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Abstract

In this paper, we survey and generalize results on the R-convex hull of the points of a random sample. We provide
explicit convergence rates for the R-convex hull and its natural plug-in, as estimates (estimators ?) of the support S ,
its volume and perimeter, and level-sets of a density f 2 Rd, when the underlying sequence is strictly stationary and
admits some kind of weak dependence condition and when the density satisfies f (x) > cd(x, @S )↵ for all x 2 S . We
obtain convergence rates that exceed those obtained in the i.i.d. case which is of order (ln n/n)

2
d+1+2↵ . The loss depends

on the dependency condition, it can be an extra power of ln n or an extra power of n in the worst cases.

Keywords: Strictly stationary process, Linear processes, density, support

1. Introduction

Set estimation has many applications. In ecology for instance, it may be used to study the home-range or the
core-area of species [19], based on the observation of the spatial distribution of species or the movement of one or
more representative members. Assimilating the position of a member to a random variable with given distribution
f : Rd

! R, the home-range corresponds to the support, S = {x, f (x) > 0}, of f and the core-area to a level set
of f , defined, for a given threshold t > 0 as the set Lt = {x, f (x) > t}. Setting

R
Lt

f (x)dx = ↵, Lt can be seen as a
multidimensional ↵-quantile.

The estimation of a density support S and of its related quantities -level sets, boundary, volume and perimeter-
has been the focus of several works for iid data sets. The historical Devroye-Wise estimator of S has been studied
by [10, 12] (see also references therein). It has universal properties but non-optimal rates under reasonable regularity
hypotheses. When S is convex, optimal rates are achieved by the convex hull of the sample. More generally, under
"convexity type" assumptions on S , optimal rates may be achieved by estimators defined as some extensions of the
convex hull. This is the case of the R-convex hull, studied in [2, 5, 26–28, 31], among other (other estimators of S
have also been proposed, as in [1] or [20]). The R-convex hull of a set S is a generalization of its convex hull, defined
as follows :

CR(S ) =

0
BBBBBBBB@

[

B̊(x,R)\S=;

B̊(x,R)

1
CCCCCCCCA

c

,

where Ec and E̊ respectively denote the complement and interior of a set E and B(x,R) is the closed ball of radius
R centered at x. The use of the R-convex hull to estimate the support of a density f has an heuristic justification:
when the set S is regular enough, we have that CR(S ) = S so that a natural estimator of S is bS n = CR(Xn), with
Xn = {X1, . . . , Xn} ⇢ Rd is a sample of f and CR(Xn) =

⇣S
B̊(x,R)\Xn=;

B̊(x,R)
⌘c

.
The study of bS n has been introduced by [31] and [26]. They derive convergence rates of the Hausdor↵ distance

between S and its estimator (dH(bS n, S )) towards 0 and obtain tthe minimax rate achieved by [20] under regularity
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assumptions on S and when f is bounded below by a positive constant (similar rates are obtained for dH(@bS n, S )).
In [28], a data-driven way to tune the parameter R is proposed and applied to home-range estimation of the extent of
occurrence of invasive plant species in the Azores archipelago. The R-convex hull may also be used to estimate related
quantities, such as the volume (see [5] and [6]) and perimeter (see [2]) of S . In [27], the authors propose an estimator
of level sets derived from the R-convex hull of conveniently chosen sample points with a data-driven R-parameter.

In all those papers, the sample Xn is i.i.d. and the density is bounded below on S by some positive constant.
However, for real life applications, the independence hypothesis is generally unrealistic. This is the case for instance
when a member’s location is observed via GPS or when the sample consists of the trajectory of one or more members
observed over a time period. A more realistic hypothesis should be to consider the strict stationarity of the sequence
Xn as well as some kind of short memory condition. Set estimation under dependence has been little studied and the
two related works are to our knowledge that of [8], who considers trajectories of a reflected Brownian motion and
the recent paper of [21] in which the authors extend results on reconstruction of probabilistic supports of random i.i.d
variables to supports of dependent stationary Rd-valued random variables with the use of the Devroye-Wise estimator.

In this article, we study the asymptotic properties of bS n, its related quantities and estimators of and level sets
estimators derived from bS n in a non i.i.d. framework, extending the results of [2, 5, 6, 26, 27, 31]. Namely, Namely,
we derive convergence rates in Hausdor↵ distance of estimators of support, its boundary, level sets and their boundary.
We also derive rates for related estimators of the volume and perimeter of the support and its level sets. Finally we
show that, with probability one and for large enough n the estimated support (resp. level sets) is homeomorphic to the
support (resp. the level set). Regarding the dependency, we assume that Xn is a strictly stationary sequence that admits
some kind of short memory property. We consider here strong mixing and -dependence, introduced respectively by
introduced by [29] and [11].
The rest of the paper is organized as follows. Section 2 presents some notation and general results that will be used
in the sequel. Section 3 concerns asymptotic results on the R-convex hull and its natural plug-in as estimators of the
density support and its related quantities, volume and perimeter. Section 4 deals with the estimation of level-sets. The
proofs are postponed to Section 5.

2. General framework

In this paper, we are interested in several geometrical nonparametric estimation problems, based on a strictly sta-
tionary weak dependent sequence Xn = {X1, . . . , Xn} ⇢ Rd. In this section, we first give some notation and preliminary
material that will be useful to settle and prove our main results.

2.1. Notation
• B(x, r) ⇢ Rd denotes the closed ball of radius r � 0 centered at x and S(x, r) is its boundary, i.e. the sphere of

radius r centered at x.

• For each set E ⇢ Rd, we denote by |E|d its d-dimensional volume and |@E|d�1 the (d � 1)-dimensional volume
of its boundary.

For the sake of simplicity, we set !d = |B(0, 1)|d the volume of B(0, 1) ⇢ Rd and �d = |S (0, 1)|d�1 its surface
(i.e. the (d � 1)-dimensional volume of its boundary).

• For each set E ⇢ Rd and positive number r, we denote by E� rB and E rB the Minkowski sum and di↵erence,
namely E � rB = {x 2 Rd, d(x, E) 6 r} =

S
a2E B(a, r), F  rB = {x, B(x, r) ⇢ E}.

• For two subsets E and F of Rd, we denote by dH(E, F) their Hausdor↵ distance:

dH(E, F) = max(sup
a2E

d(a, F), sup
b2F

d(b, E)).

• We set E ⇡ F if and only if E and F are homeomorphic.
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• For two non-negative sequences (un) and (vn) in RN, we set un . vn if and only if there exists c > 0 such that,
for all n > 0, un 6 cvn.

• Let f : Rd
! R be a di↵erentiable function, we denote by r f its gradient and by H f its Hessian matrix if it is

twice di↵erentiable.

• We denote byk · kop the operator norm on the set of n ⇥ p matrices.

• For k 2 N, we denote by Ck the set of k-times continuously di↵erentiable functions f : Rd
! R.

• Let ⇢ > 1. We say that K is a kernel of order ⇢ if and only if
R

P(x)K(x)dx = P(0) for each polynomial of
degree less than or equal to ⇢.

2.2. Dependence background
In the sequel, we make use of a strictly stationary short memory process X = (Xt)t2Z. We consider Xn =

{X1, . . . Xn} ⇢ Rd a sample of X with marginal density f : Rd
! R.

We first recall below the short memory properties considered in the sequel, namely the strong mixing and ✓-dependence
conditions as well as some covariance properties and density estimation results for each of them.

2.2.1. Weak dependence conditions
Let X = (Xt)t2Z be a strictly stationary sequence on a given probability space (⌦,F ,P). For �1 6 j 6 l 6 +1,

let the �-field F l
j = �(Xk, 1 6 k 6 l, k 2 Z) of events generated by the random variables (Xk) j6k6l. In the sequel, we

consider the following dependence conditions for X.

Strong or ↵-mixing. Let (↵(q))q>0 be the decreasing sequence of strong mixing coe�cients of X = (Xt)t2Z, defined as

↵(q) = sup
A2F 0

�1,B2F 1
q

|P(A \ B) � P(A)P(B)|.

Quote that the above expression also writes as the supremum of |cov(1A, 1B)|. We say that X is strongly mixing (or
↵-mixing) if limq!1 ↵(q) = 0.

✓-weak dependence. Let v � 1 and let us define the Lipschitz modulus of a function h : (Rd)v
! R by

Lip(h) = sup
x,y

|h(x) � h(y)|
kx1 � y1k + · · · + kxv � yvk

,

where k · k is a norm of Rd. Let W be any random variable such that kWk1  1 measurable with respect to F 0
�1.We

say that X is ✓-weakly dependent if there exists a decreasing sequence (✓(q))q>0 with limq!1 ✓(q) = 0 and a set of
indices i1, . . . , iv > 1 such that |cov(W, h(Xi1 , . . . , Xiv ))|  vLip h · ✓(q). Notice that for v = 1 we have |cov(W, h(Xq))| 
Lip h · ✓(q).

Examples. A large number of classical models which satisfy strong mixing conditions is provided in [13]; in particular
the class of linear processes based on innovations with an absolutely continuous density function, such as strictly
stationary ARMA processes and also certain bilinear, ARCH or GARCH models. Another example is that of a
stationary Gaussian process with a continuous positive spectral density. Notice also that this property remains valid
through images by measurable functions.
Some classical processes are not mixing. A famous counterexample is in [4], in which X is the stationary solution of

Xt =
1
2

(Xt�1 + "t),

where X0 is independent of ("t)t>0, which is a sequence of i.i.d. random variables with Bernoulli distribution of
parameter 1/2. This example and many others, such as linear processes with discrete innovations [4], on the other
hand, also fit the ✓-weak dependence condition. Notice also that this property remains valid through images by
bounded Lipschitz function.
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2.2.2. A covariance based result
Let E be a subset of Rd with P(Xt 2 E) = p > 0. In each of the above-mentioned dependence conditions, under
covariance based arguments we derive a useful upper-bound for P(Xn \ E = ;).

Proposition 1. Let (Xt)t2Z be a strongly mixing sequence with mixing coe�cients (↵(q))q>0. Then, setting EE(q) =
↵(q), we have

P(Xn \ E = ;)  (1 � p)
n
q +
EE(q)

p
.

Proposition 2. Let (Xt)t2Z be a ✓�weakly dependent sequence with dependence coe�cients (✓(q))q>0. Assume more-
over that there exists c > 0 such that for each measurable set E:

P(Xt 2 E)  c|E|d. (1)

If now,

1. If E = B(x, r) we have that

P(Xn \ E = ;)  (1 � p)
n
q +
EE(q)

p
with EE(q) 6 inf

"2(0,r)

 
✓(q)
"
+ c!d2d"rd�1

!
(2)

2. If E = B(x, rx) \ B(y, ry) with rx + ry � kx � yk = `, and ` 6 rx ^ ry, we have that

P(Xn \ E = ;)  (1 � p)
n
q +
EE(q)

p
with EE(q) 6 inf

"2(0,`/2)

 
2✓(q)
"
+ cV(rx, ry, `, ")

!
(3)

and V(rx, ry, `, ") ⇠
`!0

4c!d�1"

 
`2rxry

rx + ry

! d�1
2

. (4)

Remark 1. Notice that condition (1) holds for instance if the distribution of X0 admits a bounded density f wrt
Lebesgue measure.

Remark 2. Our results may be extended to alternative dependence structures, yielding other values of EE(q), possibly
involving other methods of proofs, such as coupling.

• An alternative to the above result involves couplings. For instance if X is absolutely regular, see [13], Berbee’s
coupling inequalities ([7]) yield EE(q)  �(q).

