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Abstract The standard WSGG (Weighted Sum of Gray Gases) model is very fast and simple but can lead to relatively

high discrepancies in the computation of the radiative heat transfer. A new model of high accuracy relying on the principle

of the WSGG model is proposed. Contrary to the standard WSGG model, the pressure absorption coefficient depends

here weakly on the temperature while the weighting factor is not predefined by a mathematical function. Mathematical

properties on the model parameters are obtained and we show that all the model parameters can be determined from

only one of them. This last is reconstructed with an efficient inverse algorithm from the total radiative heat source data

computed with the LBL method using HITEMP 2010. We propose an efficient method to find good initial guesses (of

the model parameters) leading to the best accuracy of the model. It is shown, on 17 selected 1D cases representative of

the combustion of CO2-H2O mixtures, that the maximum relative errors on the radiative heat source for the new model

(based on 6 gray gases) does not exceed 3.5% (for these 17 cases) whereas for the standard WSGG model, these errors

vary up to 14.5% (five cases have errors higher than 10.0% and nine cases have errors between 5.0% and 10.0%). The

accuracy of the total radiative heat flux is also greatly enhanced with the new model. We also show that the present model

is robust and can be used in 3D geometry.
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1 Introduction

Simulation of thermal radiative heat transfer in non-gray participating media is of interest to a wide range of fields, from

atmospheric and weather-related processes [1] to combustion systems and other high-temperature applications [2, 3]. For

participating species such as H2O and CO2, the absorption coefficient κη has strong, erratic variations across the radiation

wavenumber η, and its accurate representation requires either very expensive calculations or the careful selection of an

appropriate spectral model [4]. Currently, the models regarded to provide the best compromise between cost and accuracy

for engineering calculations fall within the class of global models [5], of which one of the most widely used is the

Weighted-Sum-of-Gray-Gases (WSGG) model [6–8].

The WSGG model represents the κη spectrum as a small number of gray gases that occupy non-contiguous regions across

the spectrum. The Radiative Transfer Equation (RTE) may then be written and solved for each gray gas separately; the total

radiative intensity is given as a summation over the radiative intensities of each gas. Despite such a simple formulation,

previous works have shown that the WSGG model is able to predict the radiative heat source Sr and radiative heat flux

Qr with error as high as about 15 to 20% across many different conditions (see, for instance, the brief review of the

model presented by Fraga et al. [9]). More recent and advanced global models exist, such as the Spectral Line WSGG

(SLW) [10, 11] and the Full-Spectrum k-distribution (FSK) [12] models.

Typically, each gray gas k in the WSGG model has two properties associated to it: an absorption coefficient, κk, and

an emission-weight factor, wk. Both quantities are related to the local thermodynamic state using simple expressions,

which in the WSGG literature are referred to as “correlations.” The first correlations were given between the 1960s and

1980s, but especially the last decade has seen a surge in new correlations. Those are based on up-to-date, high-resolution

spectral databases (usually, HITEMP 2010 [13]), and are designed for specific scenarios, for example, air-fuel combustion

(e.g., [14–16]); oxy-fuel combustion [17–19]; radiation from soot, coal and other particulate media [20, 21]; and high-

pressure conditions [22–26].

With but a few exceptions, those previous WSGG correlations were determined by fitting total emissivity across a suffi-

ciently wide range of thermodynamic conditions and path lengths. Although the exact procedure varies depending on the

work, this generally involves multiple linear or multivariate regressions; the final values of the constants that make up the

correlations are somewhat dependent on the initial guesses. Detailed descriptions of different fitting procedures are given

in Refs. [15, 17, 19], for example.

The choice of total emissivity fittings as the basis for constructing the WSGG correlations is due to both historical and

practical reasons. The first applications of the WSGG model were done in the framework of the zonal method, where
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the model served as a convenient way to compute emissivities. Also, emissivity charts determined experimentally were

available at the time, and those could be used as the reference for the determining the correlations. Since then, emissivity

charts were replaced by datasets of emissivity computed by a wide-band model or by line-by-line (LBL) method of high-

resolution absorption spectra, and the WSGG model was shown to be applicable to any RTE solution method; however,

the general method for producing the correlations for the model was retained.

A notable exception is the series of works by Guo et al. [27–29], where expressions for κk and wk were determined by

fitting these quantities to their counterparts in the FSK model for a four-point Gauss quadrature scheme. Following this

procedure, WSGG correlations were constructed for atmospheric [27] and high-pressure [29] mixtures of CO2 and H2O,

and for ash particles [28]. All fittings were carried out across a wide range of temperatures and (when applicable) CO2-

H2O mole fraction ratios, but changes in path length were not considered. In addition, adequate predictions of Qr and Sr

(comparable to those of other recent WSGG models) were reported for a sample of 1D test cases involving non-uniform

scalar profiles.

More recently, another method for obtaining the WSGG correlations was introduced by Asllanaj et al. [30]. The param-

eters of the model were determined using an inverse algorithm and the adjoint state of the RTE, with the cost function

defined based on the local total radiative heat source. An important feature of such approach is that, if applied to a sin-

gle case, the resulting WSGG correlations have LBL-level accuracy even with only four gray gases. By averaging the

spatially-varying correlations, a compact model was then produced, and extensive testing for one- and three-dimensional

problems showed that its accuracy is generally at least on par (but usually better) than standard WSGG correlations [30].

It should be noted that, while the formulations of Guo et al. [27–29] and Asllanaj et al. [30] share some of the charac-

teristics of the standard WSGG model, they were not derived from the assumptions of the WSGG model. For the model

of Refs. [27–29], one may argue that it has some relationship to the WSGG model since the correlations were obtained

from the FSK method, which in turn is related to that model [31]. Conversely, there is no connection of the inverse

algorithm-based correlations of Ref. [30] to the standard WSGG model, except from the fact that the total intensity is still

given as a sum of intensities determined by solving consecutive, independent RTEs, and that to each of these RTEs there

is an associated absorption coefficient κk and emission-weight coefficient wk. Therefore, while the approach introduced

in [30] is a WSGG model, it still differs considerably of the WSGG models broadly studied in the literature.

The objective of this work is to develop a new gas radiation model of high accuracy starting from [30]. The model proposed

in [30] had two limitations. First, it was not possible to use the parameters that are spatially dependent (determined for

a given test case) on other test cases in forward calculation. Second, the gray gas absorption coefficients κp,k were path-
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length dependent. This is no longer the case for the new model proposed in this work. In order to have a model of high

accuracy, we show in the present paper that κp,k need to depend weakly on the temperature. We also show that it is better

to not predefine the weighting factors wk by a mathematical expression (they were linear functions of the temperature

in [30]), but rather to let the inverse algorithm to seek their profiles. In this way, we obtain mathematical properties on

the model parameters and we show that all the model parameters can be determined from only one of them. This last

is reconstructed using an inverse algorithm with the Sr data (computed with the LBL method using HITEMP 2010).

We show that the parameters (determined for a given test case) are functions of temperature and thus can be applied to

other test cases. Finally, we develop an efficient algorithm that finds good initial guesses (of the model parameters) to

optimize the model accuracy. In the present work, a new optimization procedure to determine the model parameters is

thus proposed and the model accuracy is greatly improved compared to the one of [30].

The paper has three main sections. The next section concerns the theoretical analyses of the forward and inverse problems.

The inverse problem consists in reconstructing the model parameters. Section 3 then presents results obtained with the

inverse and new forward models. Radiative heat transfer (RHT) test cases are studied in Section 4, considering non-

isothermal and inhomogeneous participating gases. The accuracy and performance of the new model are studied and the

results are assessed using LBL and WSGG solutions of the literature. The last section deals with conclusions and future

perspectives.

2 Theoretical analyses

2.1 Forward model

A non-gray absorbing and emitting medium is considered in this work. In its multidimensional formulation, the spectral

RTE is given by [5]:

ΩΩΩ · ∇Iη(s,ΩΩΩ) = κη(s)

{
Ib,η[T (s)]− Iη(s,ΩΩΩ)

}
, (1)

where η is the wavenumber, ΩΩΩ is the direction of propagation of radiation, T is the medium temperature and Iη(s,ΩΩΩ)

is the spectral radiative intensity in the ΩΩΩ direction along the path length s. The spectral absorption coefficient of the

medium is denoted κη and Ib,η[T ] is the spectral Planck function at temperature T .

