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Introduction

Set estimation has many applications. In ecology for instance, it may be used to study the home-range or the corearea of species [START_REF] Getz | A local nearest-neighbor convex-hull construction of home ranges and utilization distributions[END_REF], based on the observation of the spatial distribution of species or the movement of one or more representative members. Assimilating the position of a member to a random variable with a given density distribution f : R d → R, the home-range corresponds to the support S = {x, f (x) > 0} of f and the core-area to a level set of f which is defined as the set L t = {x, f (x) t} for a given threshold t > 0. If L t f (x)dx = α then the level set L t is also interpretated as a multidimensional α-quantile, see [START_REF] Coblenz | Nonparametric estimation of multivariate quantiles[END_REF][START_REF] Di Bernardino | Plug-in estimation of level sets in a non-compact setting with applications in multivariate risk theory[END_REF]. The estimation of a density support and of its related quantities -level sets, boundary, volume and perimeter-has been the focus of several works for i.i.d. data sets. The historical Devroye-Wise estimator of S in [START_REF] Cuevas | On boundary estimation[END_REF][START_REF] Devroye | Detection of abnormal behavior via nonparametric estimation of the support[END_REF] (see also references therein) has universal properties but non-optimal rates. If S is convex then optimal rates are achieved by the convex hull estimator of the sample. More generally, under "convexity type" assumptions on S , optimal rates may be achieved by estimators defined as some extensions of the convex hull. This is the case of the R-convex hull, studied for example in [START_REF] Aaron | Estimation of surface area[END_REF][START_REF] Arias-Castro | Minimax estimation of the volume of a set with smooth boundary[END_REF][START_REF] Casal | Set estimation under convexity type assumptions[END_REF][START_REF] Rodríguez-Casal | A data-adaptive method for estimating density level sets under shape conditions[END_REF][START_REF] Rodríguez-Casal | Spatial distribution of invasive species: an extent of occurrence approach[END_REF][START_REF] Walther | Granulometric smoothing[END_REF] (other estimators of S have also been proposed, as in [START_REF] Aaron | Local convex hull support and boundary estimation[END_REF] or [START_REF] Hardle | Estimation of non-sharp support boundaries[END_REF]). The R-convex hull of a set S is defined as :

C R (S ) =           B(x,R)∩S =∅ B(x, R)           c
, where E c and E respectively denote the complement and the interior of the set E and B(x, R) is the closed ball of radius R centered at x. The use of the R-convex hull to estimate the support of a density f has the heuristic justification: if S is regular enough, we have C R (S ) = S so that a natural estimator of S is S n = C R (X n ), with X n = {X 1 , . . . , X n } ⊂ d H ( S n , S ) towards 0 and obtain the minimax rate of [START_REF] Hardle | Estimation of non-sharp support boundaries[END_REF] under regularity assumptions on S . Similar rates are obtained for d H (∂ S n , ∂S ). Functionals of the R-convex hull may also be used to estimate related quantities such as the volume [START_REF] Arias-Castro | Minimax estimation of the volume of a set with smooth boundary[END_REF][START_REF] Baldin | The wrapping hull and a unified framework for estimating the volume of a body[END_REF], the perimeter [START_REF] Aaron | Estimation of surface area[END_REF] and level sets [START_REF] Rodríguez-Casal | A data-adaptive method for estimating density level sets under shape conditions[END_REF] of S . In the above results, the density f is bounded below on S by some positive constant and the sample X n is i.i.d. However, for real life applications, the independence hypothesis is generally unrealistic. This is the case for instance when a member's location is observed via GPS or when the sample consists of the trajectory of one or more members observed over a time period. Our hypothesis is that X n is a n-sample from a strictly stationary process X. Additionally, we assume some dependence condition: we consider here strong mixing and θ-weak dependence, introduced respectively in [START_REF] Rosenblatt | A central limit theorem and a strong mixing condition[END_REF] and [START_REF] Dedecker | Weak dependence: With examples and applications[END_REF]. Set estimation under dependence has been little studied and the two related works are to our knowledge that of [START_REF] Cholaquidis | Set estimation from reflected brownian motion[END_REF], who considers trajectories of a reflected Brownian motion and the recent paper of [START_REF] Kallel | Topological reconstruction of compact supports of dependent stationary random variables[END_REF] in which the authors extend results on reconstruction of density supports of i.i.d random variables to supports of dependent stationary R d -valued random processes with the use of the Devroye-Wise estimator.

In this article, we study the asymptotic properties of S n and some of its natural plug-in as estimators of the support (and boundary, perimeter, volume) in a non-independent framework: thus we extend the results of [START_REF] Aaron | Estimation of surface area[END_REF][START_REF] Arias-Castro | Minimax estimation of the volume of a set with smooth boundary[END_REF][START_REF] Baldin | The wrapping hull and a unified framework for estimating the volume of a body[END_REF][START_REF] Casal | Set estimation under convexity type assumptions[END_REF][START_REF] Rodríguez-Casal | A data-adaptive method for estimating density level sets under shape conditions[END_REF][START_REF] Walther | Granulometric smoothing[END_REF] to dependent cases. Plug-in estimates also lead to the case of level sets estimation. Namely, we derive convergence rates in Hausdorff distance of those estimators. Finally we show that, with probability one for n large enough, the estimated support (resp. level sets) is homeomorphic to the support (resp. to the level sets). The rest of the paper is organized as follows. Section 2 presents some notation and general useful results. Section 3 dedicates to asymptotic results for the R-convex hull and its natural plug-in as the estimators of the density support and its related quantities, volume and perimeter. Section 4 deals with the estimation of level-sets. As a conclusion, Section 5 proposes some perspectives for data-driven tuning of the geometric parameter R. The proofs are postponed to Section 6.

General framework

In this paper, we are interested in several geometric non-parametric estimation problems, based on a n-sample X n = {X 1 , . . . , X n } ⊂ R d of strictly stationary weakly dependent sequence X. In this section, we first give some notation and preliminary material that will be useful to settle and prove our main results.

Notation

• For each set E ⊂ R d , we denote by |E| d its d-dimensional volume and |∂E| d-1 its boundary, i.e. the (d -1)dimensional volume of its surface.

• B(x, r) ⊂ R d denotes the closed ball of radius r ≥ 0 centered at x and S(x, r) is its boundary, i.e. the sphere of radius r centered at x.

For the sake of simplicity, we set ω d = |B(0, 1)| d the volume of B(0, 1) ⊂ R d and σ d = |S(0, 1)| d-1 its surface.

• For each E ⊂ R d and each positive number r, we denote by E⊕rB and E rB the Minkowski sum and difference: • We set E ≈ F if and only if E and F are homeomorphic.

E ⊕ rB = {x ∈ R d , d(x, E) r} =
• For two non-negative sequences (u n ) and (v n ) in R N , we set u n v n if and only if there exists c > 0 such that, for all n 0, u n cv n . If u n v n and v n u n then we set u n ≈ v n .

• For k ∈ N, we denote by C k the set of k-times continuously differentiable functions R d → R.

For f ∈ C 1 we denote by ∇ f its gradient and in case f ∈ C 2 we denote by H f its Hessian matrix.

• We denote by • op the operator norm on the set of n × p matrices.

• Let ρ 1. We say that K is a kernel of order ρ if and only if P(x)K(x)dx = P(0) for each polynomial of degree less than or equal to ρ.

Dependence background

In the sequel, we assume that X = (X t ) t∈Z is a strictly stationary short memory process. We consider

X n = {X 1 , . . . X n } ⊂ R d a sample of X with marginal density f : R d → R.
We first recall below the short memory properties considered in the sequel, namely the strong mixing and θ-weak dependence conditions as well as some covariance properties and density estimation results for each of them.

Weak dependence conditions

Let X = (X t ) t∈Z be a strictly stationary sequence on a given probability space (Ω, F , P). For -∞ j l +∞, let F l j = σ(X k , 1 k l, k ∈ Z) be the σ-field of events generated by the random variables (X k ) j k l . In the sequel, we consider the following dependence conditions for X.

Strong or α-mixing. Let (α(q)) q>0 be the decreasing sequence of strong mixing coefficients of X, defined as

α(q) = sup A∈F 0 -∞ ,B∈F ∞ q |P(A ∩ B) -P(A)P(B)|.
Quote that the above expression also writes as the supremum of |cov(1 A , 1 B )|. We say that X is strongly mixing (or α-mixing) if lim q→∞ α(q) = 0.

θ-weak dependence. Let v ≥ 1 and let us define the Lipschitz modulus of a function h

: (R d ) v → R by Lip(h) = sup x y |h(x) -h(y)| x 1 -y 1 + • • • + x v -y v ,
where • is a norm of R d . Let W be any random variable such that W ∞ ≤ 1 measurable with respect to F 0 -∞ . We say that X is θ-weakly dependent if there exists a decreasing sequence (θ(q)) q>0 with lim q→∞ θ(q) = 0 and a set of indices i 1 , . . . , i v 1 such that |cov(W, h(X i 1 , . . . ,

X i v ))| ≤ vLip h • θ(q). Notice that for v = 1 we have |cov(W, h(X q ))| ≤ Lip h • θ(q).
Examples. A large number of classical models which satisfy strong mixing conditions is provided in [START_REF] Doukhan | Mixing, properties and models[END_REF]; in particular the class of linear processes based on innovations with an absolutely continuous density function, such as strictly stationary ARMA processes and also certain bilinear, ARCH or GARCH models. Another example is that of a stationary Gaussian process with a continuous positive spectral density. Notice also that this property remains valid through images by measurable functions. Some classical processes are not strongly mixing. A famous counterexample is in [START_REF] Andrews | Non strong mixing autoregressive processes[END_REF], in which X is the stationary solution of the recursion

X t = 1 2 (X t-1 + ε t ),
where X 0 is independent of (ε t ) t>0 , which is a sequence of i.i.d. random variables with Bernoulli distribution of parameter 1/2. This example and many others, such as linear processes with discrete innovations [START_REF] Andrews | Non strong mixing autoregressive processes[END_REF], on the other hand, also fit the θ-weak dependence condition. Notice also that this property is hereditary through Lipschitz functions.

A covariance based result

Let E be a measurable subset of R d with P(X t ∈ E) = p > 0. In each of the above-mentioned dependence conditions, under covariance based arguments we derive a useful upper-bound for P(X n ∩ E = ∅).

