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Abstract

In this paper, we extend estimation results on the R-convex hull of the points of a random sample from independence
to some dependent cases. Explicit convergence rates are obtained in that case; we deal both with R-convex hulls
and with natural plug-in estimators of the support S , of its volume, its perimeter and the level-sets of the marginal
density f on Rd, of a strictly stationary process. For this we assume some weak dependence conditions. Convenient
assumptions of f are needed on the boundary of its support. The loss with respect to the classical independent case is
at at least a an extra power of ln n.

Keywords: Strictly stationary process, strong mixing, weak dependence, multidimensional density, density
estimation, density support estimation, set estimation

1. Introduction

Set estimation has many applications. In ecology for instance, it may be used to study the home-range or the core-
area of species [21], based on the observation of the spatial distribution of species or the movement of one or more
representative members. Assimilating the position of a member to a random variable with a given density distribution
f : Rd → R, the home-range corresponds to the support S = {x, f (x) > 0} of f and the core-area to a level set of f
which is defined as the set Lt = {x, f (x) > t} for a given threshold t > 0. If

∫
Lt

f (x)dx = α then the level set Lt is also
interpretated as a multidimensional α−quantile, see [10, 14].
The estimation of a density support and of its related quantities -level sets, boundary, volume and perimeter- has
been the focus of several works for i.i.d. data sets. The historical Devroye-Wise estimator of S in [11, 13] (see also
references therein) has universal properties but non-optimal rates. If S is convex then optimal rates are achieved by
the convex hull estimator of the sample. More generally, under "convexity type" assumptions on S , optimal rates may
be achieved by estimators defined as some extensions of the convex hull. This is the case of the R-convex hull, studied
for example in [2, 5, 27–29, 32] (other estimators of S have also been proposed, as in [1] or [22]).
The R-convex hull of a set S is defined as :

CR(S ) =

 ⋃
B̊(x,R)∩S =∅

B̊(x,R)


c

,

where Ec and E̊ respectively denote the complement and the interior of the set E and B(x,R) is the closed ball of radius
R centered at x. The use of the R-convex hull to estimate the support of a density f has the heuristic justification:
if S is regular enough, we have CR(S ) = S so that a natural estimator of S is Ŝ n = CR(Xn), with Xn = {X1, . . . , Xn} ⊂

Rd a sample whose marginal density f admits the support S and CR(Xn) =
(⋃

B̊(x,R)∩Xn=∅ B̊(x,R)
)c

.

The study of Ŝ n has been introduced by [32] and [27]. They derive convergence rates of the Hausdorff distance
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dH(Ŝ n, S ) towards 0 and obtain the minimax rate of [22] under regularity assumptions on S . Similar rates are obtained
for dH(∂Ŝ n, ∂S ). Functionals of the R-convex hull may also be used to estimate related quantities such as the volume
[5, 6], the perimeter [2] and level sets [28] of S .
In the above results, the density f is bounded below on S by some positive constant and the sample Xn is i.i.d. How-
ever, for real life applications, the independence hypothesis is generally unrealistic. This is the case for instance when
a member’s location is observed via GPS or when the sample consists of the trajectory of one or more members ob-
served over a time period. Our hypothesis is that Xn is a n−sample from a strictly stationary process X. Additionally,
we assume some dependence condition: we consider here strong mixing and θ-weak dependence, introduced respec-
tively in [30] and [12].
Set estimation under dependence has been little studied and the two related works are to our knowledge that of [8],
who considers trajectories of a reflected Brownian motion and the recent paper of [23] in which the authors extend
results on reconstruction of density supports of i.i.d random variables to supports of dependent stationary Rd-valued
random processes with the use of the Devroye-Wise estimator.
In this article, we study the asymptotic properties of Ŝ n and some of its natural plug-in as estimators of the support
(and boundary, perimeter, volume) in a non-independent framework: thus we extend the results of [2, 5, 6, 27, 28, 32]
to dependent cases. Plug-in estimates also lead to the case of level sets estimation. Namely, we derive convergence
rates in Hausdorff distance of those estimators. Finally we show that, with probability one for n large enough, the
estimated support (resp. level sets) is homeomorphic to the support (resp. to the level sets).
The rest of the paper is organized as follows. Section 2 presents some notation and general useful results. Section 3
dedicates to asymptotic results for the R-convex hull and its natural plug-in as the estimators of the density support
and its related quantities, volume and perimeter. Section 4 deals with the estimation of level-sets. As a conclusion,
Section 5 proposes some perspectives for data-driven tuning of the geometric parameter R. The proofs are postponed
to Section 6.

2. General framework

In this paper, we are interested in several geometric non-parametric estimation problems, based on a n−sample
Xn = {X1, . . . , Xn} ⊂ Rd of strictly stationary weakly dependent sequence X. In this section, we first give some notation
and preliminary material that will be useful to settle and prove our main results.

2.1. Notation

• For each set E ⊂ Rd, we denote by |E|d its d-dimensional volume and |∂E|d−1 its boundary, i.e. the (d − 1)-
dimensional volume of its surface.

• B(x, r) ⊂ Rd denotes the closed ball of radius r ≥ 0 centered at x and S(x, r) is its boundary, i.e. the sphere of
radius r centered at x.

For the sake of simplicity, we set ωd = |B(0, 1)|d the volume of B(0, 1) ⊂ Rd and σd = |S(0, 1)|d−1 its surface.

• For each E ⊂ Rd and each positive number r, we denote by E⊕rB and E	rB the Minkowski sum and difference:

E ⊕ rB = {x ∈ Rd, d(x, E) 6 r} =
⋃
a∈E

B(a, r) and E 	 rB = {x, B(x, r) ⊂ E}.

• For two subsets E and F of Rd, we denote by dH(E, F) their Hausdorff distance:

dH(E, F) = max
(
sup
a∈E

d(a, F), sup
b∈F

d(b, E)
)
.

• We set E ≈ F if and only if E and F are homeomorphic.

• For two non-negative sequences (un) and (vn) in RN, we set un . vn if and only if there exists c > 0 such that,
for all n > 0, un 6 cvn. If un . vn and vn . un then we set un ≈ vn.
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• For k ∈ N, we denote by Ck the set of k-times continuously differentiable functions Rd → R.
For f ∈ C1 we denote by ∇ f its gradient and in case f ∈ C2 we denote byH f its Hessian matrix.

• We denote by ‖ · ‖op the operator norm on the set of n × p matrices.

• Let ρ > 1. We say that K is a kernel of order ρ if and only if
∫

P(x)K(x)dx = P(0) for each polynomial of
degree less than or equal to ρ.

2.2. Dependence background

In the sequel, we assume that X = (Xt)t∈Z is a strictly stationary short memory process. We consider Xn =

{X1, . . . Xn} ⊂ Rd a sample of X with marginal density f : Rd → R.
We first recall below the short memory properties considered in the sequel, namely the strong mixing and θ-weak

dependence conditions as well as some covariance properties and density estimation results for each of them.

2.2.1. Weak dependence conditions
Let X = (Xt)t∈Z be a strictly stationary sequence on a given probability space (Ω,F ,P). For −∞ 6 j 6 l 6 +∞,

let F l
j = σ(Xk, 1 6 k 6 l, k ∈ Z) be the σ-field of events generated by the random variables (Xk) j6k6l. In the sequel,

we consider the following dependence conditions for X.

Strong or α-mixing. Let (α(q))q>0 be the decreasing sequence of strong mixing coefficients of X, defined as

α(q) = sup
A∈F 0

−∞,B∈F ∞q

|P(A ∩ B) − P(A)P(B)|.

Quote that the above expression also writes as the supremum of |cov(1A, 1B)|. We say that X is strongly mixing (or
α-mixing) if limq→∞ α(q) = 0.

θ-weak dependence. Let v ≥ 1 and let us define the Lipschitz modulus of a function h : (Rd)v → R by

Lip(h) = sup
x,y

|h(x) − h(y)|
‖x1 − y1‖ + · · · + ‖xv − yv‖

,

where ‖ · ‖ is a norm of Rd. Let W be any random variable such that ‖W‖∞ ≤ 1 measurable with respect to F 0
−∞. We

say that X is θ-weakly dependent if there exists a decreasing sequence (θ(q))q>0 with limq→∞ θ(q) = 0 and a set of
indices i1, . . . , iv > 1 such that |cov(W, h(Xi1 , . . . , Xiv ))| ≤ vLip h · θ(q). Notice that for v = 1 we have |cov(W, h(Xq))| ≤
Lip h · θ(q).

Examples. A large number of classical models which satisfy strong mixing conditions is provided in [15]; in particular
the class of linear processes based on innovations with an absolutely continuous density function, such as strictly
stationary ARMA processes and also certain bilinear, ARCH or GARCH models. Another example is that of a
stationary Gaussian process with a continuous positive spectral density. Notice also that this property remains valid
through images by measurable functions.
Some classical processes are not strongly mixing. A famous counterexample is in [4], in which X is the stationary
solution of the recursion

Xt =
1
2

(Xt−1 + εt),

where X0 is independent of (εt)t>0, which is a sequence of i.i.d. random variables with Bernoulli distribution of
parameter 1/2. This example and many others, such as linear processes with discrete innovations [4], on the other
hand, also fit the θ-weak dependence condition. Notice also that this property is hereditary through Lipschitz functions.
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2.2.2. A covariance based result
Let E be a measurable subset of Rd with P(Xt ∈ E) = p > 0. In each of the above-mentioned dependence conditions,
under covariance based arguments we derive a useful upper-bound for P(Xn ∩ E = ∅).

Proposition 1. Let X = (Xt)t∈Z be a strongly mixing sequence with mixing coefficients (α(q))q>0. Then, setting EE(q) =

α(q), we have:

P(Xn ∩ E = ∅) ≤ (1 − p)
n
q +
EE(q)

p
.

Proposition 2. Let X = (Xt)t∈Z be a θ−weakly dependent sequence with dependence coefficients (θ(q))q>0. Assume
moreover that there exists c > 0 such that:

P(Xt ∈ E) ≤ c |E|d. (1)

1. If E = B(x, r) we have that

P(Xn ∩ E = ∅) ≤ (1 − p)
n
q +
EE(q)

p
, with EE(q) 6 inf

ε∈(0,r)

(
θ(q)
ε

+ cωd2dεrd−1
)
. (2)

2. If E = B(x, rx) ∩ B(y, ry) with rx + ry − ‖x − y‖ = `, and ` 6 rx ∧ ry, we have that

P(Xn ∩ E = ∅) ≤ (1 − p)
n
q +
EE(q)

p
, with (3)

EE(q) 6 inf
ε∈(0,`/2)

(
2θ(q)
ε

+ cV(rx, ry, `, ε)
)
, and V(rx, ry, `, ε) ∼

`→0
4cωd−1ε

(
`2rxry

rx + ry

) d−1
2

. (4)

Remark 1. Notice that condition (1) holds for instance if the distribution of X0 admits a bounded density f wrt
Lebesgue measure.

Another important dependent case is that of negatively associated processes, see [31]. Considering the proof, we set
in this case q = 1 and k = n and here

cov(Z1 · · · Zk−1,Zk) ≤ 0.

In this case blocks are useless (here q = 1) and pn ≥ pn and the results are conducted as in the classical independent
case and we obtain:

Proposition 3. Let X = (Xt)t∈Z be a negatively associated. Then, setting EE(q) = α(q), we have:

P(Xn ∩ E = ∅) ≤ (1 − p)n.

Remark 2. Our results may be extended to alternative dependence structures, yielding other values of EE(q), possibly
involving other methods of proofs, such as coupling. An alternative to the above result is if X is absolutely regular,
[15], Berbee’s coupling inequalities ([7]) yields EE(q) ≤ β(q).

The above upper bounds for P(Xn ∩ E = ∅) will allow to derive convergence rates for the estimation of S , ∂S , |S |d
and |∂S |d−1 in Section 3. In order to get explicit rates, we will propose two scenarii

• Exponential decays, α(q) 6 Bb−q or θ(q) 6 Bb−q, for some b > 1.

