorphism for ε small enough, and thus CR(S ′) ≈ S , are provided below.

– g = φ−1 is easy.

– The continuity of φ and g on the sets CR(S ′) \
(
S ⊖ 2εB

)
and S \ (S ⊖ 2εB) follows from the continuity

of π∂S and from the continuity of x 7→ ηx for ε ⩽ min(Ro,Ri) : for this we use the last point of Property
2. Then the global continuity of the functions φ and g is a consequence of the fact that T0(x) = x if
x ∈ ∂(S \ (S ⊖ 2εB)) =

{
x ∈ S , d(x, S ) = 2ε

}
. This point is thus a consequence of the regularity of the

support for ε small enough.

Fig. 2: The white zone is S , the yellow zone is CR(S ′) and its boundary is indicated by the thick orange line, moreover the green zone is S ⊖ εB.

φ : [T0(x),T1(x)]→ [T0(x), π∂S (x)] is an onto homothety with ratio
∥T0(x) − π∂S (x)∥
∥T0(x) − T1(x)∥

=
2ε

∥T0(x) − T1(x)∥
, and centered at T0(x).

To derive convergence rates for the R-convex hull of a set of points Xn, we will exhibit sequences εn such that

∞∑
n=1

P(∃O, d (O, S ) < R − εn, B(O,R) ∩ Xn = ∅) < +∞.

Also we will prove that dH(Xn, S )→ 0 almost surely in order to apply the last part of Corollary 1; we will also deduce
the necessary topological guarantees and the convergence for the measure of the boundary.
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The dependence is taken into account when we deal with P(B(O,R) ∩ Xn = ∅) in which the Propositions 1 or 2 are
used; this replaces a trivial product in the independent case.

We now use the notations and results of Propositions 1 and 2, and according to the dependence conditions we
obtain under the assumptions of the corresponding proposition that if:

(A) X is strong mixing then Er(q) = α(q),

(T) X is θ-weak dependent then Er(q) = min
t∈[0,r]

(
θ(q)

t
+ cωd2dtrd−1

)
.

Lemma 4. Assume that the marginal density f belongs to the setMR0,Ri, f0,α, defined in Definition 2, we set:

Pn = P (∃O ∈ S ⊕ (R − εn)B , B(O,R) ∩ Xn = ∅) .

Then there exists a constant C depending on the parameters f0, α, d,Ri,R such that:

Pn ≲ (ln n)dε−d
n

exp
(
−C

n
q

(
εn −

εn

ln n

) d+1+2α
2

)
+

ER− εn
ln n

(q)

C
(
εn −

εn
ln n

) d+1+2α
2

 . (11)

P(dH(Xn, S ) ⩾ rn) ≲

(
ln n
rn

)d
exp

(
−C′

n
q

(
rn −

rn

ln n

)d+α
)
+
Ern−

rn
ln n

(q)(
rn −

rn
ln n

)d+α

 . (12)

Here, according to the dependence frame, r 7→ Er(q) is defined in conditions (A) and (T) above from the Assumptions
of Propositions 1 and 2 respectively.

Proof of lemma 4. Let us cover S ⊕ (R − εn)B with a finite number of νn ⩽ Cd

(
diam(S ) + Ro

εn
ln n

)d

deterministic

balls of radius εn/ ln n and centered at xi ∈ S ⊕ (R − εn)B.
Then the Propositions 1 and 2 together with the triangle inequality imply:

Pn ⩽
νn∑

i=1

P
(
B

(
xi,R −

εn

ln n

)
∩ Xn = ∅

)
⩽

νn∑
i=1

(
(1 − pi)

n
q +
ER− εn

ln n
(q)

pi

)
, with pi = P

(
X1 ∈ B

(
xi,R −

εn

ln n

))
.

By Proposition 8 we obtain

pi ⩾ f0C′′d,α

(
min((R − εn

ln n ),Ri)
2

) d−1
2

{
min

((
εn −

εn

ln n

)
,

min((R − εn
ln n ),Ri)

2

)} d+1+2α
2

Since εn → 0 as n→ ∞, thus for any C < f0C′′d,α
(

min(R,Ri)
2

) d−1
2 if n is large enough. We finally obtain:

Pn ≲ (ln n)dε−d
n


(
1 −C

(
εn −

εn

ln n

) d+1+2α
2

) n
q

+
ER− εn

ln n
(q)

C
(
εn −

εn
ln n

) d+1+2α
2

 ,
and thus

Pn ≲ (ln n)dε−d
n

exp
(
−C

n
q

(
εn −

εn

ln n

) d+1+2α
2

)
+

ER− εn
ln n

(q)

C
(
εn −

εn
ln n

) d+1+2α
2

 ,
which concludes the proof of Equation (11).
Suppose now that dH(Xn, S ) ⩾ rn with rn ⩽ Ri, then there exists x ∈ S with B(x, rn) ∩ Xn = ∅. Define Ω as :

Ω =

x, if d (x, ∂S ) ⩾ 1/3,
π∂S (x) − 2rn

3 ηπ∂S (x), if d (x, ∂S ) < 1/3.
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Then B(Ω, rn/3) ⊂ S and B(Ω, rn/3) ⊂ B(x, rn).
As a first conclusion: if dH(Xn, S ) ⩾ rn, then there exists Ω ∈ S ⊖ rn

3 B with B(Ω, rn/3) ∩ Xn = ∅. The sequel of the
proof consists in bounding the probability of the existence of such a point.

Cover the set S⊖ rn
3 B with N balls of radius rn/(3 ln n), centered at y1, . . . , yN in S⊖

2rn

3
B with N ⩽ Cd

(
3diam(S ) ln n

)d

rd
n

.

Now

P(dH(Xn, S ) ⩾ rn) = P
(
∃Ω ∈ S ⊖

2rn

3
B, B

(
Ω,

rn

3

)
∩ Xn = ∅

)
⩽

N∑
i=1

P
(
B

(
yi,

rn

3

(
1 −

1
ln n

))
∩ Xn = ∅

)
,

from the triangular inequality.
Let now qi = P

(
B

(
yi,

rn
3

(
1 − 1

ln n

))
∩ Xn = ∅

)
by Proposition 8: qi ⩾ f0Cd,α

(
rn
6

(
1 − 1

ln n

))d+α
.

Thus, with C′ = f0Cd,α/3d+α we obtain

P(dH(Xn, S ) ⩾ rn) ≲
(

ln n
rn

)d
exp

(
−C′

n
q

(
rn −

rn

ln n

)d+α
)
+
Ern−

rn
ln n

(q)(
rn −

rn
ln n

)d+α

 . (13)

5.3. Proof of Theorem 1
First, let us focus on the i.i.d. and negatively associated cases. Those conditions entail, for all q ∈ N∗ and R ∈ R, that
ER(q) = 0.

Apply Lemma 4 and Equation (11) with q = 1 and εn =
(

3
C

ln n
n

) 2
d+1+2α , then Pn ≲ lnd n·n−1−2 1+2α

d+1+2α+o(1) thus
∑

n Pn < +∞.

Also from equation (12) with q = 1 and rn =

(
3d + 2α

C′(d + α)
ln n
n

) 1
d+α

, we obtain: P(dH(Xn, S ) ⩾ rn) ≲ lnd n · n−2+o(1).

The Borel-Cantelli lemma and the Corollary 1 together allow to conclude the proof of Theorem 1.

5.4. Proof of Theorem 2
When independence is not assumed, the proofs are similar. We only need to take into account the E term and to
find suitable sequences εn and qn in order to get convergent series. Then we apply the Borel-Cantelli lemma and the
Corollary 1.