Proposition 1. Let X = (X t ) t∈Z be a strongly mixing sequence with mixing coefficients (α(q)) q>0 . Then, setting E E (q) = α(q), we have:

P(X n ∩ E = ∅) ≤ (1 -p) n q + E E (q) p .
Proposition 2. Let X = (X t ) t∈Z be a θ-weakly dependent sequence with dependence coefficients (θ(q)) q>0 . Assume moreover that there exists c > 0 such that:

P(X t ∈ E) ≤ c |E| d . (1) 
1. If E = B(x, r) we have that

P(X n ∩ E = ∅) ≤ (1 -p) n q + E E (q) p , with E E (q) inf ε∈(0,r) θ(q) ε + cω d 2 d εr d-1 . (2) 
2. If E = B(x, r x ) ∩ B(y, r y ) with r x + r yxy = , and r x ∧ r y , we have that

P(X n ∩ E = ∅) ≤ (1 -p) n q + E E (q) p , with (3) 
E E (q) inf ε∈(0, /2) 2θ(q) ε + cV(r x , r y , , ε) , and V(r x , r y , , ε) ∼ →0 4cω d-1 ε 2r x r y r x + r y d-1 2 . ( 4 
)
Remark 1. Notice that condition (1) holds for instance if the distribution of X 0 admits a bounded density f wrt Lebesgue measure.

Another important dependent case is that of negatively associated processes, see [START_REF] Roussas | Asymptotical normality of positively or negatively associated processes[END_REF]. Considering the proof, we set in this case q = 1 and k = n and here cov(Z 

• • Z k-1 , Z k ) ≤ 0.
In this case blocks are useless (here q = 1) and p n ≥ p n and the results are conducted as in the classical independent case and we obtain:

Proposition 3. Let X = (X t ) t∈Z be a negatively associated. Then, setting E E (q) = α(q), we have:

P(X n ∩ E = ∅) ≤ (1 -p) n .
Remark 2. Our results may be extended to alternative dependence structures, yielding other values of E E (q), possibly involving other methods of proofs, such as coupling. An alternative to the above result is if X is absolutely regular, [START_REF] Doukhan | Mixing, properties and models[END_REF], Berbee's coupling inequalities ( [START_REF] Berbee | Chains with infinite connections: uniqueness and Markov representation[END_REF]) yields E E (q) ≤ β(q).

The above upper bounds for P(X n ∩ E = ∅) will allow to derive convergence rates for the estimation of S , ∂S , |S | d and |∂S | d-1 in Section 3. In order to get explicit rates, we will propose two scenarii

• Exponential decays, α(q) Bb -q or θ(q) Bb -q , for some b > 1.

• Riemannian decays, α(q) Bq -b or θ(q) Bq -b , for some b > 0.

Uniform consistency of kernel density estimators under dependence

To obtain results on level set estimation, we need an upper bound on

ε n = sup x∈R d | f n (x) -f (x)|,
where f : R d → R as above is the marginal density of the strictly stationary R d -valued process X and f n is its kernel density estimator:

f n (x) = 1 nh d n n t=1 K X t -x h n . (5) 
We provide below bounds for ε n in the α-mixing and θ-weakly dependent cases. Proposition 4 concerns exponential decays and Proposition 5 concerns Riemannian decays. For that task, we fist introduce some regularity assumptions on f and K:

(K1) K : R d → R is a bounded density with compact support.

(K2) K : R d → R is of order (k -1). (M1) For some k 2, f ∈ C k and f (k) is bounded. (M2)
The marginal density f is bounded on R d .

(M3) The joint densities f i of (X 0 , X i ) are bounded, uniformly with respect to i > 0.

(M4) The marginal density f tends to zero as n tends to infinity.

(M5) E X 0 c < ∞ for some c > 2.
Proposition 4. Let X n be a n-sample of a strictly stationary sequence X and f n be defined by [START_REF] Arias-Castro | Minimax estimation of the volume of a set with smooth boundary[END_REF]. Assume that (K1), (M2), (M3), (M4) and (M5) hold, and that (K2) and (M1) hold for some k 2.

(A1) If X is strongly mixing with α(q) = O(b -q ) for some b > 1, thus

1. If k > d + 3, the choice h n = O ln n n
Proposition 5. Let X n be a n-sample of a strictly stationary sequence X and f n be defined by [START_REF] Arias-Castro | Minimax estimation of the volume of a set with smooth boundary[END_REF]. Assume that (K1), (M2), (M3), (M4) and (M5) hold, and that (K2) and (M1) hold for some the same k 2.

(A2) Let X be strongly mixing with α(q) = O(q -b ) for some b > max(2

+ 3/d, d + 2). Let γ 0 = d+2-d(d-2) 2k+d b+1-d(d-2)

2k+d

.

Then the choice of h

n = O ln n n 1-γ 1 d+2k
, for any γ ∈ (γ 0 , 1) yields ε n = O a.s.

ln n n 1-γ k 2k+d . (T2) Let X be θ-weakly dependent with θ(q) = O(q -b ) for some b > 3(d + 2). Let γ 0 = d + 2 -d(d-2) 2k+d 2 b+3 6 -d(d-2) 2k+d .
Then the choice of h n = O ln n n 1-γ 1 d+2k for any γ ∈ (γ 0 , 1), yields ε n = O a.s.

ln n n 1-γ k 2k+d .

Support estimation

In this section, we derive convergence rates for the R-convex hull estimator of S and that of their boundaries in the context of strictly stationary strong-mixing or θ-weakly dependent sequences X. We first give regularity conditions on S under which are derived our main theoretical results.

Distributional background

In order to obtain a consistent estimator C R (X n ) of the support S we will assume that S is compact and regular enough in order that C R (S ) = S . This will fulfilled if the following rolling ball property holds: Definition 1 (Rolling ball property). A closed compact set S ⊂ R d satisfies the R o -outside (resp. R i -inside) rolling ball property if:

∀x ∈ ∂S , ∃O o x ∈ R d , x -O o x = R o , and B(O o x , R o ) ⊂ S c . (resp. ∃ O i x ∈ R d , x -O i x = R i , and B(O i x , R i ) ⊂ S ).
When S satisfies the R o -outside (R i -inside) rolling ball property, we also say that balls of radius R o (resp. R i ) roll freely outside (resp. inside) S .

Such sets have nice properties due to the generalization of Blaschke's rolling ball's theorem ( [START_REF] Walther | Granulometric smoothing[END_REF]'s theorem 1). In particular, they satisfy S R o (S ) = S , which ensures the convergence of the plug-in support estimator S R o (X n ) since d H (X n , S ) → 0.

To derive explicit convergence rates we have moreover to assume that the density decreases regularly enough. Specifically we will assume a power decay as in [START_REF] Hardle | Estimation of non-sharp support boundaries[END_REF]: Definition 2. A density f belongs to the class M R o ,R i , f 0 ,α if its support S is compact and satisfies the R o -outside rolling ball property and the R i -inside rolling ball property and that

f (x) f 0 d(x, ∂S ) α , ∀x ∈ S .
Notice that the special case α = 0, known as "close to uniform" hypothesis, corresponds to the classical class of lower bounded densities on S .

Main Theoretical results

Hereafter, we provide explicit convergence rates that generalize to a dependent framework and to α 0 in Definition 2 the previous works of [START_REF] Aaron | Estimation of surface area[END_REF][START_REF] Casal | Set estimation under convexity type assumptions[END_REF] on the R-convex hull, obtained in the independent case and when α = 0. As a reference point, we first extend these previous results to the i.i.d. case but with α 0: Theorem 1. Let R i , R o and f 0 be positive constants and α 0. Let X n = {X 1 , . . . , X n } be an i.i.d. n-sample with density f ∈ M R o ,R i , f 0 ,α supported by S and R < R o . Thus, there exists a constant A(d, α, f 0 , R, R i ) such that for n large enough, one has with probability 1

d(∂C R (X n ), ∂S ) ε n , d(C R (X n ), S ) ε n , ∂C R (X n ) ≈ ∂S , C R (X n ) ≈ S , ||∂C R (X n )| d-1 -|∂S | d-1 | ε n , ||C R (X n )| d -|S | d | ε n , with ε n = A(d, α, f 0 , R, R i ) ln n n 2 d+1+2α
. Remark 3 (Case of negatively associated processes). In case of negatively associated process as in [START_REF] Roussas | Asymptotical normality of positively or negatively associated processes[END_REF] we obtain the same rates as in the i.i.d. case.

The two theorems below extend Theorem 1 to samples X n of a strictly stationary strong mixing or θ-weakly dependent sequence. Theorem 2 deals with exponential decay, and Theorem 3 focuses on the Riemannian decay of the dependence coefficients. Theorem 2. Let R i , R o and f 0 be positive constants and let α 0. Let X n = {X 1 , . . . , X n } be a n-sample of a strictly stationary process X = (X t ) t∈Z with marginal density f ∈ M R o ,R i , f 0 ,α supported by S , with R < R o . Assume that X is strongly mixing or θ-weakly dependent with an exponential decay rate of its sequence of dependence coefficients. Then, there exists a constant A(d, α, f 0 , R, R i , b) such that for large enough n, one has with probability 1

d(∂C R (X n ), ∂S ) ε n , d(C R (X n ), S ) ε n , ∂C R (X n ) ≈ ∂S , C R (X n ) ≈ S , ||∂C R (X n )| d-1 -|∂S | d-1 | ε n , ||C R (X n )| d -|S | d | ε n , with ε n = A(d, α, f 0 , R, R i , b) ln 2 n n 2 d+1+2α
. Theorem 3. Let R i , R o and f 0 be positive constants and α 0. Let X n = {X 1 , . . . , X n } be a n-sample of a strictly stationary process X = (X t ) t∈Z with marginal density f ∈ M R o ,R i , f 0 ,α supported by S , with R < R o . Assume that X is strongly mixing or θ-weakly dependent with Riemannian decay rates. Then, there exists b 0 such that for all b > b 0 and large enough n one has, with probability 1

d(∂C R (X n ), ∂S ) ε n , d(C R (X n ), S ) ε n ∂C R (X n ) ≈ ∂S , C R (X n ) ≈ S ||∂C R (X n )| d-1 -|∂S | d-1 | ε n , ||C R (X n )| d -|S | d | ε n , with ε n = ln a n n 1-γ 2 d+1+2α
. Explicit values of b 0 , a and γ are given by

1. b 0 = 1, λ = 3d + 1 + 2α d + 1 + 2α , a = b -2 -d b -λ and γ = λ + 1 λ + b
, in the strongly mixing case,

2. b 0 = 2, λ = 3d + 1 + 2α d + 1 + 2α , a = b/2 -2 -d b/2 -λ and γ = λ + 1 λ + b/2
, in the θ-weakly dependent case.