• Another case of interest is that of negatively associated processes, see [30]. Considering the proof, we set in
this case q = 1 and k = n and here

cov(Z1 · · · Zk�1,Zk)  0.

In this case blocks are useless (here q = 1) and pn � pn and the results are conducted as in the classical
independent case.

The above upper bounds for P(Xn \ E = ;) will allow to derive convergence rates for the estimation of S , @S , |S |d
and |@S |d�1 in Section 3. In order to get explicit rates, we will propose two scenarii

• Exponential decays, ↵(m) 6 Bb�m or ✓(m) 6 Bb�m, for some b > 1.

• Riemaniann decays, ↵(m) 6 Bm�b or ✓(m) 6 Bm�b, for some b > 0.
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2.2.3. Uniform consistency of kernel density estimators under dependence
To obtain results on level set estimation, we need an upper bound on

✏0n = sup
x2Rd
|bfn(x) � f (x)|,

where f : Rd
! R is the marginal density of the strictly stationary Rd-valued process X and bfn is a kernel density

estimator of f :

bfn(x) =
1

nhd
n

nX

t=1

K
 

Xt � x
hn

!
. (5)

We provide below bounds for ✏0n in the ↵-mixing and ✓-weakly dependent cases. Proposition 3 concerns ex-
ponential decays and Proposition 4 concerns Riemanniann decays. For that task, we fist introduce some regularity
assumptions on f and bfn:

(K1) K : Rd
! R is a bounded square integrable density with compact support.

(K2) K : Rd
! R is of order (k � 1).

(M1) For some k > 2, f 2 Ck and f (k) is bounded.

(M2) The marginal density f is bounded on Rd.

(M3) The joint densities fi of (X0, Xi) are bounded, uniformly with respect to i > 0.

(M4) The marginal density f tends to zero as n tends to infinity.

(M5) EkX0k
c < 1 for some c > 2.

We thus have

Proposition 3. Let Xn be a strictly stationary sequence from X and bfn be defined by (5). Assume that (K1), (M2),
(M3), (M4) and (M5) hold, and that (K2) and (M1) hold for some k > 2.

(A1) If X is strong mixing with dependence coe�cients ↵(m) = O(b�m) for some b > 1, thus

1. If k > d + 3, the choice hn = O
 

ln n
n

! 1
d+2k

yields ✏0n = Oa.s.

0
BBBBB@

 
log n

n

!k/(2k+d)1CCCCCA .

2. If k 6 d + 3, any choice of hn = O
 

ln n
n

! 1��
3d+6

with � 2 (0, 1) yields ✏0n = Oa.s.

0
BBBBB@

 
log n

n

!k(1��)/(3d+6)1CCCCCA .

(T1) If X is ✓-weakly dependent with dependence coe�cients ✓(m) = O(b�m) for some b > 1, thus

1. If k > d + 2 the choice hn = O
 

ln n
n

! 1
d+2k

yields ✏0n = Oa.s.

0
BBBBB@

 
log n

n

!k/(2k+d)1CCCCCA .

2. If k 6 d + 2 any choice of hn = O
 

ln n
n

! 1��
3d+4

with � 2 (0, 1) yields ✏0n = Oa.s.

0
BBBBB@

 
log n

n

!k(1��)/(3d+4)1CCCCCA .

Now, in case of (plus forte) dependence with coe�cient with Riemanian decay we have the following result.

Proposition 4. Let Xn be a strictly stationary sequence from X and bfn be defined by (5). Assume that (K1), (M2),
(M3), (M4) and (M5) hold, and that (K2) and (M1) hold for some the same k > 2.

(A2) If X is strong mixing with dependence coe�cients ↵(m) = O(m�b) for some b > max(2 + 3/d, d + 2). Let

�0 =
d+2� d(d�2)

2k+d

b+1� d(d�2)
2k+d
. Then the choice of hn = O

 
ln n
n1��

! 1
d+2k

, for any � 2 (�0, 1) yields ✏0n = Oa.s.

✓⇣ log n
n1��

⌘k/(2k+d)
◆
.

(T2) If X is ✓-weak dependent with dependence coe�cients with ✓(m) = O(m�b) for some b > 3(d + 2), let �0 =

d + 2 � d(d�2)
2k+d

b/3 + 1 � d(d�2)
2k+d

then the choice of hn = O
⇣

ln n
n1��

⌘ 1
d+2k , for any � 2 (�0, 1) yields ✏0n = Oa.s.

✓⇣ log n
n1��

⌘k/(2k+d)
◆
.
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3. Support Estimation

In this section we give the convergence rates of the R-convex hull estimator of S and that of their boundaries in
the context of strictly stationary dependent strong mixing or ✓-weak dependent sequences Xn.

3.1. Distributional Background
In order to obtain a consistent support estimator CR(Xn) of S we will ask the distribution to have regular enough
compact support S to have CR(S ) = S . This will be ensured by sets satisfying the rolling ball property defined as
follow

Definition (Rolling ball property). A closed compact set S ⇢ Rd satisfies the Ro-outside (resp. Ri-inside) rolling
ball property if and only if 8x 2 @S , 9Oo

x 2 Rd, kx � Oo
xk = Ro and B̊(Oo

x,Ro) ⇢ S̊ c. (resp. 9Oi
x 2 Rd, kx � Oi

xk =
Ri and B(Oi

x,Ri) ⇢ S ).

When S satisfies the Ro-outside (Ri-inside) rolling ball property, we also say that balls of radius Ro (resp. Ri)
roll freely outside (resp. inside) S . Such sets have nice properties due to the generalization of the Blaschke’s rolling
theorem (cf [31]’Theorem 1). As aforementioned sets with rolling ball property satisfy that S Ro (S ) = S , this ensures
the convergence of the plugin support estimator S Ro (Xn) since dH(Xn, S ) ! 0. In order to derive explicit convergence
rates, we have to complete this assumption with another on the density. Specifically we will require the density to
have an a polynomial decay ( f (x) > f0d(x, @S )↵ for all x 2 S ) as proposed in [20].

Definition. A density f belongs to the class MRo,Ri, f0,↵ if it has a compact support S that satisfies the Ro-outside
rolling ball property and the Ri-inside rolling ball property. Also, for all x 2 S we have f (x) > f0d(x, @S )↵.

Notice that the special case of ↵ = 0 corresponds to the classical class of lower bounded densities on S , known as
"close to uniform" hypothesis.

3.2. Main Theoretical results

In this section we give explicit convergence rates. This rates generalize those obtained in previous works on the
R-convex hull in the independent case with ↵ = 0. Namely, [26] give rates for dH(@CR(Xn), @S ) and dH(CR(Xn), S ),
while [2] gives rates for ||@CR(Xn)|d�1 � |@S |d�1| and @CR(Xn) ⇡ @S e.a.s.

Also notice that, in these works author choose to work with sets S satisfying the R inside and outside rolling ball
property. As in [27] we propose to emphasize the di↵erent roles of the outside (resp. inside) radius Ro (resp. Ri). The
tuning parameter R must be less than Ro to have the convergence and the convergence rate depends on Ri.
The following results recall that obtained in the aforementioned works. Our contribution consists in generalizing these
results to ↵ > 0. Nevertheless it seems important to present the independent reference rate.

Theorem 1. Let Ri,Ro and f0 be positive and ↵ be nonnegative. Let Xn = {X1, . . . , Xn} be an iid n�sample with
density f 2MRo,Ri, f0,↵ supported by S and R < Ro. There exits A(d,↵, f0,R,Ri) such that for n large enough, one has
with probability 1

d(@CR(Xn), @S ) 6 "n , d(CR(Xn), S ) 6 "n

@CR(Xn) ⇡ @S , CR(Xn) ⇡ S
||@CR(Xn)|d�1 � |@S |d�1| . "n , ||CR(Xn)|d � |S |d | . "n.

with

"n = A(d,↵, f0,R,Ri)
 

ln n
n

! 2
d+1+2↵

Remark that in case of negatively associated process as in [30] we can obtain the same rates as in the iid case.
In Theorem 2, which deals with exponential decay rates, we obtain, up to an additional power of ln n, the same

rates as in the independent case whatever the dependence structure (strong mixing or ✓-dependence) is. Indeed the
dependence structure only impacts constants.
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Theorem 2. Let Ri,Ro and f0 be positive and ↵ be nonnegative. Let (Xt)t2Z be a strictly stationary sequence
with marginal density f 2 MRo,Ri, f0,↵ supported by S . Let R < Ro. Assume that (Xt)t2Z is strong mixing or ✓-
weakly dependent sequence with an exponential decay of the sequence of dependence coe�cients. Then, there exists
A(d,↵, f0,R,Ri, b) such that for large enough n, one has with probability 1

d(@CR(Xn), @S ) 6 "n , d(CR(Xn), S ) 6 "n

@CR(Xn) ⇡ @S , CR(Xn) ⇡ S
||@CR(Xn)|d�1 � |@S |d�1| . "n , ||CR(Xn)|d � |S |d | . "n.

with

"n = A(d,↵, f0,R,Ri, b)
 

(ln n)2

n

! 2
d+1+2↵

In Theorem 3 below, we provide rates in the case of Riemannian decay of the dependence coe�cients. This time,
the loss in convergence rate consists of an additional power of n. The rate and the loss also depend on the dependency
structure.

Theorem 3. Let Ri,Ro and f0 be positive and ↵ be nonnegative. Let (Xt)t2Z be a strictly stationary sequence with
marginal density f 2 MRo,Ri, f0,↵ supported by S . Let R < Ro. Assume that (Xt)t2Z is strong mixing or ✓-weakly
dependent sequence with an Riemaniann decay of the sequence of dependence coe�cients. Then, there exists b0 such
that, if b > b0 then, for large enough n, one has with probability 1

d(@CR(Xn), @S ) 6 "n, d(CR(Xn), S ) 6 "n

@CR(Xn) ⇡ @S , CR(Xn) ⇡ S
||@CR(Xn)|d�1 � |@S |d�1| . "n, ||CR(Xn)|d � |S |d | . "n.

With "n = ((ln n)a/n1��)2/(d+1+2↵) explicit values of b0, a and � are

1. Strong mixing b0 = 1, � = 3d+1+2↵
d+1+2↵ , a = b�2�d

b�� and � = �+1
�+b .

2. ✓-weak dependence b0 = 2, � = 3d+1+2↵
d+1+2↵ , a = b/2�2�d

b/2�� and � = �+1
�+b/2 .

4. Level set estimation

We now shift our focus to level set estimation. Recall that for a given t 2 R, the level set Lt is defined as
Lt = {z 2 Rd, f (z) > t} and its associated level line `t is defined by `t = {z, f (z) = t}. Given a suitable density
estimator bfn of f , [27] introduced the following level set estimator

bLt,R = CR(Xn \ {z, bf (z) > t})

and studied its asymptotic properties in the i.i.d. case. We aim at generalize the rates to dependence setup.

4.1. Distributional background
When dealing with level set estimation, the distributional hypotheses are somewhat di↵erent. The support no longer
needs to be compact since the set Lt = {z, f (z) > t} is compact when t > 0 (when t = 0 we are in the support estimation
framework). Also, the rate of decay of f near the boundary is no longer important. As a counterpart, we require that
f 2 Ck for some k > 2 which has two important consequences. Firstly, it allows the density estimator to converge
with suitable rates. Secondly, with implicit function theorem, it enables Lt to satisfy the inside and outside rolling ball
property for suitable values of t. The explicit condition to have suitable level is the following

Definition. [Regular levels] t > 0 is a regular level if there exits �t > 0 and mt > 0 such that

Lt��t ⇢ S̊ and min
z2Lt��t \L̊t+�t

kr f (z)k = mt > 0.
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When t is a regular level and f is Ck (k > 2), then by Theorem 2 in [31], the level set Lt naturally inherits of the inside
and outside rolling ball property.