Proof under exponential decays.

• In the strong mixing case, ER(q) ⩽ Bbq for all R ∈ R.

– Choose εn = γ(ln2 n/n)
2

d+1+2α with γ > γed
0 =

2(2d + 1 + 2α)(3d + 1 + 2α)
(d + 1 + 2α)2C ln(b−1)

, let write γ = γed
0 (1 + u).

Set qn = β1 ln n, β1 =
2(2d + 1 + 2α)

(d + 1 + 2α) ln(b−1)

(
1 +

u
2

)
, we finally introduce v =

u
2 + u

. By Equation (11)

Pn ≲ lnd n · n
2d

d+1+2α

exp

−Cγ ln n
β1

(
1 −

1
ln n

) d+1+2α
2

 + n1+β1 ln(b)

ln2 n

 .
Because d ⩾ 1 and α ⩾ 0 then d+1+2α

2 ⩾ 1 we have
(
1 − 1

ln n

) d+1+2α
2 ⩾ 1 − d+1+2α

2
1

ln n , and thus

Pn ≲ lnd n
(
n−1− 3d+1+2α

d+1+2α v+o(1) + n−1− 2d+1+2α
d+1+2α u

)
, (14)

thus
∑

n Pn < +∞.
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– Choose rn =
(
c ln2 n

n

) 1
d+α and qn = β ln n by Equation (12):

P(dH(Xn, S ) ⩾ rn) ≲ lnd n · n
d

d+α

(
n−

C′c
β +o(1)

+ nβ ln b+1
)

choose first β large enough that: β ln b+1+ d
d+α ⩽ −2 and second c large enough to have −C′c

β
+ d

d+α ⩽ −2.
We then obtain

∑
n P(dH(Xn, S ) ⩾ rn) < +∞ and we let rn → 0.

• In the θ-weak dependence case, we have

– Now ER−εn/ ln n(qn) = mint∈[0,R−εn/ ln n]

(
Bbqn/t + cωd2dtRd−1

)
. For any choice of sequence εn → 0, and for

n large enough, tn =
√

bqn is in [0,R− εn/ ln n] thus ER−εn/ ln n(qn) ⩽ B′ exp(qn ln(b)/2)) thus as previously
any εn = (γ ln2 n/n)

2
d+1+2α with γ > 2γed

0 provides a sequence with
∑

n Pn < +∞.

– Choose again rn =
(
c ln2 n

n

) 1
d+α . Here again, tn =

√
bqn ∈ [0, rn − rn/ ln n], for n large enough. Thus

Ern−rn/ ln n(qn) ⩽ B′ exp
(
− qn ln(b−1)/2)

)
and similar to 1− (b) we obtain

∑
n P(dH(Xn, S ) ⩾ rn) < +∞ and

rn → 0 for a suitable constant c.

To conclude, in all the cases we found εn = O
((

ln2 n
n

) 2
2+1+α

)
such that

∑
n Pn < +∞, and sequences rn → 0 with∑

n P(d(Xn, S ) ⩾ rn) < +∞, thus the Borel-Cantelli lemma and the Corollary 1 imply the result.

Proof under polynomial decays. According to the dependence assumption we check that

• In the strong mixing case, ER(qn) ⩽ Bq−b
n , for a b > 1. Set λ = 3d+1+2α

d+1+2α , a = b−2−d
b−λ and γ = λ+1

λ+b . Choose

εn =
(
A lna n

n1−γ

) 2
d+1+2α and qn =

nγ
(ln n)a−1 . From Equation (11) it comes that

Pn ≲

(
ln n
εn

)d

n−AC +
1

n(ln n)2 ·

So that, for A large enough
∑

n Pn < +∞.

Similarly, Set λ′ = 2d+α
d+α , a′ = b−2−d

b−λ′ and γ′ = λ′+1
λ′+b , choose rn =

(
A′ lna′ n

n1−γ′

) 1
d+α

and qn = nγ
′

/(ln n)a−1.
From Equation (11) it comes that

P(dH(Xn, S ) ⩾ rn) ≲
(

ln n
εn

)d

n−A′C′ +
1

n(ln n)2 ·

This yields the summability of the series
∑

n Pn for A large enough.

• Under θ-weak dependence, Here ER−εn/ ln n(qn) = mint∈[0,R−εn/ ln n]

(
Bq−b

n
t + cωd2dtRd−1

)
. For any choice of se-

quence εn → 0 and for n large enough, tn =
√

q−b
n is in [0,R− εn/ ln n] thus ER−εn/ ln n(qn) ⩽ B′q−b/2

n and we can
use the sequences exhibited in the strong mixing for changing b into b/2.

Similarly, set λ′ =
2d + α
d + α

, a′ =
b/2 − 2 − d

b − λ′
and γ′ =

λ′ + 1
λ′ + b/2

, choose rn =

(
A′

lna′ n
n1−γ′

) 1
d+α

, qn =
nγ
′

(ln n)a−1 and

tn =
√

q−b
n . Check that tn < εn From Equation (11) we obtain

P(dH(Xn, S ) ⩾ rn) ≲
(

ln n
εn

)d

n−A′C′ +
1

n(ln n)2 ·

This again yields the summability of the series
∑

n Pn for A′ large enough.
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5.5. Proof of Theorem 3.

Let R < mt/ f (2)
max be a positive constant, we first prove that, for n large enough:

L̂t,R ⊂ Lt ⊕
2ε′n
mt

B. (15)

First a simple chain of inclusions entails L̂t,R = CR({Xi, f̂n(Xi) ⩾ t}) ⊂ CR({Xi, f (Xi) ⩾ t − ε′n}) ⊂ CR(Lt−ε′n ). In the
sequel, we consider n large enough to have ε′n ⩽ max(∆t, t − t0) so that Proposition 4 ensures that CR(Lt−ε′n ) = Lt−ε′n ,

thus we have L̂t,R ⊂ Lt−ε′n . Now for all z′ ∈ Lt−ε′n , let z = z′ + 2
ε′n
mt

f (1)(z′)
∥ f (1)(z′)∥

:

f (z) ⩾ f (z′) + 2
ε′n
mt
∥ f (1)(z′)∥ − 2

(
ε′n
mt

)2

f (2)
max ⩾ t + ε′n

(
1 −

2ε′n
m2

t
f (2)
max

)
,

thus, if n is large enough so that ε′n < m2
t /2 f (2)

max, we have f (z) ⩾ t, thus Lt−ε′n ⊂ Lt ⊕
2ε′n
mt

B which ends the proof for

inclusion (15).

We will now prove that, with probability 1, for n large enough:

Lt ⊂ L̂t,R ⊕

(
εn + 2

ε′n
mt

)
B. (16)

Notice that Xn ∩ Lt+ε′n ⊂ X+n (t), thus CR(Xn ∩ Lt+ε′n ) ⊂ L̂t,R. Let us first prove that CR(Xn ∩ Lt+ε′n ) contains Lt+ε′n ⊖ εnB
with probability one for n large enough. Proceeding by contradiction suppose that there exists x ∈ Lt+ε′n such that
d (x, ∂Lt+ε′n ) ⩾ εn and x < L̂t,R. Because x < L̂t,R there exists O with ∥x − O∥ < R and B(O,R) ∩ X+n (t) = ∅, thus
B(O,R) ∩ Xn ∩ Lt+ε′n = ∅. Moreover because d (x, ∂Lt+ε′n ) ⩾ εn, thus we have d (O, Lt+ε′n ) ⩽ R − εn.
We set now

Pn = P
(
∃O ∈ Lt+ε′n ⊕ (R − εn)B, B(O, r) ∩ Lt+ε′n ∩ Xn = ∅

)
.

