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Abstract

We consider the unilateral contact problem between an elastic body and a rigid foundation
in a description that includes both Tresca and Coulomb friction conditions. For this problem,
we present an a posteriori error analysis based on an equilibrated stress reconstruction in
the Arnold–Falk–Winther space that includes a guaranteed upper bound distinguishing the
different components of the error. This analysis is the starting point for the development of
an adaptive algorithm including a stopping criterion for the generalized Newton method. This
algorithm is then used to perform numerical simulations that validate the theoretical results.

Keywords: frictional unilateral contact problem, weakly enforced contact conditions, a posteri-
ori error estimate, equilibrated stress reconstruction, Arnold–Falk–Winther mixed finite element,
adaptive algorithms
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1 Introduction

In the field of mechanical engineering, accounting for contact conditions with friction is indispens-
able for the accurate representation of the behavior of an elastic object. This is particularly crucial
in structural studies, such as those involving dams, where ensuring safety demands a thorough
analysis. The most frequently used friction conditions in mechanical problems are Tresca and
Coulomb conditions. In this work, we consider the Tresca or Coulomb unilateral contact problems
between an elastic body and a rigid foundation. Numerous techniques exist in the literature for ap-
proximating solutions to such problems, including penalty formulations [23], mixed formulations
[19], and methods based on the weak enforcement of contact conditions à la Nitsche [7]. Since
the original work on Dirichlet boundary conditions [24], Nitsche’s technique has been extended
to general boundary conditions [22] and, more recently, to the unilateral contact problem without
friction [9]; see [7] for a review including subsequent developments. From the numerical stand-
point, this technique is appealing as it does not require the introduction of Lagrange multipliers
and results in an easily implementable formulation. The starting point is the general formulation
proposed in [1], which covers both Tresca and Coulomb friction cases.

∗Corresponding author
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Figure 1: Example of domain Ω with 𝑑 = 2. The boundary 𝜕Ω is subdivided into ΓD (in green),
ΓN (in red), and ΓC (in blue).

The primary focus of this paper is the extension of the a posteriori error analysis via equilibrated
stress reconstruction developed in [14] to the frictional unilateral contact problem. This technique,
presented in [16] for the Poisson problem, is based on the Prager–Synge inequality [25]. We provide
a guaranteed upper bound of the dual norm of the error without using any saturation assumption,
see Theorems 3 and 6 below. The presented upper bound is expressed in terms of fully computable
a posteriori error estimators which distinguish the different sources of error. Besides the data of
the problem (volumetric and surface loadings), these estimators involve the approximate solution
𝒖ℎ and an equilibrated stress reconstruction 𝝈ℎ, i.e., anH(div)-conforming correction of the stress
tensor 𝝈(𝒖ℎ) locally in equilibrium with the force source terms.

The paper is organized as follows. In Section 2, we introduce the frictional unilateral contact
problem in both strong and weak forms, along with its discretization à la Nitsche. Additionally,
we provide the main space-related and mesh-related notations that we will use throughout the
rest of the paper in Tables 1 and 2. Section 3 showcases the main results of the work: a basic
a posteriori error estimate, a refined version distinguishing the components of the error, and an
adaptive algorithm based on the latter. This algorithm includes an adaptive stopping criterion for
the linearization iterations. Moreover, we compare the dual norm of the residual with the energy
norm. In Section 4 we explicitly propose how to construct an equilibrated stress reconstruction
with the right properties by assembling the solutions of local problems on element patches around
mesh vertices. Section 5 validates the results of Section 3 with two numerical examples with
Tresca and Coulomb friction conditions, respectively. Finally, Section 6 concludes the work by
presenting results of local and global efficiency.

2 Setting

2.1 Continuous problem

We consider a domain Ω ∈ R𝑑 , 𝑑 ∈ {2, 3}, which represents a body with elastic behavior, and we
suppose for simplicity that Ω is a polygon if 𝑑 = 2 or a polyhedron if 𝑑 = 3, so that it can be covered
exactly by a finite element mesh. The boundary of the domain is denoted by 𝜕Ω and is subdivided
into three nonoverlapping parts: ΓD, ΓN, and ΓC (see Figure 1 for a two-dimensional example)
such that |ΓD | > 0 and |ΓC | > 0, where | · | is the Hausdorff measure. The setting of the problem is
the following: the body is clamped at ΓD, it is subject to volumetric forces 𝒇 ∈ 𝑳2(Ω) in Ω and to
surface forces 𝒈N ∈ 𝑳2(ΓN) on the portion of the boundary ΓN, in the reference configuration it is
in contact with a rigid foundation on ΓC, while in the deformed configuration the contact region is
included in ΓC. On the boundary 𝜕Ω, we consider the outward unit normal vector 𝒏 that allows us
to decompose any displacement field 𝒗 and any density of surface force 𝝈(𝒗)𝒏 into their normal
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and tangential components:

𝒗 = 𝑣𝑛𝒏 + 𝒗𝒕 and 𝝈(𝒗)𝒏 = 𝜎𝑛 (𝒗)𝒏 + 𝝈𝒕 (𝒗). (2.1)

The frictional unilateral contact problem then reads: Find the displacement 𝒖 : Ω → R𝑑 such
that

div𝝈(𝒖) + 𝒇 = 0 in Ω, (2.2a)
𝝈(𝒖) = 𝜆 tr 𝜺(𝒖)𝑰𝑑 + 2𝜇𝜺(𝒖) in Ω, (2.2b)

𝒖 = 0 on ΓD, (2.2c)
𝝈(𝒖)𝒏 = 𝒈N on ΓN, (2.2d)

𝑢𝑛 ≤ 0, 𝜎𝑛 (𝒖) ≤ 0, 𝜎𝑛 (𝒖) 𝑢𝑛 = 0 on ΓC, (2.2e)
|𝝈𝒕 (𝒖) | ≤ 𝑆(𝒖) if 𝒖𝒕 = 0

𝝈𝒕 (𝒖) = −𝑆(𝒖) 𝒖𝒕

|𝒖𝒕 | otherwise
on ΓC. (2.2f)

Here, 𝜺(𝒗) B 1
2 (∇𝒗 +∇𝒗⊤) is the strain tensor field, 𝝈(𝒗) ∈ R𝑑×𝑑sym is the Cauchy stress tensor, div

is the divergence operator acting row-wise on tensor valued functions, 𝜇 and 𝜆 denote the Lamé
parameters, and | · | in (2.2f) is the Euclidian norm in R𝑑−1.

The first contact condition (2.2e) is a complementary condition representing non-penetration
(𝑢𝑛 ≤ 0) and the absence of normal cohesive forces (if 𝑢𝑛 < 0, then𝜎𝑛 (𝒖) = 0). The second contact
condition represents the friction condition and makes it possible to include in this formulation both
Tresca and Coulomb models (see also [1]): 𝑆(𝒖) = 𝑠 ∈ 𝐿2(ΓC), 𝑠 ≤ 0, for the Tresca friction
model, and 𝑆(𝒖) = −𝜇Coul 𝜎

𝑛 (𝒖) for the Coulomb one, where 𝜇Coul ≥ 0 is the Coulomb friction
coefficient. We remark that, while Tresca friction is easier to implement and analyze since the
friction threshold 𝑠 is a known function, Coulomb friction allows us to model the fact that there
is no friction when the elastic body is not in contact with the rigid foundation in the deformed
configuration.