Proposition 5. Corollary of Theorem 2 in [31] If f 2 C2 and supz kH f k = f (2)
max < +1 and if t is a regular level, then

there exists �t such that, for all t0 2)t � �t, t + �t(, Lt0 has the inside and outside rolling ball property for balls of radius
mt

f (2)
max

.

4.2. Main Theoretical results
Hereafter, we establish the asymptotic behavior of bLt,R under weak dependence Assumptions and deduce the

asymptotics of its boundary and volume. By incorporating tools provided in [2], we also obtain topological guar-
antees and perimeter estimation rates. We give explicit convergence rates in the particular cases of exponential and
Riemannian decay of the weak dependence coe�cients. We show that the convergence rate can be decomposed into
a sum "n + "0n, where "n is a set estimation error and "0n is a density estimation loss which depends on the dependence
structure and coe�cients, the regularity of the density and the dimension d (see section 2.2.3). We focus in this section
on the geometric part "n. Some explicit rates taking into account all the parameters of the model are given in following
section.

Theorem 4. Let Xn = {X1, . . . , Xn} be a n-sample of a strictly stationary sequence of a strong mixing or ✓-weak
dependent sequence with exponential decay rates and with marginal class C2 density f on its support S . Assume that
supS kr f k = f (1)

max < +1, supS kH f kop = f (2)
max < +1. Let t > 0 be a regular level. Let R be a constant such that

0 < R < mt/ f (2)
max and define X+n (t) = Xn \ {bf (z) > t} and bLt,R = Cr(X+n (t)). Then, with probability 1 and for n large

enough, one has

d(@bLt,R, @Lt) . "n + "
0

n, d(bLt,R, Lt) . "n + "0n

@bLt,R ⇡ @Lt, bLt,R ⇡ Lt

||bLt,R|d � |Lt |d | . "n + "
0

n, ||@bLt,R|d�1 � |@Lt |d�1| . "n + "0n.

with "n . ((ln n)2/n)
2

d+1

We now focus on the case of the Riemmaniann decay. As for support estimation, Riemmaniann decay slows down
the convergence and convergence rates now depend on the dependence structure.

Theorem 5. Let Xn = {X1, . . . , Xn} be a n-sample of a strictly stationary sequence of a strong mixing or ✓-weak
dependent sequence with Riemanian decay rates and with marginal class C2 density f on its support S . Assume that
supS kr f k = f (1)

max < +1, supS kH f kop = f (2)
max < +1. Let t > 0 be a regular level. Let R be a constant such that

0 < R < mt/ f (2)
max and define X+n (t) = Xn \ {bf (z) > t} and bLt,R = Cr(X+n (t)). When b > b0, with probability 1 and for n

large enough, one has

d(@bLt,R, @Lt) . "n + "
0

n, d(bLt,R, Lt) . "n + "0n

@bLt,R ⇡ @Lt, bLt,R ⇡ Lt

||bLt,R|d � |Lt |d | . "n + "
0

n, ||@bLt,R|d�1 � |@Lt |d�1| . "n + "0n.

With "n = ((ln n)a/n1��)2/(d+1) explicit values of b0, �1 and �2 are
1. Strong mixing b0 = 1, a = b�2�d

b�� and � = �+1
�+b with � = 3d+1

d+1 .
2. ✓-weak dependence b0 = 2 and a = 2 2�d+b/2

b/2�� and � = �+1
�+b/2 with � = 5d�1

2(d+1) .

5. Proofs

5.1. Proofs of Propositions 1 and 2
Set first k = [n/q] and ti = iq for 1  i  k. We have Zi = 1{Xti<E} and we define pk = E(Z1 · · · Zk), then

pk = E(Z1 · · · Zk�1)E(Zk) + cov(Z1 · · · Zk�1,Zk).

The propositions will result from proving that cov(Z1 · · · Zk�1,Zk) can be bounded above by some EE(q) then applying
a recursion on pk  (1 � p)pk�1 + EE(q).
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Proof of Proposition 1. From heredity of strong mixing the sequence (Zt)t is still strong mixing with mixing coe�-
cients less than ↵(q) and the fact that Z1 · · · Zk�1 writes as the indicator function of

T
1in/q(Xti < E) implies|cov(Z1 · · · Zk�1,Zk)| 

↵(q), we thus have pk  (1 � p)pk�1 + ↵(q) hence a recursion yields

pk  (1 � p)k +
↵(q)

p
.

Indeed if the above relationship holds with k � 1 then

pk  (1 � p)
 
pk�1 +

↵(q)
p

!
+ ↵(q)  (1 � p)k +

↵(q)
p
.

Proof of Proposition 2. Under ✓�weak dependence we have by definition |cov(Z1 · · · Zk�1, h(Xk))|  ✓(q)Lip (h) for
any Lipschitz function h and we specialize the function for the two cases considered in the Proposition.

1. Case E = B(x, r).
Now as in the Lemma 4.1 page 68 of [11] we consider H�

x,r," and H+x,r," two Lipschitz approximations Rd
! R

of 1{u2E}, with
H�

x,r,"(u)  1{u<E}  H+x,r,"(u),

then

cov(Z1 · · · Zk�1,Zk)  E(Z1 · · · Zk�1H+x,r,"(Xk)) � E(Z1 · · · Zk�1)E(H�

x,r,"(Xk))
 cov(Z1 · · · Zk�1,H+x,r,"(Xk)) + E(H+x,r,"(Xk) � H�

x,r,"(Xk))

Now we build such Lipschitz functions with Lip (H±x,r,") . 1/". More precisely, we introduce intermediary
functions:

m�

r,"(s) =

8>>><
>>>:

1, s < (r � ")
r�s
" , s 2 [r � ", r]

0, s > r
and m+r,"(s) =

8>>>>><
>>>>>:

1, s < r
1 �

s � r
"
, s 2 [r, r + "]

0, s > r + "

Then the functions m±r," are piecewise linear and satisfy Lip m±r," = 1/". Now we define H+x,r,"(u) = m+r,"(ku � xk)
and H�

x,r,"(u) = m�
r,"(ku � xk), thus we get:

• H+x,r,"(u) = 1 if u < B(x, r) and H+x,r,"(u) = 0 if u 2 B(x, (r + ")).
• H�

x,r,"(u) = 1 if u < B(x, (r � ")+) and H�
x,r,"(u) = 0 if u 2 B(x, r).

Those functions inherit Lipschitz property Lip (H±x,r,") = 1/". Moreover, because H+x,r,"�H�
x,r," is bounded above

by the indicator function of an annulus with radius r and thickness ".

E
⇣
H+x,r,"(Xk) � H�

x,r,"(Xk)
⌘

 c!d
⇣
(r + ")d

� ((r � ")+)d
⌘

 c!drd
⇣
(1 + "/r)d

� ((1 � "/r)+)d
⌘

 c!d2d+1rd�1"

for all " 6 r, since a binomial expansion entails (1 + x)d
� (1 � x)d 6 2x

Pd
k=1

⇣
d
k

⌘
6 2d+1x if x 2 [0, 1]. Thus,

setting A0 = c!d2d+1, we derive for all " 6 r : cov(Z1 · · · Zk�1,Zk)  1
" ✓(q) + A0"rd�1 For the reverse inequality,

we obtain analogously for all " 2 [0, r] cov(Z1 · · · Zk�1,Zk) � � 1
" ✓(q) � A0"rd�1 Indeed

cov(Z1 · · · Zk�1,Zk) � E(Z1 · · · Zk�1H�

x,r,"(Xk)) � E(Z1 · · · Zk�1)EH+x,r,"(Xk)
� cov(Z1 · · · Zk�1,H�

x,r,"(Xk)) � E(H+x,r,"(Xk) � H�

x,r,"(Xk))

and thus:
EE(q) 6 min

"2[0,r]

✓(q)
"
+ A0"rd�1
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2. Case E = B(x, rx) \ B(y, ry) with rx + ry � kx � yk = `.
Consider the two 2/"-Lipschitz functions: H

+
(u) = H+x,rx,"(u) ^ H+y,ry,"(u) and H

�

(u) = H�
x,rx,"(u) ^ H�

y,ry,"(u). By
the concentration inequality (1), we have for some c > 0 :

E
⇣
H
+
(Xk) � H

�

(Xk)
⌘
 c

���B(x, rx + ") \ B(y, ry + ") \ (B(x, rx � ") \ B(y, ry � ")
���
d

Thus according to Proposition 9 in Appendix A, if ` 6 rx ^ ry and " 6 rx ^ ry : E(H
+
(Xk) � H

�

(Xk)) 
cV(rx, ry, `, "). As in case 1, this allows to conclude that cov(Z1 · · · Zk�1,Zk)  2

" ✓(q)+ cV(rx, ry, `, "). As in the
end of the proof for case 1 we infer |cov(Z1 · · · Zk�1,Zk)|  2

" ✓(q)+ cV(rx, ry, `, "), which concludes the proof of
point 2. in Proposition 2.

5.2. Proofs of Propositions 3 and 4
In the following we set ✏0n = An + Bn with An = supx2Rd |bfn(x) � E(bfn(x))| and Bn = supx2Rd |E(bfn(x)) � f (x)|.

Propositions 3 and 4 are direct corollaries of Propositions 6 and 7 below. Proposition 6 gives a control of Bn, while
item 1 and item 2 of Proposition 7 give a control of An in the geometric and Riemaniann decay cases respectively.

Proposition 6. Let Xn be a strictly stationary sequence from X with marginal density f and bfn be defined by (5), with
hn ! 0 and nhd

n ! 1 as n goes to 1. Assume that (K1), (M1) and (K2) hold for some k > 2. Thus, Bn = O(hk
n)

Proposition 7. Let Xn be a strictly stationary sequence from X and bfn be defined by (5).

1. Assume that (K1), (M2), (M3), (M4) and (M5) hold and that one of the conditions below is fulfilled:

(A1) X is strong mixing with dependence coe�cients ↵(m) = O(b�m) for some b > 1 and hn = O
0
BBBB@
 

log n
n

!�1CCCCA for

some � < 1/(3d + 6).

(T1) X is ✓-weakly dependent with dependence coe�cients ✓(m) = O(b�m) for some b > 1 and hn = O
0
BBBB@
 

log n
n

!�1CCCCA
for some � < 1/(3d + 4).

Then

An = Oa.s.

0
BBBBBB@

s
log n
nhd

n

1
CCCCCCA .

2. Assume that (K1), (M2), (M3), (M4), (M5) and (K2) hold for some k > 2 and that one of the conditions below
is fulfilled:

(A2) X is strongly mixing with ↵(m) = O(m�b) and hn = O
0
BBBB@
 

log n
n1��

!�1CCCCA for some 0 < � < 1/d, some 0  � <

�0 =
d + 2 � �d(d � 2)

q � �d(d � 2)
and some q > d + 2 and b > max ((2d + 3)/d, q � 1) .

(T2) X is ✓-weakly dependent with ✓(m) = O(m�b) and hn = O
0
BBBB@
 

log n
n1��

!�1CCCCA for some 0 < � < 1/d, some

0  � < �0 =
d + 2 � �d(d � 2)

q � �d(d � 2)
and some even integer q > d + 2 and b > max(2(d + 1)/d, 3(q � 1)).