Cover Lt+ε′n ⊕ (r − εn)B with νn deterministic balls with radius (εn/ ln n) and centered at xi ∈ Lt+ε′n ⊕ (R − εn)B. Using
the fact that the density on Lt+ε′n is greater than t, we obtain |Lt+ε′n | ⩽ t−1; thus

t |Lt+ε′n | ⩽
∫

1Lt+ε′n
(z) f (z)dz ⩽ 1.

We obtain

Pn ⩽
νn∑

i=1

P
(
B

(
xi,R −

εn

ln n

)
∩ Lt+ε′n ∩ Xn = ∅

)
.

Now by Proposition 4, Lt+ε′n admits both the (mt/ f (2)
max)-inside and outside rolling ball properties.

Thus if we set x∗i = π∂Lt+ε′n
(xi), and yi = x∗i +

mt

f (2)
max

·
x∗i − xi

∥x∗i − xi∥
, then we have

B(yi,mt/ f (2)
max) ⊂ Lt+ε′n and ∥xi − yi∥ ⩽ R − εn + mt/ f (2)

max.
Set also Ei = B(xi,R − εn/ ln n) ∩ B(yi,mt/ f (2)

max), we obtain

Pn ⩽
νn∑

i=1

(
(1 − pi)

n
q +
EEi (q)

pi

)
, with pi = P(X1 ∈ Ei). (17)

A bound of the covering number is

νn ⩽
2d

tωd

(
ln n
εn

)d

. (18)
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By Proposition 8, we derive, with the choices f0 = t, α = 0 :

pi ⩾ tC′′d,0


min

(
(R − εn

ln n ), mt

f (2)
max

)
2


d−1

2
min


(
εn −

εn

ln n

)
,

min
(
(R − εn

ln n ), mt

f (2)
max

)
2




d+1
2

.

Since εn converges to 0 as n→ ∞, then for any C < t C′′d,0

min
(
R,mt/ f (2)

max

)
2


d−1

2

if n is large enough, we finally obtain

by using the key inequality (2) and from (17) and (18):

Pn ≲

(
ln n
εn

)d
exp

(
−C ·

n
q

(
εn −

εn

ln n

) d+1
2
)
+

maxi EEi (q)

C
(
εn −

εn
ln n

) d+1
2

 .
This equation is similar to Equation (11) with α = 0. The difference consists in EEi since Ei is now the intersection of
two balls instead of being a ball.

• Under strong mixing, EEi does not depend on the set Ei, there is no change and the proof of Theorem 2 still
holds. The given choices of εn (with α = 0) ensures

∑
n Pn < +∞.

• Under θ-weak dependence, then the value of EEi depends on the shape of the set Ei. Nevertheless, due to
Equations (2) and (4), we obtain

EEi (q) ⩽ inf
tn∈(0,εn/2)

(
A
θ(q)
tn
+ Btnε

d−1
2

n

)
,

for some positive constants A and B.

Now

• In case of exponential decay, there exist suitable constants a1, a2 and a3 such that with εn = (a1 ln2 n/n)(d+1)/2,

tn =
√

a2θ(qn)ε
d−1

2
n and choosing qn = a3 ln n, there exists tn ∈ (0, εn) with:∑

n

Pn < +∞.

• In case of polynomial decay with b > 2, set λ =
5d − 1

2(d + 1)
, γ =

1 + λ
b
2 + λ

and a = 2 ·
2 − d + b/2

b − λ
.

As above there exist suitable constants a1, a2 and a3 such that with εn = (a1 lna n/n1−γ)(d+1)/2, qn = nγ/(lna−1 n),

tn =
√

a2θ(qn)ε(d−1)/2
n and choosing qn = a3 ln n, there exists tn ∈ (0, εn) with:∑

n

Pn < +∞.

This ends the proof of the inclusions

Lt+ε′n ⊖ εnB ⊂ CR(Xn ∩ Lt+ε′n ) ⊂ L̂t,R. (19)

Now considering Lt+ε′n , as in the proof of inclusion (15) we easily obtain Lt ⊖
ε′n

2mt
B ⊂ Lt+ε′n for n large enough in order

that ε′n < m2
t /(2 f (2)

max).

f (z) − 2
ε′n
mt
|| f (1)(z)|| + 2

(
ε′n
mt

)2

f (2)
max ⩾ f

(
z +

ε′n
2mt

u
)
⩾ t.
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Indeed, consider z ∈ Lt ⊖ 2ε′n/mt · B, we have that for each vector u with ∥u∥ ⩽ 1, f
(
z + 2 ε′n

mt
u
)
⩾ t.

Consider now the special choice u = − f (1)(z)/∥ f (1)(z)∥, then we have

f (z) − 2
ε′n
mt
|| f (1)(z)|| + 2

(
ε′n
mt

)2

f (2)
max ⩾ f

(
z +

ε′n
2mt

u
)
⩾ t.

Thus

f (z) ⩾ t + 2
ε′n
mt
|| f (1)(z)|| − 2

(
ε′n
mt

)2

f (2)
max ⩾ t + ε′n + ε

′
n

(
1 −

2ε′n
m2

t
f (2)
max

)
⩾ t + ε′n.

We thus obtain, with the inclusion (19) that (Lt ⊖ 2
ε′n
mt

B) ⊖ εnB ⊂ L̂t,R. Now from [41] and [24], since Lt admits the

inside and outside (mt/ f 2
max)−rolling ball properties, we obtain that εn + 2 ε′n

mt
⩽ mt/ f 2

max and then,

Lt ⊂ L̂t,R ⊕

(
εn + 2

ε′n
mt

)
B,

which concludes the proof of inclusion (16); this, together with inclusion (15) allow to apply Corollary 1 and we thus
conclude the proof of bounds

dH(L̂t, Lt) ≲ εn + ε
′
n, dH(∂L̂t, ∂Lt) ≲ εn + ε

′
n.

We also obtain the bound ||L̂t |d − |Lt |d | ≲ εn + ε
′
n, and the proof of Theorem 2 is complete.

To obtain the homeomorphism property and the convergence for the perimeter estimator, we may also prove

dH

(
Lt,Xn ∩

{
z, f̂ (z) ⩾ t

}) a.s.
−→ 0,

using the same techniques as above.

6. Conclusion and perspectives

In conclusion, we have shown that, as in the independent case, the R−convex hull of the observations and that of
the observations whose estimated density is greater than a threshold, allow us to find the support and the level sets and
to derive convergence rates.
Two points at least remain to be explored: the minimax aspects of those convergence rates and the adjustment or the
automatic choice of the parameter R. The most difficult point of these three perspectives seems to be the the automatic
choice of the parameter R [36] for the estimation of the support. Indeed, the existing method (cf [35]) is based on the
asymptotic law of maximal spacing [28] and [2] which is only known under the assumption of independence.
Finally an important application of the above results is the control of the of the territory of competitive species along
the time. For this a prediction result for the level sets of the considered density is of importance.
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Appendix A. Some bounds for the measure of the intersections

Proposition 7. let x, y ∈ Rd, and rx, ry, ℓ be positive numbers such that ∥x − y∥ = rx + ry − ℓ, ℓ ⩽ min(rx, ry) and
h ⩽ min(rx, ry). letV(rx, ry, ℓ, h) = |(B(x, rx+h)∩B(y, ry+h)) \ (B(x, rx−h)∩B(y, ry−h))|, we have that, when ℓ → 0

V(rx, ry, ℓ, h) ⩽ ωd−1

(
ℓ2rxry

rx + ry

) d−1
2

4h(1 + o(1)).