In the 1D formulation of the non-gray WSGG model, the RTE can be established for the k-th gray gas, in the µ direction

along the path x, as: [5, 15, 30, 32–34]:

µ
∂I+
k (x, µ)

∂x
+ κp,k(x) pa(x)

{
I+
k (x, µ)− wk(x) Ib[T (x)]

}
= 0, (2)
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−µ
∂I−k (x,−µ)

∂x
+ κp,k(x) pa(x)

{
I−k (x,−µ)− wk(x) Ib[T (x)]

}
= 0, (3)

for x ∈ D = [0, L] (where L is medium length) and µ ∈ Σ+ =
{
µ, 0 < µ ≤ 1

}
. The index k varies between 0 and

K where K denotes the number of gray gases. The coefficient κp,k is the pressure absorption coefficient of the k-th gray

gas. While this coefficient is assumed to be constant in the standard WSGG model, in the present study it depends on the

position x through the temperature T (as will be seen later). The coefficient pa is the sum of the partial pressures of the

species that form the mixture. The Planck function at temperature T is formulated as:

Ib[T ] =
σ T 4

π
, (4)

where σ is the Stefan-Boltzmann constant. Here, I+
k (x, µ) is the partial radiative intensity of gas k at the spatial position

x, in the forward direction; I−k (x, µ) is the partial radiative intensity of gas k at the spatial position x, in the backward

direction. Then, the partial radiative intensity of gas k at the position x, in all direction µ ∈ Σ =
{
µ 6= 0,−1 ≤ µ ≤ 1

}
,

is given by:

Ik(x, µ) =


I+
k (x, µ) µ ∈ Σ+

I−k (x,−µ) µ ∈ Σ+

 ,

where the index k varies between 0 and K. The coefficient wk is the weighting factor. In the standard WSGG model

[15, 33], as well as in the model presented in our previous work [30], wk is written with polynomial functions of the

temperature T , as below:

wk[T ] =

K∑
l=0

bk,l T
l, (5)

in which bk,l are constant polynomial coefficients. In this work, wk is not predefined by a mathematical function; rather,

just as κp,k, it only depends on the position x through the temperature T (as will be seen later).

Originally, the WSGG model was introduced by Hottel [6] to compute the total gas emissivity of a layer (of thickness L),

of a gas mixture at temperature T . Hottel and Sarofim [7] gave two interpretations describing the physical meaning of

the two coefficients κp,k and wk. The first interpretation is a physical one and considers that wk represents the fraction of

blackbody emission in the sections of the spectrum where the spectral pressure absorption coefficient is κp,k. The second

interpretation considers κp,k and wk as simple parameters allowing a precise adjustment on the total gas emissivity data.

In the present study, the RTE given by Eqs. (2) and (3) is considered as a fitting model, i.e. a homogenized model with

effective parameters κp,k and wk; therefore, the second interpretation of Hottel and Sarofim is adopted, except that the

precise adjustment is made on the total radiative heat source data (computed with the LBL method) instead of the total

gas emissivity data [30].
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The weighting factors wk are computed only for the gray gases. To take into account the transparent windows, the

corresponding weighting factor and the pressure absorption coefficient are computed with the subscript k set equal to zero

(κp,k=0 = 0), as in the standard WSGG model. For an infinitely thick gas, the total emissivity tends to unity. Then, it

follows:

w0 = 1−
K∑
k=1

wk. (6)

The present study is applied to black walls. Then, Eqs. (2) and (3) are subjected to the following boundary conditions

[5, 15, 32]:

I+
k (x = 0, µ)− wk(x = 0) Ib[T (x = 0)] = 0, (7)

I−k (x = L,−µ)− wk(x = L) Ib[T (x = L)] = 0, (8)

for µ ∈ Σ+. The function Ib[T ] is the Planck function at the wall temperature. Once the partial radiative intensity Ik has

been computed for all K gray gases in the model, the summation required for evaluating the total radiative intensity I , Sr

and Qr leads to:

I =

K∑
k=0

Ik, (9)

Qr(x) = 2π

K∑
k=0

∫ 1

−1

Ik(x, µ) µ dµ and Sr(x) = −dQr(x)

dx
= Gκ(x)− 4π κP (x) Ib[T (x)], (10)

with

Gκ(x) = 2π pa(x)

K∑
k=1

κp,k(x)

∫ 1

−1

Ik(x, µ) dµ and κP (x) = pa(x)

K∑
k=1

κp,k(x) wk(x), (11)

where κP denotes the Planck-mean absorption coefficient.

2.2 Formulation of the inverse problem

2.2.1 Cost function

Let J be a cost function which is an explicit function of the model parameters. In this work, the function J represents the

relative discrepancy between the total radiative heat source computed with the LBL method, Sr,LBL and the one obtained

with the present model, Sr(θ):

J(θ) =
1

2

∣∣∣∣∣∣∣∣Sr(θ)− Sr,LBL

(Sr,LBL)max

∣∣∣∣∣∣∣∣2, (12)

in which θ represents one of parameters (κp,k, wk)1≤k≤K and (Sr,LBL)max is the absolute value of the maximum of

Sr,LBL. The norm in Eq. (12) is associated to the inner product of square-integrable real-valued functions of the Hilbert

space. Eq. (12) is a new constraint in the model which should allow to compute Sr(θ) with a better accuracy. The

6



aim in this work is to reconstruct the parameters of interest κp,k and wk for the present model. Then, the parameters

vector θθθ = (κp,k, wk)1≤k≤K can be reconstructed by applying a Gradient-Based Optimization Algorithm (GBOA) to the

function J .

2.2.2 Inverse algorithm

The GBOA using the quasi-Newton method with Lm-BFGS [35] was used to minimize, in an iterative procedure, the cost

function J given by Eq. (12). Let d be a search direction of gradient used in gradient descent. Then, the GBOA iteratively

updates the parameters vector θθθ along d as:

θθθ(n+1) = θθθ(n) + α(n) d (∇∇∇J(θ(n))), (13)

where n is the iteration number and α(n) is the step size given by the Armijo backtracking line search [36]. The update

steps have to be small enough for the convergence of the algorithm. Thus, by lowering the value of αn in the update of

Eq. (13), some tests were carried out following the principle of under-relaxation factors. The cost function’s gradient over

the parameter θ denoted∇∇∇J(θ) is needed in Eq. (13). Simplified expressions of the gradients over the parameter κp,k and

wk were used in the inverse algorithm. From Eq. (66) of Appendix A, they are given by:

∇∇∇J(wk)(x) = − (Sr(x)− Sr,LBL(x))

(Sr,LBL)2
max

and ∇∇∇J(κp,k) = −∇∇∇J(wk). (14)

The calculations of the cost function’s gradients and the justification of expressions (14) are detailed in Appendix A. It

is worth noting that the gradients do not depend on the index k. This leads to the model parameters κp,k and wk are

computed similarly for each index k. Thus, they depend mainly on their initial guesses as shown in Appendix C. Also, It

is worth noting that the right hand side of Eq. (14) is not gradient because it is a simplified (approximated) expression for

the cost function’s gradients over wk.

2.2.3 Scaling procedure

A scaling procedure needs to be used for the reconstruction of the model parameters [30]. Then, the cost function’s

gradients over κp,k and wk given by Eqs. (14) can be scaled as:

∇∇∇J scaled(wk) = cwk
∇∇∇J(wk) and ∇∇∇J scaled(κp,k) = cκp,k

∇∇∇J(κp,k), (15)

in which cwk
and cκp,k

are scaling coefficients. They can be computed after the first iteration of the inverse process as:

cwk
=

dwk

max(
∣∣∇∇∇J(w

(0)
k )
∣∣) and cκp,k

=
dκp,k

max(
∣∣∇∇∇J(κ

(0)
p,k)
∣∣) , (16)
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and the same values were used during the iterations. To have the same profiles for wk, dwk
need to have the same values

for all the indices k. In the same way, to have the same profiles for κp,k, dκp,k
need to have the same values for all the

indices k. The best estimation of the parameters were found when:

dwk
(x) = pa(x) and dκp,k

=
1

L
, (17)

where pa(x) is the sum of the partial pressures of the species and L is the domain length. The choice of these scalings is

justified to have a dimensionally consistent relation on the model parameters as presented in Appendix C.