Then

An = Oa.s.

0
BBBBBB@

s
log n

n1��hd
n

1
CCCCCCA .

Remark 3. In the literature, classical results assume in place of (M1) and (K2) the following assumptions to control
the bias term (see e.g. Proposition 3.3.1. in [14] extended to the multidimensional case):

10



• f belongs to the set of Hölder ⇢-regular functions

C⇢ = { f : f is b⇢c-di↵erentiable,9 L > 0/,8(x, y) 2 S , | f b⇢c(y) � f (b⇢c)(x)|  L|y � x|c},

for some 0 < c 6 1 where ⇢ > 2 and S is any compact set of Rd

• K is a kernel of order ⇢.

In this case Bn = O(h⇢n). These assumptions are somehow more restrictive than (M1) and (K2). Indeed, if f 2 Ck and
f (k) is c�Hölder then f 2 Ck+c but the converse does not seem to hold even if c = 1 and for an integer k, Ck , Ck.

Proof of Proposition 3. Let us prove (A1) (the case (T1) can be handled in the same way). By Proposition 6 and item
1 of Proposition 7,

✏0n = Oa.s.

0
BBBBB@

 
log n

n

!�k
+

 
log n

n

!(1��d)/21CCCCCA ,

with � < 1/(3d + 6).

• If k > d + 3, thus 1/(2k + d) < 1/(3d + 6) and an optimal choice for � is � = 1/(2k + d) so that ✏0n =

Oa.s.

 
log n

n

!k/(2k+d)

.

• If k 6 d + 3, thus 1/(2k + d) � 1/(3d + 6) and ✏0n = Oa.s.

0
BBBBB@

 
log n

n

!�k1CCCCCA and the result obtains setting � =

(1 � �)/(3d + 6) for some � 2 (0, 1).

Proof of Proposition 4. By Proposition 6 and item 2 of Proposition 7,

✏0n = Oa.s.

0
BBBBB@

 
log n
n1��

!�k
+

 
log n
n1��

!(1��d)/21CCCCCA ,

for some � > �0. To prove (A2) notice that we have d + 2 < q < b + 1. Proposition 4 obtains by setting q = b + 1 in
�0 with b > max(d + 1, 2 + 3/d) in item (A2) of Proposition 7. In case (T2) we have d + 2 < q < b/3 + 1 where q
is an even integer. Proposition 4 obtains by setting b/3 + 1 in place of q in �0 and we must have b/3 + 1 > d + 3 so
b > 3(d + 2) in item (T2) of Proposition 7.

Proof of Proposition 6.

E(bfn(x)) =
Z

Rd
K(u) f (x � hu)du.

Since f 2 Ck, k > 2 and k f (k)
k1 < M by (M1), we can use an order k Taylor-Lagrange expansion of f around x and

using the fact that K is an order (k � 1) kernel by (K2),

|E(bfn(x)) � f (x)|  M
hk

n

k!

Z

Rd
kukk
|K(u)|du.

Therefore,
sup
x2Rd
|E(bfn(x)) � f (x)| = O

⇣
hn

k
⌘
.

Notice that the result still hold when k = 1 as soon as
Z

Rd
kuk|K(u)|du , 0.
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Proof of Proposition 7. We first start by providing in each case (item 1 and 2 of the proposition), a bound for An on a
compact set of Rd of the form

sup
kxk6n⌫

|bfn(x) � E(bfn(x))| = Oa.s.

 
�(n)
p

nhd

!
, (6)

with ⌫ > 2/c (c defined in (M5)), for some appropriate �(n) ! 1 such that �(n) = o(
p

nhd). Then, to state the
convergence on the whole set Rd, we have to show that

Ln = sup
kxk>n⌫

p
nhd

�(n)
|bfn(x) � E(bfn(x))|! 0 (7)

Since K has a compact support, say included in the ball Bd(0,C) of Rd then if for each i  n, kXi � xk > Chn we have
Ln = sup

kxk>n⌫ E(bfn(x)). Now since hn  1,

|E(bfn(x))| = |
Z

Rd
K(u) f (x + uhn) du|  sup

kx�yk1
f (y),

thus beeping in mind that n⌫ � 1 � n⌫/2 for n large enough, and now:

sup
kxk>n⌫

|E(bfn(x))|  sup
kyk�n⌫�1

f (y)

which tends to zero by (M4). To prove that Ln converges a.s. to 0, we have to assume (M5). We thus have

1X

n=1

P
 

max
16t6n

kXtk > n⌫ �Chn

!
6

1X

n=1

1 ^
EkX1k

c + · · · + EkXnk
c

(n⌫ �Chn)c < 1,

for ⌫ such that ⌫ > 2/c so that the series converges by (M5). This with the Borel–Cantelli entail that sup
kxk>n⌫ |

bfn(x)|
tends to 0 as n goes to infinity a.s. as fast as needed. Indeed kXt � xk > Chn a.s. uniformly over 1  i  n and kxk > n⌫
and thus the kernel vanishes.

Let us now prove (6). Set for all x 2 Rd,

bGn(x) =
nX

i=1

Yi(x) =
1

nhd

nX

i=1

Ui(x), with Ui(x) = K
 

x � Xi

hn

!
� EK

 
x � Xi

hn

!
. (8)

To prove (6), we use the chaining argument of [22]. Let I = [�M,M]d be a cube of Rd. Since I is compact, it can be
covered by �d cubes I1, . . . I�d with centers x1, . . . x�d and sides of length 2M/�, where � is such that �h/M ! 1. Here,
notice that h, � and M are allowed to vary with n but it is omitted in the notation to make the reading easier. Setting
bGn(x) = bfn(x) � E(bfn(x)) we have for all j

|bGn(x)|  |bfn(x) � bfn(x j)| + |bfn(x j) � Ebfn(x j)| + |Ebfn(x j) � Ebfn(x)|.

Under (K1), [22] proves that for some positive constant L and for all x 2 I j,
������K

✓ x � Xi

h

◆
� K

 
x j � Xi

h

!������ 6
2MLip(K)
�h

1kx j�Xik6Lh.

Using this fact it is easy to deduce that there exists another kernel density estimator ef for f , obtained by replacing
K in (5) by the piecewise linear and compactly supported kernel eK defined by eK(x) = 1 if kxk 6 L and eK(x) = 0
otherwise, such that for some n > n0 (see [22] p 78),

sup
x2I j

|bGn(x)|  |bGn(x j)| +
C1M

h�

⇣
|eGn(x j)| + |Eefn(x j)|

⌘
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with C1 = 2Lip(K) and eGn(x) = efn(x) � E(efn(x)). Therefore,

sup
kxk6Md

|bGn(x)|  max
16 j6�d

|bGn(x j)| +
C1M

h�

 
max

16 j6�d
|eGn(x j)| + max

16 j6�d
|Eefn(x j)|

!
,

so that we can write as soon as sup
kxk6Md |Eefn(x)| 6 th�/3MC1 (which is true when th�/M > C2 for some C2 > 0),

P
0
BBBBB@ sup
kxk6Md

|bGn(x)| > t

1
CCCCCA  P

 
max

16 j6�d
|bGn(x j)| >

t
3

!
+ P

 
max

16 j6�d
|eGn(x j)| >

th�
3MC1

!

 �d sup
kxk6Md

(
P

✓
|bGn(x)| >

t
3

◆
+ P

 
|eGn(x)| >

th�
3MC1

!)
(9)

We then set t = C
�(n)
p

nhd
for some appropriate �(n) ! 1 such that �(n) = o(

p
nhd) and M = n⌫/d and have to control

each term at the right hand side of (9). If the right hand side is the general term of a convergent series then using
Borel-Cantelli lemma we obtain (6).

Therefore, the main goal of the proof of Proposition 7 consists now of finding in each case (A1), (T1), (A2), and
(T2) sequences �(n) and �(n) such that the right hand side of (9) is the general term of a convergent series. We shall
need the following

Lemma 6. Let X be strictly stationary sequence with density f and kernel estimator bfn defined by (5). Assume that
(M3) holds and that (K1) holds with hn ! 0 and nhd

n ! 1, and that we have one of the following conditions

(A1) X is strongly mixing with ↵(m) = O(b�m) for some b > 1.

(T1) X is ✓�weakly dependent with ✓(m) = O(b�m) for some b > 1.

(A2) X is strongly mixing with ↵(m) = O(m�b) for some b > 2 + 3/d.

(T2) X is ✓�weakly dependent with ✓(m) = O(m�b) for some b > 2 + 2/d.

Thus one has

�2
n(x) = varbfn(x) =

1
nhd f (x)

Z
K2(u)du + o

 
1

nhd

!
.

Proof of item 1 of Proposition 7. In cases of geometric decay rate of the dependence coe�cients, we may use a
Bernstein’s type inequality for bGn(x) and eGn(x) in order to bound the right hand side of (9). Namely we will use
Theorem 1 and Proposition 8 of [17]. Let us recall them below in our special setting

Lemma 7. Let Yn be a n�sample of a R-valued strictly stationary sequence Y such that E(Yi) = 0 and kYk1 6 H
in probability. Assume that there exists some 0 < c < 1 and some L > 0 such that for all u- tuples (s1, ..., su) and all
v-tuples (t1, ..., tv) with 1 6 s1 6 . . . 6 su 6 t1 6 . . . 6 tv 6 n,

cov
�
Ys1 . . . Ysu ,Yt1 . . . Ytv

� 6 Hu+v�2L2vc(t1�su). (10)

Then, for all t > 0,

P
0
BBBBB@

nX

i=1

Yi > t

1
CCCCCA 6 exp

0
BBBB@�

1
2

t2

�2
n +G1/3

n t5/3

1
CCCCA ,

with

�2
n = var

0
BBBBB@

nX

i=1

Yi

1
CCCCCA , Gn ⇠ (L _ H)

 
nL2

�2
n
_ 1

!
.
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Now, let Yi ⌘ Yi(x) be defined by (8). Notice that Yi(x) = Fn(Xi), where Fn is a bounded Lipschitz function with
kYi(x)k1 6 H = kFnk1 6 2kKk1/nhd and LipFn 6 LipK/(nhd+1). Assume that

�2
n = Oa.s.

 
1

nhd .

!
(11)

• Strong mixing case. If X is strong mixing with ↵(m) = O(b�m), b > 1, thus Y is strong mixing with ↵Y (m) 6
↵(m) by measurability of Fn. Moreover, by [15]’s Lemma 6 and [17]’s Remark 7, (10) is satisfied with L2 =
(LipFn)2 and c = 1/b. Therefore Lemma 7 applies with H ⇠ 1/nhd, L2

⇠ 1/(n2h2d+2) and Gn ⇠ 1/(nh2d+3).
Setting t = C

p
log n/nhd for some convenient constant C > 0, we get

P
0
BBBBB@|bGn| > C

r
log n
nhd

1
CCCCCA 6 n�C2/2

as soon as un = nhdG1/3
n t5/3

! 0, which is true as soon as � < 1/(3d + 6) with hn = O((log n/n)�).