Proof. Let u1 be a unit vector of Rd, we can define the portion of ball B(O, r) ∩ {z, ⟨z.u1 ⩾ a} and we have

V(r, a) =
∣∣∣B(O, r) ∩ {z, ⟨z.u1⟩ ⩾ a}

∣∣∣
d ωd−1

∫ a

0
(2rx − x2)

d−1
2 dx. (A.1)

Thus by derivation 
0 ⩽

∂V(r, a)
∂a

⩽ ωd−1 (2ra)
d−1

2 ,

0 ⩽
∂V(r, a)
∂r

⩽ ωd−1
2(d − 1)

d + 1
(2r)

d−3
2 (a)

d+1
2 ,

(A.2)

Fig. A.3: The convex body is B(Ox, rx + h) ∩ B(Oy, ry + h).

Solving 
(rx − h − ax)2 + z2 = (rx − h)2

(ry − h − ay)2 + z2 = (ry − h)2

ax + ay = ℓ + 2h
,

yields 
ax =

(ℓ + 2h)(2ry − ℓ)
2(rx + ry − 2h − 2ℓ)

ay =
(ℓ + 2h)(2rx − ℓ)

2(rx + ry − 2h − 2ℓ)

and this complements the Figure A.2 which proves that indeed:

|(B(x, rx + h) ∩ B(y, ry + h))| = V
(
rx + h,

(ℓ + 2h)(2ry − ℓ)
2(rx + ry − 2h − 2ℓ)

)
+ V

(
ry + h,

(ℓ + 2h)(2rx − ℓ)
2(rx + ry − 2h − 2ℓ)

)
.

Substracting |B(Ox, rx − h) ∩ B(Oy, ry − h)|, we obtain the upper-bound.

V
(
rx + h,

(ℓ + 2h)(2ry − ℓ)
2(rx + ry − 2h − 2ℓ)

)
+ V

(
ry + h,

(ℓ + 2h)(2rx − ℓ)
2(rx + ry − 2h − 2ℓ)

)
−V

(
rx − h,

(ℓ − 2h)(2ry − ℓ)
2(rx + ry + 2h − 2ℓ)

)
− V

(
ry − h,

(ℓ − 2h)(2rx − ℓ)
2(rx + ry + 2h − 2ℓ)

)
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as ℓ → 0, with h ⩽ ℓ/2, let a =
ℓry

rx + ry
, ∆+ =

(ℓ + 2h)(2ry − ℓ)
2(rx + ry − 2h − 2ℓ)

− a and ∆− = a −
(ℓ − 2h)(2ry − ℓ)

2(rx + ry + 2h − 2ℓ)
− a (thus

∆+ + ∆− ⩽
4hry

rx + ry
(1 + o(1))) we have

V
(
rx + h,

(ℓ + 2h)(2ry − ℓ)
2(rx + ry − 2h − 2ℓ)

)
− V

(
rx − h,

(ℓ − 2h)(2ry − ℓ)
2(rx + ry + 2h − 2ℓ)

)
= V

(
rx + h,∆+

)
− V

(
rx − h, a − ∆−

)
⩽ 2h

∂V
∂r

(rx, a) + (∆+ + ∆−)
∂V
∂a

(rx, a)

⩽ 2hωd−1
2(d − 1)

d + 1
(2rx)

d−3
2

(
2ℓry

2rx + ry

) d+1
2

+
4hry

rx + ry
(1 + o(1))ωd−1

(
ℓ2rxry

rx + ry

) d−1
2

.

We finally obtain that

V(rx, ry, ℓ, h) ⩽ ωd−1

(
ℓ2rxry

rx + ry

) d−1
2

4h(1 + o(1)),

which concludes the proof.

Proposition 8. Suppose that balls of radius Ri roll inside S . Suppose that the density is such that f (x) ⩾ f0d (x, ∂S )α.
If O is such that d (O, S ) = R − ε with 0 < ε ⩽ R then, exists positive constants Cd,α and C′d,α such that

P(B(O,R)) ⩾ f0Cd,α

(
RRi

R + Ri

) d−1
2

ε
d+1+2α

2 , if O < S and ε ⩽ min(R,Ri)/4,

P(B(O,R)) ⩾ f0C′d,α

(
min(Ri,R)

2

)d+α

, otherwise.

Proof. In all the proof we introduce a point of ∂S O∗ which is not n uniquely defines, such that d(O,O∗) = d(O, ∂S ),
and Oi = O∗ − RiηO∗ . By the inside rolling ball condition B(Oi,Ri) ⊂ S .
- First case O < S and ε ⩽ min(R,Ri)/4.

P(B(O,R)) ⩾ P(B(Oi,Ri) ∩ B(O,R)).

Decompose the calculus on small "lens" L(z) = S(Oi,R − z) ∩ B(O,R) on witch d(x, ∂S ) ⩾ z (due to inside rolling
ball properties), see Figure A.4, it comes that

P(B(O,R)) ⩾
∫ ε

0
f0 zα

∣∣∣L(z)
∣∣∣
d−1 dz.

Then |L(z)|d−1 =
∫ θ(z)

0 σd−2(Ri − z)d−1 sin(α)d−2dα. From inequality sin(α) ⩾ 2α/π if 0 ⩽ α ⩽ π/2 (condition

ε < min(R,Ri) allows that) we obtain that |L(z)|d−1 ⩾ σd−2
d−1

(
2θ(z)
π

)d−1
(Ri − z)d−1. Now we have

θ(z) = arcsin
(

h(z)
Ri − z

)
>

h(z)
Ri − z

.

Thus we obtain

P(B(O,R)) ⩾ f0 ·
σd−2

d − 1

(
2
π

)d−1 ∫ ε

0
h(z)d−1dz,

with h(z) =

√
(ε − z)(2R − ε + z)

2(Ri + R − ε)

(
2(Ri − z) −

(ε − z)(2R − ε + z)
2(Ri + R − ε)

)
.
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Fig. A.4: Integration

Under the condition ε ⩽ min(Ri,R)/4 ⩽ (R + Ri)/8, we obtain that

h(z) ⩾

√
7 × 17

16 × 14
RRi

R + Ri
(ε − z) ⩾

√
1
2

RRi

R + Ri
(ε − z),

which finally yieds:

P(B(O,R)) ⩾ f0
σd−2

d − 1

(
2
π

)d−1 (
1
2

RRi

R + Ri

) d−1
2

∫ ε

0
zα(ε − z)

d−1
2 dz

⩾ f0
σd−2

d − 1

(
2
π

)d−1 (
1
2

RRi

R + Ri

) d−1
2

ε
d+1+2α

2 B
(
α + 1,

d + 1
2

)
⩾ f0Cd,α

(
RRi

R + Ri

) d−1
2

ε
d+1+2α

2 .

- Second case O < S and ε > min(R,Ri)/4.

P(B(O,R)) ⩾ P(B(Oi,Ri) ∩ B(O,R)).

Now define Ω = O + (ε − min(R,Ri)/4)ηO∗ we have P(B(O,R)) ⩾ P(B(Oi,Ri) ∩ B(O,R)) ⩾ P(B(Oi,Ri) ∩ B(Ω,R))
and we can apply previous calculus

P(B(O,R)) ⩾ f0Cd,α

(
RRi

R + Ri

) d−1
2

(
min(R,Ri)

4

) d+1+2α
2

⩾ f0
Cd,α

2
3d+1+4α

2

(min(R,Ri))d+α .