Table 1 summarizes the main space-related notations used in the paper. In addition, we
define the space 𝑯1

D(Ω) as the space of functions of 𝑯1(Ω) satisfying the homogeneous Dirichlet
boundary condition (2.2c), and the space 𝑲 of admissible displacement:

𝑯1
D(Ω) B

{
𝒗 ∈ 𝑯1(Ω) : 𝒗 = 0 on ΓD

}
, 𝑲 B

{
𝒗 ∈ 𝑯1

D(Ω) : 𝑣𝑛 ≤ 0 on ΓC
}
.

The weak formulation of the problem (2.2) is the following variational inequality (see, e.g. [19, 7]):
Find 𝒖 ∈ 𝑲 such that

𝑎(𝒖, 𝒗 − 𝒖) + 𝑗 (𝒖; 𝒗) − 𝑗 (𝒖; 𝒖) ≥ 𝐿 (𝒗 − 𝒖) ∀𝒗 ∈ 𝑲, (2.3)

where

𝑎(𝒘, 𝒗) B (𝝈(𝒖), 𝜺(𝒗)), 𝐿(𝒗) B ( 𝒇 , 𝒗) + (𝒈N, 𝒗)ΓN , (2.4)
𝑗 (𝒖; 𝒗) B (𝑆(𝒖), |𝒗𝒕 |)ΓC . (2.5)

for all (𝒖, 𝒗) ∈ 𝑯1(Ω) × 𝑯1(Ω). It is known that this formulation has a unique solution for Tresca
friction, while for Coulomb friction the analysis is more intricate. We refer to [1] and the references
therein for a discussion.
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Notation Definition

𝑋 Measurable set of R𝑑 or R𝑑−1, typically: Ω, a portion of 𝜕Ω, or the
union of a finite subset of mesh elements

𝐻𝑠 (𝑋) Sobolev space of index 𝑠 on 𝐷

𝑯𝑠 (𝑋) Vector Sobolev space [𝐻𝑠 (𝑋)]𝑑
H

𝑠 (𝑋) Tensor Sobolev space [𝐻𝑠 (𝑋)]𝑑×𝑑
𝐿2(𝑋) Sobolev space 𝐻0(𝐷) of square-integrable functions on 𝑋

𝑳2(𝑋) Vector space [𝐿2(𝑋)]𝑑 or [𝐿2(𝑋)]𝑑−1

L
2(𝑋) Tensor space [𝐿2(𝑋)]𝑑×𝑑

∥ · ∥𝑠,𝑋 Norm of 𝐻𝑠 (𝑋) or 𝑯𝑠 (𝑋) according to the argument
∥ · ∥𝑋 Norm of 𝐿2(𝑋), 𝑳2(𝑋) or L2(𝑋) according to the argument
∥ · ∥ Norm of 𝐿2(Ω), 𝑳2(Ω) or L2(Ω) according to the argument
( · , · )𝑋 Inner product of 𝐿2(𝑋), 𝑳2(𝑋) or L2(𝑋) according to the argument
( · , · ) Inner product of 𝐿2(Ω), 𝑳2(Ω) or L2(Ω) according to the argument
H(div,Ω) Space spanned by functions of L2(Ω) with weak (row-wise) diver-

gence in 𝑳2(Ω)

Table 1: Space-related notations.

2.2 Discrete problem

We consider now a family {Tℎ}ℎ of conforming triangulations of Ω, indexed by the mesh size
ℎ B max𝑇∈Tℎ ℎ𝑇 , where ℎ𝑇 is the diameter of the element 𝑇 . This family is assumed to be regular
in the classical sense; see, e.g., [11, Eq. (3.1.43)]. Furthermore, each triangulation is conformal
to the subdivision of the boundary into ΓD, ΓN, and ΓC in the sense that the interior of a boundary
edge (if 𝑑 = 2) or face (if 𝑑 = 3) cannot have a non-empty intersection with more than one part
of the subdivision. Mesh-related notations that will be used in the a posteriori error analysis are
collected in Table 2. For the sake of simplicity, from this point on we adopt the three-dimensional
terminology and speak of faces instead of edges also in dimension 𝑑 = 2.

For any 𝑋 ∈ Tℎ ∪ Fℎ mesh element or face, P𝑛 (𝑋) is the space of 𝑑-variate polynomials of
total degree ≤ 𝑛 defined on 𝑋 , and we set P𝑛 (𝑋) B [P𝑛 (𝑋)]𝑑 and P𝑛 (𝑋) B [P𝑛 (𝑋)]𝑑×𝑑 . We
will seek the approximate solution in the standard Lagrange finite element space of degree 𝑝 ≥ 1
with strongly enforced boundary condition on ΓD:

𝑽ℎ B
{
𝒗ℎ ∈ 𝑯1

D(Ω) : 𝒗ℎ |𝑇 ∈ P
𝑝 (𝑇) for any 𝑇 ∈ Tℎ

}
. (2.6)

The key idea of the method we focus on consists in rewriting the contact boundary conditions
(2.2e) and (2.2f) in a compact way and enforcing them à la Nitsche. For this purpose, we introduce
the projector [𝑥]R− = 1

2 (𝑥 − |𝑥 |) on the half-line of negative numbers R−, and the orthogonal
projector [𝒙]𝛼 : R𝑑−1 → R𝑑−1 on the (𝑑 − 1)-dimensional ball 𝐵(0, 𝛼) centered in 0 with radius
𝛼 > 0, i.e.,

[𝒙]𝛼 =


𝒙 if |𝒙 | ≤ 𝛼,

𝛼
𝒙

|𝒙 | otherwise. (2.7)

In addition, for every real number 𝜃 and every positive bounded function 𝛾 : ΓC → R+, we define
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Notation Definition

Fℎ Set of faces of Tℎ
F b
ℎ Set of boundary faces, i.e., {𝐹 ∈ Fℎ : 𝐹 ⊂ 𝜕Ω}

F D
ℎ ∪ F N

ℎ ∪ F C
ℎ Partition of F b

ℎ induced by the boundary and contact conditions
F i
ℎ Set of interior faces, i.e., Fℎ \ F b

ℎ

F𝑇 Set of faces of the element 𝑇 ∈ Tℎ, i.e., {𝐹 ∈ Fℎ : 𝐹 ⊂ 𝜕𝑇}
F •
𝑇 , • ∈ {b,D,N,C} F𝑇 ∩ F •

ℎ , 𝑇 ∈ Tℎ
Vℎ Set of all the vertices of Tℎ
Vb

ℎ Set of boundary vertices, i.e., {𝒂 ∈ Vℎ : 𝒂 ∈ 𝜕Ω}
V i

ℎ Set of interior vertices, i.e., Vℎ \ Vb
ℎ

V𝑇 Set of vertices of the element 𝑇 ∈ Tℎ, i.e., {𝒂 ∈ Vℎ : 𝒂 ∈ 𝜕𝑇}
V𝐹 Set of vertices of the mesh face 𝐹 ∈ Fℎ, i.e., {𝒂 ∈ Vℎ : 𝒂 ∈ 𝜕𝐹}
VD