• ✓�weak dependent case. If X is ✓�weakly dependent with ✓(m) = O(b�m), b > 1, thus Y is ✓�weakly dependent
since Fn is a Lipschitz function, by heredity of this property through Lipschitz functions, with ✓Y (m) 6 ✓(m).
Moreover, using Remark 9 and Proposition 8 of [17], (10) is satisfied with L2 = HLipF and c = 1/b. Therefore
Lemma 7 applies with H ⇠ 1/nhd, L2

⇠ 1/(n2h2d+1) and Gn ⇠ 1/(nh2d+2). Setting t = C
p

log n/nhd for some
convenient constant C > 0, we get

P
0
BBBBB@|bGn| > C

r
log n
nhd

1
CCCCCA 6 n�C2/18

as soon as un = nhdG1/3
n t5/3

! 0, which is true as soon as � < 1/(3d + 4) with hn = O((log n/n)�).

Therefore, we obtain in both cases a bound for the first term at the right hand side of (9). The second term can be
handled in the same way, with identical values of L2, H and Gn setting � = MC1/h", " > 1.

Finally, one obtains for (9) setting M = n⌫/d,

P
0
BBBB@ sup
kxk6n⌫

|bGn(x)| > t
1
CCCCA 6 �dn�D = An⌫+"�d�D(log n)��"d

for some constant A > 0 and some conveniently chosen C in the expression of t such that D > 1 + ⌫ + �"d so that

sup
kxk6n⌫

|bfn(x) � E(bfn(x))| = Oa.s.

0
BBBBBB@

s
log n
nhd

n

1
CCCCCCA

using Borel–Cantelli. It remains to show that (11) holds, which is true by Lemma 6 under (K1), (M2) and (M3).

Proof of item 2 of Proposition 7. The proof relies on the following

Lemma 8. Let Xn be a n-sample of a strictly stationary sequence X and bfn be defined by (5).

(i) Assume (K1) with hn ! 0 and nhd
n ! 1. Assume moreover that there exists some c > 0 and some q > 2 such that

for n > n0

sup
x2Rd

kbfn(x) � E(bfn(x))kq 6 c
p

nhd
n

. (12)

Then, for every sequence (�n) such that �n ! 1 and �n = O
⇣ p

nhd
n

⌘
as n tends to 1 and every ⌫ > 0 satisfying

1X

n=1

0
BBBBB@

p
nhd

n

hn

1
CCCCCA

d
n⌫

�q
n
< 1, (13)

sup
kxk6n⌫

|bfn(x) � E(bfn(x))| = Oa.s.

0
BBBBB@
�np
nhd

n

1
CCCCCA .

14



(ii) Assume that (12) holds and hn = O
0
BBBB@
 

log n
n1��

!�1CCCCA for some 0 < � < 1/d and 0 < � < 1. Then, under (K1) one has

sup
kxk6n⌫

|bfn(x) � E(bfn(x))| = Oa.s.

0
BBBBBB@

s
log n

n1��hd
n

1
CCCCCCA

as soon as �, � and q are such that
�q + (1 � �)�d(d � 2) > d + 2. (14)

In the following lemma, we give the conditions under which (12) holds in Riemmaniann decay cases (A2) and
(T2). The point (ii) of this lemma together with 8 yield item 2 of Proposition 7.

Lemma 9. Let Xn be a n-sample of a strictly stationary sequence X and bfn be defined by (5).

(A2) Assume that X is ↵-mixing with ↵(m) = o(m�b) for some b > 0. Assume moreover that (M2), (M3), (K1) and (K2)
hold for some k > 2, with hn ! 0 and nhd

n ! 1. Thus (12) obtains for every q > 2 and b > max(2+3/d, q�1).

(T2) Assume that X is ✓-weakly dependent with ✓(m) = o(m�b) for some b > 0. Assume moreover that (M2), (M3) and
(K1) hold, with hn ! 0 and nhd

n ! 1. Thus (12) obtains for every even q > 2 and b > max(2 + 2/d, 3(q � 1)).

Proof of Lemma 6. Let f̆n be the kernel estimator analogue to bfn but built on independent copies of X0. A well known
result (see for instance [24]) is

var f̆n(x) =
1

nhd f (x)
Z

K2(u)du + o
 

1
nhd

!
.

We have
varbfn(x) = var f̆n(x) +

2
n2h2d

X

16i6 j6n

cov(Ui(x),U j(x))|.

So, by stationarity of the process (Ui(x)),

�n(x) = |varbfn(x) � var f̆n(x)| 6 2
nh2d

n�1X

m=1

|cov(U0(x),Um(x))|.

On the one hand,

|cov(U0(x),Um(x))| = h2d
ZZ

(K (s) � E(K(X0))) (K (t) � E(K(X0))) f0,m(x � hs, x � ht)dsdt

6 Ch2d

by (K1) and (M3).
On the other hand one has the property (10) with u = v = 1, su � t1 = m, M and L2 depending on the dependence

structure of X. Namely,

• If X is ✓-weakly dependent then by (10)

|cov(U0(x),Um(x))| 6 2kKk1
LipK

h
✓(m).

Therefore,
1

nh2d |cov(U0(x),Um(x))| 6 D
nhd

 
✓(m)
hd+1 ^ hd

!
6 D

nhd hd�↵(2d+1)✓(m)↵

for all 0 6 ↵ 6 1 by relation (12.18) of [14] so that setting ↵ = d/(2d + 1) �n tends to zero as soon as
X
↵(m)

d
2d+1 < 1.

When ✓(m) ⇠ m�b, this holds for all b > 2 + 2/d. In case of geometric decay ✓(m) ⇠ b�m, b > 1, this is always
true.
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• If X is strong mixing, we have by (10)

|cov(U0(x),Um(x))| 6 (LipK)2

h2 ↵(m)

so
1

nh2d |cov(U0(x),Um(x))| 6 D
nhd

 
↵(m)
hd+2 ^ hd

!
6 D

nhd hd�↵(2d+2)↵(m)↵

for all 0 6 ↵ 6 1 so that setting ↵ = d/(2d + 2) �n tends to zero as soon as
X

m

↵(m)
d

2d+2 < 1.

When ↵(m) ⇠ m�b, this holds for all b > 2 + 3/d. In case of geometric decay ✓(m) ⇠ b�m, b > 1, this is always
true.

Proof of Lemma 8. • Proof of (i) Let �(n) ! 1 such that �(n) = o(
p

nhd
n). We deduce from (12) by Markov

inequality that there exists some C3 > 0 such that

P
0
BBBBB@ sup
kxk6Md

n

|bGn(x)| >
�(n)
p

nhd
n

1
CCCCCA 6

C3�d

�(n)q

as soon as there is some C4 > 0 such that �hn > C4Mn
p

nhd
n. For that task, set t =

�(n)
p

nhd
n

in (9). One has

P
0
BBBBB@|bGn(x)| >

�(n)

3
p

nhd
n

1
CCCCCA 6

3q

�(n)q

 
sup
x2Rd

q
nhd

nkbGn(x)kq

!q

6 C5

�(n)q

with C5 = (3c)q.Moreover, keGn(x)kq is uniformly bounded so as soon as �hn > C4M
p

nhd
n,

P
0
BBBBB@|eGn(x)| >

�(n)hn�

3CMn
p

nhd
n

1
CCCCCA 6

C5

�(n)q ,

with C5 = (3C1C4)�1. Set

� =
M

p
nhd

n

hn
.

We have
sup

kxk6Md
n

|bfn(x) � E(bfn(x))| = Oa.s.

 
�(n)
p

nhd

!
. (15)

This holds from Borel-Cantelli lemma as soon as

X

n

0
BBBBB@

Mn
p

nhd
n

hn

1
CCCCCA

d
1
�(n)q < 1. (16)

The result of Proposition 8 obtains setting Mn = n⌫/d.

• Proof of (ii)
With the conditions on hn we have hn ! 0 and nhd

n ! 1. Set �(n) =
p

n� log n. Since 0 < � < 1 and
0 < � < 1/d, we have �(n) ! 1 and �(n)/

p
nhd ! 0. To achieve the proof we need to ensure that we can find

⌫ > 0 such that (16) converges. Set un the general term of (16). With the assumptions on hn and �(n),

un = O
 

1
nc log na

!
,
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with 2c = �q� 2⌫� d + �d(1� �)(d � 2) and a = (q� �d(d � 2))/2. The series of general term un is a Bertrand’s
series that converges if and only if c > 1 or c = 1 and a > 0. One thus need that there exists some ⌫ > 0 such
that 2⌫ 6 " with 0 < " = �q� 2� d + �d(1� �)(d � 2) which holds as soon as �q� 2� d + �d(1� �)(d � 2) > 0.

Proof of Lemma 9. • Proof of (A2) In the strong mixing case, we apply, for given x 2 Rd, [25]’s theorem 6.3
to the sequence U(x) = (Ui(x))16i6n. Notice that it is strong mixing with ↵U(x)(m) 6 ↵(m) by heredity of
sequences expressed as measurable functions of strong-mixing sequences. Set

S n(x) =
nX

i=1

Ui(x) = nhd bGn(x).

For all q > 2, Ui(x) has an order q moment since kUi(x)k 6 2kKk1. Thus, applying Theorem 6.3 yields for all
n > n0,

kS n(x)kq
q 6 asn(x)q + nc

Z 1

0

⇣
↵�1(u)

⌘q�1
Qq

x(u)du,

where a and c are positive constants that only depend on q, ↵�1(u) =
X

n>1

1u<↵(n), Qx is the generalized inverse

of the tail function t 7! P(|U0(x)| > t) and

sn(x)2 =
X

i

X

j

|cov(Ui(x),U j(x))|.

Using [25]’s inequality C.3 p 157 for some r > q there exists c0 > 0 that only depends on q, r and kKk1 such
that

kS n(x)kq
q =

⇣
nhd

n

⌘q
kbGn(x)kq

q 6 asn(x)q + c0nkU0(x)kq
r

0
BBBBBB@
X

i>0

(i + 1)
qr�2r+q

r�q ↵(i)

1
CCCCCCA

1�q/r

6 asn(x)q + c0nhdq/r
n

0
BBBBBB@
X

i>0

(i + 1)
qr�2r+q

r�q ↵(i)

1
CCCCCCA

1�q/r

.

Using Lemma 6 and setting hn = O((log n/n1��)�), we obtain (12) under (K2) for some k > 1 as soon as (M2)
and the following conditions are fulfilled for some r > q:

(1)
hdq(1/r�1/2)

n

nq/2�1 ! 0.

(2)
X

i>0

(i + 1)
qr�2r+q

r�q ↵(i) < 1.

(3) b > 2 + 3/d.

If q(1 � (1 � �)�d) > 2, Condition (1) is fulfilled for all r > q. On the other hand, condition (2) is fulfilled as
soon as

b >
r(q � 1)

r � q
= u(r).

Since u is decreasing with limr!1 u(r) = q � 1, we can take b > max(q � 1, 2 + 3/d) to meet the conditions (1)
to (3).

If q(1 � (1 � �)�d) < 2, obvious calculations entails that we have to choose r such that

q < r 6 r1 =
2(1 � �)�dq

2 � q(1 � (1 � �)�d)

17



In this case, one can choose

b > u(r1) =
2(1 � �)�d(q � 1)

(q � 2)(1 � (1 � �)�d)
)

to meet (2). Since q(1 � �d) < 2, b > u(r1) > q � 1 so that b > max(q � 1, 2 + 3/d) meet the conditions (1) to
(3).

Finally, (12) obtains as soon as b > max(q � 1, 2 + 3/d).

• Proof of (T2)

In the ✓-weakly dependent case, it straightforwardly follows from [16]’s theorem 1: under the conditions (M2),
(M3), (K1) with hn ! 0 and nhd

n ! 1 (12) obtains for any even q > 2 as soon as

�2
n = O(1/nhd

n) and
X

m>0

(m + 1)q�2✓(m)1/3 < 1.