Theorem 2 highlights that in the exponential decay case, the estimation error achieves, up to an additional power of ln n, the same rate than in the independent setting whatever the dependence structure is (strong mixing or θweak dependence). In the exponential decay case, the dependence structure only impacts constants. Under Riemannian decays, Theorem 3, the loss in convergence rate with respect to the independent case is of the order of an additional power of n. Moreover, contrary to the exponential decay case, both the error and the loss depend on the dependence structure. Moreover, as in [START_REF] Rodríguez-Casal | A data-adaptive method for estimating density level sets under shape conditions[END_REF] our results highlight the different roles of the outside and inside radius R o and R i : in both cases, the tuning parameter R must be less than R o to achieve the convergence and the convergence rate depends on R i .

Level set estimation

We now focus on level set estimation. For a given t ∈ R, the level set L t and its associated level line t are defined as

L t = {z ∈ R d , f (z) t}, t = {z, f (z) = t}.
Let f n be a suitable density estimator of f . Thus, [START_REF] Rodríguez-Casal | A data-adaptive method for estimating density level sets under shape conditions[END_REF] introduced the following empirical level set estimator

L t,R = C R (X n ∩ {z, f (z) t}),
and studied its asymptotic properties in the i.i.d. case. We aim at extending convergence rates to our dependence setup.

Distributional background

When dealing with level set estimation, the distributional hypotheses are somehow different. Namely, the support of the distribution does no longer need to be compact since L t = {z, f (z) > t} is compact for all t > 0 (t = 0 is the support estimation framework). Moreover, the rate of decay of f near the boundary is no longer important. As a counterpart, we require that f ∈ C k for some k 2 which has two important consequences. Firstly, it allows the density estimator to converge with suitable rates. Secondly, it can be shown that for suitable values of t (see Definition 3 below), sets L t satisfy the inside and outside rolling ball property.

Definition 3 (Regular levels). The level t > 0 is a regular level if there exist ∆ t > 0 and m t > 0 such that L t-∆ t ⊂ S , and min

z∈L t-∆t \ Lt+∆t ∇ f (z) = m t > 0.
If t is a regular level and f is C k with k 2, then by Theorem 2 in [START_REF] Walther | Granulometric smoothing[END_REF], the level set L t naturally inherits of the inside and outside rolling ball property.

Proposition 6 (Corollary of Theorem 2 in [START_REF] Walther | Granulometric smoothing[END_REF]).

If f ∈ C 2 and sup z H f = f (2)
max < +∞ and if t is a regular level, then there exists δ t such that, for all t ∈ (t -δ t , t + δ t ), L t has the inside and outside rolling ball property for balls of radius m t / f (2) max .

Main Theoretical results

Hereafter, we establish the asymptotic behavior of L t,R under weak dependence assumptions and deduce asymptotics for its boundary and volume. By incorporating tools provided in [START_REF] Aaron | Estimation of surface area[END_REF], we also obtain topological guarantees and perimeter estimation rates. We show that the convergence rate can be decomposed as ε n + ε n , where ε n is a density estimation error and ε n is a set estimation error. The density estimation error depends on the dependence structure, the regularity of the density and the dimension d (see Section 2.2.3). We focus in this first section on the geometric part ε n . Some explicit rates taking into account all the parameters of the model are given in following section. Theorem 4. Let X n = {X 1 , . . . , X n } be a n-sample of a strictly stationary sequence of a strong mixing or θ-weak dependent sequence X with exponential decay rates and with marginal class C 2 density f on its support S . Assume that sup S ∇ f = f (1) max < +∞, sup S H f op = f (2) max < +∞. Let t > 0 be a regular level. Let R be a constant such that 0 < R < m t / f (2) max and define

X + n (t) = X n ∩ { f (z) t} and L t,R = C r (X + n (t)).
Then, with probability 1 and for n large enough, one has

d(∂ L t,R , ∂L t ) ε n + ε n , d( L t,R , L t ) ε n + ε n , ∂ L t,R ≈ ∂L t , L t,R ≈ L t , || L t,R | d -|L t | d | ε n + ε n , ||∂ L t,R | d-1 -|∂L t | d-1 | ε n + ε n , with ε n (ln 2 n/n) 2 d+1
.

We now focus on Riemmanian decays. As for the support estimation problem, Riemmanian decays degrade the convergence and the convergence rates precisely depend on the dependence structure.

Theorem 5. Let X n = {X 1 , . . . , X n } be a n-sample of a strictly stationary sequence of a strong mixing or θ-weak dependent sequence with Riemannian decay rates and with marginal class C 2 density f on its support S . Assume that (2) max and define

sup S ∇ f = f (1) max < +∞, sup S H f op = f (2) max < +∞. Let t > 0 be a regular level. Let R be a constant such that 0 < R < m t / f
X + n (t) = X n ∩ { f (z) t} and L t,R = C r (X + n (t))
. When b > b 0 , with probability 1 and for n large enough, one has d+1) , explicit values of b 0 , γ 1 and γ 2 are respectively:

d(∂ L t,R , ∂L t ) ε n + ε n , d( L t,R , L t ) ε n + ε n , ∂ L t,R ≈ ∂L t , L t,R ≈ L t , || L t,R | d -|L t | d | ε n + ε n , ||∂ L t,R | d-1 -|∂L t | d-1 | ε n + ε n , with ε n = (ln a n/n 1-γ ) 2/(
1. Strong mixing: b 0 = 1, a = b -2 -d b -λ , and γ = λ + 1 λ + b , with λ = 3d + 1 d + 1 . 2. θ-weak dependence: b 0 = 2, and a = 2 • 2 -d + b/2 b/2 -λ , and γ = λ + 1 λ + b/2 , with λ = 5d -1 2(d + 1
) .

Examples of explicit rates under exponential decays

In case of exponential decays, for small dimensions, d 3, the convergence rate is the density estimation rate (whatever the regularity of the density is). For larger dimensions the limiting rate is the set estimation rate when density is regular enough. More precisely, depending on the dependency model, the dimension and the regularity of the density. The rates are:

1. Under strong mixing (a) if d 3, then the convergence rate is limited by the density estimation step.

Namely for some a > 0: i. if k d + 3, then for all k ∈ (0, k), we have

ε n + ε n = O((ln a n/n) k 3d+6 ). ii. if k > d + 3, then ε n + ε n = O((ln a n/n) k d+2k ); (b) if d 4, i. when k min d + 3, 6 • d+2 d+1 , then for all k ∈ (0, k), we have ε n + ε n = O((ln a n/n) k 3d+6 ). ii. when k > min d + 3, 6 • d+2 d+1 , then we have ε n + ε n = O((ln a n/n) 2/(d+1)
). 2. Under θ-weak dependence then for some a > 0:

(a) if d 3, the convergence rate is limited by the density estimation step. Namely i. when k d + 3, then for all k ∈ (0, k), we have

ε n + ε n = O((ln a n/n) k 3d+6 ). ii. when k > d + 3, then ε n + ε n = O((ln a n/n) k d+2k ); (b) if d = 4, i. when k < 7, then for all k ∈ (0, k), we have ε n + ε n = O((ln a n/n) k 18 
). ii. when k = 7, we have ε n + ε n = O(ln a n/n) 7 19 ). iii. when k 8, then we have

ε n + ε n = O((ln a n/n) 2 5 ). (c) if d > 4, i. when k min d + 2, 6 • d+2 d+1 , then for all k ∈ (0, k), we have ε n + ε n = O((ln a n/n) k 3d+6 ) . ii. when k > min d + 2, 6 • d+2 d+1 , then we have ε n + ε n = O((ln a n/n) 2 d+1
).

Perspectives

If the data are i.i.d, there exists data-driven way to tune the geometric parameter R. When dealing with support estimation, in [START_REF] Rodríguez-Casal | Spatial distribution of invasive species: an extent of occurrence approach[END_REF] a method based on the maximal spacings is proposed. This approach is very difficult to adapt to the dependent case. Indeed we can not expect the maximal spacing statistics to have the same limit law if the data are dependent. An other approach based on reach estimation [START_REF] Cholaquidis | Universally consistent estimation of the reach[END_REF] should be more promising. When dealing with level set estimation, a generalization of the proposition in [START_REF] Rodríguez-Casal | A data-adaptive method for estimating density level sets under shape conditions[END_REF] may work since it only relies on a tricky splitting of the sample which could be done in even with dependent data. Set first k = [n/q] and t i = iq for 1 ≤ i ≤ k. We have Z i = 1 {X t i E} and we define

p k = E(Z 1 • • • Z k ), then p k = E(Z 1 × • • • × Z k-1 )E(Z k ) + cov(Z 1 × • • • × Z k-1 , Z k ).
The propositions will result from proving that cov(

Z 1 × • • • × Z k-1 , Z k
) can be bounded above by some E E (q) then applying a recursion on

p k ≤ (1 -p)p k-1 + E E (q).
Proof of Proposition 1. From heredity of strong mixing the sequence (Z t ) t is still strong mixing with mixing coefficients less than α(m) and the fact that

Z 1 × • • • × Z k-1 writes as the indicator function of 1≤i≤n/q (X t i E) implies |cov(Z 1 × • • • × Z k-1 , Z k )| ≤ α(q), we thus have p k ≤ (1 -p)p k-1 + α(q) hence a recursion yields p k ≤ (1 -p) k + α(q) p .
Indeed if the above relationship holds with k -1 then

p k ≤ (1 -p) p k-1 + α(q) p + α(q) ≤ (1 -p) k + α(q) p .
Proof of Proposition 2. Under θ-weak dependence we have by definition

|cov(Z 1 × • • • × Z k-1 , h(X k ))| ≤ θ(q)Lip (h)
for any Lipschitz function h and we specialize the function for the two cases considered in the Proposition.

1. Case E = B(x, r). Now as in the Lemma 4.1 page 68 of [START_REF] Dedecker | Weak dependence: With examples and applications[END_REF] we consider H - x,r,ε and

H + x,r,ε two Lipschitz approximations R d → R of 1 {u∈E} , with H - x,r,ε (u) ≤ 1 {u E} ≤ H + x,r,ε (u), then cov(Z 1 × • • • × Z k-1 , Z k ) ≤ E(Z 1 × • • • × Z k-1 H + x,r,ε (X k )) -E(Z 1 × • • • × Z k-1 )E(H - x,r,ε (X k )) ≤ cov(Z 1 × • • • × Z k-1 , H + x,r,ε (X k )) + E(H + x,r,ε (X k ) -H - x,r,ε (X k ))
Now we build such Lipschitz functions with Lip (H ± x,r,ε ) 1/ε. More precisely, we introduce intermediary functions:

m - r,ε (s) =              1, s < (r -ε) r -s ε , s ∈ [r -ε, r] 0, s > r and m + r,ε (s) =              1, s < r 1 - s -r ε , s ∈ [r, r + ε] 0, s > r + ε
Then the functions m ± r,ε are piecewise linear and satisfy Lip m ± r,ε = 1/ε. Now we define

H + x,r,ε (u) = m + r,ε ( u -x ) and H - x,r,ε (u) = m - r,ε ( u -x
), thus we get:

• H + x,r,ε (u) = 1 if u B(x, r) and H + x,r,ε (u) = 0 if u ∈ B(x, (r + ε)). • H - x,r,ε (u) = 1 if u B(x, (r -ε) + ) and H - x,r,ε (u) = 0 if u ∈ B(x, r). Those functions inherit Lipschitz property Lip (H ± x,r,ε ) = 1/ε. Moreover, because H + x,r,ε -H - x,
r,ε is bounded above by the indicator function of an annulus with radius r and thickness ε.