2.2.4 Mathematical properties on the model parameters

As it will be presented in Section 3.2, the model parameters will be reconstructed for a reference state (reference test

case) with a constant reference coefficient pref
a and only the reference temperature changes for this test case. Each spatial

position x corresponds to one value of the temperature T ; then, the coefficients κp,k and wk are, in fact, functions of

the temperature. Mathematical relations on the model parameters were obtained (see Appendix C) and are summarized

below. From the previous remark, these relations can be expressed as functions of temperature T :

κp,k[T ] = κp,1[T ] +
(
κ

(0)
p,k − κ

(0)
p,1

)
∀ 2 ≤ k ≤ K, (18)

wk[T ] = w1[T ] +
(
w

(0)
k − w

(0)
1

)
∀ 2 ≤ k ≤ K, (19)

Lref pref
a κp,1[T ] + w1[T ] = Lref pref

a κ
(0)
p,1 + w

(0)
1 , (20)

where Lref is the reference length. Here, the coefficients κ(0)
p,k and w(0)

k are the constant initial guesses of κp,k and wk,

respectively, for the case solved by inverse method. The effective parameters of the homogenized model mentioned at the

beginning are κp,k and wk. It is remarkable to see that all the parameters κp,k and wk can be determined from only one

of them, for instance w1, and κp,1 is deduced from Eq. (20). Then, in this work, only w1 was reconstructed by inverse

method. Nevertheless, we checked that the same values of model parameters are obtained if they are all reconstructed by

inverse method.

3 Results

The model was used to solve RHT in inhomogeneous and non-isothermal participating gases. The 1D test cases presented

in this section were selected, in one hand, to calibrate the present model and, on the other hand, to evaluate its accuracy.

Especially for the first point, it was necessary to select well-known test cases from the literature representative of the
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combustion of CO2-H2O mixtures where the standard WSGG model lead to higher errors [15,30,37]. As in the test cases

presented in these references, the upper bound of the temperature range are limited to 1,800 K, the same upper bound of

the temperature range has been used in the present work.

The coefficient pa is defined as: pa(x) =
[
YCO2(x) +YH2O(x)

]
p where Y is the mole fraction and p is the total pressure.

The CO2-H2O mixture has a fixed mole ratio of YH2O/YCO2
= 2 for all the cases (including the 3D test case studied in

section 3.5), and it is subjected to atmospheric pressure (p = 1 atm for all the cases). The temperature profile and the

composition of the medium vary according to the test cases presented in the next.

Except for the search of the initial guesses of the model parameters, all the simulations were carried out with a 48 cores

computer (12 cores/CPU, 2 CPUs Intel Xeon@2.4-3.5GHz) using Intel C compiler and Hyper-Threading.

To evaluate the model accuracy, the discrepancies between the solution of the present model and the one of the LBL

method (for the results of Sr and Qr) are computed as maximum and average normalized errors:

δϕ(x) =

∣∣ϕ(x)− ϕLBL(x)
∣∣

max
(∣∣ϕLBL∣∣) · 100%, (21)

where the denominator of the fraction in Eq. (21) is the maximum absolute value of ϕ. Here, ϕ is either Sr and Qr. In

the next, the subscripts "avg" and "max" are used to indicate the average and maximum errors, respectively.

3.1 1D test cases studied

The proposed method has been applied to a 1D medium having by black walls, separated by a distance L. The model

accuracy was evaluated by comparing its results with those of the LBL method and the standard WSGG model with the

parameters by Dorigon et al. [15] based on HITEMP 2010. For the LBL solution, the absorption spectra was generated

for temperatures ranging from 400 K to 1,800 K using a constant step of 100 K, and for the following values for pa =

0.01, 0.1, 0.2, 0.4, 0.6 (at atmospheric pressure). The intermediary partial pressures and temperatures were evaluated

using linear interpolations. It was shown in independent studies that the accuracy of LBL method was enough to evaluate

the present model. The RTE has been solved both for the present model and LBL method with a mesh composed of 200

points using a constant step along the path. Thirty discrete directions were used for the angular discretization of the RTE.

These spatial and angular discretizations led to insensitive results with the mesh according to [15].
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3.1.1 Description of the test cases

Let x̂ = x/L ∈ [0, 1] be the dimensionless distance from the left wall. Two symmetric and one asymmetric profiles

(according to the x-axis) for the temperature and CO2 mole fraction were considered:

T (x̂) = 400 K + (1, 400 K) sin2(π x̂), (22)

T (x̂) = 400 K + (1, 400 K) sin2(2π x̂), (23)

T (x̂) =


880 K + (920 K) sin2(2π x̂) if x̂ ≤ 0.25

400 K + (1, 400 K)
(

1− sin3/2
(

2π
3 (x̂− 0.25)

))
if x̂ > 0.25

(24)

YCO2(x̂) = 0.2 sin2(π x̂), (25)

YCO2
(x̂) = 0.2 sin2(2π x̂), (26)

YCO2
(x̂) =


0.25 sin2(2π x̂) if x̂ ≤ 0.25

0.25
(

1− sin
(

2π
3 (x̂− 0.25)

))
if x̂ > 0.25

(27)

For these first cases, the average mole fraction of CO2 is equal to 0.1. All the cases studied in this work are listed in

Table 1. The first twelve cases are taken from Dorigon et al. [15]. Additional test cases were selected to calibrate the

proposed model and to further investigate its accuracy. Sinusoidal profiles for the temperature and species concentration

were also considered:

T (x̂) = 700 K− (300 K) cos(π x̂), (28)

YCO2
(x̂) = 0.1 − 0.075 cos(π x̂). (29)

Two lengths L = 1 m and L = 3 m were considered for these profiles.

Hyperbolic profiles for the temperature and species concentration were also studied and are defined by:

T (x̂) = 1, 100 K + (5, 600 K) ψ(x̂) with ψ(x̂) = (0.5− x̂)3, (30)

YCO2
(x̂) = 0.1 + 0.8 ψ(x̂). (31)

The three lengths L = 0.25 m, L = 1 m and L = 2 m were considered for these profiles.

As before, the average mole fraction of CO2, taken into account in these new cases, is equal to 0.1. The five new cases are

reported in Table 1. Finally, the influence of the domain length L was also studied and the first case previously described

was also considered for lengths L equal to 3, 4 and 5 m. These three new cases are the last three cases reported in Table 1.

[Table 1 about here.]
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Figures 1(a) and 1(b) display the profiles of temperature and CO2 mole fraction along the slab used in the test cases

reported in Table 1.

[Figure 1 about here.]

3.1.2 Reference state for the reconstruction of the model parameters

A reference state is required in the model. Here, Case 1 was selected for the reconstruction of the model parameters

because it is the simplest and the most representative (for the temperature and the mole fraction of CO2) among all test

cases. Different lengths L varying between 0.25 m and 5 m were studied (see Table 1). Case 1 considers the arbitrary

length L = 1 m. The average mole fraction of CO2, considered in all the cases, is equal to 0.1. Case 1 considers the

arbitrary mole fraction of CO2 equal to 0.1. The reference state required for the reconstruction of the model parameters

presented in the next section is then the one of case 1:

Lref = 1 m ; Y ref
CO2

= 0.1 ; Y ref
H2O = 0.2 ; pref = 1 atm, (32)

T ref(x̃) = 400 K + (1, 400 K) sin2(π x̃) with x̃ ∈
[
0, 0.5

]
, (33)

The reference spatial mesh (of the interval [0, 0.5]) is composed to 100 points with a constant step (equal to 1/199 m).

T ref has then 100 discrete values evaluated on this reference spatial mesh.