When ✓(m) = o(m�b), the first condition implies b > 2 + 2/d by Lemma 6 and the second obtains with b >
3(q � 1).

5.3. Preliminary results for the proofs of Section 3
In this section, we give some technical tools from [31], [26] and [2] on the R-convex hull and the rolling ball

condition used to derive the results of Section 3. The proofs are omitted or only sketched. The presentation of theses
deterministic results allow to make the paper self contained and to highlight where the main di↵erences lie between
the dependent and independent settings

For a set S 2 Rd, recall that its R-convex hull CR(S ) is defined as:

CR(S ) =

0
BBBBBBBB@

[

B̊(x,R)\S=;

B̊(x,R)

1
CCCCCCCCA

c

.

Hereafter, we recall some obvious properties of the R-convex hull:

Property 1. Let CR(S )c be the complement of CR(S ) on Rd. One has

CR(S )c =
�
x 2 Rd, x 2 B̊(O,R) and S \ B̊(O,R) = ;

 

so that

1. If R < R0 then CR(S ) ⇢ CR0 (S ).
2. iI S 0

⇢ S then CR(S 0) ⇢ CR(S )
3. Let H(S ) be the convex hull of S . One has

lim
R!+1

CR(S ) = C1(S ) = H(S ).

Sets satisfying the inside and outside rolling ball property have nice properties detailed in [32] which are recalled in
Property 2 and illustrated in Figure 1.

Property 2. If S satisfies the inside and outside rolling ball property for some positive Ri and Ro then

1. For all R < Ro, CR(S ) = S .
2. For all points z 2 @S the "unit outward normal" vector (i.e. normal to @S and pointing outside S ), denoted ⌘z

is well defined as ⌘z =
Oo

z�z
Ro
.

3. For all x 2 S with d(x, @S ) 6 Ri, its projection ⇡@S (x) onto @S is well defined and x = ⇡@S (x) � d(x, @S )⌘⇡@S (x),
Oi

x = ⇡@S (x) � Ri⌘⇡@S (x).
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Fig. 1: All you have to have in mind concerning the rolling ball property

4. Conversely, for all y 2 S c with d(y, @S ) 6 Ro, its projection ⇡@S (y) onto @S is well defined and y = ⇡@S (y) +
d(y, @S )⌘⇡@S (y), Oo

y = ⇡@S (y) + Ro⌘⇡@S (y).

Following the arguments of [26], we can prove the following result which will be a key point for the study of the
asymptotic properties of the R-convex hull estimator.

Proposition 8. Let S 0
⇢ S ⇢ Rd. Assume that balls of radius Ro (resp. Ri) roll freelly outside (resp. inside) S . Let

R < Ro and " < min(Ri,R). If, for all O 2 Rd such that d(O, S ) 6 R � " we have that B(O,R) \ S 0 , ;, then

S  "B = {x 2 S , d(x, @S ) > "} ⇢ CR(S 0) ⇢ S

Proof. Proposition 8. The second inclusion is a direct consequence of S 0
⇢ S ⇢ Rd thus CR(S 0) ⇢ CR(S ) then,

because R 6 Ro and due to the outside rolling ball condition we have CR(S ) = S .
Now let prove the first inclusion by contradiction. Suppose that there exists x 2 S with d(x, @S ) = "0 > " and

x 2 CR(S 0)c. As x 2 CR(S 0)c there exists O, kO � xk < R with B(O,R) \ S 0 = ;. Introduce z = [0, x] \ S(x, "0) we
have z 2 S then, because kO � xk 6 R we have d(O, S ) 6 R � "0 that contradicts B(O,R) \ S 0 = ;.

From Proposition 8 and using theorem 4.1 in [2], we can derive general deterministic results on the R-convex hull
summarized in the following

Corollary 1. Let S 0
⇢ S ⇢ Rd be a finite set. Assume that balls of radius Ro (resp. Ri) roll freely outside (resp.

inside) S . Let R < Ro and " < min(Ri,R). If, for all O 2 Rd such that d(O, S ) 6 R � " we have that B(O,R) \ S 0 , ;,
then we have

d(@CR(S 0), @S ) 6 ", d(CR(S 0), S ) 6 ",
���|CR(S 0)|d � |S |d

��� 6 |@S |d�1"(1 + o(1)).

Moreover if d(S 0, S ) 6 1
2

R min(Ri,Ro)
R +min(Ri,Ro)

and " is small enough with regards to d, R and min(Ri,Ro), one has

@CR(S 0) ⇡ @S , CR(S 0) ⇡ S

and there exists some constant Cd,R,R0,Ri > 0 depending on d,R,R0 and Ri such that

||@CR(S 0)|d�1 � |@S |d�1| . Cd,R,R0,Ri"(1 + o(1))

when "! 0.

Proof. Corollary 1
Here we only sketch the proof of Corollary 1, giving main arguments. By Proposition 8 we have S  "B ⇢

CR(S 0) ⇢ S . Thus
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1. About d(@CR(S 0), @S )

• Since S  "B ⇢ CR(S 0), then, for all x 2 @CR(S 0) exists d(x, @S ) 6 ".
• For all x 2 @S consider y = x � "⌘x, by inside rolling ball property of S we have y 2 S  "B and thus the

segment (x, y) intersects @CR(S 0) and d(x, @CR(S 0)) 6 ".
2. About d(CR(S 0), S ) we clearly have by inclusions that d(CR(S 0), S ) 6 d(S  "B, S ) = maxx2S d(x, S  "B) =

maxx2S \(S "B) d(x, S  "B). Now take x 2 S \ (S  "B), there exists y 2 @S with ky� xk < " thus k⇡@S (x)� xk < ".
We have x = ⇡@S (x)� kx� ⇡@S (x)k⌘⇡@S (x). Introduce x0 = ⇡@S (x)� "⌘⇡@S (x) which belongs to S  "B, kx� x0k 6 "
that proves d(CR(S 0), S ) 6 ".

3. |CR(S 0)|d 6 |S \ (S  "B)|d ⇡ "|@S |d�1 indeed it is the inner Minkowski content of a set with positive reach, its
asymptotic can be deduced from the Minkowski content of a set with positive reach (see [18]) and its outer part
see ([3]).

4. @CR(S 0) ⇡ @S and ||@CR(S 0)|d�1 � |@S |d�1| . Cd,R,R0,Ri"(1+ o(1)) are direct consequences of Theorem 4.1 in [2].
The homeomorphism between @CR(S 0) and @S being ⇡@S it is easy, and let to the reader, to prove that, since "
is small enough ' : CR(S 0) 7! S define as

8>><
>>:
'(x) = x if x 2 S  2"B
'(x) = X0(x) + 2" kx�X0(x)k

kX1(x)�X0(x)k⌘@S (x) if x 2 CR(S 0) \ (S  2"B)

where X0(x) = ⇡@S (x) � 2"⌘⇡@S (x) and X1(x) = (X0(x), ⇡@S (x)) \ @CR(S 0) is a homeomorphism and thus that
CR(S 0) ⇡ S

A way to derive asymptotic rates for the R-convex hull of a set of point Xn clearly consists in finding sequences
"n such that X

n

P(9O, d(O, S ) < R � "n, B(O,R) \ Xn = ;) < +1.

Also we have to prove that d(Xn, S ) ! 0 almost surely to apply the last part of Corollary 1 and deduce the topological
guarantees and the convergence for the measure of the boundary.

Dependence has to be taken into account when dealing with P(B(O,R) \ Xn = ;) where Propositions 1 or 2 are
applied (instead of a trivial product in independent case).

Lemma 10. Assume that we are under the assumptions of Propositions 1 or 2. Assume moreover that the marginal
density f belongs to the modelMR0,Ri, f0,↵. Let E0r(q) = ↵(q) in case of strong mixing and E0r(q) = mint2[0,r]

⇣
✓(q)

t + c!d2dtrd�1
⌘

in case of ✓-weak dependence). Introduce

Pn = P (9O 2 S � (R � "n)B , B(O,R) \ Xn = ;)

We have the existence of a constant C (depending on model parameters, f0,↵, d,Ri and the parameter R) such that

Pn . (ln n)d"�d
n

0
BBBBBBBBB@
exp

 
�C

n
q

✓
"n �

"n

ln n

◆ d+1+2↵
2

!
+

E
0

R� "nln n
(q)

C
⇣
"n �

"n
ln n

⌘ d+1+2↵
2

1
CCCCCCCCCA

(17)

We also have that

P(d(Xn, S ) > rn) .
 

ln n
rn

!d
0
BBBBBBBB@exp

 
�C0

n
q

✓
rn �

rn

ln n

◆d+↵
!
+
E
0

rn�
rn
ln n

(q)
⇣
rn �

rn
ln n

⌘d+↵

1
CCCCCCCCA (18)

Proof. Let cover S � (R � "n)B with ⌫n 6 Cd( diam(S )+Ro
"n

ln n)d deterministic balls of radius "n/ ln n and centered at
xi 2 S � (R � "n)B we have by Propositions 1 or 2 and by the triangular inequality:
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Pn 6
⌫nX

i=1

P(B(xi,R �
"n

ln n
) \ Xn = ;) 6

⌫nX

i=1

0
BBBBBB@(1 � pi)

n
q +
E
0

R� "nln n
(q)

pi

1
CCCCCCA

where pi = P(X1 2 B(xi,R � "n
ln n )). By Proposition 10 it comes that

pi > f0C00

d,↵

 min((R � "n
ln n ),Ri)

2

! d�1
2

(
min

 ✓
"n �

"n

ln n

◆
,

min((R � "n
ln n ),Ri)

2

!) d+1+2↵
2

Thus as "n converges to 0 for any C < f0C00

d,↵

⇣
min(R,Ri)

2

⌘ d�1
2 for n large enough we finally obtain:

Pn . (ln n)d"�d
n

0
BBBBBBBBB@

 
1 �C

✓
"n �

"n

ln n

◆ d+1+2↵
2

! n
q

+
E
0

R� "nln n
(q)

C
⇣
"n �

"n
ln n

⌘ d+1+2↵
2

1
CCCCCCCCCA

and thus

Pn . (ln n)d"�d
n

0
BBBBBBBBB@
exp

 
�C

n
q

✓
"n �

"n

ln n

◆ d+1+2↵
2

!
+

E
0

R� "nln n
(q)

C
⇣
"n �

"n
ln n

⌘ d+1+2↵
2

1
CCCCCCCCCA

that concludes the proof of Equation (17).
Suppose Now that d(Xn, S ) > rn with rn 6 Ri then there exist x 2 S with B(x, rn) \ Xn = ;. Define ⌦ as :

⌦ =

8>><
>>:

x if d(x, @S ) > 1/3
⇡@S (x) � 2rn

3 ⌘⇡@S (x) if d(x, @S ) < 1/3

We have that B(⌦, rn/3) ⇢ S and B(⌦, rn/3) ⇢ B(x, rn).
As a first conclusion if d(Xn, S ) > rn then there exists ⌦ 2 S  

rn
3 B with B(⌦, rn/3) \ Xn = ;. The sequel of the

proof consist in bounding the probability of existence of such a point. Cover S  rn
3 B with balls of radius rn

3 ln n centered
at y1, . . . , yN in S  

2rn
3 B with N 6 Cd

(diam(S )(ln n)d3d

rd
n

.
Introduce

P(d(Xn, S ) > rn) = P
 
9,⌦ 2 S  

2rn

3
B, B

✓
⌦,

rn

3

◆
\ Xn = ;

!
.