• Riemannian decays, α(q) 6 Bq−b or θ(q) 6 Bq−b, for some b > 0.
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2.2.3. Uniform consistency of kernel density estimators under dependence
To obtain results on level set estimation, we need an upper bound on

ε′n = sup
x∈Rd
| f̂n(x) − f (x)|,

where f : Rd → R as above is the marginal density of the strictly stationary Rd-valued process X and f̂n is its kernel
density estimator:

f̂n(x) =
1

nhd
n

n∑
t=1

K
(

Xt − x
hn

)
. (5)

We provide below bounds for ε′n in the α-mixing and θ-weakly dependent cases. Proposition 4 concerns exponential
decays and Proposition 5 concerns Riemannian decays. For that task, we fist introduce some regularity assumptions
on f and K:

(K1) K : Rd → R is a bounded density with compact support.

(K2) K : Rd → R is of order (k − 1).

(M1) For some k > 2, f ∈ Ck and f (k) is bounded.

(M2) The marginal density f is bounded on Rd.

(M3) The joint densities fi of (X0, Xi) are bounded, uniformly with respect to i > 0.

(M4) The marginal density f tends to zero as n tends to infinity.

(M5) E‖X0‖
c < ∞ for some c > 2.

Proposition 4. Let Xn be a n-sample of a strictly stationary sequence X and f̂n be defined by (5). Assume that (K1),
(M2), (M3), (M4) and (M5) hold, and that (K2) and (M1) hold for some k > 2.

(A1) If X is strongly mixing with α(q) = O(b−q) for some b > 1, thus

1. If k > d + 3, the choice hn = O
(

ln n
n

) 1
d+2k

yields ε′n = Oa.s.

( ln n
n

) k
2k+d

 .
2. If k 6 d + 3, any choice hn = O

(
ln n
n

) 1−γ
3d+6

with γ ∈ (0, 1) yields ε′n = Oa.s.

( ln n
n

) k(1−γ)
3d+6

 .
(T1) If X is θ-weakly dependent with θ(q) = O(b−q) for some b > 1, thus

1. If k > d + 2, the choice hn = O
(

ln n
n

) 1
d+2k

yields ε′n = Oa.s.

( ln n
n

) k
2k+d

 .
2. If k 6 d + 2, any choice hn = O

(
ln n
n

) 1−γ
3d+4

with γ ∈ (0, 1) yields ε′n = Oa.s.

( ln n
n

) k(1−γ)
3d+4

 .
Proposition 5. Let Xn be a n-sample of a strictly stationary sequence X and f̂n be defined by (5). Assume that (K1),
(M2), (M3), (M4) and (M5) hold, and that (K2) and (M1) hold for some the same k > 2.

(A2) Let X be strongly mixing with α(q) = O(q−b) for some b > max(2 + 3/d, d + 2). Let γ0 =
d+2− d(d−2)

2k+d

b+1− d(d−2)
2k+d

.

Then the choice of hn = O
(

ln n
n1−γ

) 1
d+2k

, for any γ ∈ (γ0, 1) yields ε′n = Oa.s.

((
ln n
n1−γ

) k
2k+d

)
.

(T2) Let X be θ-weakly dependent with θ(q) = O(q−b) for some b > 3(d + 2). Let γ0 =
d + 2 − d(d−2)

2k+d

2b b+3
6 c −

d(d−2)
2k+d

.

Then the choice of hn = O
(

ln n
n1−γ

) 1
d+2k for any γ ∈ (γ0, 1), yields ε′n = Oa.s.

((
ln n
n1−γ

) k
2k+d

)
.
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3. Support estimation

In this section, we derive convergence rates for the R-convex hull estimator of S and that of their boundaries in the
context of strictly stationary strong-mixing or θ-weakly dependent sequences X. We first give regularity conditions
on S under which are derived our main theoretical results.

3.1. Distributional background
In order to obtain a consistent estimator CR(Xn) of the support S we will assume that S is compact and regular enough
in order that CR(S ) = S . This will fulfilled if the following rolling ball property holds:

Definition 1 (Rolling ball property). A closed compact set S ⊂ Rd satisfies the Ro-outside (resp. Ri-inside) rolling
ball property if:

∀x ∈ ∂S , ∃Oo
x ∈ Rd, ‖x − Oo

x‖ = Ro, and B̊(Oo
x,Ro) ⊂ S̊ c. (resp. ∃Oi

x ∈ Rd, ‖x − Oi
x‖ = Ri, and B(Oi

x,Ri) ⊂ S ).

When S satisfies the Ro-outside (Ri-inside) rolling ball property, we also say that balls of radius Ro (resp. Ri) roll
freely outside (resp. inside) S .

Such sets have nice properties due to the generalization of Blaschke’s rolling ball’s theorem ([32]’s theorem 1).
In particular, they satisfy S Ro (S ) = S , which ensures the convergence of the plug-in support estimator S Ro (Xn) since
dH(Xn, S )→ 0.
To derive explicit convergence rates we have moreover to assume that the density decreases regularly enough. Specif-
ically we will assume a power decay as in [22]:

Definition 2. A density f belongs to the classMRo,Ri, f0,α if its support S is compact and satisfies the Ro-outside rolling
ball property and the Ri-inside rolling ball property and that

f (x) > f0 d(x, ∂S )α, ∀x ∈ S .

Notice that the special case α = 0, known as "close to uniform" hypothesis, corresponds to the classical class of lower
bounded densities on S .

3.2. Main Theoretical results

Hereafter, we provide explicit convergence rates that generalize to a dependent framework and to α > 0 in
Definition 2 the previous works of [2, 27] on the R-convex hull, obtained in the independent case and when α = 0. As
a reference point, we first extend these previous results to the i.i.d. case but with α > 0:

Theorem 1. Let Ri,Ro and f0 be positive constants and α > 0. Let Xn = {X1, . . . , Xn} be an i.i.d. n−sample with
density f ∈ MRo,Ri, f0,α supported by S and R < Ro. Thus, there exists a constant A(d, α, f0,R,Ri) such that for n large
enough, one has with probability 1

d(∂CR(Xn), ∂S ) 6 εn, d(CR(Xn), S ) 6 εn,

∂CR(Xn) ≈ ∂S , CR(Xn) ≈ S ,

||∂CR(Xn)|d−1 − |∂S |d−1| . εn, ||CR(Xn)|d − |S |d | . εn,

with

εn = A(d, α, f0,R,Ri)
(

ln n
n

) 2
d+1+2α

.

Remark 3 (Case of negatively associated processes). In case of negatively associated process as in [31] we obtain
the same rates as in the i.i.d. case.

The two theorems below extend Theorem 1 to samples Xn of a strictly stationary strong mixing or θ−weakly depen-
dent sequence. Theorem 2 deals with exponential decay, and Theorem 3 focuses on the Riemannian decay of the
dependence coefficients.
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Theorem 2. Let Ri,Ro and f0 be positive constants and let α > 0. Let Xn = {X1, . . . , Xn} be a n−sample of a strictly
stationary process X = (Xt)t∈Z with marginal density f ∈ MRo,Ri, f0,α supported by S , with R < Ro. Assume that X
is strongly mixing or θ-weakly dependent with an exponential decay rate of its sequence of dependence coefficients.
Then, there exists a constant A(d, α, f0,R,Ri, b) such that for large enough n, one has with probability 1

d(∂CR(Xn), ∂S ) 6 εn, d(CR(Xn), S ) 6 εn,

∂CR(Xn) ≈ ∂S , CR(Xn) ≈ S ,

||∂CR(Xn)|d−1 − |∂S |d−1| . εn, ||CR(Xn)|d − |S |d | . εn,

with

εn = A(d, α, f0,R,Ri, b)
(

ln2 n
n

) 2
d+1+2α

.

Theorem 3. Let Ri,Ro and f0 be positive constants and α > 0. Let Xn = {X1, . . . , Xn} be a n−sample of a strictly
stationary process X = (Xt)t∈Z with marginal density f ∈ MRo,Ri, f0,α supported by S , with R < Ro. Assume that X is
strongly mixing or θ-weakly dependent with Riemannian decay rates. Then, there exists b0 such that for all b > b0
and large enough n one has, with probability 1

d(∂CR(Xn), ∂S ) 6 εn, d(CR(Xn), S ) 6 εn

∂CR(Xn) ≈ ∂S , CR(Xn) ≈ S

||∂CR(Xn)|d−1 − |∂S |d−1| . εn, ||CR(Xn)|d − |S |d | . εn,

with

εn =

(
lna n
n1−γ

) 2
d+1+2α

.

Explicit values of b0, a and γ are given by

1. b0 = 1, λ =
3d + 1 + 2α
d + 1 + 2α

, a =
b − 2 − d

b − λ
and γ =

λ + 1
λ + b

, in the strongly mixing case,

2. b0 = 2, λ =
3d + 1 + 2α
d + 1 + 2α

, a =
b/2 − 2 − d

b/2 − λ
and γ =

λ + 1
λ + b/2

, in the θ-weakly dependent case.

Theorem 2 highlights that in the exponential decay case, the estimation error achieves, up to an additional power
of ln n, the same rate than in the independent setting whatever the dependence structure is (strong mixing or θ− weak
dependence). In the exponential decay case, the dependence structure only impacts constants. Under Riemannian
decays, Theorem 3, the loss in convergence rate with respect to the independent case is of the order of an additional
power of n. Moreover, contrary to the exponential decay case, both the error and the loss depend on the dependence
structure.
Moreover, as in [28] our results highlight the different roles of the outside and inside radius Ro and Ri: in both cases,
the tuning parameter R must be less than Ro to achieve the convergence and the convergence rate depends on Ri.

4. Level set estimation

We now focus on level set estimation. For a given t ∈ R, the level set Lt and its associated level line `t are defined
as

Lt = {z ∈ Rd, f (z) > t}, `t = {z, f (z) = t}.

Let f̂n be a suitable density estimator of f . Thus, [28] introduced the following empirical level set estimator

L̂t,R = CR(Xn ∩ {z, f̂ (z) > t}),

and studied its asymptotic properties in the i.i.d. case. We aim at extending convergence rates to our dependence
setup.
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4.1. Distributional background
When dealing with level set estimation, the distributional hypotheses are somehow different. Namely, the support of
the distribution does no longer need to be compact since Lt = {z, f (z) > t} is compact for all t > 0 (t = 0 is the support
estimation framework). Moreover, the rate of decay of f near the boundary is no longer important. As a counterpart,
we require that f ∈ Ck for some k > 2 which has two important consequences. Firstly, it allows the density estimator
to converge with suitable rates. Secondly, it can be shown that for suitable values of t (see Definition 3 below), sets Lt

satisfy the inside and outside rolling ball property.

Definition 3 (Regular levels). The level t > 0 is a regular level if there exist ∆t > 0 and mt > 0 such that

Lt−∆t ⊂ S̊ , and min
z∈Lt−∆t \L̊t+∆t

‖∇ f (z)‖ = mt > 0.

If t is a regular level and f is Ck with k > 2, then by Theorem 2 in [32], the level set Lt naturally inherits of the inside
and outside rolling ball property.

Proposition 6 (Corollary of Theorem 2 in [32]). If f ∈ C2 and supz ‖H f ‖ = f (2)
max < +∞ and if t is a regular level,

then there exists δt such that, for all t′ ∈ (t − δt, t + δt), Lt′ has the inside and outside rolling ball property for balls of
radius mt/ f (2)

max.

4.2. Main Theoretical results
Hereafter, we establish the asymptotic behavior of L̂t,R under weak dependence assumptions and deduce asymp-

totics for its boundary and volume. By incorporating tools provided in [2], we also obtain topological guarantees and
perimeter estimation rates. We show that the convergence rate can be decomposed as εn + ε′n, where ε′n is a density
estimation error and εn is a set estimation error. The density estimation error depends on the dependence structure,
the regularity of the density and the dimension d (see Section 2.2.3). We focus in this first section on the geometric
part εn. Some explicit rates taking into account all the parameters of the model are given in following section.