3.2 Reconstruction of the model parameters

3.2.1 Step 1: Initial guesses

Arbitrary candidate values for the first initial guesses κ(0)
p,k and w(0)

k are required. We remarked that κ(0)
p,1 can have a

positive value between 0 and 1. In principle, it is sufficient to take only one high value for κ(0)
p,k (between 10 and 100). To

optimize the calculations, a restricted domain for the first initial guesses can then be proposed as:

0 < κ
(0)
p,1 ≤ 1 ; 1 ≤ κ(0)

p,k−1 ≤ κ
(0)
p,k ≤ 10 for k = 3, ...,K − 1 ; 10 ≤ κ(0)

p,K ≤ 100, (34)

0.1 < w
(0)
k−1 ≤ w

(0)
k ≤ 0.5 for k = 2, ...,K with 0 <

K∑
k=1

w
(0)
k ≤ 1. (35)

3.2.2 Step 2: Reconstruction by inverse method of the weighting factor w1

The reconstruction by inverse method of the weighting factor w1 for case 1, starting from the initial guess w(0)
1 , was

carried out using the Sr data obtained with LBL calculations based on HITEMP 2010. The LBL calculations are detailed
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in [15] and are not repeated here. The scaled cost function’s gradient with respect to the weighting factorw1 was computed

according to Eqs. (15)-(17). With initial guessw(0)
1 , the weighting factorw1 (reconstructed by inverse method) is obtained

after about 4,000 iterations. Even if the iteration number is very high, the calculations are fast because they are 1D (about

3 s.). The typical convergence of the cost function J(w1) according to the iteration number is displayed in Fig. 2. The

stopping criterion was related to a relative error of J(w1) which should be lower than a prescribed tolerance (set to 10−6).

At the beginning of the iterations, the convergence is very fast and then very slow.

[Figure 2 about here.]

3.2.3 Step 3: Procedure to reconstruct the other model parameters

The procedure to reconstruct all the model parameters for any arbitrary temperature T is deduced from the reference state

Eq. (32 ) and Eqs. (18)-(20):

κp,1[T ] =
1

0.3

(
w

(0)
1 − w1[T ]

)
+ κ

(0)
p,1, (36)

κp,k[T ] = κp,1[T ] +
(
κ

(0)
p,k − κ

(0)
p,1

)
∀ 2 ≤ k ≤ K, (37)

wk[T ] = w1[T ] +
(
w

(0)
k − w

(0)
1

)
∀ 2 ≤ k ≤ K. (38)

As it will be shown after, the model using 6 gray gases leads to the most accurate results. For this model, the values of the

initial guesses are reported in Table 2.

[Table 2 about here.]

The weighting factor w1[T ref] has 100 values on the reference spatial mesh. These values, reconstructed with the found

initial guesses, for 6 gray gases, are reported in Table 3. For arbitrary T , w1[T ] is obtained from w1[T ref] through linear

interpolation. It should be noticed that T ref(x) needs to be monotonic between 400 and 1,800 K. Using the Matlab polyfit

function, we tried to represent w1[T ] as a polynomial function of T . We realized that the procedure fitting needs to have

a very high accuracy. In this case, it was better to use the linear interpolation procedure. To avoid linear interpolation

problems using the lowest or the highest values of T (400 K and 1,800 K), these two temperatures values have been

slightly modified by 399.99 K and 1,800.01 K, respectively. It should be noticed that the use of a reference spatial mesh

composed of 500 points providing 500 values for the weighting factor w1[T ref] does not improve significantly the model

accuracy (less than 0.2%).

[Table 3 about here.]
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3.2.4 Step 4: Cases solved in forward calculation

The model parameters obtained from the first three steps previously presented are used to solve in forward calculation

Cases 2 to 17 of Table 1.

3.2.5 Overall algorithm

The problem to solve, defined by the steps 1 to 4 previously presented, is strongly non-linear and very sensitive to the

initial guesses of the model parameters. These last should be chosen not far from the desired solution to ensure, in

particular, the convergence of the inverse method of Step 2. This require testing a large number of initial guesses of

the model parameters. The inverse problem of Step 2 can have multiple accurate solutions and only one of them can be

chosen. The objective is not only to find the most accurate solution for the steps 2 and 3 but also for Step 4. Thus, the

model calibration is carried out with the steps 1 to 4. In this way, we can hope to find the best feasible solution for the

cases 1 to 17 of Table 1, i.e., the one that is closest to the LBL reference solution. This does not imply that the solution

found is dependent on the selected cases solved in forward calculation. These last are only used to help to find the best

feasible solution for Cases 2 to 17. In fact, only some of these cases (the most complex ones) are really used to find the

best feasible solution, which was found by the minimizations of the error function Γ in % defined as:

Γ = max
2≤case≤17

δSmax. (39)

The best feasible solution will be the one with the lowest normalized errors and uniformly distributed over all the cases.

It is worth noting that Case 1 is included in the search of the initial guesses and that it is important to consider the same

cases in the search of the initial guesses as those considered for model validation.

A manual "trial-and-error" procedure was first used to find good values of initial guesses. We proposed arbitrary candidate

values and then solved the steps 2 and 3 and also step 4 to know if these candidate values were satisfactory. If this was

not the case, we manually adjusted the values of initial guesses by adding small positive steps to each of them and then

the steps 1 to 4 were repeated. This process continued until satisfactory values of initial guesses were obtained, which

usually required some iterations. Furthermore, while the final solution may be acceptable, it was not optimal. Indeed,

according to the continuous nature of the model parameters and the high variability of the results, a manual setting of

the initial guesses (of the model parameters) is unsuitabe. This is why we developed an efficient algorithm that can test

a much larger sample of initial guesses, thus allowing to capture much better values (of initial guesses) and to obtain a

better accuracy of the model.
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So, we proposed to use an automatic parameters fitting according to the accuracy of the results compared to the those of

the LBL method. The problem of parameters fitting is an optimization problem in which the parameters are the values to

fit and the error function is the error of the proposed model according to the reference model. In our case, the criterion

used to find the best feasible solution is to minimize the error function Γ (defined by (39)).

A common way to solve such problem is to use genetic algorithms (GA) [38]. They are inspired from the evolution theory

and have proven to be efficient in numerous optimization problems. Genetic algorithms are iterative processes that start

with an initial set of potential solutions and make them evolve at each iteration according to genetically inspired rules

designed to make the set of solutions converge towards a local optimum in the search space. In our case, we have chosen

a specific variant of GA that is called differential evolution, and that was introduced by [39] and used in parameters

optimization of other complex simulations [40, 41]. The principle of differential evolution is to generate an initial set

of potential solutions (vectors of parameters values), then at each iteration, new candidate solutions are generated by a

geometric combination of three solutions at the previous iteration. Typically, the relation is of the form:

Vj = Wb
k + F · (Wl

k + Wm
k ), (40)

where Vj is the jth intermediate solution at current iteration, Wb
k is the best solution found at iteration k, Wl,m

k are

randomly chosen solutions l and m at iteration k and F is a real in the interval [0, 2]. The value of F can be decreased

during the genetic process when the error becomes small enough. This allows the process to focus on the final solution.

Then, there is a probabilistic mixing step of parameters values (index i is the ith element of the considered solution vector)

from the intermediate solutions with some of the previous solutions, as follows:

Zj(i) =


Vj(i) if p = U(0, 1) such that p < CR ∈ [0, 1]

Wj
k(i) otherwise

(41)

where U(0, 1) is the uniform distribution in [0, 1] and CR is a constant defined as the crossing rate. The final step is a

selection of the solutions that are kept for the next iteration:

Wj
k+1 =


Zj if Γ(Zj) ≤ Γ(Wj

k)

Wj
k otherwise

(42)

where Γ is the error that needs to be minimized.

Although this random iterative process does not theoretically ensure to find the optimal set of parameters, in practice, it

converges towards a local optimum that allows us to correctly fit the model. However, it is quite long as it may require a

lot of iterations in which computation steps 1 to 4 must be performed. So, we developed a parallel algorithm following
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the master-workers model in order to distribute the evaluations of all candidate solutions over a set of machines. Hence,

at each iteration, the different sets of parameters are dynamically distributed over the worker machines, each of them

executing the calculation with one given set of parameters and comparing the results to the reference model in order to

send back the error for this set to the master machine. All the genetic operations described above are performed on the

master machine once all the evaluation results are received. Then, a new iteration is done until the stopping criteria is

achieved.

One recurrent problem in GA lies in the stopping criteria because using a threshold over the error function Γ alone is

generally not sufficient. Indeed, although the process is designed to converge towards an extremum of the error function

Γ, there is no guarantee neither over its globality (it might be a local extremum) nor on the speed to reach it. So, a common

practice is to check the evolution of the error function Γ between consecutive iterations as well as to add a maximal number

of iterations or a maximal amount of time, in order to ensure the termination in a reasonable time. Finally, the parallel

scheme is depicted in Fig. 3.