E H + x,r,ε (X k ) -H - x,r,ε (X k ) ≤ c • ω d (r + ε) d -((r -ε) + ) d ≤ c • ω d r d (1 + ε/r) d -((1 -ε/r) + ) d ≤ c • ω d 2 d+1 r d-1 ε for all ε r, since a binomial expansion entails (1 + x) d -(1 -x) d 2x d k=1 d k 2 d+1 x if x ∈ [0, 1]. Thus, setting A = cω d 2 d+1 , we derive for all ε r : cov(Z 1 • • • Z k-1 , Z k ) ≤ 1 ε θ(q) + A εr d-1
For the reverse inequality, we obtain analogously for all ε ∈ [0

, r] cov(Z 1 • • • Z k-1 , Z k ) ≥ -1 ε θ(q) -A εr d-1 Indeed cov(Z 1 × • • • × Z k-1 , Z k ) ≥ E(Z 1 × • • • × Z k-1 H - x,r,ε (X k )) -E(Z 1 • • • Z k-1 )EH + x,r,ε (X k ) ≥ cov(Z 1 × • • • × Z k-1 , H - x,r,ε (X k )) -E(H + x,r,ε (X k ) -H - x,r,ε (X k ))
and thus:

E E (q) min ε∈[0,r] θ(q) ε + A εr d-1 .
2. Case E = B(x, r x ) ∩ B(y, r y ) with r x + r yxy = .

Consider the two 2/ε-Lipschitz functions:

H + (u) = H + x,r x ,ε (u) ∧ H + y,r y ,ε (u) and H -(u) = H - x,r x ,ε (u) ∧ H - y,r y ,ε (u)
. By the concentration inequality (1), we have for some c > 0 :

E H + (X k ) -H -(X k ) ≤ c B(x, r x + ε) ∩ B(y, r y + ε) \ (B(x, r x -ε) ∩ B(y, r y -ε) d .
Thus according to Proposition 10 in Appendix A, if r x ∧ r y and ε

r x ∧ r y : E(H + (X k ) -H -(X k )) ≤
cV(r x , r y , , ε). As in case 1, this allows to conclude that cov(

Z 1 × • • • × Z k-1 , Z k ) ≤ 2 ε θ(q) + cV(r x , r y , , ε).
As in the end of the proof for case 1 we infer |cov(Z

1 × • • • × Z k-1 , Z k )| ≤ 2
ε θ(q) + cV(r x , r y , , ε), which concludes the proof of point 2. in Proposition 2.

The proof of Proposition 3 is straightforward and left to the reader.

Proofs of Propositions 4 and 5.

In the following we set

ε n = A n + B n with A n = sup x∈R d | f n (x) -E( f n (x))| and B n = sup x∈R d |E( f n (x)) -f (x)
|. Propositions 4 and 5 are direct corollaries of Propositions 7 and 8 below. Proposition 7 gives a control of B n , while item 1 and item 2 of Proposition 8 give a control of A n in the geometric and Riemannian decay cases respectively. Proposition 7. Let X n be a sample from a strictly stationary sequence X with marginal density f and f n be defined by [START_REF] Arias-Castro | Minimax estimation of the volume of a set with smooth boundary[END_REF], with h n → 0 and nh d n → ∞ as n goes to ∞. Assume that (K1), (M1) and (K2) hold for some k 2. Thus,

B n = O(h k n )
Proposition 8. Let X n be a sample from a strictly stationary sequence X and f n be defined by (5).

1. Assume that (K1), (M2), (M3), (M4) and (M5) hold and that one of the conditions below is fulfilled:

(A1) X is strong mixing with α(q) = O(b -q ) for some b > 1 and h n = O       ln n n β       for some β < 1/(3d + 6). or (T1) X is θ-weakly dependent with θ(q) = O(b -q ) for some b > 1 and h n = O       ln n n β       for some β < 1/(3d + 4). Then A n = O a.s.         ln n nh d n         .
2. Assume that (K1), (M2), (M3), (M4), (M5) and (K2) hold for some k 2 and that one of the conditions below is fulfilled:

(A2) X is strongly mixing with α(m) = O(m -b ) and h n = O       ln n n 1-γ β       for some 0 < β < 1/d, some γ > γ 0 with γ 0 = d + 2 -βd(d -2) q -βd(d -2)
and some q > d + 2 and b > max ((2d + 3)/d, q -1) .

(T2) X is θ-weakly dependent with θ(m) = O(m -b ) and h n = O       ln n n 1-γ β       for some 0 < β < 1/d, some γ > γ 0 = d + 2 -βd(d -2) q -βd(d -2)
and some even integer q > d + 2 and b > max(2(d + 1)/d, 3(q -1)).

Then

A n = O a.s.         ln n n 1-γ h d n         .
Remark 4. In the literature, classical results assume in place of (M1) and (K2) the following assumptions to control the bias term (see e.g. Proposition 3.3.1. in [START_REF] Doukhan | Stochastic models for time series[END_REF] extended to the multidimensional case):

• f belongs to the set of Hölder ρ-regular functions

C ρ = { f : f is ρ -differentiable, ∃ L > 0/, ∀(x, y) ∈ S , | f ρ (y) -f ( ρ ) (x)| ≤ L|y -x| c },
for some 0 < c 1 where ρ = ρ + c 2 and S is any compact set of R d .

• K is a kernel of order ρ.

In this case B n = O(h ρ n ). These assumptions are somehow more restrictive than (M1) and (K2). Indeed, if f ∈ C k and f (k) is c-Hölder then f ∈ C k+c but the converse does not seem to hold even if c = 1 and for an integer k, C k C k .

Proof of Proposition 4. Let us prove (A1) (the case (T1) can be handled in the same way). By Proposition 7 and item 1 of Proposition 8,

ε n = O a.s.         ln n n βk + ln n n 1-βd 2         ,
with β < 1/(3d + 6).

• If k > d + 3, thus 1/(2k + d) < 1/(3d + 6
) and an optimal choice for

β is β = 1/(2k + d) so that ε n = O a.s.         ln n n k 2k+d         . • If k d + 3, thus 1/(2k + d) ≥ 1/(3d + 6) and ε n = O a.s.        ln n n βk      
 and the result is obtained by setting β = (1 -γ)/(3d + 6) for some γ ∈ (0, 1).

Proof of Proposition 5. To prove item (A2) of Proposition 5 for any b > max((2d + 3)/d, d + 1), set q = b + 1t for a t ∈ (0, bd -1) and then apply item (A2) of Proposition 8 and Proposition 7 to obtain for all 0 < β < 1/d :

ε n = O a.s.         ln n n 1-γ βk + ln n n 1-γ 1-βd 2         ,
for all γ > d+2-βd(d-2) b+1-t-βd(d-2) . then choose β = 1 d+2k and let t → 0 to end the proof. To prove item (T2) of Proposition 5 first notice that, to find an even number q larger than d + 2 and smaller than b/3 + 1 we need the condition b > 3(d + 3). Assume now that b > 3(d + 3) and introduce q * = 2 b+3 6 the largest even number smaller than b/3 + 1 then apply item (T2) of Proposition 8 and Proposition 7 to obtain, for all 0 < β < 1/d

ε n = O a.s.         ln n n 1-γ βk + ln n n 1-γ 1-βd 2         , for all γ > d + 2 -βd(d -2) q * -βd(d -2)
. then choose β = 1 d+2k to achieve the proof.

Proof of Proposition 7.

E( f n (x)) = R d K(u) f (x -hu)du. Since f ∈ C k , k 2 and f (k)
∞ < M by (M1), we can use an order k Taylor-Lagrange expansion of f around x and using the fact that K is an order (k -1) kernel by (K2),

|E( f n (x)) -f (x))| ≤ M h k n k! R d u k |K(u)|du. Therefore, sup x∈R d |E( f n (x)) -f (x)| = O h k n .
Notice that the result still hold when k = 1 as soon as

R d u |K(u)|du 0.
Proof of Proposition 8. We first start by providing in each case (item 1 and 2 of the proposition), a bound for A n on a compact set of R d of the form sup

x n ν | f n (x) -E( f n (x))| = O a.s. λ(n) √ nh d , (6) 
with ν > 2/c (c defined in (M5)), for some appropriate

λ(n) → ∞ such that λ(n) = o( √ nh d ).
Then, to state the convergence on the whole set R d , we have to show that

L n = sup x n ν √ nh d λ(n) | f n (x) -E( f n (x))| → 0 (7)
Since K has a compact support, say included in the ball

B d (0, C) of R d then if for each i ≤ n, X i -x > Ch n we have L n = sup x >n ν E( f n (x)). Now since h n ≤ 1, |E( f n (x))| = | R d K(u) f (x + uh n ) du| ≤ sup x-y ≤1 f (y),
thus beeping in mind that n ν -1 ≥ n ν /2 for n large enough, and now: sup

x >n ν |E( f n (x))| ≤ sup y ≥n ν -1 f (y)
which tends to zero by (M4). To prove that L n converges a.s. to 0, we have to assume (M5). We thus have

∞ n=1 P max 1 t n X t > n ν -Ch n ∞ n=1 1 ∧ E X 1 c + • • • + E X n c (n ν -Ch n ) c < ∞,
for ν such that ν > 2/c so that the series converges by (M5). This with the Borel-Cantelli lemma entails that sup x n ν | f n (x)| tends to 0 as n goes to infinity a.s. as fast as needed. Indeed X tx > Ch n a.s. uniformly over 1 ≤ i ≤ n and x > n ν and thus the kernel vanishes.

Let us now prove [START_REF] Baldin | The wrapping hull and a unified framework for estimating the volume of a body[END_REF]. Set for all x ∈ R d ,

G n (x) = n i=1 Y i (x) = 1 nh d n i=1 U i (x), with U i (x) = K x -X i h n -EK x -X i h n . (8) 
To prove (6), we use the chaining argument of [START_REF] Liebscher | Strong convergence of sums of α-mixing random variables with applications to density estimation[END_REF]. Let I = [-M, M] d be a cube of R d . Since I is compact, it can be covered by δ d cubes I 1 , . . . , I δ d with centers x 1 , . . . , x δ d and sides of length 2M/δ, where δ is such that δh/M → ∞.