- Final case O ∈ S .

1. if d (O, ∂S ) > R, then P(B(O,R)) ⩾ P(B(O,R/2)) ⩾ f0
(

R
2

)α
ωd

(
R
2

)d
,

2. if d (O, ∂S ) < R and R < Ri, define Ω = O − R
2 ηO∗ , then P(B(O,R)) ⩾ P(B(Ω,R/2)) ⩾ f0

(
R
2

)α
ωd

(
R
2

)d
,

3. if d (O, ∂S ) < R and R ≥ Ri, define Ω = Oi −
Ri
2 ηO∗ , then P(B(O,R)) ⩾ P(B(Ω,Ri/2)) ⩾ f0

(
Ri
2

)α
ωd

(
Ri
2

)d
.

Hence, P(B(O,R)) ⩾ f0ωd

(
min(Ri,R)

2

)d+α

.

Appendix B. Proof of the Proposition 5 .

We will first introduce the two preliminary lemmas. We set here ε′n = An + Bn with An = supx∈Rd | f̂n(x)−E( f̂n(x))|
and Bn = supx∈Rd |E( f̂n(x))− f (x)|. Proposition 5 is a direct consequences of Propositions 9 and 10 below. Proposition
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9 gives a control of Bn, while the two items of Proposition 10 give a control of An in the exponential and polynomial
decay cases respectively.

Proposition 9. Let Xn be a sample from a strictly stationary sequence X with marginal density f and f̂n be defined
by (9), with hn → 0 and nhd

n → ∞ as n goes to ∞. Assume that (K1), (M1) and (K2) hold for some k ⩾ 2. Thus,
Bn = O(hk

n).

Proposition 10. Let Xn be a sample from a strictly stationary sequence X and f̂n be defined by (9).

• Assume that (K1), (M2), (M3) and (M4) hold and that one of the conditions below is fulfilled:

(A1) X is strong mixing with α(q) = O(b−q) for some b > 1 and hn = O
( ln n

n

)β for some β < 1/(3d + 6).

(T1) X is θ-weakly dependent with θ(q) = O(b−q) for some b > 1 and hn = O
( ln n

n

)β for some β < 1/(3d+4).

Then

An = Oa.s.


√

ln n
nhd

n

 .
• Assume that (K1), (M2), (M3), (M4) and (K2) hold for some k ⩾ 2 and that one of the conditions below is

fulfilled:

(A2) X is strongly mixing with α(m) = O(m−b) and hn = O
( ln n

n1−γ

)β for some 0 < β < 1/d, some γ > γ0 with

γ0 =
d + 2 − βd(d − 2)

q − βd(d − 2)
and some q > d + 2 and b > max ((2d + 3)/d, q − 1) .

(T2) X is θ-weakly dependent with θ(m) = O(m−b) and hn = O
( ln n

n1−γ

)β for some 0 < β < 1/d, some

γ > γ0 =
d + 2 − βd(d − 2)

q − βd(d − 2)
and some even integer q > d + 2 and b > max(2(d + 1)/d, 3(q − 1)).

Then

An = Oa.s.


√

ln n
n1−γhd

n

 .
Remark 7. In the literature, classical results assume in place of (M1) and (K2) the following assumptions to control
the bias term, here the proposition 3.3.1. in [19] is extended to the multidimensional case:

• f belongs to the set of Hölder ρ-regular functions

Cρ = { f : f is ⌊ρ⌋-differentiable,∃ L > 0/,∀(x, y) ∈ S , | f ⌊ρ⌋(y) − f (⌊ρ⌋)(x)| ≤ L|y − x|c},

for some 0 < c ⩽ 1 where ρ = ⌊ρ⌋ + c ⩾ 2 and S is any compact set of Rd.

• K is a kernel of order ρ.

In this case Bn = O(hρn). These assumptions are somehow more restrictive than (M1) and (K2). Indeed, if f ∈ Ck and
f (k) is c−Hölder then f ∈ Ck+c but the converse does not seem to hold even if c = 1 and for an integer k, Ck , Ck.

In the following, except in the statement of propositions and lemmas, we systematically set h ≡ hn (and h should
be understood as hn) for simplicity sake.
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Proof of Proposition 5 under geometric decays. Let us prove (A1) (the case (T1) can be handled in the same way).
By Proposition 9 and item 1 of Proposition 10,

ε′n = Oa.s.

( ln n
n

)βk

+

(
ln n
n

) 1−βd
2

 ,
with β < 1/(3d + 6).

• If k > d + 3, thus 1/(2k + d) < 1/(3d + 6) and an optimal choice for β is β = 1/(2k + d) so that ε′n =

Oa.s.

( ln n
n

) k
2k+d

 .
• If k ⩽ d + 3, thus 1/(2k + d) ≥ 1/(3d + 6) and ε′n = Oa.s.

( ln n
n

)βk and the result is obtained by setting

β = (1 − γ)/(3d + 6) for some γ ∈ (0, 1).

Proof of Proposition 5 under polynomial decays.

• Proof of item (A2) of Proposition 5. For any b > max((2d+3)/d, d+1), set q = b+1− t for each t ∈ (0, b−d−1)
and then apply item (A2) of Proposition 10 and Proposition 9 to obtain for all 0 < β < 1/d :

ε′n = Oa.s.

( ln n
n1−γ

)βk

+

(
ln n
n1−γ

) 1−βd
2

 , for all γ >
d + 2 − βd(d − 2)

b + 1 − t − βd(d − 2)
,

then choose β = 1
d+2k and let t → 0 to end the proof.

• Proof of item (T2) of Proposition 5. First notice that, to find an even number q larger than d + 2 and smaller
than b/3 + 1 we need the condition b > 3(d + 3). Assume now that b > 3(d + 3) and introduce q∗ = 2⌊ b+3

6 ⌋ the
largest even number smaller than b/3 + 1 then apply item (T2) of Proposition 10 and Proposition 9 to obtain,
for all 0 < β < 1/d

ε′n = Oa.s.

( ln n
n1−γ

)βk

+

(
ln n
n1−γ

) 1−βd
2

 , for all γ >
d + 2 − βd(d − 2)

q∗ − βd(d − 2)
.

then choose β = 1
d+2k allows to achieve the result.

Proof of Proposition 9.

E( f̂n(x)) =
∫
Rd

K(u) f (x − hu)du.

Since f ∈ Ck, k ⩾ 2 and ∥ f (k)∥∞ < M by (M1), we use a Taylor-Lagrange expansion of f with order k, around x.
Using the fact that K is an order (k − 1) kernel by (K2),

|E( f̂n(x)) − f (x))| ≤ M
hk

k!

∫
Rd
∥u∥k |K(u)|du.

Therefore,
sup
x∈Rd
|E( f̂n(x)) − f (x)| = O

(
hk

)
.

Notice that the result still hold when k = 1 as soon as
∫
Rd
∥u∥ |K(u)| du , 0.
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Proof of Proposition 10. We first start by providing in each case (the two items of the proposition), a bound for An on
a compact set of Rd of the form

sup
∥x∥⩽nν

∣∣∣∣ f̂n(x) − E( f̂n(x))
∣∣∣∣ = Oa.s.