[Figure 3 about here.]

The whole genetic process (lines 2–23) may be repeated several times (called epochs) to enhance the results. Also, as

mentioned above, the function checkEnd may depend on an iterations counter.

In order to efficiently exploit the hardware resources, all cores in each machine have been used. So, the number of workers

corresponds to the number of cores multiplied by the number of machines minus one (kept for the master). As an example,

if we use 10 machines with 16 cores, then we have 159 workers. This does not induce any modification in the code as

MPI can manage several processes on a same machine as well as distributed on several machines. The deployment of the

processes is depicted in Figure 4 where Cx is hardware core x, Mst is the master and Wx is worker x.

[Figure 4 about here.]

All the initial guesses of the model presented in this work have been obtained with this algorithm used on the Grid’5000

platform [42]. Our algorithm has been implemented in python and the MPI module mpi4py [43].

Although, as mentioned previously, the genetic process is a random process whose results and convergence time may vary

from one execution to another, we have observed in our simulations that it is quite stable in practice. For the model based

on 6 gray gases, the average computation time (over 10 executions) to find optimized initial guesses on a cluster of 10

machines with 319 workers is 2h49 with a standard deviation around 7min30 for a time limit of 3h00. Also, the average

error of the obtained model is 3.51 % with a standard deviation of 0.038 %.
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It is worth noting that, for a given case, the manuel "trial-and-error" method can give satisfactory results and the genetic

algorithm which allows to find the other initial guesses can improve in general the model accuracy, in at least 2.0%.

3.3 Discussion on the reconstruction results of the model parameters

The parameters (of the proposed model for 6 gray gases) reconstructed from the data of Tables 2 and 3, and based on the

formulation given in Eqs. (36)-(38), are depicted in Fig. 5. Fig. 5(a) shows that the pressure absorption coefficients κp,k

have weak dependencies with the temperature and are strictly increasing functions of the temperature. Fig. 5(b) shows

that wk[T ] are strictly decreasing functions of the temperature. This property can be deduced from the relations (18)-(20).

As shown below, the best solution is obtained when κp,k have weak dependencies with the temperature. However, note

also that, if we set as constraint in the inverse algorithm to seek constant coefficients κp,k, it does not converge. Without

this constraint, it will converge and find the coefficients κp,k presented in Fig. 5(a). It can be seen in Fig. 5(c) that∑K
k=1 wk[T ] for low temperatures T (between 400 K and 650 K) is higher than 1. We like to associate the weighting

factors to the fraction of blackbody emission, which should be limited to 100%, but as stated before, the present model

is above all a fitting model, so in this sense, we can accept that
∑K
k=1 wk[T ] is higher than 1 for certains temperatures in

exchange for consistently accurate results for the radiative transfer. As it will be seen after, even with the result of Fig.

5(c), the present model leads to accurate results.

[Figure 5 about here.]

3.4 Discussion on the model accuracy

For Case 1, Fig. 6 shows a comparison on Sr computed both with the present model, the WSGG model by Dorigon et al.

(standard WSGG model) [15] and the LBL method. Fig. 7 shows the comparison on Qr. Figs. 6(a) and 7(a) show that the

standard WSGG model gives discrepancies with the reference LBL solution, by overpredicting the extrema of Sr and Qr.

A perfect agreement in the whole domain is observed between the solution of the present model and the reference.

Figs. 6(b) and 7(b) show that the results of Case 1 are in nearly perfect agreement with those of the LBL method: the

normalized errors on both Sr andQr are very low in the whole domain with (in %): δSmax = 1.12·10−7, δSavg = 3.8·10−8

and δQmax = 0.05, δQavg = 0.02.

[Figure 6 about here.]

[Figure 7 about here.]
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For cases 2 to 17, Figs (8) and (9) show that the present model drastically reduce the errors of the standard WSGG model.

For all the cases, δSmax does not exceed 3.5%, whereas for the standard WSGG model, these errors vary up to 14.5%

(five cases have errors higher than 10.0% and nine cases have errors between 5.0% and 10.0%). In the same way, δSavg

does not exceed 2.1%, whereas for the standard WSGG model these errors vary up to 8.0% (12 cases have errors between

2.0% and 8.0%). The accuracy of Qr is also greatly improved with the new model. For all the cases, δQmax does not

exceed 4.0% whereas for the standard WSGG model these errors vary up to 10.4% (8 cases have errors between 5.0% and

10.0%). Concerning δQavg, they are not so high for the standard WSGG model (less than 4.3%). Still, the same errors are

less than 2.5% for the new model. Except for case 1 solved by inverse method, the normalized errors for Sr of the present

model are rather uniform for all the cases. They are between 1.4% - 3.5% for δSmax and 0.5% - 2.1% for δSavg. The errors

for Qr are a little bit less uniform. They are between 0.7% - 4.1% for δQmax and 0.3% - 2.6% for δQavg.

Note that the standard WSGG model provides accurate results for the cases 4, 8 and 12, which have spatially non-constant

profiles for the participating species mole fractions. For all these three cases, δSmax ≤ 2.3%, δSavg ≤ 1.0%, δQmax ≤

1.6% and δQavg ≤ 1.2% for the model. These results are a little bit better than those of the new model. However, the

standard WSGG model does not provide always accurate results for the cases which have spatially non-constant species

concentrations profiles, as shown by the results for cases 13 to 17; for those, the present model is more accurate.

[Figure 8 about here.]

[Figure 9 about here.]

For the standard WSGG model, Fig. 8(a) shows that the errors δSmax have a small increase with the length L (Cases 2

and 3 compared to case 1, Cases 6 and 7 compared to case 5, Cases 10 and 11 compared to case 9). For further study, Fig.

10 shows the maximum and average normalized errors on Sr and Qr for high lengths L (3 m, 4 m and 5 m). As a similar

behavior will be observed for the other cases, the errors are shown here for Case 1.

Figures 10(a) and 10(b) show that the normalized errors on Sr for the new model have a slight increase with these larger

path lengths. For L = 5 m, δSmax and δSavg are of 5.3% and 3.7%, respectively. However, the normalized errors on Qr

increase considerably. For L = 5 m, δQmax and δQavg are of 14.1% and 7.9%, respectively (Figs. 10(c) and 10(d)). An

improvement of the accuracy of Qr for high lengths L will be investigated in future works.

[Figure 10 about here.]

Table 4 gives an overview of the model accuracy with the number K. Γ (defined by (39)) is specified in Table 4. It is

observed that the best model accuracy is achieved with 6 gray gases and, as expected, forK = 1 the model has the highest
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error (27.9%). Satisfactory results are however obtained with 2 gray gases (7.9%).

It is worth noting that most of the older WSGG versions are based on 4 gray gases because they probably achieve the

most accurate solutions using this number of gray gases. In the present study, the parameters were determined for the

model using 1 to 7 gray gases (see Table 4). As the model using 6 gray gases leads to the most accurate solutions, the

values of the best initial guesses and w1(T ref) were given for 6 gray gases. The model using 4 gray gases has also a good

accuracy (Γ is equal to 4.9% in Table 4). If the older WSGG versions are compared to the developed model for 4 gray

gases, there is no loss in computational efficiency for applications. However, if the older WSGG versions are compared

to the developed model using 6 gray gases, there is loss in computational efficiency for applications but in the same time,

there is also gain in accuracy with the new model.

[Table 4 about here.]

3.5 Discussion about the present model in comparison to the RC-SLW model proposed by

Bagder et al. [11]

The SLW model [10] is deservedly one of the most praised gas models, and is still undergoing improvements with new

developments as in [11]. However, the development of new models should still be welcomed since no single model will

be capable to be the best alternative for all users and applications.

The great advantage of the SLW model in comparison to the present model is that it can achieve highly accurate solutions

by using a high number of gray gases but with attendant higher computational times. As stated in section 2.1, the

present model is a homogenized model with effective parameters κp,k and wk. It is thus constructed in a different way

in comparison to the SLW model. It is worth mentioning that even with one gray gas and one clear gas, the solution of

the inverse problem (using the present model) for a given test case is in nearly perfect agreement with the one of the LBL

method. However, this solution is not accurate for the test cases solved in forward calculation (in Table 4, Γ is 27.9%

when K = 1). That’s why, more gray gases are needed in the model to achieve accurate solutions for the test cases solved

in forward calculations and, it is natural to find an optimal accuracy for a given (limited) value of the number K. In Table

4, it is shown that this optimal is obtained when K = 6 with Γ = 3.5%. Table 4 also shows that the developed model

achieves reasonably accurate solutions with as few as 3-5 gray gases: Γ is 6.2%, 4.9% and 3.7% for 3, 4 and 5 gray gases,

respectively.