By the triangular inequality

P(d(Xn, S ) > rn) 6
NX

i=1

P
 
B

 
yi,

rn

3

 
1 �

1
ln n

!!
\ Xn = ;

!
.

Let now qi = P
⇣
B

⇣
yi,

rn
3

⇣
1 � 1

ln n

⌘⌘
\ Xn = ;

⌘
by proposition 10 we have qi > f0Cd,↵

⇣
rn
6

⇣
1 � 1

ln n

⌘⌘d+↵
and thus,

setting C0 = f0Cd,↵/3d+↵

P(d(Xn, S ) > rn) .
 

ln n
rn

!d
0
BBBBBBBB@exp

 
�C0

n
q

✓
rn �

rn

ln n

◆d+↵
!
+
E
0

rn�
rn
ln n

(q)
⇣
rn �

rn
ln n

⌘d+↵

1
CCCCCCCCA (19)
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5.4. Proof for theorems on support estimation
5.4.1. Independence

First Let us focus on the iid case, that is, for all q 2 N⇤ and R 2 R E0R(q) = 0.

Proof. of Theorem 1. Apply Lemma 10 Equation (17) with q = 1 and "n =
⇣

3
C

ln n
n

⌘ 2
d+1+2↵ it comes that Pn .

(ln n)dn�1�2 1+2↵
d+1+2↵+o(1) thus

P
n Pn < +1.

Also by Equation (18) with q = 1 and rn =
⇣

3d+2↵
C0(d+↵)

ln n
n

⌘ 1
d+↵ we obtain P(d(Xn, S ) > rn) . (ln n)dn�2+o(1).

From Borrel-Cantelli and Corollary 1 we infer the proof of Theorem 1.

When independence is not assumed, the proofs are similar. We just have to take into account the E0 term and find
suitable sequences "n and qn in order to obtain convergent series and apply Borrel-Cantelli and Corollary 1.

5.4.2. Exponential decay
First we deal with the case of Exponential decay i.e. ↵(q) or ✓(q) bounded by Bbq with 0 < b < 1

Proof. of Theorem 2.

1. Strong mixing: for all R 2 R we have E0R(q) 6 Bbq.
(a) Choose "n = (�(ln n)2/n)

2
d+1+2↵ with � > �ed

0 =
2(2d+1+2↵)(3d+1+2↵)

(d+1+2↵)2C ln(b�1) , let write � = �ed
0 (1 + u).

Choose qn = �1 ln n with �1 =
2(2d+1+2↵)

(d+1+2↵) ln(b�1)

⇣
1 + u

2

⌘
finally introduce v = u

2+u . By Equation (17)

Pn . (ln n)dn
2d

d+1+2↵

0
BBBBBB@exp

0
BBBBBB@�

C� ln n
�1

 
1 �

1
ln n

! d+1+2↵
2

1
CCCCCCA +

n1+�1 ln(b)

(ln n)2

1
CCCCCCA

Because d > 1 and ↵ > 0 then d+1+2↵
2 > 1 we have

⇣
1 � 1

ln n

⌘ d+1+2↵
2 > 1 � d+1+2↵

2
1

ln n and thus

Pn . (ln n)d
⇣
n�1� 3d+1+2↵

d+1+2↵ v+o(1) + n�1� 2d+1+2↵
d+1+2↵ u

⌘
(20)

we have
P

n Pn < +1.

(b) Choose rn =
⇣
c (ln n)2

n

⌘ 1
d+↵ and qn = � ln n by Equation (18):

P(d(Xn, S ) > rn) . (ln n)dn
d

d+↵

✓
n�

C0c
� +o(1) + n� ln(b)+1

◆

choose first � large enough to have � ln(b)+1+ d
d+↵ 6 �2 and second c large enough to have �C0c

� +
d

d+↵ 6
�2. We then obtain

PP(d(Xn, S ) > rn) < +1 (and rn ! 0).
2. ✓-weak dependence.

(a) Now E0R�"n/ ln n(qn) = mint2[0,R�"n/ ln n]
⇣

Bbqn

t + c!d2dtRd�1
⌘
. For any choice of sequence "n ! 0, for n large

enough, tn =
p

bqn is in [0,R�"n/ ln n] thus E0R�"n/ ln n(qn) 6 B0 exp(�qn ln(b�1)/2)) thus as previously any
"n = (�(ln n)2/n)

2
d+1+2↵ with � > 2�ed

0 gives sequence
P

Pn, with
P

Pn < +1.

(b) Choose again rn =
⇣
c (ln n)2

n

⌘ 1
d+↵ . Here also the choice of tn =

p
bqn is in [0, rn � rn/ ln n] for n large enough.

Thus E0rn�rn/ ln n(qn) 6 B0 exp(�qn ln(b�1)/2)) and similar to 1.(b) we obtain
PP(d(Xn, S ) > rn) < +1

(and rn ! 0) for suitable constants c.

To conclude, in all the cases we found "n = O
 ⇣

(ln n)2

n

⌘ 2
2+1+↵

!
such that

P
Pn < +1 and sequences rn ! 0 with

PP(d(Xn, S ) > rn) < +1 thus by Borrel Cantelli and Corrolary 1 we achieve the proof.

Now we finish this section by the proof of Theorem 3 that deals with the Riemanian Decay.
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5.4.3. Riemaniann decays
Proof. Theorem 3

1. Strong mixing: E0R(qn) 6 Bq�b
n for a b > 1. Set � = 3d+1+2↵

d+1+2↵ , a = b�2�d
b�� and � = �+1

�+b . Choose "n =
⇣
A (ln n)a

n1��

⌘ 2
d+1+2↵

and qn =
n�

(ln n)a�1 . From Equation (17) it comes that

Pn .
 

ln n
"n

!d

n�AC +
1

n(ln n)2

So that, for A large enough
P

Pn < +1.

Similarly, Set �0 = 2d+↵
d+↵ , a0 = b�2�d

b��0 and �0 = �
0+1
�0+b , choose rn =

✓
A0 (ln n)a0

n1��0

◆ 1
d+↵

and qn =
n�0

(ln n)a�1 . From Equation (17) it comes that

P(dH(Xn, S ) > rn) .
 

ln n
"n

!d

n�A0C0

+
1

n(ln n)2

that, again allows to obtain summable series since A0 is large enough.
2. ✓-weak dependence

3. Now E0R�"n/ ln n(qn) = mint2[0,R�"n/ ln n]

✓
Bq�b

n
t + c!d2dtRd�1

◆
. For any choice of sequence "n ! 0, for n large

enough, tn =
p

q�b
n is in [0,R � "n/ ln n] thus E0R�"n/ ln n(qn) 6 B0q�b/2

n and we can use the sequences exhibited
in the strong mixing for changing b into b/2.

Similarly, Set �0 = 2d+↵
d+↵ , a0 = b/2�2�d

b��0 and �0 = �0+1
�0+b/2 , choose rn =

✓
A0 (ln n)a0

n1��0

◆ 1
d+↵

and qn =
n�0

(ln n)a�1 . and

tn =
p

q�b
n . Check that tn < "n From Equation (17) it comes that

P(dH(Xn, S ) > rn) .
 

ln n
"n

!d

n�A0C0

+
1

n(ln n)2

that, again allows to obtain summable series since A0 is large enough.

5.5. Proofs concerning level sets
Proof. Theorem 4

Let R < mt/ f (2)
max be a positive constant, we first prove that, for n large enough:

bLt,R ⇢ Lt �
2"0n
mt

B (21)

First by a trivial chain of inclusion, bLt,R = CR({bfn(Xi) > t}) ⇢ CR({Xi, f (Xi) > t � "0n}) ⇢ CR(Lt�"0n ). In the sequell
we consider n large enough to have "0n 6 max(�t, t � t0) so that Proposition 5 ensures that CR(Lt�"0n ) = Lt�"0n thus we
have bLt,R ⇢ Lt�"0n . Now for all z0 2 Lt�"0n , introduce z = z0 + 2 "

0
n

mt

r f (z0)
kr f (z0)k we have that

f (z) > f (z0) + 2
"0n
mt
kr f (z0)k � 2

 
"0n
mt

!2

f (2)
max > t + "0n

 
1 �

2"0n
m2

t
f (2)
max

!

thus, since n large enough to also have "0n <
m2

t

2 f (2)
max

we have f (z) > t thus Lt�"0n ⇢ Lt �
2"0n
mt

B. that achieves the proof of
Inclusion (21).
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We now aim at proving that, with probability one for n large enough

Lt ⇢ bLt,R �

 
"n + 2

"0n
mt

!
B (22)

Notice that Xn\Lt+"0n ⇢ X+n (t) thus CR(Xn\Lt+"0n ) ⇢ bLt,R. Let first prove that CR(Xn\Lt+"0n ) contains Lt+"0n "nB with
probability one for n large enough. Proceeding by contradiction suppose that there exists x 2 Lt+"0n with d(x, @Lt+"0n ) >
"n and x < bLt,R. Because x < bLt,R there exists O with kx�Ok < R and B(O,R)\X+n (t) = ; thus B(O,R)\Xn\Lt+"0n = ;.
Moreover because d(x, @Lt+"0n ) > "n we have that d(O, Lt+"0n ) 6 R � "n.

Introduce
Pn = P

⇣
9O 2 Lt+"0n � (R � "n)B , B(O, r) \ Lt+"0n \ Xn = ;

⌘
.

Cover Lt+"0n � (r� "n)B with ⌫n deterministic balls of radius "n/ ln n and centered at xi 2 Lt+"0n � (R� "n)B. Notice
that we clearly have |Lt+"0n | 6 t�1 (because the density on Lt+"0n is greater than t). Thus by bound on packing and
covering numbers it is possible with ⌫n 6 2d

t!d

⇣
ln n
"n

⌘d
.

Pn 6
⌫nX

i=1

P
✓
B

✓
xi,R �

"n

ln n

◆
\ Lt+"0n \ Xn = ;

◆
.

Now by proposition 5, Lt+"0n has the mt/ f (2)
max-inside and outside rolling ball property) and thus, let define x⇤i =

⇡@Lt+"0n
(xi) and yi = x⇤i +

mt

f (2)
max

x⇤i �xi

kx⇤i �xik
we have B(yi,mt/ f (2)

max) ⇢ Lt+"0n and kxi � yik 6 R � "n + mt/ f (2)
max. Then Let

Ei = B(xi,R � "n/ ln n) \ B(yi,mt/ f (2)
max)

Pn 6
⌫nX

i=1

 
(1 � pi)

n
q +
EEi (q)

pi

!

where pi = P(X1 2 Ei).
By Proposition 10 (with f0 = t, ↵ = 0) it comes that

pi > tC00

d,0

0
BBBBBBBBBB@

min
✓
(R � "n

ln n ), mt

f (2)
max

◆

2

1
CCCCCCCCCCA

d�1
2

8>>>>><
>>>>>:

min

0
BBBBBBBBBB@

✓
"n �

"n

ln n

◆
,

min
✓
(R � "n

ln n ), mt

f (2)
max

◆

2

1
CCCCCCCCCCA

9>>>>>=
>>>>>;

d+1
2

Thus as "n converges to 0 for any C < tC00

d,0

0
BBBBBBB@

min
 
R, mt

f (2)
max

!