(
λ(n)
√

nhd

)
, (B.1)

with ν > 2/c (c defined in (M4)), for some appropriate λ(n) → ∞ such that λ(n) = o(
√

nhd). Then, to state the
convergence on the whole set Rd, we have to show that

Ln = sup
∥x∥⩾nν

√
nhd

λ(n)

∣∣∣∣ f̂n(x) − E( f̂n(x))
∣∣∣∣→ 0 (B.2)

Since K has a compact support, say included in the ball Bd(0,C) of Rd then if for each i ≤ n, ∥Xi − x∥ > Ch we have
Ln = sup∥x∥>nν E( f̂n(x)). Now since h ≤ 1,∣∣∣∣E( f̂n(x))

∣∣∣∣ = ∣∣∣∣∣∫
Rd

K(u) f (x + uh) du
∣∣∣∣∣ ≤ sup

∥x−y∥≤1
f (y),

thus keeping in mind that nν − 1 ≥ nν/2 for n large enough, and now:

sup
∥x∥>nν

∣∣∣∣E( f̂n(x))
∣∣∣∣ ≤ sup

∥y∥≥nν−1
f (y)

which tends to zero by (M1) and (M2) by Remark 6. To prove that Ln converges a.s. to 0, we have to assume (M4).
We thus have

∞∑
n=1

P
(

max
1⩽t⩽n

∥Xt∥ > nν −Ch
)
⩽

∞∑
n=1

1 ∧
E∥X1∥

c + · · · + E∥Xn∥
c

(nν −Ch)c < ∞,

for ν such that ν > 2/c so that the series converges by (M4) (quote that here h ≡ hn indeed depends on n). This with
the Borel–Cantelli lemma entails that sup∥x∥⩾nν | f̂n(x)| tends to 0 as n goes to infinity a.s. as fast as needed. Indeed
∥Xt − x∥ > Ch a.s. uniformly over 1 ≤ i ≤ n and ∥x∥ > nν and thus the kernel vanishes.

Let us now prove (B.1). Set for all x ∈ Rd,

Ĝn(x) =
n∑

i=1

Yi(x) =
1

nhd

n∑
i=1

Ui(x), with Ui(x) = K
( x − Xi

h

)
− EK

( x − Xi

h

)
. (B.3)

To prove (B.1), we use the chaining argument of [32]. Let I = [−M,M]d be a cube of Rd. Since I is compact, it can
be covered by δd cubes I1, . . . , Iδd with centers x1, . . . , xδd and sides of length 2M/δ, where δ is such that δh/M → ∞.
Here, notice that h, δ and M are allowed to vary with n but it is omitted in the notation to make the reading easier.
Setting Ĝn(x) = f̂n(x) − E( f̂n(x)) we have for all j

|Ĝn(x)| ≤ | f̂n(x) − f̂n(x j)| + | f̂n(x j) − E f̂n(x j)| + |E f̂n(x j) − E f̂n(x)|.

Under (K1), [32] proves that for some positive constant L and for all x ∈ I j,∣∣∣∣∣∣K ( x − Xi

h

)
− K

(
x j − Xi

h

)∣∣∣∣∣∣ ⩽ 2M Lip (K)
δh

1{∥x j−Xi∥⩽Lh}.

Using this fact it is easy to deduce that there exists another kernel density estimator f̃ for f , obtained by replacing
K in (9) by the piecewise linear and compactly supported kernel K̃ defined by K̃(x) = 1 if ∥x∥ ⩽ L and K̃(x) = 0
otherwise, such that for some n ⩾ n0 (see [32], page 78),

sup
x∈I j

|Ĝn(x)| ≤ |Ĝn(x j)| +
C1M

hδ

(
|G̃n(x j)| + |E f̃n(x j)|

)
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with C1 = 2Lip(K) and G̃n(x) = f̃n(x) − E( f̃n(x)). Therefore,

sup
∥x∥⩽Md

|Ĝn(x)| ≤ max
1⩽ j⩽δd

|Ĝn(x j)| +
C1M

hδ

(
max

1⩽ j⩽δd
|G̃n(x j)| + max

1⩽ j⩽δd
|E f̃n(x j)|

)
,

so that we can write as soon as sup∥x∥⩽Md |E f̃n(x)| ⩽ thδ/(3MC1) (which is true when thδ/M > C2 for some C2 > 0),

P
 sup
∥x∥⩽Md

|Ĝn(x)| > t

 ≤ P
(

max
1⩽ j⩽δd

|Ĝn(x j)| >
t
3

)
+ P

(
max

1⩽ j⩽δd
|G̃n(x j)| >

thδ
3MC1

)
≤ δd sup

∥x∥⩽Md

{
P

(
|Ĝn(x)| >

t
3

)
+ P

(
|G̃n(x)| >

thδ
3MC1

)}
(B.4)

We then set t = C
λ(n)
√

nhd
for some appropriate λ(n) → ∞ such that λ(n) = o(

√
nhd) and M = nν/d and have to control

each term at the right hand side of (B.4). If the right hand side is the general term of a convergent series then using
Borel-Cantelli lemma we obtain (B.1).

Therefore, the main goal of the proof of Proposition 10 consists now of finding in each case (A1), (T1), (A2), and
(T2) sequences λ(n) and δ(n) such that the right hand side of (B.4) is the general term of a convergent series.
We will need the following

Lemma 5. Let X be strictly stationary sequence with density f and kernel estimator f̂n defined by (9). Assume that
(M3) holds and that (K1) holds with h→ 0 and nhd → ∞, and that we have one of the following conditions

(A1) X is strongly mixing with α(m) = O(b−m) for some b > 1.

(T1) X is θ−weakly dependent with θ(m) = O(b−m) for some b > 1.

(A2) X is strongly mixing with α(m) = O(m−b) for some b > 2 + 3/d.

(T2) X is θ−weakly dependent with θ(m) = O(m−b) for some b > 2 + 2/d.

Then:

σ2
n(x) = var f̂n(x) =

1
nhd f (x)

∫
K2(u)du + o

(
1

nhd

)
.

Proof of item 1 in Proposition 10. In cases of exponential decays rates of the dependence coefficients, we may use a
Bernstein’s type inequality for Ĝn(x) and G̃n(x) in order to bound the right hand side of (B.4). Namely we will use
Theorem 1 and Proposition 8 of [23]. Let us recall them below in our special setting

Lemma 6 ([23], Proposition 8). Let Yn be a n−sample of a R-valued strictly stationary sequence Y such that E(Yi) = 0
and ∥Y∥∞ ⩽ H in probability. Assume that there exists some 0 < c < 1 and some L > 0 such that for all u- tuples
(s1, . . . , su) and all v-tuples (t1, . . . , tv) with 1 ⩽ s1 ⩽ · · · ⩽ su ⩽ t1 ⩽ · · · ⩽ tv ⩽ n,∣∣∣cov

(
Ys1 × · · · × Ysu ,Yt1 × · · · × Ytv

)∣∣∣ ⩽ Hu+v−2L2vc(t1−su). (B.5)

Then, for all t > 0,

P
 n∑

i=1

Yi > t

 ⩽ exp
−1

2
t2

σ2
n +G1/3

n t5/3

 ,
with

σ2
n = var

 n∑
i=1

Yi

 , Gn ∼ (L ∨ H)
(

nL2

σ2
n
∨ 1

)
.
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Now, let Yi ≡ Yi(x) be defined by (B.3). Notice that Yi(x) = Fn(Xi), where Fn is a bounded Lipschitz function with
∥Yi(x)∥∞ ⩽ H = ∥Fn∥∞ ⩽ 2∥K∥∞/nhd and Lip Fn ⩽ Lip K/(nhd+1). Assume that

σ2
n = Oa.s.