According to [11], the computational resource of the RC-SLW increases almost only linearly with the number of gray

gases. When K gray gases are used, its computational time is nominally 1.5 K times that of the standard WSGG model
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using one gray gas. One advantage of the present model is that the computational time is similar to that of the standard

WSGG model. Thus, for a fixed precision Γ of Table 4, the RC-SLW model using the necessary number of gray gases

to have this precision should be more time consuming than the present model. However, the present model is currently

limited to the precision of Γ = 3.5% whereas the RC-SLW is not limited and can achieve highly accurate solutions (Γ less

than 3.5%).

3.6 3D test case studied

Next, we show that the proposed model can be applied to a 3D geometry. The model was applied to the radiative transfer

calculation of a CO2-H2O mixture on a rectangular parallelepiped domain of dimension 2 m × 2 m × 4 m. The domain

has cold black walls at 400 K. A non-uniform gas temperature was considered and is symmetrical about the domain

centerline:

T (ζ) = (Tc − Te) g(ζ) + Te with g(ζ) = 1− 3 ζ2 + 2 ζ3, (43)

where ζ is the radial distance from the domain centerline and Te is the temperature at z = 4 m (exit) equal to 800 K. The

domain geometry is defined on Cartesian coordinate system (O, x, y, z). The temperature outside the unit circular region

is constant and equal to Te. Tc is the temperature along the domain centerline, which is assumed to increase linearly from

400 K at z = 0 (inlet) to 1,800 K at z = 0.375 m, then decreases linearly to 800 K at the exit. A non-homogeneous gas

mixture is studied with YCO2
(ζ) = g(ζ) Yc where Yc is the mole fraction of this species along the centerline, which is

assumed to increase linearly from 0 at the inlet to 0.1 at z = 0.375 m, then decreases linearly to 0 at the exit. The solution

of the RTE for this test case was obtained using a Finite Volume Method (1) with high angular discretization and a regular

spatial mesh composed of 32 × 32 × 64 nodes. The 3D numerical method to solve the RTE (1) is provided in [44] and is

not repeated here. The results presented below were obtained either with the LBL method based on HITEMP 2010, the

developed model (for 6 gray gases) and the WSGG model by Dorigon et al. (standard WSGG model) [15] for comparison.

Sr along the centerline (1 m, 1 m, z) and Qr along line (2 m, 1 m, z) are shown in Figs 11 and 12. The maximum and

average normalized errors on Sr andQr are specified in Figs 11(b) and 12(b). The present model show a better agreement

with the reference solution for either Sr and Qr compared to the standard WSGG model. The obtained results show that

the present model is robust and can be applied to a 3D geometry.

[Figure 11 about here.]

[Figure 12 about here.]
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4 Conclusions and future perspectives

A new model based on the principle of the Weighted-Sum-of-Gray-Gases (WSGG) model has been proposed in this

study. In order to obtain a good accuracy, the pressure absorption coefficient of the new model needed to have a weakly

dependence with the temperature. In the standard WSGG model, the weighting factor is expressed with polynomial

functions of the temperature. In this work, it has not been predefined by a mathematical function. Mathematical properties

on the model parameters have been obtained and we have shown that all the model parameters can be determined from

only one of them, which in turn was reconstructed using an efficient inverse algorithm with the total radiative heat source

Sr data obtained with the LBL method based on HITEMP 2010. By applying the inverse algorithm to a given test case,

the results obtained are in nearly perfect agreement with those of the LBL method. It has been possible to apply this

model to other test cases since the parameters obtained are functions of the temperature. Also, we developed an efficient

algorithm which allows to find good initial guesses (of the model parameters), leading to an improved accuracy of the

model.

Our methodology has been applied to reconstruct the model parameters for H2O-CO2 mixtures at atmospheric pressure

with mole fraction ratio equal to two (representative of products of typical air-fired methane combustion), within the range

of temperature between 400 K and 1,800 K and for thicknesses of the gas layer up to 5 m.

When the methodology is applied to several test cases (1D and 3D), this led to a greatly decrease in the relative errors

on Sr and, on the radiative heat flux Qr compared to that obtained with the standard WSGG model. The new model can

be applied exactly the same way as the standard approaches of the WSGG model. Moreover, the computational time is

similar to that of the standard WSGG model, making it attractive for CFD calculations.

The mole fraction ratio between H2O and CO2 is fixed to two. This is the major weakness of the WSGG model that

cannot handle easily complex space-varying gas/soot mixtures. Currently, this limits considerably the impact of this

study for applications. Also, it is worth noting that local instantaneous flame temperature can exceed 2,200 K even when

burning in air. Such cases would be out of the range of applicability of the correlations and coefficients of the present

model, obtained for temperatures up to 1,800 K. However, the proposed inverse methodology is not limited to the physical

conditions considered in the present study, and can be applied to extend the model parameters to higher temperatures (even

above 2,200 K) or to consider different gas compositions and operational pressures.

As perspectives, some improvements of the computational method of the present study will be addressed. Also, we plan

to apply our model to other gas mixtures and more complex cases. The model parameters for higher temperatures (up to

2,500 K) will be studied. An improvement of the accuracy of Qr for high lengths L (3 m to 5 m) will also be investigated.
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Appendix A. Computation of the cost function’s gradients

In this work, the expressions of the cost function’s gradients over the parameters of interest are derived from the La-

grangian formulation and the adjoint state of the RTE. Then, they are introduced in the following.

A.1 Space functions and associated inner products

Let L2(Σ) be the space function which is square integrable on Σ. The associated inner product is:

〈
f
∣∣∣ g 〉

Σ
=

∫ 1

−1

f(µ) g(µ) dµ for all f, g ∈ L2(Σ).

Moreover, the L2(D) and L2(D × Σ) space functions are square integrable on D and D × Σ. The two associated inner

products are: 〈
f
∣∣∣ g 〉

D
=

∫ L

0

f(x) g(x) dx and
∣∣∣∣f ∣∣∣∣2D =

〈
f
∣∣∣ f 〉

D
for all f, g ∈ L2(D),

〈
f
∣∣∣ g 〉

D,Σ
=

∫ L

0

∫ 1

−1

f(x, µ) g(x, µ) dµ dx for all f, g ∈ L2(D × Σ),

in which
∣∣∣∣f ∣∣∣∣D is the associated norm to L2(D).

The notations presented here are used in the following of this Appendix and in Appendix B.

A.2 State and observation equations

In this appendix, Sr computed with the present model and the LBL method are denoted by K and H , respectively. Then,

the cost function (12) can be written as:

J(θ) =
1

2

∣∣∣∣∣∣∣∣K(θ)−H
Hmax

∣∣∣∣∣∣∣∣2
D
, (44)

where K(θ) in Eq. (44) is the observation equation defined as Sr over the parameter θ. It can be also written as:

K(θ)(x) =

K∑
k=1

(ΨIk)(x)− Φ(x), (45)

with

(ΨIk)(x) = 2π κp,k(x) pa(x)

∫ 1

−1

Ik(x, µ) dµ and Φ(x) = 4π κP (x) Ib[T (x)]. (46)

The termsR+
k (θ, I+

k ) andR−k (θ, I−k ) are denoted by Eqs. (2) and (3), respectively. Then, the state equation is defined by:

R(θ, I1, I2, ..., IK) =
{
R+
k (θ, I+

k ),R−k (θ, I−k )
}K
k=1

. (47)

The cost function J (44) is minimized according to the inverse algorithm when Eq. (47) is satisfied [30].