Here, notice that h, δ and M are allowed to vary with n but it is omitted in the notation to make the reading easier.

Setting G n (x) = f n (x) -E( f n (x)) we have for all j | G n (x)| ≤ | f n (x) -f n (x j )| + | f n (x j ) -E f n (x j )| + |E f n (x j ) -E f n (x)|.
Under (K1), [START_REF] Liebscher | Strong convergence of sums of α-mixing random variables with applications to density estimation[END_REF] proves that for some positive constant L and for all x ∈ I j ,

K x -X i h -K x j -X i h 2MLip(K) δh 1 x j -X i Lh .
Using this fact it is easy to deduce that there exists another kernel density estimator f for f , obtained by replacing K in (5) by the piecewise linear and compactly supported kernel K defined by K(x) = 1 if x L and K(x) = 0 otherwise, such that for some n n 0 (see [START_REF] Liebscher | Strong convergence of sums of α-mixing random variables with applications to density estimation[END_REF] p 78), sup

x∈I j | G n (x)| ≤ | G n (x j )| + C 1 M hδ | G n (x j )| + |E f n (x j )| with C 1 = 2Lip(K) and G n (x) = f n (x) -E( f n (x)). Therefore, sup x M d | G n (x)| ≤ max 1 j δ d | G n (x j )| + C 1 M hδ max 1 j δ d | G n (x j )| + max 1 j δ d |E f n (x j )| ,
so that we can write as soon as sup x M d |E f n (x)| thδ/3MC 1 (which is true when thδ/M > C 2 for some C 2 > 0),

P        sup x M d | G n (x)| > t        ≤ P max 1 j δ d | G n (x j )| > t 3 + P max 1 j δ d | G n (x j )| > thδ 3MC 1 ≤ δ d sup x M d P | G n (x)| > t 3 + P | G n (x)| > thδ 3MC 1 (9) 
We then set

t = C λ(n) √ nh d for some appropriate λ(n) → ∞ such that λ(n) = o( √ nh d
) and M = n ν/d and have to control each term at the right hand side of ( 9). If the right hand side is the general term of a convergent series then using Borel-Cantelli lemma we obtain [START_REF] Baldin | The wrapping hull and a unified framework for estimating the volume of a body[END_REF].

Therefore, the main goal of the proof of Proposition 8 consists now of finding in each case (A1), (T1), (A2), and (T2) sequences λ(n) and δ(n) such that the right hand side of ( 9) is the general term of a convergent series. We shall need the following Lemma 6. Let X be strictly stationary sequence with density f and kernel estimator f n defined by [START_REF] Arias-Castro | Minimax estimation of the volume of a set with smooth boundary[END_REF]. Assume that (M3) holds and that (K1) holds with h n → 0 and nh d n → ∞, and that we have one of the following conditions (A1) X is strongly mixing with α(m) = O(b -m ) for some b > 1.

(T1) X is θ-weakly dependent with θ(m) = O(b -m ) for some b > 1. (A2) X is strongly mixing with α(m) = O(m -b ) for some b > 2 + 3/d. (T2) X is θ-weakly dependent with θ(m) = O(m -b ) for some b > 2 + 2/d. Thus one has σ 2 n (x) = var f n (x) = 1 nh d f (x) K 2 (u)du + o 1 nh d .
Proof of item 1 in Proposition 8. In cases of a geometric decay rate of the dependence coefficients, we may use a Bernstein's type inequality for G n (x) and G n (x) in order to bound the right hand side of ( 9). Namely we will use Theorem 1 and Proposition 8 of [START_REF] Doukhan | Probability and moment inequalities for sums of weakly dependent random variables, with applications[END_REF]. Let us recall them below in our special setting Lemma 7 (Proposition 8 in [START_REF] Doukhan | Probability and moment inequalities for sums of weakly dependent random variables, with applications[END_REF]). Let Y n be a n-sample of a R-valued strictly stationary sequence Y such that E(Y i ) = 0 and Y ∞ H in probability. Assume that there exists some 0 < c < 1 and some L > 0 such that for all utuples (s 1 , ..., s u ) and all v-tuples (t 1 , ..., t v ) with 1 s 1 . . .

s u t 1 . . . t v n, cov Y s 1 . . . Y s u , Y t 1 . . . Y t v H u+v-2 L 2 vc (t 1 -s u ) . (10) 
Then, for all t > 0,

P        n i=1 Y i > t        exp       - 1 2 t 2 σ 2 n + G 1/3 n t 5/3       , with σ 2 n = var        n i=1 Y i        , G n ∼ (L ∨ H) nL 2 σ 2 n ∨ 1 .
Now, let Y i ≡ Y i (x) be defined by [START_REF] Cholaquidis | Set estimation from reflected brownian motion[END_REF]. Notice that Y i (x) = F n (X i ), where F n is a bounded Lipschitz function with 

Y i (x) ∞ H = F n ∞ 2 K ∞ /
P        | G n | > C ln n nh d        n -C 2 /2
as soon as u n = nh d G 1/3 n t 5/3 → 0, which is true as soon as β < 1/(3d + 6) with h n = O((ln n/n) β ).

• θ-weak dependent case. 

If X is θ-weakly dependent with θ(m) = O(b -m ), b > 1,
P        | G n | > C ln n nh d        n -C 2 /18
as soon as u n = nh d G 1/3 n t 5/3 → 0, which is true as soon as β < 1/(3d + 4) with h n = O((ln n/n) β ).

Therefore, we obtain in both cases a bound for the first term at the right hand side of ( 9). The second term can be handled in the same way, with identical values of L 2 , H and G n setting δ = MC 1 /h ε , ε > 1.

Finally, one obtains ( 9) by setting M = n ν/d ,

P       sup x n ν | G n (x)| > t       δ d n -D = An ν+εβd-D (ln n) -βεd ,
for some constant A > 0 and some conveniently chosen C in the expression of t such that D > 1 + ν + βεd so that sup

x n ν | f n (x) -E( f n (x))| = O a.s.         ln n nh d n         ,
using Borel-Cantelli. It remains to show that (11) holds, which is true by Lemma 6 under (K1), (M2) and (M3).

Proof of Proposition 8, item 2. Our proof relies on the following lemma.

Lemma 8. Let X n be a n-sample of a strictly stationary sequence X and f n be defined by [START_REF] Arias-Castro | Minimax estimation of the volume of a set with smooth boundary[END_REF].

(i) Assume (K1) with h n → 0 and nh d n → ∞. Assume moreover that there exists some c > 0 and some q 2 such that for n > n 0 sup

x∈R d f n (x) -E( f n (x)) q c nh d n . ( 12 
)
Then, for every sequence (λ n ) such that λ n → ∞ and λ n = O nh d n as n tends to ∞ and every ν > 0 satisfying

∞ n=1        nh d n h n        d n ν λ q n < ∞, (13) 
sup

x n ν | f n (x) -E( f n (x))| = O a.s.        λ n nh d n        .
(ii) Assume that (12) holds and

h n = O       ln n n 1-γ β     
 for some 0 < β < 1/d and 0 < γ < 1. Then, under (K1) one has

sup x n ν | f n (x) -E( f n (x))| = O a.s.         ln n n 1-γ h d n        
as soon as γ, β and q are such that γq

+ (1 -γ)βd(d -2) > d + 2. ( 14 
)
In the following lemma, we give the conditions under which [START_REF] Dedecker | Weak dependence: With examples and applications[END_REF] holds in Riemmaniann decay cases (A2) and (T2).

The point (ii) of this lemma together with 8 yields item 2 of Proposition 8.

Lemma 9. Let X n be a n-sample of a strictly stationary sequence X and f n be defined by [START_REF] Arias-Castro | Minimax estimation of the volume of a set with smooth boundary[END_REF].

(A2) Assume that X is α-mixing with α(m) = o(m -b
) for some b > 0. Assume moreover that (M2), (M3), (K1) and (K2) hold for some k 2, with h n → 0 and nh d n → ∞. Thus (12) obtains for every q > 2 and b > max(2 + 3/d, q -1).

(T2) Assume that X is θ-weakly dependent with θ(m) = o(m -b ) for some b > 0. Assume moreover that (M2), (M3) and (K1) hold, with h n → 0 and nh d n → ∞. Thus (12) obtains for every even q 2 and b > max(2 + 2/d, 3(q -1)).

Proof of Lemma 6. Let fn be the kernel estimator analogue to f n but built on independent copies of X 0 . A well known result (see for instance [START_REF] Rao | Nonparametric functional estimation[END_REF]) is

var fn (x) = 1 nh d f (x) K 2 (u)du + o 1 nh d .
We have var

f n (x) = var fn (x) + 2 n 2 h 2d 1 i j n cov(U i (x), U j (x))|.
So, by stationarity of the process (U i (x)),

∆ n (x) = |var f n (x) -var fn (x)| 2 nh 2d n-1 m=1 |cov(U 0 (x), U m (x))|.
• On the one hand,

|cov(U 0 (x), U m (x))| = h 2d (K (s) -E(K(X 0 ))) (K (t) -E(K(X 0 ))) f 0,m (x -hs, x -ht)dsdt Ch 2d ,

by (K1) and (M3).

• On the other hand one has the property [START_REF] Coblenz | Nonparametric estimation of multivariate quantiles[END_REF] with u = v = 1, s ut 1 = m, M and L 2 depending on the dependence structure of X. Namely,

• If X is θ-weakly dependent then by ( 10)

|cov(U 0 (x), U m (x))| 2 K ∞ LipK h • θ(m).
Therefore,

1 nh 2d |cov(U 0 (x), U m (x))| D nh d θ(m) h d+1 ∧ h d D nh d h d-α(2d+1) θ(m) α ,
for all 0 α 1 by relation (12.18) of [START_REF] Doukhan | Stochastic models for time series[END_REF] so that setting α = d/(2d + 1) ∆ n tends to zero as soon as

θ(m) d 2d+1 < ∞. In case θ(m) ∼ m -b , this holds if b > 2 + 2 d .
In case of geometric decay rates θ(m) ∼ b -m , b > 1, this is always true.

• If X is strongly mixing, we have by ( 10)

|cov(U 0 (x), U m (x))| (LipK) 2 h 2 α(m), so 1 nh 2d |cov(U 0 (x), U m (x))| D nh d α(m) h d+2 ∧ h d D nh d h d-α(2d+2) α(m) α
for all 0 α 1 so that setting α = d/(2d + 2) ∆ n tends to zero as soon as Proof of Lemma 8.