ℎ Set of Dirichlet boundary vertices, i.e., {𝒂 ∈ Vℎ : 𝒂 ∈ 𝐹, 𝐹 ∈ F D
ℎ }

𝜔𝒂 Union of the elements sharing the vertex 𝒂 ∈ Vℎ, i.e.,
⋃

𝑇∈Tℎ , 𝒂∈𝜕𝑇
𝑇

Table 2: Mesh-related notations.

the following linear operators [7]:

𝑃𝑛
𝜃,𝛾 : 𝑾 → 𝐿2(ΓC)

𝒗 ↦→ 𝜃𝜎𝑛 (𝒗) − 𝛾𝑣𝑛,

and 𝑷𝒕
𝜃,𝛾 : 𝑾 → 𝑳2(ΓC)

𝒗 ↦→ 𝜃𝝈𝒕 (𝒗) − 𝛾𝒗𝒕 ,

(2.8)

where 𝑾 B
{
𝒗 ∈ 𝑯1(Ω) : 𝝈(𝒗)𝒏|ΓC ∈ 𝑳2(ΓC)

}
(notice that 𝑽ℎ ⊂ 𝑾). Assuming that 𝒖 ∈ 𝑾,

the two contact conditions (2.2e) and (2.2f) can be rewritten as follows (see [12, 9, 10]):

𝜎𝑛 (𝒖) = [𝜎𝑛 (𝒖) − 𝛾𝑢𝑛]R− =
[
𝑃𝑛

1,𝛾 (𝒖)
]
R−

, (2.9)

𝝈𝒕 (𝒖) = [
𝝈𝒕 (𝒖) − 𝛾𝒖𝒕

]
𝑆 (𝒖) =

[
𝑷𝒕

1,𝛾 (𝒖)
]
𝑆 (𝒖)

(2.10)

From now on, we assume that 𝛾 is the positive piecewise constant function on ΓC which
satisfies: For all 𝑇 ∈ Tℎ such that |𝜕𝑇 ∩ ΓC | > 0,

𝛾 |𝜕𝑇∩ΓC =
𝛾0
ℎ𝑇

,

where 𝛾0 > 0 is a fixed Nitsche parameter. Finally, we approximate the problem (2.2) with the
following method [6]: Find 𝒖ℎ ∈ 𝑽ℎ such that

𝑎(𝒖ℎ, 𝒗ℎ) −
( [
𝑃𝑛

1,𝛾 (𝒖ℎ)
]
R−

, 𝑣𝑛ℎ

)
ΓC

−
( [
𝑷𝒕

1,𝛾 (𝒖ℎ)
]
𝑆ℎ (𝒖ℎ )

, 𝒗𝒕ℎ

)
ΓC

= 𝐿 (𝒗ℎ) ∀𝒗ℎ ∈ 𝑽ℎ, (2.11)

where 𝑆ℎ (𝒖ℎ) depends on the choice of 𝑆(𝒖): for the Tresca case 𝑆ℎ (𝒖ℎ) = 𝑠 while, for the
Coulomb case, using again (2.9), 𝑆ℎ (𝒖ℎ) = −𝜇Coul [𝑃𝑛

1,𝛾 (𝒖ℎ)]R− , see [1]. For further results
concerning the existence and uniqueness of a solution we refer to [6, 10]. Notice that (2.11) is
the non-symmetric variant of the Nitsche method corresponding to the choice 𝜃 = 0 in the above
references.
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Remark 1 (Choice of normal contact conditions). In this work, we will focus on the unilateral
contact problem with no jump on ΓC between Ω and the rigid foundation, but it is also possible to
adapt the present analysis to other cases by replacing the contact condition (2.2f):

• for the bilateral contact problem, we simply replace it with the condition 𝑢𝑛 = 0;

• for the unilateral contact problem with normal gap 𝑔 on ΓC in the reference configuration,
we replace it with the three conditions

𝑢𝑛 − 𝑔 ≤ 0, 𝜎𝑛 (𝒖) ≤ 0, 𝜎𝑛 (𝒖) (𝑢𝑛 − 𝑔) = 0. (2.12)

In the first case, we do not need to introduce the projection operator [ · ]R− and equation (2.9)
becomes 𝜎𝑛 (𝒖) = 𝑃𝑛

1,𝛾 (𝒖) while, in the second case, the definition of 𝑃𝑛
𝜃,𝛾 has to be modified by

replacing 𝑣𝑛 with 𝑣𝑛 − 𝑔.

3 A posteriori error analysis

The goal of this section is to present an a posteriori error estimate based on the notion of equilibrated
stress reconstruction. In this framework, following the approach of [14], we measure the error
associated with the approximate solution 𝒖ℎ using the dual norm of a residual operator.

3.1 Basic a posteriori error estimate

Starting from the discrete problem (2.11) and denoting by (𝑯1
D(Ω))∗ the dual space of 𝑯1

D(Ω),
for all discrete function 𝒘ℎ ∈ 𝑽ℎ, we define the residual R(𝒘ℎ) ∈ (𝑯1

D(Ω))∗ by its action on the
space 𝑯1

D(Ω):

⟨R(𝒘ℎ), 𝒗⟩ B 𝐿 (𝒗) − 𝑎(𝒘ℎ, 𝒗) +
( [
𝑃𝑛

1,𝛾 (𝒘ℎ)
]
R−

, 𝑣𝑛
)
ΓC

+
( [
𝑷𝒕

1,𝛾 (𝒘ℎ)
]
𝑆ℎ (𝒘ℎ )

, 𝒗𝒕ℎ

)
ΓC

(3.1)

for all 𝒗 ∈ 𝑯1
D(Ω). Here, ⟨ · , · ⟩ denotes the duality pairing between 𝑯1

D(Ω) and (𝑯1
D(Ω))∗. Let

|||𝒗 |||2 B ∥∇𝒗∥2 + |𝒗 |2C,ℎ ∀𝒗 ∈ 𝑯1
D(Ω), (3.2)

with
|𝒗 |2C,ℎ B

∑︁
𝐹∈FC

ℎ

1
ℎ𝐹

∥𝒗∥2
𝐹 ∀𝒗 ∈ 𝑯1

D(Ω). (3.3)

Given 𝒘ℎ ∈ 𝑽ℎ, the dual norm of the residual R(𝒘ℎ) on the normed space (𝑯1
D(Ω), ||| · |||) is

given by
|||R(𝒘ℎ) |||∗ B sup

𝒗∈𝑯1
D (Ω) , |||𝒗 |||=1

⟨R(𝒘ℎ), 𝒗⟩ , (3.4)

and the quantity |||R(𝒖ℎ) |||∗ can be used as a measure of the error committed approximating the
exact solution 𝒖 with 𝒖ℎ.

Definition 2 (Equilibrated stress reconstruction). We will call equilibrated stress reconstruction
any tensor-valued field 𝝈ℎ : Ω ↦→ R𝑑×𝑑 such that:

1. 𝝈ℎ ∈ H(div,Ω),
2. (div𝝈ℎ + 𝒇 , 𝒗)𝑇 = 0 for every 𝒗 ∈ P

0(𝑇) and every 𝑇 ∈ Tℎ,

6



3. (𝝈ℎ𝒏) |𝐹 ∈ 𝑳2(𝐹) for every 𝐹 ∈ F N
ℎ ∪ F C

ℎ and (𝝈ℎ𝒏, 𝒗)𝐹 =
(
𝒈N, 𝒗

)
𝐹 for every 𝒗 ∈ P

0(𝐹)
and every 𝐹 ∈ F N

ℎ .