Theorem 4. Let Xn = {X1, . . . , Xn} be a n-sample of a strictly stationary sequence of a strong mixing or θ-weak
dependent sequence X with exponential decay rates and with marginal class C2 density f on its support S . Assume
that supS ‖∇ f ‖ = f (1)

max < +∞, supS ‖H f ‖op = f (2)
max < +∞. Let t > 0 be a regular level. Let R be a constant such that

0 < R < mt/ f (2)
max and define X+

n (t) = Xn ∩ { f̂ (z) > t} and L̂t,R = Cr(X+
n (t)). Then, with probability 1 and for n large

enough, one has

d(∂L̂t,R, ∂Lt) . εn + ε′n, d(L̂t,R, Lt) . εn + ε′n,

∂L̂t,R ≈ ∂Lt, L̂t,R ≈ Lt,

||L̂t,R|d − |Lt |d | . εn + ε′n, ||∂L̂t,R|d−1 − |∂Lt |d−1| . εn + ε′n,

with εn . (ln2 n/n)
2

d+1 .

We now focus on Riemmanian decays. As for the support estimation problem, Riemmanian decays degrade the
convergence and the convergence rates precisely depend on the dependence structure.

Theorem 5. Let Xn = {X1, . . . , Xn} be a n-sample of a strictly stationary sequence of a strong mixing or θ-weak
dependent sequence with Riemannian decay rates and with marginal class C2 density f on its support S . Assume
that supS ‖∇ f ‖ = f (1)

max < +∞, supS ‖H f ‖op = f (2)
max < +∞. Let t > 0 be a regular level. Let R be a constant such that

0 < R < mt/ f (2)
max and define X+

n (t) = Xn ∩ { f̂ (z) > t} and L̂t,R = Cr(X+
n (t)). When b > b0, with probability 1 and for n

large enough, one has

d(∂L̂t,R, ∂Lt) . εn + ε′n, d(L̂t,R, Lt) . εn + ε′n,

∂L̂t,R ≈ ∂Lt, L̂t,R ≈ Lt,

||L̂t,R|d − |Lt |d | . εn + ε′n, ||∂L̂t,R|d−1 − |∂Lt |d−1| . εn + ε′n,

with εn = (lna n/n1−γ)2/(d+1), explicit values of b0, γ1 and γ2 are respectively:
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1. Strong mixing: b0 = 1, a =
b − 2 − d

b − λ
, and γ =

λ + 1
λ + b

, with λ =
3d + 1
d + 1

.

2. θ-weak dependence: b0 = 2, and a = 2 ·
2 − d + b/2

b/2 − λ
, and γ =

λ + 1
λ + b/2

, with λ =
5d − 1

2(d + 1)
.

4.3. Examples of explicit rates under exponential decays

In case of exponential decays, for small dimensions, d 6 3, the convergence rate is the density estimation rate
(whatever the regularity of the density is).
For larger dimensions the limiting rate is the set estimation rate when density is regular enough. More precisely,
depending on the dependency model, the dimension and the regularity of the density. The rates are:

1. Under strong mixing
(a) if d 6 3, then the convergence rate is limited by the density estimation step.

Namely for some a > 0:
i. if k 6 d + 3, then for all k′ ∈ (0, k), we have εn + ε′n = O((lna n/n)

k′
3d+6 ).

ii. if k > d + 3, then εn + ε′n = O((lna n/n)
k

d+2k );
(b) if d > 4,

i. when k 6 min
(
d + 3, 6 · d+2

d+1

)
, then for all k′ ∈ (0, k), we have εn + ε′n = O((lna n/n)

k′
3d+6 ).

ii. when k > min
(
d + 3, 6 · d+2

d+1

)
, then we have εn + ε′n = O((lna n/n)2/(d+1)).

2. Under θ-weak dependence then for some a > 0:
(a) if d 6 3, the convergence rate is limited by the density estimation step. Namely

i. when k 6 d + 3, then for all k′ ∈ (0, k), we have εn + ε′n = O((lna n/n)
k′

3d+6 ).
ii. when k > d + 3, then εn + ε′n = O((lna n/n)

k
d+2k );

(b) if d = 4,
i. when k < 7, then for all k′ ∈ (0, k), we have εn + ε′n = O((lna n/n)

k′
18 ).

ii. when k = 7, we have εn + ε′n = O(lna n/n)
7

19 ).
iii. when k > 8, then we have εn + ε′n = O((lna n/n)

2
5 ).

(c) if d > 4,
i. when k 6 min

(
d + 2, 6 · d+2

d+1

)
, then for all k′ ∈ (0, k), we have εn + ε′n = O((lna n/n)

k′
3d+6 ) .

ii. when k > min
(
d + 2, 6 · d+2

d+1

)
, then we have εn + ε′n = O((lna n/n)

2
d+1 ).

5. Perspectives

If the data are i.i.d, there exists data-driven way to tune the geometric parameter R. When dealing with support
estimation, in [29] a method based on the maximal spacings is proposed. This approach is very difficult to adapt to
the dependent case. Indeed we can not expect the maximal spacing statistics to have the same limit law if the data are
dependent. An other approach based on reach estimation [9] should be more promising. When dealing with level set
estimation, a generalization of the proposition in [28] may work since it only relies on a tricky splitting of the sample
which could be done in even with dependent data.

6. Proofs

6.1. Proof of Propositions 1, 2, and 3.

Set first k = [n/q] and ti = iq for 1 ≤ i ≤ k. We have Zi = 1{Xti<E} and we define pk = E(Z1 · · · Zk), then

pk = E(Z1 × · · · × Zk−1)E(Zk) + cov(Z1 × · · · × Zk−1,Zk).

The propositions will result from proving that cov(Z1 × · · · × Zk−1,Zk) can be bounded above by some EE(q) then
applying a recursion on pk ≤ (1 − p)pk−1 + EE(q).
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Proof of Proposition 1. From heredity of strong mixing the sequence (Zt)t is still strong mixing with mixing coeffi-
cients less than α(m) and the fact that Z1 × · · · × Zk−1 writes as the indicator function of

⋂
1≤i≤n/q(Xti < E) implies

|cov(Z1 × · · · × Zk−1,Zk)| ≤ α(q), we thus have pk ≤ (1 − p)pk−1 + α(q) hence a recursion yields

pk ≤ (1 − p)k +
α(q)

p
.

Indeed if the above relationship holds with k − 1 then

pk ≤ (1 − p)
(
pk−1 +

α(q)
p

)
+ α(q) ≤ (1 − p)k +

α(q)
p
.

Proof of Proposition 2. Under θ−weak dependence we have by definition |cov(Z1 × · · · × Zk−1, h(Xk))| ≤ θ(q)Lip (h)
for any Lipschitz function h and we specialize the function for the two cases considered in the Proposition.

1. Case E = B(x, r).
Now as in the Lemma 4.1 page 68 of [12] we consider H−x,r,ε and H+

x,r,ε two Lipschitz approximations Rd → R
of 1{u∈E}, with

H−x,r,ε(u) ≤ 1{u<E} ≤ H+
x,r,ε(u),

then

cov(Z1 × · · · × Zk−1,Zk) ≤ E(Z1 × · · · × Zk−1H+
x,r,ε(Xk)) − E(Z1 × · · · × Zk−1)E(H−x,r,ε(Xk))

≤ cov(Z1 × · · · × Zk−1,H+
x,r,ε(Xk)) + E(H+

x,r,ε(Xk) − H−x,r,ε(Xk))

Now we build such Lipschitz functions with Lip (H±x,r,ε) . 1/ε. More precisely, we introduce intermediary
functions:

m−r,ε(s) =


1, s < (r − ε)
r − s
ε

, s ∈ [r − ε, r]

0, s > r

and m+
r,ε(s) =


1, s < r

1 −
s − r
ε

, s ∈ [r, r + ε]

0, s > r + ε

Then the functions m±r,ε are piecewise linear and satisfy Lip m±r,ε = 1/ε. Now we define H+
x,r,ε(u) = m+

r,ε(‖u − x‖)
and H−x,r,ε(u) = m−r,ε(‖u − x‖), thus we get:

• H+
x,r,ε(u) = 1 if u < B(x, r) and H+

x,r,ε(u) = 0 if u ∈ B(x, (r + ε)).

• H−x,r,ε(u) = 1 if u < B(x, (r − ε)+) and H−x,r,ε(u) = 0 if u ∈ B(x, r).

Those functions inherit Lipschitz property Lip (H±x,r,ε) = 1/ε. Moreover, because H+
x,r,ε−H−x,r,ε is bounded above

by the indicator function of an annulus with radius r and thickness ε.

E
(
H+

x,r,ε(Xk) − H−x,r,ε(Xk)
)
≤ c · ωd

(
(r + ε)d − ((r − ε)+)d

)
≤ c · ωdrd

(
(1 + ε/r)d − ((1 − ε/r)+)d

)
≤ c · ωd2d+1rd−1ε

for all ε 6 r, since a binomial expansion entails (1 + x)d − (1 − x)d 6 2x
∑d

k=1

(
d
k

)
6 2d+1x if x ∈ [0, 1]. Thus,

setting A′ = cωd2d+1, we derive for all ε 6 r : cov(Z1 · · · Zk−1,Zk) ≤ 1
ε
θ(q) + A′εrd−1 For the reverse inequality,

we obtain analogously for all ε ∈ [0, r] cov(Z1 · · · Zk−1,Zk) ≥ − 1
ε
θ(q) − A′εrd−1 Indeed

cov(Z1 × · · · × Zk−1,Zk) ≥ E(Z1 × · · · × Zk−1H−x,r,ε(Xk)) − E(Z1 · · · Zk−1)EH+
x,r,ε(Xk)

≥ cov(Z1 × · · · × Zk−1,H−x,r,ε(Xk)) − E(H+
x,r,ε(Xk) − H−x,r,ε(Xk))

and thus:
EE(q) 6 min

ε∈[0,r]

θ(q)
ε

+ A′εrd−1 .
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2. Case E = B(x, rx) ∩ B(y, ry) with rx + ry − ‖x − y‖ = `.

Consider the two 2/ε-Lipschitz functions: H
+
(u) = H+

x,rx,ε
(u) ∧ H+

y,ry,ε
(u) and H

−
(u) = H−x,rx,ε

(u) ∧ H−y,ry,ε
(u). By

the concentration inequality (1), we have for some c > 0 :

E
(
H

+
(Xk) − H

−
(Xk)

)
≤ c

∣∣∣B(x, rx + ε) ∩ B(y, ry + ε) \ (B(x, rx − ε) ∩ B(y, ry − ε)
∣∣∣
d .

Thus according to Proposition 10 in Appendix A, if ` 6 rx ∧ ry and ε 6 rx ∧ ry : E(H
+
(Xk) − H

−
(Xk)) ≤

cV(rx, ry, `, ε). As in case 1, this allows to conclude that cov(Z1 × · · · × Zk−1,Zk) ≤ 2
ε
θ(q) + cV(rx, ry, `, ε). As

in the end of the proof for case 1 we infer |cov(Z1 × · · · × Zk−1,Zk)| ≤ 2
ε
θ(q) + cV(rx, ry, `, ε), which concludes

the proof of point 2. in Proposition 2.

The proof of Proposition 3 is straightforward and left to the reader.

6.2. Proofs of Propositions 4 and 5.

In the following we set ε′n = An + Bn with An = supx∈Rd | f̂n(x) − E( f̂n(x))| and Bn = supx∈Rd |E( f̂n(x)) − f (x)|.
Propositions 4 and 5 are direct corollaries of Propositions 7 and 8 below. Proposition 7 gives a control of Bn, while
item 1 and item 2 of Proposition 8 give a control of An in the geometric and Riemannian decay cases respectively.