2

1
CCCCCCCA

d�1
2

for n large enough we finally obtain:

Pn .
 

ln n
"n

!d
0
BBBBBBBBB@
exp

 
�C

n
q

✓
"n �

"n

ln n

◆ d+1
2

!
+

maxi EEi (q)

C
⇣
"n �

"n
ln n

⌘ d+1
2

1
CCCCCCCCCA

This equation is highly similar to Equation 17 with ↵ = 0. The only di↵erence consist in EEi which is now related
to intersections of balls instead of Ball.

For strong mixing EE do not depend on the set E there is no change from the proof of Theorem 2, the given choices
of "n (with ↵ = 0) ensures

P
n Pn < +1.

Considering ✓-weak dependence EE depend on the shape of the set E, nevertheless, due to Equations (3) and (4)
we have that

EEi (q) 6 inf
tn2(0,"n/2)

 
A
✓(q)
tn
+ Btn"

d�1
2

n

!
,

for some constants A and B.

1. In case of exponential decay one can easily check that there exits suitable constants a1, a2 and a3 such that
"n = (a1(ln n)2/n)(d+1)/2, tn =

p
a2✓(qn).("n)(d�1)/2 and qn = a3 ln n allows to have sequences such that tn 2 (0, "n)

and Pn satisfying
P

Pn < +1.
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2. In case of Riemanian decay with b > 2, set � = 5d�1
2(d+1) , � =

1+�
b
2+�

and a = 2 2�d+b/2
b�� one can easily check that there

exits a suitable constant a1 such that "n = (a1(ln n)a/n1��)(d+1)/2, qn = n�/((ln n)a�1, tn =
p

a2✓(qn).("n)(d�1)/2

and qn = a3 ln n allows to have sequences such that tn 2 (0, "n) and Pn satisfying
P

Pn < +1.

That achieves the proof of
Lt+"0n  "nB ⇢ CR(Xn \ Lt+"0n ) ⇢ bLt,R. (23)

Now, considering Lt+"0n , as in the proof of Inclusion (21) we easily obtain Lt  
"0n

2mt
B ⇢ Lt+"0n for n large enough to

have "0n <
m2

t

2 f (2)
max

. Indeed, consider 2 Lt  2 "
0
n

mt
B we have that for all vector u with ||u|| 6 1, f

⇣
z + 2 "

0
n

mt
u
⌘
> t consider

now the special choice of u = � r f (z)
kr f (z)k we have

f (z) � 2
"0n
mt
||r f (z)|| + 2

 
"0n
mt

!2

f (2)
max > f

 
z +
"0n

2mt
u
!
> t

Thus

f (z) > t + 2
"0n
mt
||r f (z)|| � 2

 
"0n
mt

!2

f (2)
max > t + "0n + "

0

n

 
1 �

2"0n
m2

t
f (2)
max

!
> t + "0n.

We thus obtain, with Inclusion 23 that (Lt  2 "
0
n

mt
B)  "nB ⇢ bLt,R

Now by [32] and [18] because Lt has the inside and outside mt/ f 2
max rolling ball property, when "n+2 "

0
n

mt
6 mt/ f 2

max
it comes that

Lt ⇢ bLt,R �

 
"n + 2

"0n
mt

!
B

Which concludes the proof of Inclusion (22) which together with Inclusion (21) allows to apply Corollary 1 and thus
concludes the proof of dH(bLt, Lt) . "n + "0n, dH(@bLt, @Lt) . "n + "0n and ||bLt |d, |Lt |d | . "n + "0n in Theorems 4 and 5.

To obtain homeomorphism and convergence for the perimeter one have to also prove that dH(Lt,Xn \ {z, bf (z) >
t})

a.s.
�! 0 which as easily obtained by use technics extensively used in this paper is let for the reader.
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Appendix A. Some bounds for the measure of the intersections

Proposition 9. let x, y 2 Rd, and rx, ry, ` be positive numbers such that kx � yk = rx + ry � `, ` 6 min(rx, ry) and
h 6 min(rx, ry). letV(rx, ry, `, h) = |(B(x, rx+h)\B(y, ry+h)) \ (B(x, rx�h)\B(y, ry�h))|, we have that, when ` ! 0

V(rx, ry, `, h) 6 !d�1

 
`2rxry

rx + ry

! d�1
2

4h(1 + o(1))

Proof. Let u1 be a unit vector of Rd we can define the portion of ball B(O, r) \ {z, hz.u1 > a} and we have

V(r, a) = |B(O, r) \ {z, hz.u1 > a}|d!d�1

Z a

0
(2rx � x2)

d�1
2 dx (A.1)

Thus by derivation 8>><
>>:

0 6 @V(r,a)
@a 6 !d�1 (2ra)

d�1
2

0 6 @V(r,a)
@r 6 !d�1

2(d�1)
d+1 (2r)

d�3
2 (a)

d+1
2

(A.2)

See the Figure ?? to be convinced that indeed:

|(B(x, rx + h) \ B(y, ry + h))| = V
 
rx + h,

(` + 2h)(2ry � `)
2(rx + ry � 2h � 2`)

!
+ V

 
ry + h,

(` + 2h)(2rx � `)
2(rx + ry � 2h � 2`)

!

Substracting |B(Ox, rx � h) \ B(Oy, ry � h)| we obtain the upper-bound.

V
 
rx + h,

(` + 2h)(2ry � `)
2(rx + ry � 2h � 2`)

!
+ V

 
ry + h,

(` + 2h)(2rx � `)
2(rx + ry � 2h � 2`)

!

�V
 
rx � h,

(` � 2h)(2ry � `)
2(rx + ry + 2h � 2`)

!
� V

 
ry � h,

(` � 2h)(2rx � `)
2(rx + ry + 2h � 2`)

!
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Fig. A.2: The convex body is B(Ox, rx + h) \ B(Oy, ry + h).

Solving

8>>><
>>>:

(rx � h � ax)2 + z2 = (rx � h)2

(ry � h � ay)2 + z2 = (ry � h)2

ax + ay = ` + 2h
yields

8>>><
>>>:

ax =
(`+2h)(2ry�`)

2(rx+ry�2h�2`)

ay = (`+2h)(2rx�`)
2(rx+ry�2h�2`)

as ` ! 0, with h 6 `/2, let a = `ry

rx+ry
, �+ = (`+2h)(2ry�`)

2(rx+ry�2h�2`)�a and �� = a� (`�2h)(2ry�`)
2(rx+ry+2h�2`)�a (thus �++�� 6 4hry

rx+ry
(1+o(1)))

we have

V
 
rx + h,

(` + 2h)(2ry � `)
2(rx + ry � 2h � 2`)

!
� V

 
rx � h,

(` � 2h)(2ry � `)
2(rx + ry + 2h � 2`)

!
= V

�
rx + h,�+

�
� V

�
rx � h, a � ��

�

6 2h
@V
@r

(rx, a)+ (�+ +��)
@V
@a

(rx, a) 6 2h!d�1
2(d � 1)

d + 1
(2rx)

d�3
2

 
2`ry

2rx + ry

! d+1
2

+
4hry

rx + ry
(1+o(1))!d�1

 
`2rxry

rx + ry

! d�1
2

.

We finally obtain that

V(rx, ry, `, h) 6 !d�1

 
`2rxry

rx + ry

! d�1
2

4h(1 + o(1))

which concludes the proof.

Proposition 10. Suppose that balls of radius Ri roll inside S . Suppose that the density is such that f (x) > f0d(x, @S )↵.
If O is such that d(O, S ) = R � " with 0 < " 6 R then, exists positive constants Cd,↵ and C0

d,↵ such that
8>>><
>>>:
P(B(O,R)) > f0Cd,↵

⇣
RRi

R+Ri

⌘ d�1
2 "

d+1+2↵
2 if O < S and " 6 min(R,Ri)/4

P(B(O,R)) > f0C0

d,↵

⇣
min(Ri,R)

2

⌘d+↵
otherwise

Proof. In all the proof we introduce O⇤ a point of @S such that d(O,O⇤) = d(O, @S ) (not necessarily uniquely defines)
and Oi = O⇤

� Ri⌘O⇤ . By inside rolling ball condition B(Oi,Ri) ⇢ S First case O < S and " 6 min(R,Ri)/4

P(B(O,R)) > P(B(Oi,Ri) \ B(O,R))

Decompose the calculus on small "lens" L(z) = S(Oi,R � z) \ B(O,R) on witch d(x, @S ) > z (due to inside rolling
ball properties), see Figure 1
it comes that

P(B(O,R)) >
Z "

z=0
f0z↵|L(z)|d�1dz

Now |L(z)|d�1 =
R ✓(z)

t=0 �d�2(Ri�z)d�1 sin(↵)d�2d↵. By use of sin(↵) > 2
⇡↵when 0 6 ↵ 6 ⇡/2 (condition " < min(R,Ri)

allows that) we obtain that |L(z)|d�1 > �d�2
d�1

⇣
2✓(z)
⇡

⌘d�1
(Ri � z)d�1. Now

✓(z) = arcsin
 

h(z)
Ri � z

!
>

h(z)
Ri � z
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Thus

P(B(O,R)) > f0
�d�2

d � 1

 
2
⇡

!d�1 Z "

z=0
h(z)d�1dz

h(z) =

s
(" � z)(2R � " + z)

2(Ri + R � ")

 
2(Ri � z) �

(" � z)(2R � " + z)
2(Ri + R � ")

!

The condition " 6 min(Ri,R)/4 6 (R + Ri)/8 we obtain that

h(z) >
r

7 ⇥ 17
16 ⇥ 14

RRi

R + Ri
(" � z) >

r
1
2

RRi

R + Ri
(" � z)

that finally gives:

P(B(O,R)) > f0
�d�2

d � 1

 
2
⇡

!d�1  
1
2

RRi

R + Ri

! d�1
2

Z "

0
z↵(" � z)

d�1
2 dz

P(B(O,R)) > f0
�d�2

d � 1

 
2
⇡

!d�1  
1
2

RRi

R + Ri

! d�1
2

"
d+1+2↵

2 B
 
↵ + 1,

d + 1
2

!
> f0Cd,↵

 
RRi

R + Ri

! d�1
2

"
d+1+2↵

2

Second case O < S and " > min(R,Ri)/4

P(B(O,R)) > P(B(Oi,Ri) \ B(O,R))
Now define ⌦ = O + (" � min(R,Ri)/4)⌘O⇤ we have P(B(O,R)) > P(B(Oi,Ri) \ B(O,R)) > P(B(Oi,Ri) \ B(⌦,R))
and we can apply previous calculus

P(B(O,R)) > f0Cd,↵

 
RRi

R + Ri

! d�1
2

 
min(R,Ri)

4

! d+1+2↵
2

P(B(O,R)) > f0
Cd,↵

2 3d+1+4↵
2

(min(R,Ri))d+↵

Final case O 2 S

1. if d(O, @S ) > R then P(B(O,R)) > P(B(O,R/2)) > f0
⇣

R
2

⌘↵
!d

⇣
R
2

⌘d

2. if d(O, @S ) < R and R < Ri, define ⌦ = O �
R
2 ⌘O⇤ , then P(B(O,R)) > P(B(⌦,R/2)) > f0

⇣
R
2

⌘↵
!d

⇣
R
2

⌘d

3. if d(O, @S ) < R and R > Ri, define ⌦ = Oi �
Ri
2 ⌘O⇤ , then P(B(O,R)) > P(B(⌦,Ri/2)) > f0

⇣
Ri
2

⌘↵
!d

⇣
Ri
2

⌘d

As a conclusion,

P(B(O,R)) > f0!d

 
min(Ri,R)

2

!d+↵
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