Given an equilibrated stress reconstruction 𝝈ℎ, for every element 𝑇 ∈ Tℎ, we define the
following local error estimators:

𝜂osc,𝑇 B
ℎ𝑇
𝜋
∥ 𝒇 + div𝝈ℎ∥𝑇 , (oscillation)

𝜂str,𝑇 B ∥𝝈ℎ − 𝝈(𝒖ℎ)∥𝑇 , (stress)

𝜂Neu,𝑇 B
∑︁
𝐹∈FN

𝑇

𝐶𝑡 ,𝑇,𝐹ℎ
1/2
𝐹 ∥𝒈N − 𝝈ℎ𝒏∥𝐹 , (Neumann)

𝜂cnt,𝑇 B
∑︁
𝐹∈FC

𝑇

ℎ
1/2
𝐹




[𝑃𝑛
1,𝛾 (𝒖ℎ)

]
R−

− 𝜎𝑛
ℎ





𝐹
. (normal contact)

𝜂frc,𝑇 B
∑︁
𝐹∈FC

𝑇

ℎ
1/2
𝐹





[𝑷𝒕
1,𝛾 (𝒖ℎ)

]
𝑆ℎ (𝒖ℎ )

− 𝝈𝒕
ℎ






𝐹

, (friction)

where, 𝐶𝑡 ,𝑇,𝐹 is the constant of the trace inequality ∥𝒗 − 𝒗𝐹 ∥𝐹 ≤ 𝐶𝑡 ,𝑇,𝐹ℎ
1/2
𝐹 ∥∇𝒗∥𝑇 with 𝒗𝐹 ≔

1
|𝐹 |

∫
𝐹
𝒗, valid for every 𝒗 ∈ 𝑯1(𝑇) and any 𝐹 ∈ F𝑇 (see [29, Theorem 4.6.3] or [13, Section 1.4]).

The estimator 𝜂osc,𝑇 represents the residual of the volumetric force balance equation (2.2a)
inside the element 𝑇 , 𝜂str,𝑇 the difference between the Cauchy stress tensor computed from 𝒖ℎ

and the equilibrated stress reconstruction, 𝜂Neu,𝑇 the residual of the Neumann boundary condition
(2.2d), 𝜂cnt,𝑇 the residual of the normal condition (2.2e) on the contact boundary, and 𝜂frc,𝑇 the
residual of the friction condition.

The following result shows a guaranteed upper bound of the dual norm of the residual (3.1)
based on these local estimators.

Theorem 3 (A posteriori error estimate for the dual norm of the residual). Let 𝒖ℎ be the solution
of (2.11), R(𝒖ℎ) the residual defined by (3.1), and 𝝈ℎ an equilibrated stress reconstruction in the
sense of Definition 2. Then,

|||R(𝒖ℎ) |||∗ ≤
( ∑︁
𝑇∈Tℎ

(
(𝜂osc,𝑇 + 𝜂str,𝑇 + 𝜂Neu,𝑇 )2 + (𝜂cnt,𝑇 + 𝜂frc,𝑇 )2

))1/2

.

Proof. Using the regularity of 𝝈ℎ and of its normal trace established by Properties 1. and 3. in
Definition 2, the following integration by parts formula holds:

(𝝈ℎ,∇𝒗) + (div𝝈ℎ, 𝒗) − (𝝈ℎ𝒏, 𝒗)ΓN − (𝜎𝑛
ℎ , 𝑣

𝑛)ΓC − (𝝈𝒕
ℎ, 𝒗

𝒕 )ΓC = 0 ∀𝒗 ∈ 𝑯1
D(Ω). (3.5)

Now, fix 𝒗 ∈ 𝑯1
D(Ω) such that |||𝒗 |||2 = ∥∇𝒗∥2 + |𝒗 |2C,ℎ = 1 and consider the argument of the

supremum in the definition (3.4) of the dual norm of the residual. Expanding 𝐿 (·) and 𝑎(·, ·)
according to (2.4) in the definition (3.1) of the residual written for 𝒗ℎ = 𝒖ℎ and summing (3.5) to
the resulting expression, we obtain

⟨R(𝒖ℎ), 𝒗⟩ = ( 𝒇 + div𝝈ℎ, 𝒗) + (𝝈ℎ − 𝝈(𝒖ℎ),∇𝒗) + (𝒈N − 𝝈ℎ𝒏, 𝒗)ΓN

+
( [
𝑃𝑛

1,𝛾 (𝒖ℎ)
]
R−

− 𝜎𝑛
ℎ , 𝑣

𝑛
)
ΓC

+
( [
𝑷𝒕

1,𝛾 (𝒖ℎ)
]
𝑆ℎ (𝒖ℎ )

− 𝝈𝒕
ℎ, 𝒗

𝒕

)
ΓC

≕ 𝔗1 + · · · + 𝔗5,
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where we have additionally used the symmetry of 𝝈ℎ to replace 𝜺(𝒗) with ∇𝒗 in the second term.
The first four terms can be treated as in [14, Theorem 4], obtaining

𝔗1 ≤
∑︁
𝑇∈Tℎ

𝜂osc,𝑇 ∥∇𝒗∥𝑇 , 𝔗2 ≤
∑︁
𝑇∈Tℎ

𝜂str,𝑇 ∥∇𝒗∥𝑇 ,

𝔗3 ≤
∑︁
𝑇∈Tℎ

𝜂Neu,𝑇 ∥∇𝒗∥𝑇 , 𝔗4 ≤
∑︁
𝑇∈Tℎ

𝜂cnt,𝑇 |𝒗 |C,𝑇 ,

where | · |C,𝑇 is the local counterpart of the seminorm (3.3) on the element 𝑇 ∈ Tℎ obtained
replacing F C

ℎ with F C
𝑇 in the sum. Let us consider the fifth term 𝔗5. Using the Cauchy-Schwarz

inequality, we get

𝔗5 ≤
∑︁
𝑇∈Tℎ

∑︁
𝐹∈FC

𝑇





[𝑷𝒕
1,𝛾 (𝒖ℎ)

]
𝑆ℎ (𝒖ℎ )

− 𝝈𝒕
ℎ






𝐹

∥𝒗𝒕 ∥𝐹

≤
∑︁
𝑇∈Tℎ

∑︁
𝐹∈FC

𝑇

ℎ
1/2
𝐹





[𝑷𝒕
1,𝛾 (𝒖ℎ)

]
𝑆ℎ (𝒖ℎ )

− 𝝈𝒕
ℎ






𝐹

|𝒗 |C,𝑇 =
∑︁
𝑇∈Tℎ

𝜂frc,𝑇 |𝒗 |C,𝑇 .