Proposition 7. Let Xn be a sample from a strictly stationary sequence X with marginal density f and f̂n be defined
by (5), with hn → 0 and nhd

n → ∞ as n goes to ∞. Assume that (K1), (M1) and (K2) hold for some k > 2. Thus,
Bn = O(hk

n)

Proposition 8. Let Xn be a sample from a strictly stationary sequence X and f̂n be defined by (5).

1. Assume that (K1), (M2), (M3), (M4) and (M5) hold and that one of the conditions below is fulfilled:

(A1) X is strong mixing with α(q) = O(b−q) for some b > 1 and hn = O
( ln n

n

)β for some β < 1/(3d + 6).

or

(T1) X is θ-weakly dependent with θ(q) = O(b−q) for some b > 1 and hn = O
( ln n

n

)β for some β < 1/(3d +4).

Then

An = Oa.s.


√

ln n
nhd

n

 .
2. Assume that (K1), (M2), (M3), (M4), (M5) and (K2) hold for some k > 2 and that one of the conditions below

is fulfilled:

(A2) X is strongly mixing with α(m) = O(m−b) and hn = O
( ln n

n1−γ

)β for some 0 < β < 1/d, some γ > γ0 with

γ0 =
d + 2 − βd(d − 2)

q − βd(d − 2)
and some q > d + 2 and b > max ((2d + 3)/d, q − 1) .

(T2) X is θ-weakly dependent with θ(m) = O(m−b) and hn = O
( ln n

n1−γ

)β for some 0 < β < 1/d, some

γ > γ0 =
d + 2 − βd(d − 2)

q − βd(d − 2)
and some even integer q > d + 2 and b > max(2(d + 1)/d, 3(q − 1)).

Then

An = Oa.s.


√

ln n
n1−γhd

n

 .
Remark 4. In the literature, classical results assume in place of (M1) and (K2) the following assumptions to control
the bias term (see e.g. Proposition 3.3.1. in [16] extended to the multidimensional case):
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• f belongs to the set of Hölder ρ-regular functions

Cρ = { f : f is bρc-differentiable,∃ L > 0/,∀(x, y) ∈ S , | f bρc(y) − f (bρc)(x)| ≤ L|y − x|c},

for some 0 < c 6 1 where ρ = bρc + c > 2 and S is any compact set of Rd.

• K is a kernel of order ρ.

In this case Bn = O(hρn). These assumptions are somehow more restrictive than (M1) and (K2). Indeed, if f ∈ Ck and
f (k) is c−Hölder then f ∈ Ck+c but the converse does not seem to hold even if c = 1 and for an integer k, Ck , Ck.

Proof of Proposition 4. Let us prove (A1) (the case (T1) can be handled in the same way). By Proposition 7 and item
1 of Proposition 8,

ε′n = Oa.s.

( ln n
n

)βk

+

(
ln n
n

) 1−βd
2

 ,
with β < 1/(3d + 6).

• If k > d + 3, thus 1/(2k + d) < 1/(3d + 6) and an optimal choice for β is β = 1/(2k + d) so that ε′n =

Oa.s.

( ln n
n

) k
2k+d

 .
• If k 6 d + 3, thus 1/(2k + d) ≥ 1/(3d + 6) and ε′n = Oa.s.

( ln n
n

)βk and the result is obtained by setting

β = (1 − γ)/(3d + 6) for some γ ∈ (0, 1).

Proof of Proposition 5. To prove item (A2) of Proposition 5 for any b > max((2d + 3)/d, d + 1), set q = b + 1 − t for
a t ∈ (0, b − d − 1) and then apply item (A2) of Proposition 8 and Proposition 7 to obtain for all 0 < β < 1/d :

ε′n = Oa.s.

( ln n
n1−γ

)βk

+

(
ln n
n1−γ

) 1−βd
2

 ,
for all γ > d+2−βd(d−2)

b+1−t−βd(d−2) . then choose β = 1
d+2k and let t → 0 to end the proof.

To prove item (T2) of Proposition 5 first notice that, to find an even number q larger than d+2 and smaller than b/3+1
we need the condition b > 3(d + 3). Assume now that b > 3(d + 3) and introduce q∗ = 2b b+3

6 c the largest even number
smaller than b/3 + 1 then apply item (T2) of Proposition 8 and Proposition 7 to obtain, for all 0 < β < 1/d

ε′n = Oa.s.

( ln n
n1−γ

)βk

+

(
ln n
n1−γ

) 1−βd
2

 ,
for all γ >

d + 2 − βd(d − 2)
q∗ − βd(d − 2)

. then choose β = 1
d+2k to achieve the proof.

Proof of Proposition 7.

E( f̂n(x)) =

∫
Rd

K(u) f (x − hu)du.

Since f ∈ Ck, k > 2 and ‖ f (k)‖∞ < M by (M1), we can use an order k Taylor-Lagrange expansion of f around x and
using the fact that K is an order (k − 1) kernel by (K2),

|E( f̂n(x)) − f (x))| ≤ M
hk

n

k!

∫
Rd
‖u‖k |K(u)|du.
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Therefore,
sup
x∈Rd
|E( f̂n(x)) − f (x)| = O

(
hk

n

)
.

Notice that the result still hold when k = 1 as soon as∫
Rd
‖u‖|K(u)|du , 0.

Proof of Proposition 8. We first start by providing in each case (item 1 and 2 of the proposition), a bound for An on a
compact set of Rd of the form

sup
‖x‖6nν

| f̂n(x) − E( f̂n(x))| = Oa.s.

(
λ(n)
√

nhd

)
, (6)

with ν > 2/c (c defined in (M5)), for some appropriate λ(n) → ∞ such that λ(n) = o(
√

nhd). Then, to state the
convergence on the whole set Rd, we have to show that

Ln = sup
‖x‖>nν

√
nhd

λ(n)
| f̂n(x) − E( f̂n(x))| → 0 (7)

Since K has a compact support, say included in the ball Bd(0,C) of Rd then if for each i ≤ n, ‖Xi − x‖ > Chn we have
Ln = sup‖x‖>nν E( f̂n(x)). Now since hn ≤ 1,

|E( f̂n(x))| = |
∫
Rd

K(u) f (x + uhn) du| ≤ sup
‖x−y‖≤1

f (y),

thus beeping in mind that nν − 1 ≥ nν/2 for n large enough, and now:

sup
‖x‖>nν

|E( f̂n(x))| ≤ sup
‖y‖≥nν−1

f (y)

which tends to zero by (M4). To prove that Ln converges a.s. to 0, we have to assume (M5).
We thus have

∞∑
n=1

P
(

max
16t6n

‖Xt‖ > nν −Chn

)
6

∞∑
n=1

1 ∧
E‖X1‖

c + · · · + E‖Xn‖
c

(nν −Chn)c < ∞,

for ν such that ν > 2/c so that the series converges by (M5). This with the Borel–Cantelli lemma entails that
sup‖x‖>nν | f̂n(x)| tends to 0 as n goes to infinity a.s. as fast as needed. Indeed ‖Xt − x‖ > Chn a.s. uniformly over
1 ≤ i ≤ n and ‖x‖ > nν and thus the kernel vanishes.

Let us now prove (6). Set for all x ∈ Rd,

Ĝn(x) =

n∑
i=1

Yi(x) =
1

nhd

n∑
i=1

Ui(x), with Ui(x) = K
(

x − Xi

hn

)
− EK

(
x − Xi

hn

)
. (8)

To prove (6), we use the chaining argument of [24]. Let I = [−M,M]d be a cube of Rd. Since I is compact, it can
be covered by δd cubes I1, . . . , Iδd with centers x1, . . . , xδd and sides of length 2M/δ, where δ is such that δh/M → ∞.
Here, notice that h, δ and M are allowed to vary with n but it is omitted in the notation to make the reading easier.
Setting Ĝn(x) = f̂n(x) − E( f̂n(x)) we have for all j

|Ĝn(x)| ≤ | f̂n(x) − f̂n(x j)| + | f̂n(x j) − E f̂n(x j)| + |E f̂n(x j) − E f̂n(x)|.

Under (K1), [24] proves that for some positive constant L and for all x ∈ I j,∣∣∣∣∣∣K ( x − Xi

h

)
− K

(
x j − Xi

h

)∣∣∣∣∣∣ 6 2MLip(K)
δh

1‖x j−Xi‖6Lh.
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Using this fact it is easy to deduce that there exists another kernel density estimator f̃ for f , obtained by replacing
K in (5) by the piecewise linear and compactly supported kernel K̃ defined by K̃(x) = 1 if ‖x‖ 6 L and K̃(x) = 0
otherwise, such that for some n > n0 (see [24] p 78),

sup
x∈I j

|Ĝn(x)| ≤ |Ĝn(x j)| +
C1M

hδ

(
|G̃n(x j)| + |E f̃n(x j)|

)
with C1 = 2Lip(K) and G̃n(x) = f̃n(x) − E( f̃n(x)). Therefore,

sup
‖x‖6Md

|Ĝn(x)| ≤ max
16 j6δd

|Ĝn(x j)| +
C1M

hδ

(
max

16 j6δd
|G̃n(x j)| + max

16 j6δd
|E f̃n(x j)|

)
,

so that we can write as soon as sup‖x‖6Md |E f̃n(x)| 6 thδ/3MC1 (which is true when thδ/M > C2 for some C2 > 0),

P
 sup
‖x‖6Md

|Ĝn(x)| > t

 ≤ P
(

max
16 j6δd

|Ĝn(x j)| >
t
3

)
+ P

(
max

16 j6δd
|G̃n(x j)| >

thδ
3MC1

)
≤ δd sup

‖x‖6Md

{
P

(
|Ĝn(x)| >

t
3

)
+ P

(
|G̃n(x)| >

thδ
3MC1

)}
(9)

We then set t = C
λ(n)
√

nhd
for some appropriate λ(n) → ∞ such that λ(n) = o(

√
nhd) and M = nν/d and have to control

each term at the right hand side of (9). If the right hand side is the general term of a convergent series then using
Borel-Cantelli lemma we obtain (6).

Therefore, the main goal of the proof of Proposition 8 consists now of finding in each case (A1), (T1), (A2), and (T2)
sequences λ(n) and δ(n) such that the right hand side of (9) is the general term of a convergent series. We shall need
the following

Lemma 6. Let X be strictly stationary sequence with density f and kernel estimator f̂n defined by (5). Assume that
(M3) holds and that (K1) holds with hn → 0 and nhd

n → ∞, and that we have one of the following conditions

(A1) X is strongly mixing with α(m) = O(b−m) for some b > 1.

(T1) X is θ−weakly dependent with θ(m) = O(b−m) for some b > 1.

(A2) X is strongly mixing with α(m) = O(m−b) for some b > 2 + 3/d.

(T2) X is θ−weakly dependent with θ(m) = O(m−b) for some b > 2 + 2/d.

Thus one has

σ2
n(x) = var f̂n(x) =

1
nhd f (x)

∫
K2(u)du + o

(
1

nhd

)
.

Proof of item 1 in Proposition 8. In cases of a geometric decay rate of the dependence coefficients, we may use a
Bernstein’s type inequality for Ĝn(x) and G̃n(x) in order to bound the right hand side of (9). Namely we will use
Theorem 1 and Proposition 8 of [19]. Let us recall them below in our special setting

Lemma 7 (Proposition 8 in [19]). Let Yn be a n−sample of a R-valued strictly stationary sequence Y such that
E(Yi) = 0 and ‖Y‖∞ 6 H in probability. Assume that there exists some 0 < c < 1 and some L > 0 such that for all u-
tuples (s1, ..., su) and all v-tuples (t1, ..., tv) with 1 6 s1 6 . . . 6 su 6 t1 6 . . . 6 tv 6 n,∣∣∣cov

(
Ys1 . . . Ysu ,Yt1 . . . Ytv

)∣∣∣ 6 Hu+v−2L2vc(t1−su). (10)

Then, for all t > 0,

P
 n∑

i=1

Yi > t

 6 exp
−1

2
t2

σ2
n + G1/3

n t5/3

 ,
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with

σ2
n = var

 n∑
i=1

Yi

 , Gn ∼ (L ∨ H)
(

nL2

σ2
n
∨ 1

)
.