• Proof of (i). Let λ(n) → ∞ such that λ(n) = o( nh d n ).
We deduce from ( 12) by Markov inequality that there exists some C 3 > 0 such that

P        sup x M d n | G n (x)| > λ(n) nh d n        C 3 δ d λ(n) q
as soon as there is some [START_REF] Cholaquidis | Universally consistent estimation of the reach[END_REF]. One has

C 4 > 0 such that δh n C 4 M n nh d n . For that task, set t = λ(n) nh d n in ( 
P        | G n (x)| > λ(n) 3 nh d n        3 q λ(n) q sup x∈R d nh d n G n (x) q q C 5 λ(n) q
with C 5 = (3c) q . Moreover, G n (x) q is uniformly bounded so as soon as

δh n C 4 M nh d n , P        | G n (x)| > λ(n)h n δ 3CM n nh d n        C 5 λ(n) q , with C 5 = (3C 1 C 4 ) -1 . Set δ = M nh d n h n .
We have

sup x M d n | f n (x) -E( f n (x))| = O a.s. λ(n) √ nh d . (15) 
This holds from Borel-Cantelli lemma as soon as

n        M n nh d n h n        d 1 λ(n) q < ∞. (16) 
The result of Proposition 8 obtains setting M n = n ν/d .

• Proof of (ii). With the conditions on h n we have h n → 0 and

nh d n → ∞. Set λ(n) = √ n γ ln n. Since 0 < γ < 1 and 0 < β < 1/d, we have λ(n) → ∞ and λ(n)/ √ nh d → 0.
To achieve the proof we need to ensure that we can find ν > 0 such that ( 16) converges. Set u n the general term of [START_REF] Doukhan | Stochastic models for time series[END_REF]. With the assumptions on h n and λ(n),

u n = O 1 n c log n a , with 2c = γq -2ν -d + βd(1 -γ)(d -2
) and a = (q -βd(d -2))/2. The series (u n ) n is of the Bertrand type and converges if and only if c > 1 or c = 1 and a > 0. One thus need that there exists some ν > 0 such that 2ν ε with 0

< ε = γq -2 -d + βd(1 -γ)(d -2) which holds as soon as γq -2 -d + βd(1 -γ)(d -2) > 0.
Proof of Lemma 9.

• Proof of (A2). In the strong mixing case we apply [START_REF] Rio | Théorie asymptotique des processus aléatoires faiblement dépendants[END_REF]'s theorem 6.3 to the sequence U(x) = (U i (x)) 1 i n , for a given x ∈ R d . Notice that strong mixing still holds with α U(x) (m) α(m) from the heredity properties of strong-mixing. Set

S n (x) = n i=1 U i (x) = nh d G n (x).
For all q > 2, U i (x) admits finite moments with order q since U i (x) 2 K ∞ . Thus, applying Theorem 6.3 yields for all n > n 0 , S n (x) q q as n (x) q + nc

1 0 α -1 (u) q-1 Q q x (u)du,
where a and c are positive constants that only depend on q, α -1 (u) = n>1 1 u<α(n) , Q x is the generalized inverse of the tail function t → P(|U 0 (x)| > t) and

s 2 n (x) = i j |cov(U i (x), U j (x))|.
Using [START_REF] Rio | Théorie asymptotique des processus aléatoires faiblement dépendants[END_REF]'s inequality C.3 on page 157 for some r > q there exists c > 0 that only depends on q, r and K ∞ such that

S n (x) q q = nh d n q G n (x) q q as n (x) q + c n U 0 (x) q r         i 0 (i + 1) qr-2r+q r-q α(i)         1-q/r , as n (x) q + c nh dq/r n         i 0 (i + 1) qr-2r+q r-q α(i)         1-q/r
.

Using Lemma 6 and setting h n = O((ln n/n 1-γ ) β ), we obtain ( 12) under (K2) for some k > 1 as soon as (M2) and the following conditions are fulfilled for some r > q:

(1) 1) is fulfilled for all r > q. On the other hand, condition (2) is fulfilled as soon as b > r(q -1) rq = u(r).

h dq(1/r-1/2) n n q/2-1 → 0, as n → ∞. ( 2 
) i 0 (i + 1) qr-2r+q r-q α(i) < ∞. (3) b > 2 + 3/d. If q(1 -(1 -γ)βd) 2, Condition (
Since u is decreasing with lim r→∞ u(r) = q -1, we can take b > max(q -1, 2 + 3/d) to meet the conditions (1) to (3).

If q(1 -(1 -γ)βd) < 2, obvious calculations entails that we have to choose r such that

q < r r 1 = 2(1 -γ)βdq 2 -q(1 -(1 -γ)βd) .
In this case, one can choose

b > u(r 1 ) = 2(1 -γ)βd(q -1) (q -2)(1 -(1 -γ)βd) ), to meet (2). Since q(1 -βd) < 2, b > u(r 1 ) > q -1 so that b > max(q -1, 2 + 3/d) meet the conditions (1) to (3). 
Finally, [START_REF] Dedecker | Weak dependence: With examples and applications[END_REF] obtains as soon as b > max(q -1, 2 + 3/d).

• Proof of (T2).

In the θ-weakly dependent case, it straightforwardly follows from [START_REF] Doukhan | Functional estimation of a density under a new weak dependence condition[END_REF]'s theorem 1: under the conditions (M2), (M3), (K1) with h n → 0 and nh d n → ∞ (12) obtains for any even q 2 as soon as

σ 2 n = O(1/nh d n ) and m 0 (m + 1) q-2 θ(m) 1/3 < ∞.
When θ(m) = o(m -b ), the first condition implies b > 2 + 2/d by Lemma 6 and the second obtains with b > 3(q -1).

Preliminary results on the R-convex hull

In this section, we give some technical tools on the R-convex hull and the rolling ball condition. That will allow us to derive asymptotic properties of the R-convex hull estimator for the support S of the density of X n , as well as that of its related quantities. In this preliminary section we mostly only present rewordings of results obtained in [START_REF] Walther | Granulometric smoothing[END_REF], [START_REF] Casal | Set estimation under convexity type assumptions[END_REF] and [START_REF] Aaron | Estimation of surface area[END_REF]. Thus proofs might be either left for the reader -as for Properties 1 and 2-, or only sketched -as for Corollary 1. Rewordings are made to have a self content paper, also we aim at presenting deterministic results that emphasize the difference between dependent and independent settings. For a set S ∈ R d , recall that its R-convex hull C R (S ) is defined as:

C R (S ) =           B(x,R)∩S =∅ B(x, R)           c .
Hereafter, we recall some obvious properties of the R-convex hull: Sets satisfying the inside and outside rolling ball properties have nice properties listed in [START_REF] Guenther | On a generalization of blaschke's rolling theorem and the smoothing of surfaces[END_REF] which we recall in the Property 2 and are illustrated in Figure 1. Following the arguments of [START_REF] Casal | Set estimation under convexity type assumptions[END_REF], we can prove the following result which will be a key point for the study of the asymptotic properties of the R-convex hull estimator. Depending on the parameters of the model f 0 , α, d, R i and on the parameter R such that, we prove the existence of a constant C such that

Property 1. Let C R (S ) c be the complement of C R (S ) on R d . One has C R (S ) c = x ∈ R d , x ∈ B(O, R) and S ∩ B(O, R) = ∅ so that
P n (ln n) d ε -d n            exp -C n q ε n - ε n ln n d+1+2α 2 + E R-εn ln n (q) C ε n -ε n ln n d+1+2α 2            . ( 17 
)
We also get

P(d(X n , S ) r n ) ln n r n d           exp -C n q r n - r n ln n d+α + E r n -rn ln n (q) r n -r n ln n d+α           . ( 18 
)
Proof of lemma 10.

Let us cover S ⊕ (R -ε n )B with ν n C d ( diam(S )+R o ε n
ln n) d deterministic balls of radius ε n / ln n and centered at x i ∈ S ⊕ (R -ε n )B we have by Propositions 1 or 2 and by the triangular inequality:

P n ν n i=1 P B(x i , R - ε n ln n ) ∩ X n = ∅ ν n i=1         (1 -p i ) n q + E R-εn ln n (q) p i         where p i = P(X 1 ∈ B(x i , R -ε n ln n ))
. By Proposition 11 it comes that

p i f 0 C d,α min((R -ε n ln n ), R i ) 2 d-1 2 min ε n - ε n ln n , min((R -ε n ln n ), R i ) 2 d+1+2α 2
Thus as ε n converges to 0 as n → ∞, then for any

C < f 0 C d,α min(R,R i ) 2 d-1
2 if n is large enough. We finally obtain:

P n (ln n) d ε -d n            1 -C ε n - ε n ln n d+1+2α 2 n q + E R-εn ln n (q) C ε n -ε n ln n d+1+2α 2           
, and thus

P n (ln n) d ε -d n            exp -C n q ε n - ε n ln n d+1+2α 2 + E R-εn ln n (q) C ε n -ε n ln n d+1+2α 2           
, which concludes the proof of equation [START_REF] Doukhan | A new weak dependence condition and applications to moment inequalities[END_REF]. Suppose now that d(X n , S ) r n with r n R i , then there exists x ∈ S with B(x, r n ) ∩ X n = ∅. Define Ω as : Introduce:

Ω =        x, if d(x, ∂S ) 1/3, π ∂S (x) -2r n 3 η π ∂S (x) , if d(x, ∂S ) < 1/3.
P(d(X n , S ) r n ) = P ∃Ω ∈ S 2r n 3 B, B Ω, r n 3 ∩ X n = ∅ .
By the triangular inequality

P(d(X n , S ) r n ) N i=1 P B y i , r n 3 1 - 1 ln n ∩ X n = ∅ .
Let now q i = P B y i , r n 3 1 -1 ln n ∩ X n = ∅ by proposition 11 we have q i f 0 C d,α r n 6 1 -1 ln n d+α and thus, setting

C = f 0 C d,α /3 d+α P(d(X n , S ) r n ) ln n r n d           exp -C n q r n - r n ln n d+α + E r n -rn ln n (q) r n -r n ln n d+α           . ( 19 
)
6.4. Proof for theorems on support estimation 6.4.1. Proof under independence First, let us focus on the i.i.d. (or negatively associated) case, which entails, for all q ∈ N * and R ∈ R, that E R (q) = 0.

Proof of Theorem 1. Apply Lemma 10 and equation ( 17) with q = 1 and

ε n = 3 C ln n n 2 d+1+2α , then P n ln d n • n -1-2 1+2α
d+1+2α +o(1) thus n P n < +∞. Also by equation ( 18) with q = 1 and r n = 3d+2α C (d+α) ln n n 1 d+α we obtain P(d(X n , S ) r n ) ln d n • n -2+o (1) . From the Borel-Cantelli lemma and the Corollary 1, we end the proof of Theorem 1.