Combining the above results and using the Cauchy-Schwarz inequality and the definition of
the norm ||| · ||| (3.2), we conclude

|||R(𝒖ℎ) |||∗ ≤ sup
𝒗∈𝑯1

D (Ω) , |||𝒗 |||=1

{ ∑︁
𝑇∈Tℎ

(
𝜂𝑎,𝑇 ∥∇𝒗∥𝑇 + 𝜂𝑏,𝑇 |𝒗 |C,𝑇

)}
≤ sup

𝒗∈𝑯1
D (Ω) , |||𝒗 |||=1

{( ∑︁
𝑇∈Tℎ

(
(𝜂𝑎,𝑇 )2 + (𝜂𝑏,𝑇 )2

))1/2 ( ∑︁
𝑇∈Tℎ

(
∥∇𝒗∥2

𝑇 + |𝒗 |2C,𝑇
))1/2}

=

( ∑︁
𝑇∈Tℎ

(
(𝜂osc,𝑇 + 𝜂str,𝑇 + 𝜂Neu,𝑇 )2 + (𝜂cnt,𝑇 + 𝜂frc,𝑇 )2

))1/2

,

where, for sake of brevity, 𝜂𝑎,𝑇 B 𝜂osc,𝑇+𝜂str,𝑇+𝜂Neu,𝑇 and 𝜂𝑏,𝑇 B 𝜂cnt,𝑇+𝜂frc,𝑇 for all𝑇 ∈ Tℎ. □

3.2 Separating the error components

In order to find numerically the approximate solution 𝒖ℎ, we apply an iterative method to the
nonlinear problem (2.11). In particular, in this work we consider the “generalized Newton method”,
also employed in [7], where no special treatment is done to account for the fact the projection
operators [ · ]R− and [ · ]𝑆ℎ (𝒖ℎ ) are not Gateaux-differentiable. At each Newton iteration 𝑘 ≥ 1, we
have to solve the linear problem: Find 𝒖𝑘

ℎ ∈ 𝑽ℎ such that

𝑎(𝒖𝑘
ℎ, 𝒗ℎ) −

(
𝑃𝑛,𝑘−1

lin (𝒖𝑘
ℎ), 𝑣𝑛ℎ

)
ΓC

−
(
𝑷𝒕 ,𝑘−1

lin (𝒖𝑘
ℎ), 𝒗𝒕ℎ

)
ΓC

= 𝐿 (𝒗ℎ) ∀𝒗ℎ ∈ 𝑽ℎ, (3.6)

where the linearized operators are obtained setting

𝑃𝑛,𝑘−1
lin (𝒘ℎ) B

[
𝑃𝑛

1,𝛾 (𝒖𝑘−1
ℎ )

]
R
− +

𝜕
[
𝑃𝑛

1,𝛾 (𝒗)
]
R
−

𝜕𝒗

�����
𝒗=𝒖𝑘−1

ℎ

· (𝒘ℎ − 𝒖𝑘−1
ℎ )

=

{
0 if 𝑃𝑛

1,𝛾 (𝒖𝑘−1
ℎ ) ≤ 0

𝑃𝑛
1,𝛾 (𝒘ℎ) otherwise

(3.7)
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𝑥
𝛿𝑛−𝛿𝑛

[𝑥]R−
[𝑥]reg, 𝛿𝑛

𝑥

[𝑥]𝑠
[𝑥]reg, 𝛿𝒕

Figure 2: Regularized operators for 𝑑 = 2 and constant Tresca friction.

and

𝑷𝒕 ,𝑘−1
lin (𝒘ℎ) B

[
𝑷𝒕

1,𝛾 (𝒖𝑘−1
ℎ )

]
𝑆ℎ (𝒖𝑘−1

ℎ
)
+
𝜕

[
𝑷𝒕

1,𝛾 (𝒗)
]
𝑆ℎ (𝒖𝑘−1

ℎ
)

𝜕𝒗

�����
𝒗=𝒖𝑘−1

ℎ

· (𝒘ℎ − 𝒖𝑘−1
ℎ )

=
[
𝑷𝒕

1,𝛾 (𝒖𝑘−1
ℎ )

]
𝑆ℎ (𝒖𝑘−1

ℎ
)
+

d [𝒙]𝑆ℎ (𝒖𝑘−1
ℎ

)
d𝒙

�����
𝒙=𝑷𝒕

1,𝛾 (𝒖𝑘−1
ℎ

)

(
𝑷𝒕

1,𝛾 (𝒘ℎ) − 𝑷𝒕
1,𝛾 (𝒖𝑘−1

ℎ )
)
.

(3.8)

Remark 4 (Possible regularization of projection operators). Another possible iterative approach
consists in first regularizing the projection operators [ · ]R− and [ · ]𝑆ℎ (𝒖𝑘−1

ℎ
) and then applying the

standard Newton method. For example, introducing two regularization parameters 𝛿𝑛 > 0 and
𝛿𝒕 > 0, we can define the regularized differentiable operators represented in Figure 2 for the case
𝑑 = 2. In this work, for the sake of simplicity, we only consider the analysis without regularization
and refer to [14] for a detailed treatment in the frictionless case.

Assumption 5 (Decomposition of the stress reconstruction). Let 𝝈𝑘
ℎ be an equilibrated stress

reconstruction in the sense of Definition 2. Then, 𝝈𝑘
ℎ can be decomposed into two parts

𝝈𝑘
ℎ = 𝝈𝑘

ℎ,dis + 𝝈𝑘
ℎ,lin, (3.9)

where 𝝈𝑘
ℎ,dis represents discretization and 𝝈𝑘

ℎ,lin represents linearization.

For an example of reconstruction that satisfies Assumption 5 we refer to Section 4. Now,
we introduce the following local estimators that depend on the stress reconstruction and use its
decomposition fixed by Assumption 5: For any mesh element 𝑇 ∈ Tℎ

𝜂𝑘osc,𝑇 B
ℎ𝑇
𝜋



 𝒇 + div𝝈𝑘
ℎ




𝑇
, (oscillation) (3.10a)

𝜂𝑘str,𝑇 B ∥𝝈𝑘
ℎ,dis − 𝝈(𝒖𝑘

ℎ)∥𝑇 , (stress) (3.10b)

𝜂𝑘lin1,𝑇 B ∥𝝈𝑘
ℎ,lin∥𝑇 , 𝜂𝑘lin2n,𝑇 B

∑︁
𝐹∈FC

𝑇

ℎ
1/2
𝐹



𝜎𝑘,𝑛
ℎ,lin




𝐹
,

𝜂𝑘lin2t,𝑇 B
∑︁
𝐹∈FC

𝑇

ℎ
1/2
𝐹



𝝈𝑘,𝒕
ℎ,lin




𝐹

(linearization) (3.10c)

𝜂𝑘Neu,𝑇 B
∑︁
𝐹∈FN

𝑇

𝐶𝑡 ,𝑇,𝐹ℎ
1/2
𝐹



𝒈N − 𝝈𝑘
ℎ𝒏




𝐹
, (Neumann) (3.10d)
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𝜂𝑘cnt,T B
∑︁
𝐹∈FC

𝑇

ℎ
1/2
𝐹




[𝑃𝑛
1,𝛾 (𝒖𝑘

ℎ)
]
R−

− 𝜎𝑘,𝑛
ℎ,dis





𝐹
. (contact) (3.10e)

𝜂𝑘frc,𝑇 B
∑︁
𝐹∈FC

𝑇

ℎ
1/2
𝐹





[𝑷𝒕
1,𝛾 (𝒖𝑘

ℎ)
]
𝑆ℎ (𝒖𝑘

ℎ
)
− 𝝈𝑘,𝒕

ℎ,dis






𝐹

, (friction) (3.10f)