Now, let Yi ≡ Yi(x) be defined by (8). Notice that Yi(x) = Fn(Xi), where Fn is a bounded Lipschitz function with
‖Yi(x)‖∞ 6 H = ‖Fn‖∞ 6 2‖K‖∞/nhd and LipFn 6 LipK/(nhd+1). Assume that

σ2
n = Oa.s.

(
1

nhd

)
. (11)

• Strong mixing case. If X is strong mixing with α(m) = O(b−m), b > 1, thus Y is strong mixing with αY (m) 6
α(m) by measurability of Fn. Moreover, by [17]’s Lemma 6 and [19]’s Remark 7, (10) is satisfied with L2 =

(LipFn)2 and c = 1/b. Therefore Lemma 7 applies with H ∼ 1/nhd, L2 ∼ 1/(n2h2d+2) and Gn ∼ 1/(nh2d+3).
Setting t = C

√
ln n/nhd for some convenient constant C > 0, we get

P
|Ĝn| > C

√
ln n
nhd

 6 n−C2/2

as soon as un = nhdG1/3
n t5/3 → 0, which is true as soon as β < 1/(3d + 6) with hn = O((ln n/n)β).

• θ−weak dependent case. If X is θ−weakly dependent with θ(m) = O(b−m), b > 1, thus Y is θ−weakly dependent
since Fn is a Lipschitz function, by heredity of this property through Lipschitz functions, with θY (m) 6 θ(m).
Moreover, using Remark 9 and Proposition 8 of [19], (10) is satisfied with L2 = HLipF and c = 1/b. Therefore
Lemma 7 applies with H ∼ 1/nhd, L2 ∼ 1/(n2h2d+1) and Gn ∼ 1/(nh2d+2). Setting t = C

√
ln n/nhd for some

convenient constant C > 0, we get

P
|Ĝn| > C

√
ln n
nhd

 6 n−C2/18

as soon as un = nhdG1/3
n t5/3 → 0, which is true as soon as β < 1/(3d + 4) with hn = O((ln n/n)β).

Therefore, we obtain in both cases a bound for the first term at the right hand side of (9). The second term can be
handled in the same way, with identical values of L2, H and Gn setting δ = MC1/hε, ε > 1.
Finally, one obtains (9) by setting M = nν/d,

P
 sup
‖x‖6nν

|Ĝn(x)| > t
 6 δdn−D = Anν+εβd−D(ln n)−βεd,

for some constant A > 0 and some conveniently chosen C in the expression of t such that D > 1 + ν + βεd so that

sup
‖x‖6nν

| f̂n(x) − E( f̂n(x))| = Oa.s.


√

ln n
nhd

n

 ,
using Borel–Cantelli. It remains to show that (11) holds, which is true by Lemma 6 under (K1), (M2) and (M3).

Proof of Proposition 8, item 2. Our proof relies on the following lemma.

Lemma 8. Let Xn be a n-sample of a strictly stationary sequence X and f̂n be defined by (5).

(i) Assume (K1) with hn → 0 and nhd
n → ∞. Assume moreover that there exists some c > 0 and some q > 2 such that

for n > n0

sup
x∈Rd
‖ f̂n(x) − E( f̂n(x))‖q 6

c√
nhd

n

. (12)

15



Then, for every sequence (λn) such that λn → ∞ and λn = O
( √

nhd
n

)
as n tends to∞ and every ν > 0 satisfying

∞∑
n=1


√

nhd
n

hn

d
nν

λ
q
n
< ∞, (13)

sup
‖x‖6nν

| f̂n(x) − E( f̂n(x))| = Oa.s.

 λn√
nhd

n

 .
(ii) Assume that (12) holds and hn = O

( ln n
n1−γ

)β for some 0 < β < 1/d and 0 < γ < 1. Then, under (K1) one has

sup
‖x‖6nν

| f̂n(x) − E( f̂n(x))| = Oa.s.


√

ln n
n1−γhd

n


as soon as γ, β and q are such that

γq + (1 − γ)βd(d − 2) > d + 2. (14)

In the following lemma, we give the conditions under which (12) holds in Riemmaniann decay cases (A2) and (T2).
The point (ii) of this lemma together with 8 yields item 2 of Proposition 8.

Lemma 9. Let Xn be a n-sample of a strictly stationary sequence X and f̂n be defined by (5).

(A2) Assume that X is α-mixing with α(m) = o(m−b) for some b > 0. Assume moreover that (M2), (M3), (K1) and (K2)
hold for some k > 2, with hn → 0 and nhd

n → ∞. Thus (12) obtains for every q > 2 and b > max(2 + 3/d, q−1).

(T2) Assume that X is θ-weakly dependent with θ(m) = o(m−b) for some b > 0. Assume moreover that (M2), (M3) and
(K1) hold, with hn → 0 and nhd

n → ∞. Thus (12) obtains for every even q > 2 and b > max(2 + 2/d, 3(q − 1)).

Proof of Lemma 6. Let f̆n be the kernel estimator analogue to f̂n but built on independent copies of X0. A well known
result (see for instance [25]) is

var f̆n(x) =
1

nhd f (x)
∫

K2(u)du + o
(

1
nhd

)
.

We have
var f̂n(x) = var f̆n(x) +

2
n2h2d

∑
16i6 j6n

cov(Ui(x),U j(x))|.

So, by stationarity of the process (Ui(x)),

∆n(x) = |var f̂n(x) − var f̆n(x)| 6
2

nh2d

n−1∑
m=1

|cov(U0(x),Um(x))|.

• On the one hand,

|cov(U0(x),Um(x))| = h2d
∫∫

(K (s) − E(K(X0))) (K (t) − E(K(X0))) f0,m(x − hs, x − ht)dsdt 6 Ch2d,

by (K1) and (M3).
• On the other hand one has the property (10) with u = v = 1, su − t1 = m, M and L2 depending on the dependence
structure of X. Namely,
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• If X is θ-weakly dependent then by (10)

|cov(U0(x),Um(x))| 6 2‖K‖∞
LipK

h
· θ(m).

Therefore,
1

nh2d |cov(U0(x),Um(x))| 6
D

nhd

(
θ(m)
hd+1 ∧ hd

)
6

D
nhd hd−α(2d+1)θ(m)α,

for all 0 6 α 6 1 by relation (12.18) of [16] so that setting α = d/(2d + 1) ∆n tends to zero as soon as∑
θ(m)

d
2d+1 < ∞.

In case θ(m) ∼ m−b, this holds if b > 2 + 2
d . In case of geometric decay rates θ(m) ∼ b−m, b > 1, this is always

true.

• If X is strongly mixing, we have by (10)

|cov(U0(x),Um(x))| 6
(LipK)2

h2 α(m),

so
1

nh2d |cov(U0(x),Um(x))| 6
D

nhd

(
α(m)
hd+2 ∧ hd

)
6

D
nhd hd−α(2d+2)α(m)α

for all 0 6 α 6 1 so that setting α = d/(2d + 2) ∆n tends to zero as soon as∑
m

α(m)
d

2d+2 < ∞.

In case α(m) ∼ m−b this holds for all b > 2 + 3/d. In case of a geometric decay rate θ(m) ∼ b−m, b > 1 this is
always true.

Proof of Lemma 8.

• Proof of (i). Let λ(n) → ∞ such that λ(n) = o(
√

nhd
n). We deduce from (12) by Markov inequality that there

exists some C3 > 0 such that

P
 sup
‖x‖6Md

n

|Ĝn(x)| >
λ(n)√

nhd
n

 6 C3δ
d

λ(n)q

as soon as there is some C4 > 0 such that δhn > C4Mn

√
nhd

n. For that task, set t =
λ(n)√

nhd
n

in (9). One has

P
|Ĝn(x)| >

λ(n)

3
√

nhd
n

 6 3q

λ(n)q

(
sup
x∈Rd

√
nhd

n‖Ĝn(x)‖q

)q

6
C5

λ(n)q

with C5 = (3c)q. Moreover, ‖G̃n(x)‖q is uniformly bounded so as soon as δhn > C4M
√

nhd
n,

P
|G̃n(x)| >

λ(n)hnδ

3CMn

√
nhd

n

 6 C5

λ(n)q ,

with C5 = (3C1C4)−1. Set

δ =
M

√
nhd

n

hn
.
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We have

sup
‖x‖6Md

n

| f̂n(x) − E( f̂n(x))| = Oa.s.

(
λ(n)
√

nhd

)
. (15)

This holds from Borel-Cantelli lemma as soon as

∑
n

 Mn

√
nhd

n

hn

d
1

λ(n)q < ∞. (16)

The result of Proposition 8 obtains setting Mn = nν/d.

• Proof of (ii). With the conditions on hn we have hn → 0 and nhd
n → ∞. Set λ(n) =

√
nγ ln n. Since 0 < γ < 1

and 0 < β < 1/d, we have λ(n) → ∞ and λ(n)/
√

nhd → 0. To achieve the proof we need to ensure that we can
find ν > 0 such that (16) converges. Set un the general term of (16). With the assumptions on hn and λ(n),

un = O
(

1
nc log na

)
,

with 2c = γq − 2ν − d + βd(1 − γ)(d − 2) and a = (q − βd(d − 2))/2. The series (un)n is of the Bertrand type and
converges if and only if c > 1 or c = 1 and a > 0. One thus need that there exists some ν > 0 such that 2ν 6 ε
with 0 < ε = γq − 2 − d + βd(1 − γ)(d − 2) which holds as soon as γq − 2 − d + βd(1 − γ)(d − 2) > 0.

Proof of Lemma 9. • Proof of (A2). In the strong mixing case we apply [26]’s theorem 6.3 to the sequence
U(x) = (Ui(x))16i6n, for a given x ∈ Rd. Notice that strong mixing still holds with αU(x)(m) 6 α(m) from the
heredity properties of strong-mixing. Set

S n(x) =

n∑
i=1

Ui(x) = nhdĜn(x).

For all q > 2, Ui(x) admits finite moments with order q since ‖Ui(x)‖ 6 2‖K‖∞. Thus, applying Theorem 6.3
yields for all n > n0,

‖S n(x)‖qq 6 asn(x)q + nc
∫ 1

0

(
α−1(u)

)q−1
Qq

x(u)du,

where a and c are positive constants that only depend on q, α−1(u) =
∑
n>1

1u<α(n), Qx is the generalized inverse

of the tail function t 7→ P(|U0(x)| > t) and

s2
n(x) =

∑
i

∑
j

|cov(Ui(x),U j(x))|.

Using [26]’s inequality C.3 on page 157 for some r > q there exists c′ > 0 that only depends on q, r and ‖K‖∞
such that

‖S n(x)‖qq =
(
nhd

n

)q
‖Ĝn(x)‖qq 6 asn(x)q + c′n‖U0(x)‖qr

∑
i>0

(i + 1)
qr−2r+q

r−q α(i)

1−q/r

,

6 asn(x)q + c′nhdq/r
n

∑
i>0

(i + 1)
qr−2r+q

r−q α(i)

1−q/r

.

Using Lemma 6 and setting hn = O((ln n/n1−γ)β), we obtain (12) under (K2) for some k > 1 as soon as (M2)
and the following conditions are fulfilled for some r > q:
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(1)
hdq(1/r−1/2)

n

nq/2−1 → 0, as n→ ∞.

(2)
∑
i>0

(i + 1)
qr−2r+q

r−q α(i) < ∞.

(3) b > 2 + 3/d.

If q(1 − (1 − γ)βd) > 2, Condition (1) is fulfilled for all r > q. On the other hand, condition (2) is fulfilled as
soon as

b >
r(q − 1)

r − q
= u(r).