When independence is not assumed, the proofs are similar. We only need to take into account the E term and to find suitable sequences ε n and q n in order to get convergent series. Then we apply the Borel-Cantelli lemma and the Corollary 1.

Proof under exponential decays.

First we deal with exponential decays i.e. α(q) or θ(q) is bounded above by Bb q with 0 < b < 1 Proof of Theorem 2.

1. Strong mixing. For all R ∈ R, we have E R (q) Bb q .

(a) Choose ε n = (γ(ln 2 n/n)

2 d+1+2α with γ > γ ed 0 = 2(2d + 1 + 2α)(3d + 1 + 2α) (d + 1 + 2α) 2 C ln(b -1 ) , let write γ = γ ed 0 (1 + u). Set q n = β 1 ln n, β 1 = 2(2d + 1 + 2α) (d + 1 + 2α) ln(b -1 ) 1 + u 2 , we finally introduce v = u 2 + u
. By equation ( 17)

P n ln d n • n 2d d+1+2α         exp         - Cγ ln n β 1 1 - 1 ln n d+1+2α 2         + n 1+β 1 ln(b) ln 2 n         .
Because d 1 and α 0 then d+1+2α 2 1 we have 1 -

1 ln n d+1+2α 2 1 -d+1+2α 2 1
ln n , and thus 

P n ln d n n -1-3d+1+2α d+1+2α v+o(1) + n -1-2d+1+2α d+1+2α u , (20) 
a) Now E R-ε n / ln n (q n ) = min t∈[0,R-ε n / ln n] Bb qn t + cω d 2 d tR d-1 . For any choice of sequence ε n → 0, for n large enough, t n = √ b q n is in [0, R -ε n / ln n] thus E R-ε n / ln n (q n ) B exp(-q n ln(b -1 )/ 2 
)) thus as previously any ε n = (γ ln 2 n/n) 2 d+1+2α with γ > 2γ ed 0 provides a sequence with n P n < +∞.

(b) Choose again r n = c (ln n) 2 n 1 d+α . Here also the choice of t n = √ b q n is in [0, r nr n / ln n] for n large enough. Thus E r n -r n / ln n (q n ) B expq n ln(b -1 )/2) and similar to 1.(b) we obtain n P(d(X n , S ) r n ) < +∞ and r n → 0 for a suitable constant c.

To conclude, in all the cases we found

ε n = O (ln n) 2 n 2 2+1+α
such that n P n < +∞, and sequences r n → 0 with n P(d(X n , S ) r n ) < +∞, thus the Borel-Cantelli lemma and the Corollary 1 imply the result. Now we finish this section by the proof of Theorem 3 which dedicates to the Riemannian decays cases.

Proof under Riemannian decays.

Proof of Theorem 3. According to the dependence assumption we check that 1. Under strong mixing:

E R (q n ) Bq -b n for a b > 1. Set λ = 3d+1+2α d+1+2α , a = b-2-d b-λ and γ = λ+1 λ+b . Choose ε n = A (ln n) a n 1-γ 2 d+1+2α and q n = n γ (ln n) a-1 .
From Equation ( 17) it comes that

P n ln n ε n d n -AC + 1 n(ln n) 2 • So that, for A large enough n P n < +∞. Similarly, Set λ = 2d+α d+α , a = b-2-d b-λ and γ = λ +1 λ +b , choose r n = A (ln n) a n 1-γ 1 d+α and q n = n γ /(ln n) a-1 . From equation (17) it comes that P(d H (X n , S ) r n ) ln n ε n d n -A C + 1 n(ln n) 2 •
that, again allows to obtain summable series since A is large enough.

Under

θ-weak dependence. Now E R-ε n / ln n (q n ) = min t∈[0,R-ε n / ln n] Bq -b n t + cω d 2 d tR d-1 . For any choice of se- quence ε n → 0, for n large enough, t n = q -b n is in [0, R -ε n / ln n] thus E R-ε n / ln n (q n ) B q -b/2
n and we can use the sequences exhibited in the strong mixing for changing b into b/2.

Similarly, set λ

= 2d + α d + α , a = b/2 -2 -d b -λ and γ = λ + 1 λ + b/2 , choose r n = A (ln n) a n 1-γ 1 d+α , q n = n γ (ln n) a-1 , and t n = q -b n . Check that t n < ε n From Equation (17) it comes that P(d H (X n , S ) r n ) ln n ε n d n -A C + 1 n(ln n) 2 •
that, again allows to obtain summable series since A is large enough.

Proofs concerning level sets

Proof of Theorem 4. Let R < m t / f (2) max be a positive constant, we first prove that, for n large enough:

L t,R ⊂ L t ⊕ 2ε n m t B. (21) 
First a simple chain of inclusions entails L

t,R = C R ({ f n (X i ) t}) ⊂ C R ({X i , f (X i ) t -ε n }) ⊂ C R (L t-ε n ).
In the sequel, we consider n large enough to have ε n max(∆ t , tt 0 ) so that Proposition 6 ensures that

C R (L t-ε n ) = L t-ε n , thus we have L t,R ⊂ L t-ε n . Now for all z ∈ L t-ε n , introduce z = z + 2 ε n m t ∇ f (z ) ∇ f (z ) we have that f (z) f (z ) + 2 ε n m t ∇ f (z ) -2 ε n m t 2 f (2) max t + ε n 1 - 2ε n m 2 t f (2) max , thus, since n large enough to also have ε n < m 2 t 2 f (2) max , we have f (z) t, thus L t-ε n ⊂ L t ⊕ 2ε n
m t B which ends the proof of inclusion [START_REF] Getz | A local nearest-neighbor convex-hull construction of home ranges and utilization distributions[END_REF].

We now aim at proving that, with probability one for n large enough

L t ⊂ L t,R ⊕ ε n + 2 ε n m t B. (22) 
Notice that 

X n ∩L t+ε n ⊂ X + n (t) thus C R (X n ∩L t+ε n ) ⊂ L t,
) R -ε n . We set now P n = P ∃O ∈ L t+ε n ⊕ (R -ε n )B, B(O, r) ∩ L t+ε n ∩ X n = ∅ . Cover L t+ε n ⊕ (r -ε n )B with
P B x i , R - ε n ln n ∩ L t+ε n ∩ X n = ∅ .
Now by proposition 6, L t+ε n admits both the (m t / f (2) max )-inside and outside rolling ball properties. Thus if we define x * i = π ∂L t+ε n (x i ) and

y i = x * i + m t f (2) max x * i -x i x *
i -x i , then we have B(y i , m t / f (2) max ) ⊂ L t+ε n and x iy i R -ε n + m t / f (2) max . Now with E i = B(x i , R -ε n / ln n) ∩ B(y i , m t / f (2) max ), we obtain

P n ν n i=1
(1p i ) n q + E E i (q) p i , with p i = P(X 1 ∈ E i ).

By proposition 11, we derive, with the choices f 0 = t, α = 0 :

p i tC d,0             min (R -ε n ln n ), m t f (2) max 2             d-1 2              min             ε n - ε n ln n , min (R -ε n ln n ), m t f (2) max 2                          d+1 2
.

Thus as ε n converges to 0 as n → ∞, then for any C < tC d,0

         min R, mt f (2) max 2          d-1 2
if n is large enough; we finally obtain:

P n ln n ε n d            exp -C n q ε n - ε n ln n d+1 2 + max i E E i (q) C ε n -ε n ln n d+1 2            .
This equation is highly similar to equation ( 17) with α = 0. The only difference consists in E E i which is now related to intersections of balls instead of only one ball. Under strong mixing E E does not depend on the set E there is no change from the proof of Theorem 2, the given choices of ε n (with α = 0) ensures n P n < +∞.

Considering θ-weak dependence, then the value of E E depends on the shape of the set E, nevertheless, due to equations (3) and (4), we obtain

E E i (q) inf t n ∈(0,ε n /2) A θ(q) t n + Bt n ε d-1 2 n ,
for some positive constants A and B.

1. In case of exponential decays, one can easily check that there exists suitable constants a 1 , a 2 and a 3 such that ε n = (a 1 ln 2 n/n) (d+1)/2 , t n = a 2 θ(q n )ε d-1 2

n and q n = a 3 ln n allows to have sequences such that t n ∈ (0, ε n ) and P n satisfying n P n < +∞. easily checks that there exists a constant a 1 such that ε n = (a 1 ln a n/n 1-γ ) (d+1)/2 , q n = n γ /(ln a-1 n), t n = a 2 θ(q n ).(ε n ) (d-1)/2 and the choice q n = a 3 ln n allows to construct sequences such that t n ∈ (0, ε n ) and P n satisfying n P n < +∞.

This ends the proof of the inclusions

L t+ε n ε n B ⊂ C R (X n ∩ L t+ε n ) ⊂ L t,R . (23) 
Now, considering L t+ε n , as in the proof of inclusion [START_REF] Getz | A local nearest-neighbor convex-hull construction of home ranges and utilization distributions[END_REF] Consider now the special choice u = -∇ f (z)

∇ f (z) , then we have

f (z) -2 ε n m t ||∇ f (z)|| + 2 ε n m t 2 f (2) max f z + ε n 2m t u t.
Thus

f (z) t + 2 ε n m t ||∇ f (z)|| -2 ε n m t 2 f (2) max t + ε n + ε n 1 - 2ε n m 2 t f (2) 
max t + ε n .

We thus obtain, with inclusion ( 23) that (L t 2 ε n m t B) ε n B ⊂ L t,R Now from [START_REF] Guenther | On a generalization of blaschke's rolling theorem and the smoothing of surfaces[END_REF] and [START_REF] Federer | Curvature measures[END_REF], since L t admits the inside and outside (m t / f To obtain the homeomorphism property and the convergence for the perimeter estimation we also prove that d H (L t , X n ∩ {z, f (z) t}) a.s.

-→ 0, this is easily obtained by using the techniques extensively used in this paper and we leave it to the reader. (R iz) d-1 . Now

θ(z) = arcsin h(z) R i -z > h(z) R i -z . Thus P(B(O, R)) f 0 • σ d-2 d -1 2 π d-1 ε 0 h(z) d-1 dz, with h(z) = (ε -z)(2R -ε + z) 2(R i + R -ε) 2(R i -z) - (ε -z)(2R -ε + z) 2(R i + R -ε) .
Under the condition ε min(R i , R)/4 (R + R i )/8, we obtain that h(z) 7 × 17 16 × 14

RR i R + R i (ε -z) 1 2 RR i R + R i (ε -z),
which finally yieds:

P(B(O, R)) f 0 σ d-2 d -1 2 π d-1 1 2 RR i R + R i d-1 2 ε 0 z α (ε -z) d-1 2 dz f 0 σ d-2 d -1 2 π d-1 1 2 RR i R + R i d-1 2 ε d+1+2α 2 B α + 1, d + 1 2 f 0 C d,α RR i R + R i d-1 2 ε d+1+2α 2 
.