The corresponding global error estimators are defined by

𝜂𝑘• B

[ ∑︁
𝑇∈Tℎ

(
𝜂𝑘•,𝑇

)2
] 1/2

. (3.11)

Theorem 6 (A posteriori error estimate distinguishing the error components). Let 𝒖𝑘
ℎ ∈ 𝑽ℎ be

the solution of the linearized problem (3.6) with 𝑃𝑛,𝑘−1
lin ( · ) and 𝑷𝒕 ,𝑘−1

lin defined by (3.7) and (3.8),
respectively, and let R(𝒖𝑘

ℎ) be the residual of 𝒖𝑘
ℎ defined by (3.1). Then, under Assumption 5, it

holds

|||R(𝒖𝑘
ℎ) |||∗

≤
[ ∑︁
𝑇∈Tℎ

(
(𝜂𝑘osc,T + 𝜂𝑘str,T + 𝜂𝑘lin1,T + 𝜂𝑘Neu,T)2 + (𝜂𝑘cnt,T + 𝜂𝑘frc,T + 𝜂𝑘lin2n,T + 𝜂𝑘lin2t,T)2

)] 1/2

(3.12)

and, as a result,

|||R(𝒖𝑘
ℎ) |||∗ ≤

[
(𝜂𝑘osc + 𝜂𝑘str + +𝜂𝑘lin1 + 𝜂𝑘Neu)2 + (𝜂𝑘cnt + 𝜂𝑘frc + 𝜂𝑘lin2n + 𝜂𝑘lin2t)2

] 1/2
. (3.13)

Proof. Proceeding as in the proof of Theorem 3, we obtain

|||R(𝒖𝑘
ℎ) |||∗

≤
{ ∑︁
𝑇∈Tℎ

[ (
𝜂𝑘osc,𝑇 +



𝝈𝑘
ℎ − 𝝈(𝒖𝑘

ℎ)



𝑇
+ 𝜂𝑘Neu,𝑇

)2+
( ∑︁
𝐹∈FC

𝑇

ℎ
1/2
𝐹




[𝑃𝑛
1,𝛾 (𝒖𝑘

ℎ)
]
R−

− 𝜎𝑘,𝑛
ℎ





𝐹

)2]}1/2

.

Then, decomposing 𝝈𝑘
ℎ into its discretization and linearization part according to (3.9), using

the triangle inequality and the definition of the local estimators (3.10), we get (3.12). Finally,
(3.13) is obtained from (3.12) applying twice the inequality

∑
𝑇∈Tℎ

(∑𝑚
𝑖=1 𝑎𝑖,𝑇

)2 ≤ (∑𝑚
𝑖=1 𝑎𝑖

)2 valid

for all families of nonnegative real numbers (𝑎𝑖,𝑇 )1≤𝑖≤𝑚, 𝑇∈Tℎ with 𝑎𝑖 ≔
(∑

𝑇∈Tℎ 𝑎
2
𝑖,𝑇

)1/2
for all

1 ≤ 𝑖 ≤ 𝑚. □

We close this section by introducing a fully adaptive algorithm for the refinement of an initial
coarse mesh with a stopping criterion that automatically adjusts the number of Newton iterations
at each mesh refinement iteration. With this goal, we fix a user-dependent parameter 𝛾lin ∈ (0, 1)
representing the relative magnitude of the linearization error with respect to the total error and
define the linearization estimators

𝜂𝑘lin,T B 𝜂𝑘lin1,T +
√︃(

𝜂𝑘lin2n,T
)2 + (

𝜂𝑘lin2t,T
)2 for all 𝑇 ∈ Tℎ and 𝜂𝑘lin B

[ ∑︁
𝑇∈Tℎ

(
𝜂𝑘lin,T

)2
] 1/2

,

and, for 𝑇 ∈ Tℎ, the total estimator

𝜂𝑘tot,T B
[
(𝜂𝑘osc,T + 𝜂𝑘str,T + 𝜂𝑘lin1,T + 𝜂𝑘Neu,T)2 + (𝜂𝑘cnt,T + 𝜂𝑘frc,T + 𝜂𝑘lin2n,T + 𝜂𝑘lin2t,T)2

] 1/2
. (3.14)

10



Algorithm 1 Adaptive algorithm

1: choose an initial displacement 𝒖0
ℎ ∈ 𝑽ℎ and fix 𝛾lin ∈ (0, 1)

2: repeat {mesh refinement}
3: set 𝑘 = 0
4: repeat {Newton algorithm}
5: set 𝑘 = 𝑘 + 1
6: setup the operators 𝑃𝑛,𝑘−1

lin, 𝛿 and 𝑃𝒕 ,𝑘−1
lin, 𝛿 and the linear system (3.6)

7: compute 𝒖𝑘
ℎ, 𝝈𝑘

ℎ, and the estimators (3.10)–(3.11)
8: until 𝜂𝑘lin ≤ 𝛾lin

(
𝜂𝑘osc + 𝜂𝑘str + 𝜂𝑘Neu + 𝜂𝑘cnt + 𝜂𝑘frc

)
9: refine the elements of the mesh where 𝜂𝑘tot,T is higher

10: until 𝜂𝑘tot,T is distributed evenly over the mesh

Remark 7 (Local stopping criterion). In the proposed algorithm, the stopping criterion for the
number of Newton iterations is enforced in a global sense by comparing the size of the global
linearization estimator with the sum of the other global estimators. It is also possible to introduce
instead a local stopping criterion that has to be verified on all elements of the mesh:

𝜂𝑘lin,T ≤ 𝛾lin,T(𝜂𝑘osc,T + 𝜂𝑘str,T + 𝜂𝑘Neu,T + 𝜂𝑘cnt,T + 𝜂𝑘frc,T) ∀𝑇 ∈ Tℎ, (3.15)

with 𝛾lin,T ∈ (0, 1) for all 𝑇 ∈ Tℎ. This criterion will be used in Section 6 to prove the local
efficiency of the estimators (3.10).

3.3 Comparison with the energy norm

This subsection is devoted to comparing the dual norm of the residual |||R(𝒖ℎ) |||∗ with the energy
norm of the error ∥𝒖 − 𝒖ℎ∥en defined in a standard way as

∥𝒗∥2
en B 𝑎(𝒗, 𝒗) = (𝝈(𝒗), 𝜺(𝒗)) ∀𝒗 ∈ 𝑯1

D(Ω). (3.16)

In the following theorems, the notation 𝑎 ≲ 𝑏, 𝑎, 𝑏 ∈ R will stand for 𝑎 ≤ 𝐶𝑏 where 𝐶 > 0 is a
constant independent of the mesh size ℎ and of the Nitsche parameter 𝛾0.