(
1

nhd

)
. (B.6)

• Strong mixing case. If X is strong mixing with α(m) = O(b−m), for some b > 1, thus Y is strong mixing with
αY (m) ⩽ α(m) by measurability of Fn. Moreover, by [21]’s Lemma 6 and [23]’s Remark 7, (B.5) is satisfied
with L2 = ( Lip Fn)2 and c = 1/b. Therefore Lemma 6 applies with H ∼ 1/(nhd), L2 ∼ 1/(n2h2d+2) and
Gn ∼ 1/(nh2d+3). Setting t = C

√
ln n/nhd for some convenient constant C > 0, we get

P
|Ĝn| > C

√
ln n
nhd

 ⩽ n−C2/2

as soon as un = nhdG1/3
n t5/3 → 0, which is true as soon as β < 1/(3d + 6) with h = O((ln n/n)β).

• θ−weak dependent case. If X is θ−weakly dependent with θ(m) = O(b−m), b > 1, thus Y is θ−weakly dependent
since Fn is a Lipschitz function, by heredity of this property through Lipschitz functions, with θY (m) ⩽ θ(m).
Moreover, using Remark 9 and Proposition 8 of [23], (B.5) is satisfied with L2 = H Lip F and c = 1/b. Therefore
Lemma 6 applies with H ∼ 1/nhd, L2 ∼ 1/(n2h2d+1) and Gn ∼ 1/(nh2d+2). Setting t = C

√
ln n/nhd for some

convenient constant C > 0, we get

P
|Ĝn| > C

√
ln n
nhd

 ⩽ n−C2/18,

as soon as un = nhdG1/3
n t5/3 → 0, which is true as soon as β < 1/(3d + 4) with h = O((ln n/n)β).

Therefore, we obtain in both cases a bound for the first term at the right hand side of (B.4). The second term can be
handled in the same way, with identical values of L2, H and Gn setting δ = MC1/hε, ε > 1.
Finally, one obtains (B.4) by setting M = nν/d,

P
 sup
∥x∥⩽nν

|Ĝn(x)| > t
 ⩽ δdn−D = Anν+εβd−D(ln n)−βεd,

for some constant A > 0 and some conveniently chosen C in the expression of t such that D > 1 + ν + βεd so that

sup
∥x∥⩽nν

| f̂n(x) − E( f̂n(x))| = Oa.s.

√ ln n
nhd

 ,
using Borel–Cantelli. It remains to show that (B.6) holds, which is true by Lemma 5 under (K1), (M2) and (M3).

Proof of Proposition 10, item 2. Our proof relies on the following lemma.

Lemma 7. Let Xn be a n-sample of a strictly stationary sequence X and f̂n be defined by (9).

(i) Assume (K1) with h → 0 and nhd → ∞. Assume moreover that there exists some c > 0 and some q ⩾ 2 such that
for n > n0

sup
x∈Rd
∥ f̂n(x) − E( f̂n(x))∥q ⩽

c
√

nhd
. (B.7)

Then, for every sequence (λn) such that λn → ∞ and λn = O
(√

nhd
)

as n tends to∞ and every ν > 0 satisfying

∞∑
n=1

 √nhd

h

d
nν

λ
q
n
< ∞, (B.8)

sup
∥x∥⩽nν

| f̂n(x) − E( f̂n(x))| = Oa.s.

(
λn
√

nhd

)
.
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(ii) Assume that (B.7) holds and h = O
( ln n

n1−γ

)β for some 0 < β < 1/d and 0 < γ < 1. Then, under (K1) one has

sup
∥x∥⩽nν

| f̂n(x) − E( f̂n(x))| = Oa.s.

√ ln n
n1−γhd


as soon as γ, β and q are such that

γq + (1 − γ)βd(d − 2) > d + 2. (B.9)

In the following lemma, we give the conditions under which (B.7) holds in arithmetic decay cases (A2) and (T2). The
point (ii) of this lemma together with (7) yields item 2 of Proposition 10.

Lemma 8. Let Xn be a n-sample of a strictly stationary sequence X and f̂n be defined by (9).

(A2) Assume that X is α-mixing with α(m) = o(m−b) for some b > 0. Assume moreover that (M2), (M3), (K1) and (K2)
hold for some k ⩾ 2, with h→ 0 and nhd → ∞. Thus (B.7) obtains for every q > 2 and b > max(2+3/d, q−1).

(T2) Assume that X is θ-weakly dependent with θ(m) = o(m−b) for some b > 0. Assume moreover that (M2), (M3) and
(K1) hold, with h→ 0 and nhd → ∞. Thus (B.7) obtains for every even q ⩾ 2 and b > max(2 + 2/d, 3(q − 1)).

Proof of Lemma 5. Let f̆n be the kernel estimator analogue to f̂n but built on independent copies of X0. A well known
result (see for instance [33]) is

var f̆n(x) =
1

nhd f (x)
∫

K2(u)du + o
(

1
nhd

)
.

We have
var f̂n(x) = var f̆n(x) +

2
n2h2d

∑
1⩽i⩽ j⩽n

cov(Ui(x),U j(x))|.

So, by stationarity of the process (Ui(x)),

∆n(x) = | var f̂n(x) − var f̆n(x)| ⩽
2

nh2d

n−1∑
m=1

| cov(U0(x),Um(x))|.

• On the one hand,

| cov(U0(x),Um(x))| = h2d
∫∫

(K (s) − E(K(X0))) (K (t) − E(K(X0))) f0,m(x − hs, x − ht)dsdt ⩽ Coh2d, (B.10)

by (K1) and (M3).
• On the other hand one has the property (B.5) with u = v = 1, su − t1 = m, M and L2 depending on the dependence
structure of X. Namely,

• If X is θ-weakly dependent then by (B.5)

| cov(U0(x),Um(x))| ⩽ 2∥K∥∞
Lip K

h
· θ(m).

Therefore with Co defined through (B.10),

1
nh2d | cov(U0(x),Um(x))| ⩽

Co

nhd

(
θ(m)
hd+1 ∧ hd

)
⩽

Co

nhd hd−α(2d+1)θ(m)α,

for all 0 ⩽ α ⩽ 1 by relation (12.18) of [19] so that setting α = d/(2d + 1) ∆n tends to zero as soon as∑
m

θ(m)
d

2d+1 < ∞.

In case θ(m) ∼ m−b, this holds if b > 2 + 2
d . In case of exponential decay rates θ(m) ∼ b−m, for some b > 1, this

is always true.
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• If X is strongly mixing, we have by (B.5)

| cov(U0(x),Um(x))| ⩽
( Lip K)2

h2 α(m),

so
1

nh2d | cov(U0(x),Um(x))| ⩽
Co

nhd

(
α(m)
hd+2 ∧ hd

)
⩽

Co

nhd hd−α(2d+2)α(m)α

for all 0 ⩽ α ⩽ 1 so that with α = d/(2d + 2), we obtain ∆n tends to zero as soon as∑
m

α(m)
d

2d+2 < ∞.

In case α(m) ∼ m−b this holds for all b > 2 + 3/d. In case of a exponential decay rate θ(m) ∼ b−m, for some
b > 1 this is always true.

Proof of Lemma 7.

• Proof of (i). Let λ(n) → ∞ such that λ(n) = o(
√

nhd). We deduce Markov inequality in (B.7) that there exists
some C3 > 0 such that

P
 sup
∥x∥⩽Md

n

|Ĝn(x)| >
λ(n)
√

nhd

 ⩽ C3δ
d

λ(n)q

as soon as there is some C4 > 0 such that δh ⩾ C4Mn
√

nhd. For that task, set t =
λ(n)
√

nhd
in (B.4). One has

P
(
|Ĝn(x)| >

λ(n)

3
√

nhd

)
⩽

3q

λ(n)q

(
sup
x∈Rd

√
nhd∥Ĝn(x)∥q

)q

⩽
C5

λ(n)q

with C5 = (3c)q. Moreover, ∥G̃n(x)∥q is uniformly bounded so as soon as δh ⩾ C4M
√

nhd,

P
|G̃n(x)| >

λ(n)hδ

3CMn
√

nhd

 ⩽ C5

λ(n)q ,

with C5 = (3C1C4)−1. Set

δ =
M
√

nhd

h
.