Since u is decreasing with limr→∞ u(r) = q − 1, we can take b > max(q − 1, 2 + 3/d) to meet the conditions (1)
to (3).

If q(1 − (1 − γ)βd) < 2, obvious calculations entails that we have to choose r such that

q < r 6 r1 =
2(1 − γ)βdq

2 − q(1 − (1 − γ)βd)
.

In this case, one can choose

b > u(r1) =
2(1 − γ)βd(q − 1)

(q − 2)(1 − (1 − γ)βd)
),

to meet (2). Since q(1 − βd) < 2, b > u(r1) > q − 1 so that b > max(q − 1, 2 + 3/d) meet the conditions (1) to
(3).

Finally, (12) obtains as soon as b > max(q − 1, 2 + 3/d).

• Proof of (T2).

In the θ-weakly dependent case, it straightforwardly follows from [18]’s theorem 1: under the conditions (M2),
(M3), (K1) with hn → 0 and nhd

n → ∞ (12) obtains for any even q > 2 as soon as

σ2
n = O(1/nhd

n) and
∑
m>0

(m + 1)q−2θ(m)1/3 < ∞.

When θ(m) = o(m−b), the first condition implies b > 2 + 2/d by Lemma 6 and the second obtains with b >
3(q − 1).

6.3. Preliminary results on the R-convex hull
In this section, we give some technical tools on the R-convex hull and the rolling ball condition. That will allow

us to derive asymptotic properties of the R-convex hull estimator for the support S of the density of Xn, as well as that
of its related quantities. In this preliminary section we mostly only present rewordings of results obtained in [32], [27]
and [2]. Thus proofs might be either left for the reader -as for Properties 1 and 2-, or only sketched -as for Corollary
1. Rewordings are made to have a self content paper, also we aim at presenting deterministic results that emphasize
the difference between dependent and independent settings.
For a set S ∈ Rd, recall that its R-convex hull CR(S ) is defined as:

CR(S ) =

 ⋃
B̊(x,R)∩S =∅

B̊(x,R)


c

.

Hereafter, we recall some obvious properties of the R-convex hull:

Property 1. Let CR(S )c be the complement of CR(S ) on Rd. One has

CR(S )c =
{
x ∈ Rd, x ∈ B̊(O,R) and S ∩ B̊(O,R) = ∅

}
so that
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Fig. 1: All you have to have in mind concerning the rolling ball property

1. If R < R′, then CR(S ) ⊂ CR′ (S ).
2. iI S ′ ⊂ S , then CR(S ′) ⊂ CR(S ).
3. Let H(S ), be the convex hull of S , then

lim
R→+∞

CR(S ) = C∞(S ) = H(S ).

Sets satisfying the inside and outside rolling ball properties have nice properties listed in [33] which we recall in the
Property 2 and are illustrated in Figure 1.

Property 2. If S satisfies the inside and outside rolling ball property for some positive Ri and Ro then

1. For all R < Ro, CR(S ) = S .
2. For all points z ∈ ∂S the "unit outward normal" vector (i.e. normal to ∂S and pointing outside S ), denoted ηz

is well defined as ηz =
Oo

z−z
Ro

.

3. For all x ∈ S with d(x, ∂S ) 6 Ri, its projection π∂S (x) onto ∂S is well defined and x = π∂S (x) − d(x, ∂S )ηπ∂S (x),
Oi

x = π∂S (x) − Riηπ∂S (x).

4. Conversely, for all y ∈ S c with d(y, ∂S ) 6 Ro, its projection π∂S (y) onto ∂S is well defined and y = π∂S (y) +

d(y, ∂S )ηπ∂S (y), Oo
y = π∂S (y) + Roηπ∂S (y).

Following the arguments of [27], we can prove the following result which will be a key point for the study of the
asymptotic properties of the R-convex hull estimator.

Proposition 9. Let S ′ ⊂ S ⊂ Rd. Assume that balls of radius Ro (resp. Ri) roll freelly outside (resp. inside) S . Let
R < Ro and ε < min(Ri,R). If, for all O ∈ Rd such that d(O, S ) 6 R − ε we have that B(O,R) ∩ S ′ , ∅, then

S 	 εB = {x ∈ S , d(x, ∂S ) > ε} ⊂ CR(S ′) ⊂ S

Proof of Proposition 9. The second inclusion is a direct consequence of S ′ ⊂ S ⊂ Rd thus CR(S ′) ⊂ CR(S ) then,
because R 6 Ro and due to the outside rolling ball condition we have CR(S ) = S .

Now let prove the first inclusion by contradiction. Suppose that there exists x ∈ S with d(x, ∂S ) = ε′ > ε and
x ∈ CR(S ′)c. As x ∈ CR(S ′)c there exists O, ‖O − x‖ < R with B(O,R) ∩ S ′ = ∅. Introduce z = [0, x] ∩ S(x, ε′) we
have z ∈ S then, because ‖O − x‖ 6 R we have d(O, S ) 6 R − ε′ that contradicts B(O,R) ∩ S ′ = ∅.

From Proposition 9 and by using theorem 4.1 in [2] we derive general deterministic results on the R-convex hull
summarized in the following

Corollary 1. Let S ′ ⊂ S ⊂ Rd be a finite set. Assume that balls of radius Ro (resp. Ri) roll freely outside (resp.
inside) S . Let R < Ro and ε < min(Ri,R). If, for all O ∈ Rd such that d(O, S ) 6 R − ε we have that B(O,R) ∩ S ′ , ∅,
then we have
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d(∂CR(S ′), ∂S ) 6 ε, d(CR(S ′), S ) 6 ε,∣∣∣|CR(S ′)|d − |S |d
∣∣∣ 6 |∂S |d−1ε(1 + o(1)).

Moreover if d(S ′, S ) 6
1
2

R min(Ri,Ro)
R + min(Ri,Ro)

, and ε is small enough with regards to d, R and min(Ri,Ro), one has

∂CR(S ′) ≈ ∂S , CR(S ′) ≈ S

and there exists some constant Cd,R,R0,Ri > 0 depending on d,R,R0 and Ri such that

||∂CR(S ′)|d−1 − |∂S |d−1| . Cd,R,R0,Riε(1 + o(1)), when ε→ 0.

Proof of Corollary 1. Here we only sketch the proof of Corollary 1 by giving the main arguments. By Proposition 9
we have S 	 εB ⊂ CR(S ′) ⊂ S . Thus

1. About d(∂CR(S ′), ∂S )

• Since S 	 εB ⊂ CR(S ′), then, for all x ∈ ∂CR(S ′) exists d(x, ∂S ) 6 ε.

• For all x ∈ ∂S consider y = x − εηx, by inside rolling ball property of S we have y ∈ S 	 εB and thus the
segment (x, y) intersects ∂CR(S ′) and d(x, ∂CR(S ′)) 6 ε.

2. About d(CR(S ′), S ), we clearly have by inclusions that d(CR(S ′), S ) 6 d(S 	 εB, S ) = maxx∈S d(x, S 	 εB) =

maxx∈S \(S	εB) d(x, S 	εB). Now take x ∈ S \ (S 	εB), there exists y ∈ ∂S with ‖y− x‖ < ε thus ‖π∂S (x)− x‖ < ε.
We have x = π∂S (x)− ‖x− π∂S (x)‖ηπ∂S (x). Introduce x′ = π∂S (x)− εηπ∂S (x) which belongs to S 	 εB, ‖x− x′‖ 6 ε
that proves d(CR(S ′), S ) 6 ε.

3. |CR(S ′)|d 6 |S \ (S 	 εB)|d ≈ ε|∂S |d−1, indeed it is the inner Minkowski content of a set with positive reach, its
asymptotic behaviour can be deduced from the Minkowski content of a set with positive reach, see [20], and for
its outer part see [3].

4. ∂CR(S ′) ≈ ∂S and ||∂CR(S ′)|d−1 − |∂S |d−1| . Cd,R,R0,Riε(1 + o(1)) are direct consequences of Theorem 4.1 in [2].
The homeomorphism between ∂CR(S ′) and ∂S being π∂S it is easy, and left to the reader to prove that, since ε
is small enough ϕ : CR(S ′)→ S defined asϕ(x) = x, if x ∈ S 	 2εB,

ϕ(x) = X0(x) + 2ε ‖x−X0(x)‖
‖X1(x)−X0(x)‖η∂S (x), if x ∈ CR(S ′) \ (S 	 2εB),

where X0(x) = π∂S (x) − 2εηπ∂S (x) and X1(x) = (X0(x), π∂S (x)) ∩ ∂CR(S ′) is a homeomorphism and thus that
CR(S ′) ≈ S .

A way to derive convergence rates for the R-convex hull of a set of points Xn consists in finding sequences εn such
that ∑

n

P(∃O, d(O, S ) < R − εn, B(O,R) ∩ Xn = ∅) < +∞.

Also we must prove that d(Xn, S ) → 0 almost surely to apply the last part of Corollary 1 and deduce the topological
guarantees and the convergence for the measure of the boundary.
The dependence is taken into account when we deal with P(B(O,R) ∩ Xn = ∅) where Propositions 1 or 2 are applied;
this replaces a trivial product in the independent case.

Lemma 10. Consider assumptions of Propositions 1 or 2. Also assume that the marginal density f belongs to the
modelMR0,Ri, f0,α. Let E′r(q) = α(q) in case of strong mixing and E′r(q) = mint∈[0,r]

(
θ(q)

t + cωd2dtrd−1
)

in case of θ-weak
dependence. Introduce

Pn = P (∃O ∈ S ⊕ (R − εn)B , B(O,R) ∩ Xn = ∅) .

21



Depending on the parameters of the model f0, α, d,Ri and on the parameter R such that, we prove the existence of a
constant C such that

Pn . (ln n)dε−d
n

exp
(
−C

n
q

(
εn −

εn

ln n

) d+1+2α
2

)
+

E′R− εn
ln n

(q)

C
(
εn −

εn
ln n

) d+1+2α
2

 . (17)

We also get

P(d(Xn, S ) > rn) .
(

ln n
rn

)d
exp

(
−C′

n
q

(
rn −

rn

ln n

)d+α
)

+
E′rn−

rn
ln n

(q)(
rn −

rn
ln n

)d+α

 . (18)

Proof of lemma 10. Let us cover S ⊕ (R − εn)B with νn 6 Cd( diam(S )+Ro
εn

ln n)d deterministic balls of radius εn/ ln n
and centered at xi ∈ S ⊕ (R − εn)B we have by Propositions 1 or 2 and by the triangular inequality:

Pn 6
νn∑

i=1

P
(
B(xi,R −

εn

ln n
) ∩ Xn = ∅

)
6

νn∑
i=1

(1 − pi)
n
q +
E′R− εn

ln n
(q)

pi


where pi = P(X1 ∈ B(xi,R −

εn
ln n )). By Proposition 11 it comes that

pi > f0C′′d,α

(
min((R − εn

ln n ),Ri)
2

) d−1
2

{
min

((
εn −

εn

ln n

)
,

min((R − εn
ln n ),Ri)

2

)} d+1+2α
2

Thus as εn converges to 0 as n→ ∞, then for any C < f0C′′d,α
(

min(R,Ri)
2

) d−1
2 if n is large enough. We finally obtain:

Pn . (ln n)dε−d
n


(
1 −C

(
εn −

εn

ln n

) d+1+2α
2

) n
q

+
E′R− εn

ln n
(q)

C
(
εn −

εn
ln n

) d+1+2α
2

 ,
and thus

Pn . (ln n)dε−d
n

exp
(
−C

n
q

(
εn −

εn

ln n

) d+1+2α
2

)
+

E′R− εn
ln n

(q)

C
(
εn −

εn
ln n

) d+1+2α
2

 ,
which concludes the proof of equation (17).
Suppose now that d(Xn, S ) > rn with rn 6 Ri, then there exists x ∈ S with B(x, rn) ∩ Xn = ∅. Define Ω as :

Ω =

x, if d(x, ∂S ) > 1/3,
π∂S (x) − 2rn

3 ηπ∂S (x), if d(x, ∂S ) < 1/3.