Theorem 8 (Control of the energy norm). Assume that the solution 𝒖 of the continuous problem
(2.2) belongs to 𝑯

3
2+𝜈 (Ω) for some 𝜈 > 0, and let 𝒖ℎ ∈ 𝑽ℎ be the solution of the discrete problem

(2.11). Then,

𝛼
1/2 ∥𝒖 − 𝒖ℎ∥en ≲ |||R(𝒖ℎ) |||∗ +

( ∑︁
𝐹∈FC

ℎ

1
ℎ𝐹




𝜎𝑛 (𝒖) −
[
𝑃𝑛

1,𝛾 (𝒖ℎ)
]
R−




2

𝐹

)1/2

+
( ∑︁
𝐹∈FC

ℎ

1
ℎ𝐹





𝝈𝒕 (𝒖) −
[
𝑷𝒕

1,𝛾 (𝒖ℎ)
]
𝑆ℎ (𝒖ℎ )





2

𝐹

)1/2

,

(3.17)

where 𝛼 is the coercitivity constant of the bilinear form 𝑎 (cf. (2.4)) such that 𝛼 ∥𝒗∥2
1,Ω ≤ ∥𝒗∥2

en
for any 𝒗 ∈ 𝑯1

D(Ω).
Proof. Proceeding as in [14, Theorem 7], it is possible to show that

∥𝒖 − 𝒖ℎ∥2
en = ⟨R(𝒖ℎ), 𝒖 − 𝒗ℎ⟩ +

(
𝜎𝑛 (𝒖) −

[
𝑃𝑛

1,𝛾 (𝒖ℎ)
]
R−

, 𝑢𝑛 − 𝑢𝑛ℎ

)
ΓC

+
(
𝝈𝒕 (𝒖) −

[
𝑷𝒕

1,𝛾 (𝒖ℎ)
]
𝑆ℎ (𝒖ℎ )

, 𝒖𝒕 − 𝒖𝒕
ℎ

)
ΓC

C 𝔗1 + 𝔗2 + 𝔗3.
(3.18)
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For the first two terms we use, respectively, the definition (3.4) of the dual norm of the residual
along with the coercivity of 𝑎 and the Cauchy–Schwarz inequality followed by the definition (3.16)
of ∥·∥en to obtain

𝔗1 ≲ 𝛼−1/2 |||R(𝒖ℎ) |||∗ ∥𝒖 − 𝒖ℎ∥en (3.19)

𝔗2 ≲ 𝛼−1/2

( ∑︁
𝐹∈FC

ℎ

1
ℎ𝐹




𝜎𝑛 (𝒖) −
[
𝑃𝑛

1,𝛾 (𝒖ℎ)
]
R−




2

𝐹

)1/2

∥𝒖 − 𝒖ℎ∥en . (3.20)

For the remaining term, we apply Cauchy–Schwarz and trace inequalities to write:

𝔗3 ≲

( ∑︁
𝐹∈FC

ℎ

1
ℎ𝐹





𝝈𝒕 (𝒖) −
[
𝑷𝒕

1,𝛾 (𝒖ℎ)
]
𝑆ℎ (𝒖ℎ )





2

𝐹

)1/2

∥𝒖 − 𝒖ℎ∥1,Ω

≲ 𝛼−1/2

( ∑︁
𝐹∈FC

ℎ

1
ℎ𝐹





𝝈𝒕 (𝒖) −
[
𝑷𝒕

1,𝛾 (𝒖ℎ)
]
𝑆ℎ (𝒖ℎ )





2

𝐹

)1/2

∥𝒖 − 𝒖ℎ∥en .

(3.21)

We conclude by inserting the estimates (3.19), (3.20), and (3.21) into (3.18). □

Theorem 9 (Control of the dual norm of the residual). Assume that the solution 𝒖 of the continuous
problem (2.2) belongs to 𝑯

3
2+𝜈 (Ω) for some 𝜈 > 0, and let 𝒖ℎ ∈ 𝑽ℎ be the solution of the discrete

problem (2.11). Then, it holds

|||R(𝒖ℎ) |||∗ ≤ (𝑑𝜆 + 4𝜇)1/2 ∥𝒖 − 𝒖ℎ∥en +
( ∑︁
𝐹∈FC

ℎ

ℎ𝐹




𝜎𝑛 (𝒖) −
[
𝑃𝑛

1,𝛾 (𝒖ℎ)
]
R−




2

𝐹

)1/2

+
( ∑︁
𝐹∈FC

ℎ

ℎ𝐹





𝝈𝒕 (𝒖) −
[
𝑷𝒕

1,𝛾 (𝒖ℎ)
]
𝑆ℎ (𝒖ℎ )





2

𝐹

)1/2

.

(3.22)

Proof. This result can be proved by using the definition of the residual (3.1), an integration by
parts, the symmetry of the stress tensor, and Cauchy-Schwarz inequalities. Here, we report only the
main steps and refer to [14, Theorem 10] for the remaining details. Expanding 𝑎 and 𝐿 according
to (2.4) into the definition (3.1) of the residual written for 𝒘ℎ = 𝒖ℎ, we get

⟨R(𝒖ℎ), 𝒗⟩ = (𝝈(𝒖 − 𝒖ℎ), 𝜺(𝒗)) −
(
𝜎𝑛 (𝒖) −

[
𝑃𝑛

1,𝛾 (𝒖ℎ)
]
R−

, 𝑣𝑛
)
ΓC

−
(
𝝈𝒕 (𝒖) −

[
𝑷𝒕

1,𝛾 (𝒖ℎ)
]
𝑆ℎ (𝒖ℎ )

, 𝒗𝒕
)
ΓC

≤ ∥𝝈(𝒖 − 𝒖ℎ)∥ ∥∇𝒗∥ +
∑︁
𝐹∈FC

ℎ

ℎ
1/2
𝐹




𝜎𝑛 (𝒖) −
[
𝑃𝑛

1,𝛾 (𝒖ℎ)
]
R−





𝐹

1
ℎ

1/2
𝐹

∥𝒗∥𝐹

+
∑︁
𝐹∈FC

ℎ

ℎ
1/2
𝐹




𝝈𝒕 (𝒖) −
[
𝑃𝑛

1,𝛾 (𝒖ℎ)
]
R−





𝐹

1
ℎ

1/2
𝐹

∥𝒗∥𝐹

≤
[
(𝑑𝜆 + 4𝜇)1/2 ∥𝒖 − 𝒖ℎ∥en +

( ∑︁
𝐹∈FC

ℎ

ℎ𝐹




𝜎𝑛 (𝒖) −
[
𝑃𝑛

1,𝛾 (𝒖ℎ)
]
R−




2

𝐹

)1/2

+
( ∑︁
𝐹∈FC

ℎ

ℎ𝐹





𝝈𝒕 (𝒖) −
[
𝑷𝒕

1,𝛾 (𝒖ℎ)
]
𝑆ℎ (𝒖ℎ )





2

𝐹

)1/2
]
|||𝒗 |||,
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Figure 3: Illustration of a patch 𝜔𝒂 around an inner node 𝒂 ∈ V i
ℎ and around a boundary node

𝒂 ∈ Vb
ℎ .

Here, we have invoked the symmetry of 𝝈(𝒖 − 𝒖ℎ) to replace 𝜺(𝒗) with ∇𝒖 in the first term and
then used Cauchy–Schwarz inequalities in the second step, and recalled the definitions (2.2b) of
𝝈 and (3.2) of ||| · ||| and used a Cauchy–Schwarz inequality on the sum to conclude. We obtain
(3.22) applying the definition of dual norm (3.4). □

Remark 10 (Terms depending on 𝒖). The comparison results (3.17) and (3.22) contain two terms
that depend on the exact solution 𝒖. It should be possible to obtain similar bounds not containing
these terms proceeding like in some recent work [5, 18]. In this paper, the results of Theorems 8
and 9 will be used in Section 5 for defining the two quantities (5.1) and (5.2) used as lower and
upper bounds of the total estimator, respectively.