A.3 Lagrangian expression and adjoint equations model
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In the L2 function space, the Lagrangian expression is stated as [30, 36]:

L(θ, I1, I2, ..., IK , Ĩ1, Ĩ2, ..., ĨK) =
1

2

∣∣∣∣∣∣∣∣∑K
k=1(ΨIk)− Φ−H

Hmax

∣∣∣∣∣∣∣∣2
D

+

K∑
k=1

〈
Ĩk

∣∣∣Rk〉
D,Σ

, (48)

where the Lagrangian multipliers are functions defined by: Ĩk(x, µ) with (x, µ) ∈ D × Σ for k = 1, ...,K. They are the

adjoint state of partial radiative intensity Ik (k = 1, ...,K). It is worth noting that if Ik (k = 1, ...,K) are solutions of the

state equation (47) for the θ parameter, then the following equation is satisfied:

L(θ, I1(θ), I2(θ), ..., IK(θ), Ĩ1, Ĩ2, ..., ĨK) = J(θ) for all Ĩk, k = 1, ...,K. (49)

Eq. (49) leads to obtain the adjoint equations model. By deriving Eq. (49), it follows:

J ′(θ) δθ =
∂L(θ, I1, I2, ..., IK , Ĩ1, Ĩ2, ..., ĨK)

∂θ
δθ +

K∑
k=1

∂L(θ, I1, I2, ..., IK , Ĩ1, Ĩ2, ..., ĨK)

∂Ik

∂Ik(θ)

∂θ
δθ. (50)

Then, the adjoint variables satisfy [30, 36]:

K∑
k=1

∂L(θ, I1, I2, ..., IK , Ĩ1, Ĩ2, ..., ĨK)

∂Ik
δIk = 1. (51)

The sensitivity directions δIk are formulated as:

δIk =
∂Ik(θ)

∂θ
δθ. (52)

Equation (50) is then reduced to:

J ′(θ) δθ ≡
〈
∇∇∇J(θ)

∣∣∣δθ〉
D

=
∂L(θ, I1, I2, ..., IK , Ĩ1, Ĩ2, ..., ĨK)

∂θ
δθ. (53)

Combining Eq. (48) with Eq. (51), it yelds:

K∑
k=1

〈∑K
i=1(ΨIi)− Φ−H

Hmax

∣∣∣ (ΨδIk)

Hmax

〉
D

+

K∑
k=1

〈
Ĩk

∣∣∣∂Rk
∂Ik

δIk

〉
D,Σ

= 0. (54)

Using Eq. (45),
∑K
i=1(ΨIi) − Φ is replaced by K in the first term of Eq. (54). Eq. (54) has to be satisfied for all δIk.

Then, for each sensitivity directions:

〈K −H
Hmax

∣∣∣ (ΨδIk)

Hmax

〉
D

+
〈
Ĩk

∣∣∣∂Rk
∂Ik

δIk

〉
D,Σ

= 0. (55)

The adjoint operator is denoted whith the subscript (∗). Then, Eq. (55) leads to:

〈(∂Rk
∂Ik

)∗
Ĩk

∣∣∣δIk〉
D,Σ

+
〈Ψ∗(K −H)

H2
max

∣∣∣δIk〉
D,Σ

= 0. (56)

The partial adjoint radiative intensity at the spatial position x, in the µ direction, is defined as:

Ĩk(x, µ) =


Ĩ+
k (x, µ) µ ∈ Σ+

Ĩ−k (x,−µ) µ ∈ Σ+

 for k = 1, ...,K.
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ReplacingRk defined by Eq. (47) in Eq. (56) and using Appendix C, the following adjoint equations model is obtained:

µ
∂Ĩ−k (x,−µ)

∂x
+ κp,k(x) pa(x)

{
Ĩ−k (x,−µ) + 2π

(K(x)−H(x))

H2
max

}
= 0, (57)

−µ
∂Ĩ+
k (x, µ)

∂x
+ κp,k(x) pa(x)

{
Ĩ+
k (x, µ) + 2π

(K(x)−H(x))

H2
max

}
= 0, (58)

for µ ∈ Σ+ and k = 1, ...,K. For convenience, the µ direction was changed by −µ in the above equations.

The partial adjoint radiative intensity satisfy the following boundary conditions:

Ĩ−k (x = 0,−µ) = 0 ; Ĩ+
k (x = L, µ) = 0. (59)

for µ ∈ Σ+ and k = 1, ...,K.

A.4 Expressions of the cost function’s gradients

The differentiation of the Lagrangian expression according to θ in direction δθ leads to:

∂L(θ, I1, I2, ..., IK , Ĩ1, Ĩ2, ..., ĨK)

∂θ
δθ =

∂J(θ)

∂θ
δθ +

K∑
k=1

〈
Ĩk

∣∣∣∂Rk
∂θ

δθ
〉
D,Σ

. (60)

Using Eq. (53), it follows:

〈
∇∇∇J(θ)

∣∣∣δθ〉
D

=
〈K(θ)−H

Hmax

∣∣∣ 1

Hmax

∂R(θ)

∂θ
δθ
〉
D

+

K∑
k=1

〈
Ĩk

∣∣∣∂Rk
∂θ

δθ
〉
D,Σ

. (61)

Equation (61) allows to compute the cost function’s gradients. Applying Eq. (61) to θ = κp,i, it follows that:

〈
∇∇∇J(κp,i)

∣∣∣δκp,i〉
D

=
〈K −H
H2

max

∣∣∣ 2π pa

∫ 1

−1

Ii(·, µ) dµ− 4π pa wi Ib[T ] δκp,i

〉
D

+
〈
Ĩi

∣∣∣pa Ii − pa {wi Ib[T ]

}
δκp,i

〉
D,Σ

. (62)

Then, the cost function’s gradient over κp,i is:

∇∇∇J(κp,i)(x) = 2π
(K(x)−H(x))

H2
max

pa(x)

(∫ 1

−1

Ii(x, µ) dµ− 2 wi(x) Ib[T (x)]

)
+pa(x)

∫ 1

−1

Ĩi(x, µ) Ii(x, µ) dµ− pa(x) wi(x) Ib[T (x)]

∫ 1

−1

Ĩi(x, µ) dµ. (63)

Applying Eq. (61) to θ = wi for i = 1, ...,K, it follows that:

〈
∇∇∇J(wi)

∣∣∣δwi〉
D

=
〈K −H
H2

max

∣∣∣− 4π κp,i pa Ib[T ] δwi

〉
D
−
〈
Ĩi

∣∣∣κp,i pa Ib[T ] δwi

〉
D,Σ

. (64)

Then, the cost function’s gradient over wi is:

∇∇∇J(wi)(x) = −κp,i(x) pa(x) Ib[T (x)]

(
4π

(K(x)−H(x))

H2
max

+

∫ 1

−1

Ĩi(x, µ) dµ

)
. (65)
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A.5 Simplified expressions for the cost function’s gradients

From (63), (65) and for a better convergence of the inverse algorithm [30], the spatially non-constant parameters κp,i and

wi can be computed using simplified expressions for the cost function’s gradients as:

∇∇∇J(wi)(x) = − (K(x)−H(x))

H2
max

and ∇∇∇J(κp,i) = −∇∇∇J(wi) for i = 1, ...,K. (66)

It is worth noting that, to compute these simplified expressions, the adjoint equations model has not to be solved.

Appendix B. Calculations of adjoint operators

Let ψ ∈ L2(D). From (45), it yields:

〈
ψ
∣∣∣(ΨδIk)

〉
D

= 2π

∫
D
ψ(x) κp,k(x) pa(x)

∫ 1

−1

δIk(x, µ) dµ dx

= 2π

∫
D

∫ 1

−1

κp,k(x) pa(x) ψ(x) δIk(x, µ) dµ dx =
〈

Ψ∗ψ
∣∣∣δIk〉

D,Σ
. (67)

with

(Ψ∗ψ)(x) = 2π κp,k(x) pa(x) ψ(x). (68)

Appendix C. Mathematical properties on the model parameters

After convergence, the relation (13) leads to:

θθθ = θθθ(0) + ∆θ, (69)

where θθθ(0) is the initial guess vector, θθθ is the converged solution and ∆θ is the convergence error. The relation (69) can

be written with respect to κp,k and wk (k = 1, ...,K) as:

κp,k(x) = κ
(0)
p,k + ∆κp(x) and wk(x) = w

(0)
k + ∆w(x), (70)

where ∆κp and ∆w are convergence errors. They do not depend on the index k since the cost function’s gradients with

respect to κp,k and wk given by Eqs. (14) do not depend on the index k. Then, the relations (70) lead to:

κp,k(x)− κp,1(x) = κ
(0)
p,k − κ

(0)
p,1 ∀ 2 ≤ k ≤ K, (71)

wk(x)− w1(x) = w
(0)
k − w

(0)
1 ∀ 2 ≤ k ≤ K, (72)

From the relations (13), (15), (16), (17), (69) and (70), we obtain:

κp,k(x) = κ
(0)
p,k + ∆κp(x) and wk(x) = w

(0)
k − L pa(x) ∆κp(x) ∀ 1 ≤ k ≤ K, (73)

where L is the domain length and pa is the sum of the partial pressures of the chemical species. By multiplying the first

relation of (73) by L pa(x) and summing the two relations for the index k set to 1, it follows:

L pa(x) κp,1(x) + w1(x) = L pa(x) κ
(0)
p,1 + w

(0)
1 . (74)
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Note that the relation (74) is dimensionally consistent since the coefficients w1(x) and w(0)
1 are dimensionless and the

coefficients L pa(x) κp,1(x) and L pa(x) κ
(0)
p,1 are also dimensionless

(
m · atm · (atm ·m)−1

)
.
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(a) Temperature profiles.