-Second case O S and ε > min(R, R i )/4. 

•

  and E rB = {x, B(x, r) ⊂ E}. For two subsets E and F of R d , we denote by d H (E, F) their Hausdorff distance: d H (E, F) = max sup a∈E d(a, F), sup b∈F d(b, E) .

1 .

 1 Proof of Propositions 1, 2, and 3.

  In case α(m) ∼ m -b this holds for all b > 2 + 3/d. In case of a geometric decay rate θ(m) ∼ b -m , b > 1 this is always true.

Fig. 1 :

 1 Fig. 1: All you have to have in mind concerning the rolling ball property

Property 2 . 1 . 2 . 3 .

 2123 If S satisfies the inside and outside rolling ball property for some positive R i and R o then For all R < R o , C R (S ) = S . For all points z ∈ ∂S the "unit outward normal" vector (i.e. normal to ∂S and pointing outside S ), denoted η z is well defined as η z = For all x ∈ S with d(x, ∂S ) R i , its projection π ∂S (x) onto ∂S is well defined and x = π ∂S (x)d(x, ∂S )η π ∂S (x) , O i x = π ∂S (x) -R i η π ∂S (x) . 4. Conversely, for all y ∈ S c with d(y, ∂S ) R o , its projection π ∂S (y) onto ∂S is well defined and y = π ∂S (y) + d(y, ∂S )η π ∂S (y) , O o y = π ∂S (y) + R o η π ∂S (y) .

Proposition 9 .

 9 Let S ⊂ S ⊂ R d . Assume that balls of radius R o (resp. R i ) roll freelly outside (resp. inside) S . Let R < R o and ε < min(R i , R). If, for all O ∈ R d such that d(O, S ) R -ε we have that B(O, R) ∩ S ∅, then S εB = {x ∈ S , d(x, ∂S ) ε} ⊂ C R (S ) ⊂ S Proof of Proposition 9. The second inclusion is a direct consequence of S ⊂ S ⊂ R d thus C R (S ) ⊂ C R (S )then, because R R o and due to the outside rolling ball condition we have C R (S ) = S . Now let prove the first inclusion by contradiction. Suppose that there exists x ∈ S with d(x, ∂S ) = ε ε and x∈ C R (S ) c . As x ∈ C R (S ) c there exists O, Ox < R with B(O, R) ∩ S = ∅. Introduce z = [0, x] ∩ S(x, ε ) we have z ∈ S then, because Ox R we have d(O, S ) R -ε that contradicts B(O, R) ∩ S = ∅.From Proposition 9 and by using theorem 4.1 in[START_REF] Aaron | Estimation of surface area[END_REF] we derive general deterministic results on the R-convex hull summarized in the following Corollary 1. Let S ⊂ S ⊂ R d be a finite set. Assume that balls of radius R o (resp. R i ) roll freely outside (resp. inside) S . Let R < R o and ε < min(R i , R). If, for all O ∈ R d such that d(O, S ) R -ε we have that B(O, R) ∩ S ∅, then we have

Then B(Ω, r n / 3 ) 3 B

 33 ⊂ S and B(Ω, r n /3) ⊂ B(x, r n ). As a first conclusion: if d(X n , S ) r n , then there exists Ω ∈ S r n 3 B with B(Ω, r n /3) ∩ X n = ∅. The sequel of the proof consists in bounding the probability of the existence of such a point. Cover S r n 3 B with balls of radius r n 3 ln n , centered at y 1 , . . . , y N in S 2r n with N C d (3diam(S ) ln n) d r d n .

n n 1 d+α- 2 2 .

 122 thus: n P n < +∞.(b) Choose r n = c ln 2 and q n = β ln n by equation[START_REF] Doukhan | Functional estimation of a density under a new weak dependence condition[END_REF]:P(d(X n , S ) r n ) ln d n • n d d+α n -C c β +o(1) + n β ln b+1choose first β large enough that:β ln b + 1 + d d+α and second c large enough to have -C c β + d d+α -We then obtain n P(d(X n , S ) r n ) < +∞ (and r n → 0). 2. θ-weak dependence.

(

  

2 .

 2 In case of Riemannian decay rates with b > 2, set λ = 5d -

Then 1 σ

 1 |L(z)| d-1 = θ(z) 0 σ d-2 (R iz) d-1 sin(α) d-2 dα. From inequality sin(α) 2α/π if 0 α π/2 (condition ε < min(R, R i ) allows that) we obtain that |L(z)| d-

P 2 (

 2 (B(O, R)) P(B(O i , R i ) ∩ B(O, R)). Now define Ω = O + (εmin(R, R i )/4)η O * we have P(B(O, R)) P(B(O i , R i ) ∩ B(O, R)) P(B(O i , R i ) ∩ B(Ω, R))and we can apply previous calculusP(B(O, R)) f 0 C d,α RR i min(R, R i )) d+α . -Final case O ∈ S . 1. if d(O, ∂S ) > R, then P(B(O, R)) P(B(O, R/2)) f 0 d(O, ∂S ) < R and R < R i , define Ω = O -R 2 η O * , then P(B(O, R)) P(B(Ω, R/2)) f 0 d(O, ∂S ) < R and R ≥ R i , define Ω = O i -R i 2 η O * , then P(B(O, R)) P(B(Ω, R i /2)) f 0 O, R)) f 0 ω d min(R i , R) 2 d+α .

  [START_REF] Aaron | Local convex hull support and boundary estimation[END_REF] 

  nh d and LipF n LipK/(nh d+1 ). Assume that Strong mixing case. If X is strong mixing with α(m) = O(b -m ), b > 1, thus Y is strong mixing with α Y (m) α(m) by measurability of F n . Moreover, by [17]'s Lemma 6 and [19]'s Remark 7, (10) is satisfied with L 2 = (LipF n ) 2 and c = 1/b. Therefore Lemma 7 applies with H ∼ 1/nh d , L 2 ∼ 1/(n 2 h 2d+2 ) and G n ∼ 1/(nh 2d+3 ). Setting t = C ln n/nh d for some convenient constant C > 0, we get

	σ 2 n = O a.s.	1 nh d .	(11)
	•		

  R . Let us first prove that C R (X n ∩L t+ε n ) contains L t+ε n ε n B with probability one for n large enough. Proceeding by contradiction suppose that there exists x ∈ L t+ε n with d(x, ∂L t+ε n ) ε n and x L t,R . Because x L t,R there exists O with x-O < R and B(O, R)∩X + n (t) = ∅, thus B(O, R)∩X n ∩L t+ε n = ∅. Moreover because d(x, ∂L t+ε n ) ε n , and we have that d(O, L t+ε n

  ν n deterministic balls of radius ε n / ln n and centered atx i ∈ L t+ε n ⊕ (R -ε n )B.Notice that we clearly have |L t+ε n | t -1 (because the density on L t+ε n is greater than t). Thus by bound on packing and covering numbers it is possible with ν n

	2 d tω d	ln n ε n	d	.
			ν n
	P n			
			i=1

  we easily obtain L t ε n 2m t B ⊂ L t+ε n for n large enough in order that ε n < B, we have that for each vector u with u 1, f z + 2

	m 2 t 2 f (2) max	. Indeed, consider z ∈ L t 2	ε n m ε n m t u	t.

t

  2 max )-rolling ball properties, we obtain ε n + 2 which concludes the proof of inclusion (22) which together with Inclusion (21) allows to apply Corollary 1 and thus concludes the proof of d H( L t , L t ) ε n + ε n , d H (∂ L t , ∂L t ) ε n + ε n and || L t | d , |L t | d | ε n + ε n inTheorems 4 and 5. 

					ε n
	m t / f 2 max and then,	L t ⊂ L t,R ⊕ ε n + 2	ε n m t	B,	m t
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Moreover if d(S , S ) 1 2

, and ε is small enough with regards to d, R and min(R i , R o ), one has ∂C R (S ) ≈ ∂S , C R (S ) ≈ S and there exists some constant C d,R,R 0 ,R i > 0 depending on d, R, R 0 and R i such that • Since S εB ⊂ C R (S ), then, for all x ∈ ∂C R (S ) exists d(x, ∂S ) ε.

• For all x ∈ ∂S consider y = x -εη x , by inside rolling ball property of S we have y ∈ S εB and thus the segment (x, y) intersects ∂C R (S ) and d(x, ∂C R (S )) ε.

About d(C R (S ), S ), we clearly have by inclusions that

, indeed it is the inner Minkowski content of a set with positive reach, its asymptotic behaviour can be deduced from the Minkowski content of a set with positive reach, see [START_REF] Federer | Curvature measures[END_REF], and for its outer part see [START_REF] Ambrosio | Outer minkowski content for some classes of closed sets[END_REF].

) are direct consequences of Theorem 4.1 in [START_REF] Aaron | Estimation of surface area[END_REF].

The homeomorphism between ∂C R (S ) and ∂S being π ∂S it is easy, and left to the reader to prove that, since ε is small enough ϕ : C R (S ) → S defined as

where

A way to derive convergence rates for the R-convex hull of a set of points X n consists in finding sequences ε n such that

Also we must prove that d(X n , S ) → 0 almost surely to apply the last part of Corollary 1 and deduce the topological guarantees and the convergence for the measure of the boundary. The dependence is taken into account when we deal with P(B(O, R) ∩ X n = ∅) where Propositions 1 or 2 are applied; this replaces a trivial product in the independent case.

Lemma 10. Consider assumptions of Propositions 1 or 2. Also assume that the marginal density f belongs to the model M R 0 ,R i , f 0 ,α . Let E r (q) = α(q) in case of strong mixing and E r (q) = min t∈[0,r]

Appendix A. Some bounds for the measure of the intersections Proposition 10. let x, y ∈ R d , and r x , r y , be positive numbers such that xy = r x + r y -, min(r x , r y ) and h min(r x , r y ). let V(r x , r y , , h) = |(B(x, r x + h) ∩ B(y, r y + h)) \ (B(x, r xh) ∩ B(y, r yh))|, we have that, when → 0

Proof. Let u 1 be a unit vector of R d , we can define the portion of ball B(O, r) ∩ {z, z.u 1 a} and we have

Thus by derivation 

and this complements the Figure A.2 which proves that indeed:

.

a (thus 1))) we have

.

We finally obtain that

which concludes the proof.

Proposition 11. Suppose that balls of radius R i roll inside S . Suppose that the density is such that f