We have

sup
∥x∥⩽Md

n

| f̂n(x) − E( f̂n(x))| = Oa.s.

(
λ(n)
√

nhd

)
. (B.11)

This holds from Borel-Cantelli lemma as soon as∑
n

 Mn
√

nhd

h

d
1

λ(n)q < ∞. (B.12)

The result of Proposition 7 is obtained by setting Mn = nν/d.

• Proof of (ii).
With the conditions on h we have h→ 0 and nhd → ∞. Set λ(n) =

√
nγ ln n. Since 0 < γ < 1 and 0 < β < 1/d,

we have λ(n) → ∞ and λ(n)/
√

nhd → 0. To achieve the proof we need to ensure that we can find ν > 0 such
that (B.12) converges. Set un the general term of (B.12). With the assumptions on h and λ(n),

un = O
(

1
nc log na

)
,

32



with 2c = γq − 2ν − d + βd(1 − γ)(d − 2) and a = (q − βd(d − 2))/2. The series (un)n is of the Bertrand type and
converges if and only if c > 1 or c = 1 and a > 0. One thus need that there exists some ν > 0 such that 2ν ⩽ ε
with 0 < ε = γq − 2 − d + βd(1 − γ)(d − 2) which holds as soon as γq − 2 − d + βd(1 − γ)(d − 2) > 0.

Proof of Lemma 8.

• Proof of (A2). In the strong mixing case we apply [34]’s theorem 6.3 to the sequence U(x) = (Ui(x))1⩽i⩽n, for
a given x ∈ Rd. Notice that strong mixing still holds with αU(x)(m) ⩽ α(m) from the heredity properties of
strong-mixing. Set

S n(x) =
n∑

i=1

Ui(x) = nhdĜn(x).

For all q > 2, Ui(x) admits finite moments with order q since ∥Ui(x)∥ ⩽ 2∥K∥∞. Thus, applying Theorem 6.3
yields for all n > n0,

∥S n(x)∥qq ⩽ asn(x)q + nc
∫ 1

0

(
α−1(u)

)q−1
Qq

x(u)du,

where a and c are positive constants that only depend on q, α−1(u) =
∑
n>1

1u<α(n), and Qx denotes the generalized

inverse of the tail function t 7→ P(|U0(x)| > t) and

s2
n(x) =

∑
i

∑
j

| cov(Ui(x),U j(x))|.

Using [34]’s inequality C.3 on page 157 for some r > q there exists c′ > 0 that only depends on q, r and ∥K∥∞
such that

∥S n(x)∥qq =
(
nhd

)q
∥Ĝn(x)∥qq ⩽ asn(x)q + c′n∥U0(x)∥qr

∑
i⩾0

(i + 1)
qr−2r+q

r−q α(i)

1−q/r

,

⩽ asn(x)q + c′nhdq/r

∑
i⩾0

(i + 1)
qr−2r+q

r−q α(i)

1−q/r

.

Using Lemma 5 and setting h = O((ln n/n1−γ)β), we obtain (B.7) under (K2) for some k > 1 as soon as (M2)
and the following conditions are fulfilled for some r > q:

(1)
hdq(1/r−1/2)

nq/2−1 → 0, as n→ ∞.

(2)
∑
i⩾0

(i + 1)
qr−2r+q

r−q α(i) < ∞.

(3) b > 2 + 3/d.

If q(1 − (1 − γ)βd) ⩾ 2, Condition (1) is fulfilled for all r > q. On the other hand, condition (2) is fulfilled as
soon as

b >
r(q − 1)

r − q
= u(r).

Since u is decreasing with limr→∞ u(r) = q − 1, we can take b > max(q − 1, 2 + 3/d) to meet the conditions (1)
to (3).

If q(1 − (1 − γ)βd) < 2, obvious calculations entails that we have to choose r such that

q < r ⩽ r1 =
2(1 − γ)βdq

2 − q(1 − (1 − γ)βd)
.
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In this case, one can choose

b > u(r1) =
2(1 − γ)βd(q − 1)

(q − 2)(1 − (1 − γ)βd)
,

to meet (2). Since q(1 − βd) < 2, b > u(r1) > q − 1 so that b > max(q − 1, 2 + 3/d) meet the conditions (1) to
(3).
Finally, (B.7) obtains as soon as b > max(q − 1, 2 + 3/d).

• Proof of (T2).

In the θ-weakly dependent case, it straightforwardly follows from [22]’s theorem 1: under the conditions (M2),
(M3), (K1) with h→ 0 and nhd → ∞ (B.7) obtains for any even q ⩾ 2 as soon as

σ2
n = O(1/nhd), and

∑
m⩾0

(m + 1)q−2θ(m)1/3 < ∞.

When θ(m) = o(m−b), the first condition implies b > 2 + 2/d by Lemma 5 and the second condition is obtained
with b > 3(q − 1).

Appendix C. Explicit rates

In this final section we explicit the rates for level set estimation in the case of polynomial dependence decay rates.
We show which of the two components involved εn, ε

′
n is the convergence rate. For dimensions d ⩽ 3 the convergence

rate reduces to the density estimation rate ε′n whatever is the regularity of the density. For larger dimensions, the rate
is the set estimation rate, εn, if density is regular enough and under convenient dependence assumptions.
More precisely, we obtain the rates:

• Under strong mixing

– For d ⩽ 3, then the convergence rate is limited by the density estimation step.
Namely for some a > 0:

* if k ⩽ d + 3, then for all k′ ∈ (0, k), we have εn + ε
′
n = O((lna n/n)

k′
3d+6 ).

* if k > d + 3, then εn + ε
′
n = O((lna n/n)

k
d+2k ).

– For d ⩾ 4 :

* if k ⩽ min
(
d + 3, 6 ·

d + 2
d + 1

)
, then for all k′ ∈ (0, k), we have εn + ε

′
n = O((lna n/n)

k′
3d+6 ).

* if k > min
(
d + 3, 6 ·

d + 2
d + 1

)
, then we have εn + ε

′
n = O((lna n/n)2/(d+1)).

• Under θ-weak dependence then for some a > 0:

– For d ⩽ 3, the convergence rate is limited by the density estimation step. Namely

* if k ⩽ d + 3, then for all k′ ∈ (0, k), we have εn + ε
′
n = O((lna n/n)

k′
3d+6 ).

* if k > d + 3, then εn + ε
′
n = O((lna n/n)

k
d+2k );

– For d = 4,

* if k < 7, then for all k′ ∈ (0, k), we have εn + ε
′
n = O((lna n/n)

k′
18 ).

* if k = 7, we have εn + ε
′
n = O(lna n/n)

7
19 ).

* when k ⩾ 8, then we have εn + ε
′
n = O((lna n/n)

2
5 ).

– For d > 4,

* if k ⩽ min
(
d + 2, 6 ·

d + 2
d + 1

)
, then for all k′ ∈ (0, k), we have εn + ε

′
n = O((lna n/n)

k′
3d+6 ).

* if k > min
(
d + 2, 6 ·

d + 2
d + 1

)
, then we have εn + ε

′
n = O((lna n/n)

2
d+1 ). ■
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