(b) CO2 mole fraction profiles.

Figure 1: Profiles of temperature and CO2 mole fraction.
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Figure 2: Convergence of the cost function J(w1) according to the iteration number.
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1 for p in nbProcs do in parallel // Parallel loop over all the processes
2 finished ← false // Boolean indicating whether the genetic algorithm has finished or not
3 if p = 0 then // Master processus (number 0)
4 InitializePopulation() // Builds the first population of parameters vectors
5 errors ← distributeWork() // Distribution of the vectors to the workers and retrieving of the errors
6 while not finished do // Iterations of the genetic algorithm
7 best ← extractBest(errors) // Extracts the best vector with minimal error
8 differentiateAndMix(best) // Applies Eqs. (40) and (41)
9 errors ← distributeWork() // Distributes the vectors to the workers and gathers the errors

10 selection(errors) // Applies Eq. (42)
11 finished ← checkEnd(errors) // Checks whether the GA has finished
12 endwhile
13 broadcastEnd() // Sends the end signal to the workers
14 best ← extractBest(errors) // Extracts the final best vector
15 else // Workers processes
16 while not finished do // Iterations of the genetic algorithm
17 msg ← recvFromMaster() // Message reception from the master
18 if isEndMsg(msg) then // Checks whether the received msg is the end signal
19 finished ← true
20 else
21 error ← process(msg) // Executes the simulation with the parameters in msg
22 sendToMaster(error) // Sends back the obtained error to the master
23 endif
24 endwhile
25 endif
26 endfor

Figure 3: Parallel scheme of the differential evolution genetic algorithm used to find good initial guesses.
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Figure 4: Example of processes deployment over 3 machines with 4 cores.
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(a) κp,k(T ) profiles.

(b) wk(T ) profiles.

(c)
∑K

k=1 wk(T ).

Figure 5: Parameters for the 6 gray gases model.
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(a) Total radiative heat source Sr for Case 1.

(b) Normalized error on Sr for Case 1.

Figure 6: Comparison on Sr obtained with the present model (for 6 gray gases), standard WSGG model and LBL method
for Case 1.
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(a) Total radiative heat flux Qr for Case 1.

(b) Normalized error on Qr for Case 1.

Figure 7: Comparison onQr obtained with the present model (for 6 gray gases), standard WSGG model and LBL method
for Case 1.
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(a) δSmax.

(b) δSavg.

Figure 8: Maximum (δSmax) and average (δSavg) normalized errors on Sr obtained with the present model (for 6 gray
gases) and standard WSGG model for the cases reported in Table 1, according to the LBL solution.
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(a) δQmax.

(b) δQavg.

Figure 9: Maximum (δQmax) and average (δQavg) normalized errors on Qr obtained with the present model (for 6 gray
gases) and standard WSGG model for the cases reported in Table 1, according to the LBL solution.
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(a) δSmax. (b) δSavg.

(c) δQmax. (d) δQavg.

Figure 10: Maximum (δSmax − δQmax) and average (δSavg − δQavg) normalized errors on Sr and Qr obtained with the
present model (for 6 gray gases) and standard WSGG model for the last three cases reported in Table 1, according to the
LBL solution.
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(a) Radiative heat source Sr .

(b) Normalized error on Sr .

Figure 11: Comparison on Sr obtained with the present model (for 6 gray gases), standard WSGG model and LBL method
for 3D Case with non-homogeneous gas mixture [44].
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(a) Radiative heat flux Qr .

(b) Normalized error on Qr .

Figure 12: Comparison on Qr obtained with the present model (for 6 gray gases), standard WSGG model and LBL
method for 3D Case with non-homogeneous gas mixture [44].
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Case T (K) YCO2
L (m)

1 Eq. (22) 0.1 1
2 Eq. (22) 0.1 0.5
3 Eq. (22) 0.1 2
4 Eq. (22) Eq. (25) 1
5 Eq. (23) 0.1 1
6 Eq. (23) 0.1 0.5
7 Eq. (23) 0.1 2
8 Eq. (23) Eq. (26) 1
9 Eq. (24) 0.1 1
10 Eq. (24) 0.1 0.5
11 Eq. (24) 0.1 2
12 Eq. (24) Eq. (27) 1
13 Eq. (28) Eq. (29) 1
14 Eq. (28) Eq. (29) 3
15 Eq. (30) Eq. (31) 0.25
16 Eq. (30) Eq. (31) 1
17 Eq. (30) Eq. (31) 2
18 Eq. (22) 0.1 3
19 Eq. (22) 0.1 4
20 Eq. (22) 0.1 5

Table 1: The different cases studied.
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k κ
(0)
p,k (atm m) −1 w

(0)
k

1 0.6382089284 0.2233136596
2 1.2344705560 0.3253242605
3 3.7243386417 0.1556371594
4 11.7017888278 0.1642889187
5 12.1322089821 0.1433675242
6 99.6564449070 0.1505063464

Table 2: Best initial guesses of parameters for the 6 gray gases model.
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1-25 26-50 51-75 76-100
0.4480865666900 0.2173033559800 0.1287614383800 0.1044053640800
0.4457925217600 0.2095103134300 0.1273390805200 0.1038322176600
0.4421421719800 0.2023605799700 0.1259704001400 0.1032851313300
0.4372302625200 0.1958164576400 0.1246467926400 0.1027635710400
0.4311631243400 0.1898337476300 0.1233619668200 0.1022671709100
0.4240512193200 0.1843614242800 0.1221215916600 0.1017956529700
0.4160073562700 0.1791818386900 0.1209269764900 0.1013487837500
0.4071457311000 0.1743259976100 0.1197712817600 0.1009263424300
0.3975811107100 0.1699051771600 0.1186506190000 0.1005267264700
0.3874279789300 0.1658709652500 0.1175624041400 0.1001511881900
0.3767995689500 0.1621746564800 0.1165145424900 0.0998006535560
0.3658067411100 0.1587448567400 0.1154998783600 0.0994748150870
0.3545566882400 0.1555385905400 0.1145160822900 0.0991733855270
0.3431514821300 0.1525952872800 0.1135616932100 0.0988961020970
0.3316865469900 0.1498754293800 0.1126380453700 0.0986427263140
0.3202492824100 0.1473439096100 0.1117529479500 0.0984130430070
0.3089178240400 0.1449594470100 0.1108959178900 0.0982068593560
0.2977559541300 0.1427232261500 0.1100657684100 0.0980240040860
0.2859982863700 0.1406395837400 0.1092619234800 0.0978643267840
0.2745383241700 0.1386845895500 0.1084840676500 0.0977276973220
0.2635866148000 0.1368352733500 0.1077321000800 0.0976140053230
0.2531924938900 0.1350650157200 0.1070096908700 0.0975231596800
0.2433830282500 0.1333838694000 0.1063162144200 0.0974550881190
0.2341663877800 0.1317808064300 0.1056511632100 0.0974097368090
0.2255330851400 0.1302437722700 0.1050141573100 0.0973870700490

Table 3: w1(T ref) data for the 6 gray gases model.
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K Γ (in %)
1 27.9
2 7.9
3 6.2
4 4.9
5 3.7
6 3.5
7 4.0

Table 4: Overview of the model accuracy according to the number K.
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