Then B(Ω, rn/3) ⊂ S and B(Ω, rn/3) ⊂ B(x, rn).
As a first conclusion: if d(Xn, S ) > rn, then there exists Ω ∈ S 	 rn

3 B with B(Ω, rn/3) ∩ Xn = ∅. The sequel of the
proof consists in bounding the probability of the existence of such a point. Cover S 	 rn

3 B with balls of radius rn
3 ln n ,

centered at y1, . . . , yN in S 	
2rn

3
B with N 6 Cd

(3diam(S ) ln n)d

rd
n

.

Introduce:

P(d(Xn, S ) > rn) = P
(
∃Ω ∈ S 	

2rn

3
B, B

(
Ω,

rn

3

)
∩ Xn = ∅

)
.

By the triangular inequality

P(d(Xn, S ) > rn) 6
N∑

i=1

P
(
B

(
yi,

rn

3

(
1 −

1
ln n

))
∩ Xn = ∅

)
.
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Let now qi = P
(
B

(
yi,

rn
3

(
1 − 1

ln n

))
∩ Xn = ∅

)
by proposition 11 we have qi > f0Cd,α

(
rn
6

(
1 − 1

ln n

))d+α
and thus, setting

C′ = f0Cd,α/3d+α

P(d(Xn, S ) > rn) .
(

ln n
rn

)d
exp

(
−C′

n
q

(
rn −

rn

ln n

)d+α
)

+
E′rn−

rn
ln n

(q)(
rn −

rn
ln n

)d+α

 . (19)

6.4. Proof for theorems on support estimation

6.4.1. Proof under independence
First, let us focus on the i.i.d. (or negatively associated) case, which entails, for all q ∈ N∗ and R ∈ R, that E′R(q) = 0.

Proof of Theorem 1. Apply Lemma 10 and equation (17) with q = 1 and εn =
(

3
C

ln n
n

) 2
d+1+2α , then Pn . lnd n ·

n−1−2 1+2α
d+1+2α+o(1) thus

∑
n Pn < +∞.

Also by equation (18) with q = 1 and rn =
(

3d+2α
C′(d+α)

ln n
n

) 1
d+α we obtain P(d(Xn, S ) > rn) . lnd n · n−2+o(1).

From the Borel-Cantelli lemma and the Corollary 1, we end the proof of Theorem 1.

When independence is not assumed, the proofs are similar. We only need to take into account the E′ term and to
find suitable sequences εn and qn in order to get convergent series. Then we apply the Borel-Cantelli lemma and the
Corollary 1.

6.4.2. Proof under exponential decays.
First we deal with exponential decays i.e. α(q) or θ(q) is bounded above by Bbq with 0 < b < 1

Proof of Theorem 2.

1. Strong mixing. For all R ∈ R, we have E′R(q) 6 Bbq.

(a) Choose εn = (γ(ln2 n/n)
2

d+1+2α with γ > γed
0 =

2(2d + 1 + 2α)(3d + 1 + 2α)
(d + 1 + 2α)2C ln(b−1)

, let write γ = γed
0 (1 + u).

Set qn = β1 ln n, β1 =
2(2d + 1 + 2α)

(d + 1 + 2α) ln(b−1)

(
1 +

u
2

)
, we finally introduce v =

u
2 + u

. By equation (17)

Pn . lnd n · n
2d

d+1+2α

exp

−Cγ ln n
β1

(
1 −

1
ln n

) d+1+2α
2

 +
n1+β1 ln(b)

ln2 n

 .
Because d > 1 and α > 0 then d+1+2α

2 > 1 we have
(
1 − 1

ln n

) d+1+2α
2 > 1 − d+1+2α

2
1

ln n , and thus

Pn . lnd n
(
n−1− 3d+1+2α

d+1+2α v+o(1) + n−1− 2d+1+2α
d+1+2α u

)
, (20)

thus:
∑

n Pn < +∞.

(b) Choose rn =
(
c ln2 n

n

) 1
d+α and qn = β ln n by equation (18):

P(d(Xn, S ) > rn) . lnd n · n
d

d+α

(
n−

C′c
β +o(1)

+ nβ ln b+1
)

choose first β large enough that: β ln b+1+ d
d+α

6 −2 and second c large enough to have −C′c
β

+ d
d+α

6 −2.
We then obtain

∑
n P(d(Xn, S ) > rn) < +∞ (and rn → 0).

2. θ-weak dependence.

(a) Now E′R−εn/ ln n(qn) = mint∈[0,R−εn/ ln n]

(
Bbqn

t + cωd2dtRd−1
)
. For any choice of sequence εn → 0, for n large

enough, tn =
√

bqn is in [0,R−εn/ ln n] thus E′R−εn/ ln n(qn) 6 B′ exp(−qn ln(b−1)/2)) thus as previously any

εn = (γ ln2 n/n)
2

d+1+2α with γ > 2γed
0 provides a sequence with

∑
n Pn < +∞.
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(b) Choose again rn =
(
c (ln n)2

n

) 1
d+α . Here also the choice of tn =

√
bqn is in [0, rn − rn/ ln n] for n large enough.

Thus E′rn−rn/ ln n(qn) 6 B′ exp
(
− qn ln(b−1)/2)

)
and similar to 1.(b) we obtain

∑
n P(d(Xn, S ) > rn) < +∞

and rn → 0 for a suitable constant c.

To conclude, in all the cases we found εn = O
((

(ln n)2

n

) 2
2+1+α

)
such that

∑
n Pn < +∞, and sequences rn → 0 with∑

n P(d(Xn, S ) > rn) < +∞, thus the Borel-Cantelli lemma and the Corollary 1 imply the result.

Now we finish this section by the proof of Theorem 3 which dedicates to the Riemannian decays cases.

6.4.3. Proof under Riemannian decays.
Proof of Theorem 3. According to the dependence assumption we check that

1. Under strong mixing: E′R(qn) 6 Bq−b
n for a b > 1. Set λ = 3d+1+2α

d+1+2α , a = b−2−d
b−λ and γ = λ+1

λ+b . Choose

εn =
(
A (ln n)a

n1−γ

) 2
d+1+2α and qn = nγ

(ln n)a−1 . From Equation (17) it comes that

Pn .

(
ln n
εn

)d

n−AC +
1

n(ln n)2 ·

So that, for A large enough
∑

n Pn < +∞.

Similarly, Set λ′ = 2d+α
d+α

, a′ = b−2−d
b−λ′ and γ′ = λ′+1

λ′+b , choose rn =

(
A′ (ln n)a′

n1−γ′

) 1
d+α

and qn = nγ
′

/(ln n)a−1.
From equation (17) it comes that

P(dH(Xn, S ) > rn) .
(

ln n
εn

)d

n−A′C′ +
1

n(ln n)2 ·

that, again allows to obtain summable series since A′ is large enough.

2. Under θ-weak dependence. Now E′R−εn/ ln n(qn) = mint∈[0,R−εn/ ln n]

(
Bq−b

n
t + cωd2dtRd−1

)
. For any choice of se-

quence εn → 0, for n large enough, tn =
√

q−b
n is in [0,R − εn/ ln n] thus E′R−εn/ ln n(qn) 6 B′q−b/2

n and we can
use the sequences exhibited in the strong mixing for changing b into b/2.

Similarly, set λ′ =
2d + α

d + α
, a′ =

b/2 − 2 − d
b − λ′

and γ′ =
λ′ + 1
λ′ + b/2

, choose rn =

(
A′

(ln n)a′

n1−γ′

) 1
d+α

, qn =
nγ
′

(ln n)a−1 ,

and tn =
√

q−b
n . Check that tn < εn From Equation (17) it comes that

P(dH(Xn, S ) > rn) .
(

ln n
εn

)d

n−A′C′ +
1

n(ln n)2 ·

that, again allows to obtain summable series since A′ is large enough.

6.5. Proofs concerning level sets
Proof of Theorem 4. Let R < mt/ f (2)

max be a positive constant, we first prove that, for n large enough:

L̂t,R ⊂ Lt ⊕
2ε′n
mt

B. (21)

First a simple chain of inclusions entails L̂t,R = CR({ f̂n(Xi) > t}) ⊂ CR({Xi, f (Xi) > t − ε′n}) ⊂ CR(Lt−ε′n ). In the sequel,
we consider n large enough to have ε′n 6 max(∆t, t − t0) so that Proposition 6 ensures that CR(Lt−ε′n ) = Lt−ε′n , thus we
have L̂t,R ⊂ Lt−ε′n . Now for all z′ ∈ Lt−ε′n , introduce z = z′ + 2 ε′n

mt

∇ f (z′)
‖∇ f (z′)‖ we have that

f (z) > f (z′) + 2
ε′n
mt
‖∇ f (z′)‖ − 2

(
ε′n
mt

)2

f (2)
max > t + ε′n

(
1 −

2ε′n
m2

t
f (2)
max

)
,
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thus, since n large enough to also have ε′n <
m2

t

2 f (2)
max

, we have f (z) > t, thus Lt−ε′n ⊂ Lt ⊕
2ε′n
mt

B which ends the proof of
inclusion (21).

We now aim at proving that, with probability one for n large enough

Lt ⊂ L̂t,R ⊕

(
εn + 2

ε′n
mt

)
B. (22)

Notice that Xn∩Lt+ε′n ⊂ X+
n (t) thus CR(Xn∩Lt+ε′n ) ⊂ L̂t,R. Let us first prove that CR(Xn∩Lt+ε′n ) contains Lt+ε′n	εnB with

probability one for n large enough. Proceeding by contradiction suppose that there exists x ∈ Lt+ε′n with d(x, ∂Lt+ε′n ) >
εn and x < L̂t,R. Because x < L̂t,R there exists O with ‖x−O‖ < R and B(O,R)∩X+

n (t) = ∅, thus B(O,R)∩Xn∩Lt+ε′n = ∅.
Moreover because d(x, ∂Lt+ε′n ) > εn, and we have that d(O, Lt+ε′n ) 6 R − εn.
We set now

Pn = P
(
∃O ∈ Lt+ε′n ⊕ (R − εn)B, B(O, r) ∩ Lt+ε′n ∩ Xn = ∅

)
.

Cover Lt+ε′n ⊕ (r− εn)B with νn deterministic balls of radius εn/ ln n and centered at xi ∈ Lt+ε′n ⊕ (R− εn)B. Notice that
we clearly have |Lt+ε′n | 6 t−1 (because the density on Lt+ε′n is greater than t). Thus by bound on packing and covering

numbers it is possible with νn 6 2d

tωd

(
ln n
εn

)d
.

Pn 6
νn∑

i=1

P
(
B

(
xi,R −

εn

ln n

)
∩ Lt+ε′n ∩ Xn = ∅

)
.

Now by proposition 6, Lt+ε′n admits both the (mt/ f (2)
max)-inside and outside rolling ball properties. Thus if we define

x∗i = π∂Lt+ε′n
(xi) and yi = x∗i + mt

f (2)
max

x∗i −xi

‖x∗i −xi‖
, then we have B(yi,mt/ f (2)

max) ⊂ Lt+ε′n and ‖xi − yi‖ 6 R − εn + mt/ f (2)
max. Now

with Ei = B(xi,R − εn/ ln n) ∩ B(yi,mt/ f (2)
max), we obtain

Pn 6
νn∑

i=1

(
(1 − pi)

n
q +
EEi (q)

pi

)
, with pi = P(X1 ∈ Ei).

By proposition 11, we derive, with the choices f0 = t, α = 0 :

pi > tC′′d,0


min

(
(R − εn

ln n ), mt

f (2)
max

)
2


d−1

2
min


(
εn −

εn

ln n

)
,

min
(
(R − εn

ln n ), mt

f (2)
max

)
2




d+1
2

.

Thus as εn converges to 0 as n→ ∞, then for any C < tC′′d,0

min
(
R, mt

f (2)
max

)
2


d−1

2

if n is large enough; we finally obtain:

Pn .

(
ln n
εn

)d
exp

(
−C

n
q

(
εn −

εn

ln n

) d+1
2
)

+
maxi EEi (q)

C
(
εn −

εn
ln n

) d+1
2

 .
This equation is highly similar to equation (17) with α = 0. The only difference consists in EEi which is now related
to intersections of balls instead of only one ball.
Under strong mixing EE does not depend on the set E there is no change from the proof of Theorem 2, the given
choices of εn (with α = 0) ensures

∑
n Pn < +∞.

Considering θ-weak dependence, then the value of EE depends on the shape of the set E, nevertheless, due to equations
(3) and (4), we obtain

EEi (q) 6 inf
tn∈(0,εn/2)

(
A
θ(q)
tn

+ Btnε
d−1

2
n

)
,

for some positive constants A and B.
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1. In case of exponential decays, one can easily check that there exists suitable constants a1, a2 and a3 such that

εn = (a1 ln2 n/n)(d+1)/2, tn =

√
a2θ(qn)ε

d−1
2

n and qn = a3 ln n allows to have sequences such that tn ∈ (0, εn) and
Pn satisfying

∑
n Pn < +∞.

2. In case of Riemannian decay rates with b > 2, set λ =
5d − 1

2(d + 1)
, γ =

1 + λ
b
2 + λ

and a = 2
2 − d + b/2

b − λ
one

easily checks that there exists a constant a1 such that εn = (a1 lna n/n1−γ)(d+1)/2, qn = nγ/(lna−1 n), tn =√
a2θ(qn).(εn)(d−1)/2 and the choice qn = a3 ln n allows to construct sequences such that tn ∈ (0, εn) and Pn

satisfying
∑

n Pn < +∞.

This ends the proof of the inclusions

Lt+ε′n 	 εnB ⊂ CR(Xn ∩ Lt+ε′n ) ⊂ L̂t,R. (23)

Now, considering Lt+ε′n , as in the proof of inclusion (21) we easily obtain Lt 	
ε′n

2mt
B ⊂ Lt+ε′n for n large enough in

order that ε′n <
m2

t

2 f (2)
max

. Indeed, consider z ∈ Lt 	 2 ε′n
mt

B, we have that for each vector u with ‖u‖ 6 1, f
(
z + 2 ε′n

mt
u
)
> t.

Consider now the special choice u = −
∇ f (z)
‖∇ f (z)‖ , then we have

f (z) − 2
ε′n
mt
||∇ f (z)|| + 2

(
ε′n
mt

)2

f (2)
max > f

(
z +

ε′n
2mt

u
)
> t.

Thus

f (z) > t + 2
ε′n
mt
||∇ f (z)|| − 2

(
ε′n
mt

)2

f (2)
max > t + ε′n + ε′n

(
1 −

2ε′n
m2

t
f (2)
max

)
> t + ε′n.

We thus obtain, with inclusion (23) that (Lt 	 2 ε′n
mt

B) 	 εnB ⊂ L̂t,R

Now from [33] and [20], since Lt admits the inside and outside (mt/ f 2
max)−rolling ball properties, we obtain εn +2 ε′n

mt
6

mt/ f 2
max and then,

Lt ⊂ L̂t,R ⊕

(
εn + 2

ε′n
mt

)
B,

which concludes the proof of inclusion (22) which together with Inclusion (21) allows to apply Corollary 1 and thus
concludes the proof of dH(L̂t, Lt) . εn + ε′n, dH(∂L̂t, ∂Lt) . εn + ε′n and ||L̂t |d, |Lt |d | . εn + ε′n in Theorems 4 and 5.
To obtain the homeomorphism property and the convergence for the perimeter estimation we also prove that

dH(Lt,Xn ∩ {z, f̂ (z) > t})
a.s.
−→ 0,

this is easily obtained by using the techniques extensively used in this paper and we leave it to the reader.
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Appendix A. Some bounds for the measure of the intersections

Proposition 10. let x, y ∈ Rd, and rx, ry, ` be positive numbers such that ‖x − y‖ = rx + ry − `, ` 6 min(rx, ry) and
h 6 min(rx, ry). letV(rx, ry, `, h) = |(B(x, rx + h)∩B(y, ry + h)) \ (B(x, rx−h)∩B(y, ry−h))|, we have that, when ` → 0

V(rx, ry, `, h) 6 ωd−1

(
`2rxry

rx + ry

) d−1
2

4h(1 + o(1)).

Proof. Let u1 be a unit vector of Rd, we can define the portion of ball B(O, r) ∩ {z, 〈z.u1 > a} and we have

V(r, a) =
∣∣∣B(O, r) ∩ {z, 〈z.u1 > a}

∣∣∣
d ωd−1

∫ a

0
(2rx − x2)

d−1
2 dx. (A.1)
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Thus by derivation 
0 6

∂V(r, a)
∂a

6 ωd−1 (2ra)
d−1

2 ,

0 6
∂V(r, a)
∂r

6 ωd−1
2(d − 1)

d + 1
(2r)

d−3
2 (a)

d+1
2 ,

(A.2)

Fig. A.2: The convex body is B(Ox, rx + h) ∩ B(Oy, ry + h).

Solving 
(rx − h − ax)2 + z2 = (rx − h)2

(ry − h − ay)2 + z2 = (ry − h)2

ax + ay = ` + 2h
,

yields 
ax =

(` + 2h)(2ry − `)
2(rx + ry − 2h − 2`)

ay =
(` + 2h)(2rx − `)

2(rx + ry − 2h − 2`)

and this complements the Figure A.2 which proves that indeed:

|(B(x, rx + h) ∩ B(y, ry + h))| = V
(
rx + h,

(` + 2h)(2ry − `)
2(rx + ry − 2h − 2`)

)
+ V

(
ry + h,

(` + 2h)(2rx − `)
2(rx + ry − 2h − 2`)

)
.

Substracting |B(Ox, rx − h) ∩ B(Oy, ry − h)|, we obtain the upper-bound.

V
(
rx + h,

(` + 2h)(2ry − `)
2(rx + ry − 2h − 2`)

)
+ V

(
ry + h,

(` + 2h)(2rx − `)
2(rx + ry − 2h − 2`)

)
−V

(
rx − h,

(` − 2h)(2ry − `)
2(rx + ry + 2h − 2`)

)
− V

(
ry − h,

(` − 2h)(2rx − `)
2(rx + ry + 2h − 2`)

)

as ` → 0, with h 6 `/2, let a =
`ry

rx + ry
, ∆+ =

(` + 2h)(2ry − `)
2(rx + ry − 2h − 2`)

− a and ∆− = a −
(` − 2h)(2ry − `)

2(rx + ry + 2h − 2`)
− a (thus
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Fig. A.3: Integration

∆+ + ∆− 6
4hry

rx + ry
(1 + o(1))) we have

V
(
rx + h,

(` + 2h)(2ry − `)
2(rx + ry − 2h − 2`)

)
− V

(
rx − h,

(` − 2h)(2ry − `)
2(rx + ry + 2h − 2`)

)
= V

(
rx + h,∆+) − V

(
rx − h, a − ∆−

)
6 2h

∂V
∂r

(rx, a) + (∆+ + ∆−)
∂V
∂a

(rx, a)

6 2hωd−1
2(d − 1)

d + 1
(2rx)

d−3
2

(
2`ry

2rx + ry

) d+1
2

+
4hry

rx + ry
(1 + o(1))ωd−1

(
`2rxry

rx + ry

) d−1
2

.

We finally obtain that

V(rx, ry, `, h) 6 ωd−1

(
`2rxry

rx + ry

) d−1
2

4h(1 + o(1)),

which concludes the proof.

Proposition 11. Suppose that balls of radius Ri roll inside S . Suppose that the density is such that f (x) > f0d(x, ∂S )α.
If O is such that d(O, S ) = R − ε with 0 < ε 6 R then, exists positive constants Cd,α and C′d,α such that

P(B(O,R)) > f0Cd,α

(
RRi

R + Ri

) d−1
2

ε
d+1+2α

2 , if O < S and ε 6 min(R,Ri)/4,

P(B(O,R)) > f0C′d,α

(
min(Ri,R)

2

)d+α

, otherwise.

Proof. In all the proof we introduce a point of ∂S O∗ which is not n uniquely defines, such that d(O,O∗) = d(O, ∂S ),
and Oi = O∗ − RiηO∗ . By the inside rolling ball condition B(Oi,Ri) ⊂ S .
- First case O < S and ε 6 min(R,Ri)/4.

P(B(O,R)) > P(B(Oi,Ri) ∩ B(O,R)).

Decompose the calculus on small "lens" L(z) = S(Oi,R − z) ∩ B(O,R) on witch d(x, ∂S ) > z (due to inside rolling
ball properties),

see Figure A.3, it comes that

P(B(O,R)) >
∫ ε

0
f0 zα

∣∣∣L(z)
∣∣∣
d−1 dz.
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Then |L(z)|d−1 =
∫ θ(z)

0 σd−2(Ri − z)d−1 sin(α)d−2dα. From inequality sin(α) > 2α/π if 0 6 α 6 π/2 (condition

ε < min(R,Ri) allows that) we obtain that |L(z)|d−1 > σd−2
d−1

(
2θ(z)
π

)d−1
(Ri − z)d−1. Now

θ(z) = arcsin
(

h(z)
Ri − z

)
>

h(z)
Ri − z

.

Thus

P(B(O,R)) > f0 ·
σd−2

d − 1

(
2
π

)d−1 ∫ ε

0
h(z)d−1dz,

with h(z) =

√
(ε − z)(2R − ε + z)

2(Ri + R − ε)

(
2(Ri − z) −

(ε − z)(2R − ε + z)
2(Ri + R − ε)

)
.

Under the condition ε 6 min(Ri,R)/4 6 (R + Ri)/8, we obtain that

h(z) >

√
7 × 17

16 × 14
RRi

R + Ri
(ε − z) >

√
1
2

RRi

R + Ri
(ε − z),

which finally yieds:

P(B(O,R)) > f0
σd−2

d − 1

(
2
π

)d−1 (
1
2

RRi

R + Ri

) d−1
2

∫ ε

0
zα(ε − z)

d−1
2 dz

> f0
σd−2

d − 1

(
2
π

)d−1 (
1
2

RRi

R + Ri

) d−1
2

ε
d+1+2α

2 B
(
α + 1,

d + 1
2

)
> f0Cd,α

(
RRi

R + Ri

) d−1
2

ε
d+1+2α

2 .

- Second case O < S and ε > min(R,Ri)/4.

P(B(O,R)) > P(B(Oi,Ri) ∩ B(O,R)).

Now define Ω = O + (ε − min(R,Ri)/4)ηO∗ we have P(B(O,R)) > P(B(Oi,Ri) ∩ B(O,R)) > P(B(Oi,Ri) ∩ B(Ω,R))
and we can apply previous calculus

P(B(O,R)) > f0Cd,α

(
RRi

R + Ri

) d−1
2

(
min(R,Ri)

4

) d+1+2α
2

> f0
Cd,α

2
3d+1+4α

2

(min(R,Ri))d+α .

- Final case O ∈ S .

1. if d(O, ∂S ) > R, then P(B(O,R)) > P(B(O,R/2)) > f0
(

R
2

)α
ωd

(
R
2

)d
,

2. if d(O, ∂S ) < R and R < Ri, define Ω = O − R
2 ηO∗ , then P(B(O,R)) > P(B(Ω,R/2)) > f0

(
R
2

)α
ωd

(
R
2

)d
,

3. if d(O, ∂S ) < R and R ≥ Ri, define Ω = Oi −
Ri
2 ηO∗ , then P(B(O,R)) > P(B(Ω,Ri/2)) > f0

(
Ri
2

)α
ωd

(
Ri
2

)d
.

Hence, P(B(O,R)) > f0ωd

(
min(Ri,R)

2

)d+α

.
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