4 Equilibrated stress reconstruction

This section is devoted to describing the procedure to construct an equilibrated stress reconstruction
satisfying the decomposition Assumption 5. In particular, 𝜎𝑘

ℎ is obtained working on patches of
elements around the mesh vertices using the Arnold–Falk–Winther mixed finite element spaces
[3]. We adapt the approach of [14] to the frictional contact problem modifying the definition of
one of the spaces involved in the stress reconstruction.

First, we define, at the local level for any element 𝑇 ∈ Tℎ, the spaces

𝚺𝑇 B P
𝑝 (𝑇), 𝑼𝑇 B P

𝑝−1(𝑇), 𝚲𝑇 B
{
𝝁 ∈ P𝑝−1(𝑇) : 𝝁 = −𝝁𝑇

}
.

The corresponding global spaces are

𝚺ℎ B {𝝉ℎ ∈ H(div,Ω) : 𝝉ℎ |𝑇 ∈ 𝚺𝑇 for any 𝑇 ∈ Tℎ} ,
𝑼ℎ B

{
𝒗ℎ ∈ 𝑳2(Ω) : 𝒗ℎ |𝑇 ∈ 𝑼𝑇 for any 𝑇 ∈ Tℎ

}
,

𝚲ℎ B
{
𝝁ℎ ∈ L2(Ω) : 𝝁ℎ |𝑇 ∈ 𝚲𝑇 for any 𝑇 ∈ Tℎ

}
.

Then, for any vertex 𝒂 ∈ Vℎ of the mesh, we consider the patch 𝜔𝒂, see Figure 3, and we denote
by 𝒏𝜔𝒂 the outward normal unit vector on its boundary, with 𝜓𝒂 the hat function associated with 𝒂
and 𝚺ℎ (𝜔𝒂), 𝑼ℎ (𝜔𝒂), and 𝚲ℎ (𝜔𝒂) the restrictions of the spaces 𝚺ℎ, 𝑼ℎ and 𝚲ℎ to the patch 𝜔𝒂.
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At the patch level, we set

𝚺𝒂
ℎ B

{{
𝝉ℎ ∈ 𝚺ℎ (𝜔𝒂) : 𝝉ℎ𝒏𝜔𝒂 = 0 on 𝜕𝜔𝒂 \ ΓD

}
if 𝒂 ∈ Vb

ℎ ,{
𝝉ℎ ∈ 𝚺ℎ (𝜔𝒂) : 𝝉ℎ𝒏𝜔𝒂 = 0 on 𝜕𝜔𝒂

}
otherwise,

𝚺𝒂
ℎ,N,C,• B


{
𝝉ℎ ∈ 𝚺ℎ (𝜔𝒂) : 𝝉ℎ𝒏𝜔𝒂 = 0 on 𝜕𝜔𝒂 \ 𝜕Ω,
𝝉ℎ𝒏𝜔𝒂 = 𝒈• on 𝜕𝜔𝒂 ∩ ΓN, and

𝝉ℎ𝒏𝜔𝒂 = Π𝚺ℎ𝒏𝜔𝒂

(
𝜓𝒂𝑷•(𝒖𝑘

ℎ)
)

on 𝜕𝜔𝒂 ∩ ΓC
} if 𝒂 ∈ Vb

ℎ ,

𝚺𝒂
ℎ otherwise

(4.1)

𝑼𝒂
ℎ B

{
𝑼ℎ (𝜔𝒂) if 𝒂 ∈ VD

ℎ ,{
𝒗ℎ ∈ 𝑼ℎ (𝜔𝒂) : (𝒗ℎ, 𝒛)𝜔𝒂 = 0 for any 𝒛 ∈ 𝑹𝑴𝑑

}
otherwise,

𝚲𝒂
ℎ B 𝚲ℎ (𝜔𝒂),

where • ∈ {dis, lin} and

𝒈dis = Π𝚺ℎ𝒏𝜔𝒂

(
𝜓𝒂𝒈N

)
and 𝒈lin = 0,

𝑷dis(𝒖𝑘
ℎ) B

[
𝑃𝑛

1,𝛾 (𝒖𝑘
ℎ)

]
R−

𝒏 +
[
𝑷𝒕

1,𝛾 (𝒖𝑘
ℎ)

]
𝑆ℎ (𝒖𝑘

ℎ
)
, (4.2)

𝑷lin(𝒖𝑘
ℎ) B

(
𝑃𝑛,𝑘−1

lin (𝒖𝑘
ℎ) −

[
𝑃𝑛

1,𝛾 (𝒖𝑘
ℎ)

]
R−

)
𝒏 + 𝑷𝒕 ,𝑘−1

lin (𝒖𝑘
ℎ) −

[
𝑷𝒕

1,𝛾 (𝒖𝑘
ℎ)

]
𝑆ℎ (𝒖𝑘

ℎ
)
, (4.3)

and 𝑹𝑴𝑑 is the space of rigid-body motions, i.e., 𝑹𝑴2 B
{
𝒃 + 𝑐(𝑥2,−𝑥1)⊤ : 𝒃 ∈ R2, 𝑐 ∈ R}

and 𝑹𝑴3 B
{
𝒃 + 𝒄 × 𝒙 : 𝒃, 𝒄 ∈ R3}. Additionally, let 𝒚𝒂,𝑘 ∈ 𝑹𝑴𝑑 be defined by

(𝒚𝒂,𝑘 , 𝒛)𝜔𝒂 = (−𝜓𝒂 𝒇 + 𝝈(𝒖𝑘
ℎ)∇𝜓𝒂, 𝒛)𝜔𝒂 −

(
Π𝚺ℎ𝒏𝜔𝒂

(
𝜓𝒂𝒈N

)
, 𝒛

)
𝜕𝜔𝒂∩ΓN

−
(
Π𝚺ℎ𝒏𝜔𝒂

(
𝜓𝒂

( [
𝑃𝑛

1,𝛾 (𝒖𝑘
ℎ)

]
R−

𝒏 +
[
𝑷𝒕

1,𝛾 (𝒖𝑘
ℎ)

]
𝑆ℎ (𝒖𝑘

ℎ
)

))
, 𝒛

)
𝜕𝜔𝒂∩ΓC

,

for all 𝒛 ∈ 𝑹𝑴𝑑 if 𝒂 ∈ Vb
ℎ , and 𝒚𝒂,𝑘 = 0 if 𝒂 ∈ V i

ℎ.
Remark 11 (Friction contact condition). Comparing this description with that provided in [14], we
have modified the terms 𝑷dis(𝒖𝑘

ℎ) and 𝑷lin(𝒖𝑘
ℎ) defining the local spaces 𝚺𝒂

ℎ,N,C,dis and 𝚺𝒂
ℎ,N,C,lin,

respectively, to account for the friction contact conditions. These modifications will enable us to
recover the properties of the stress reconstruction outlined in point 4. of Lemma 13, as will be
discussed later. Additionally, they will facilitate the rewriting of the contact and friction estimator
as (4.4c) and (4.4d), respectively.

Construction 12 (Equilibrated stress reconstruction distinguishing the error components). Let, for
• ∈ {dis, lin} and any vertex 𝒂 ∈ Vℎ, (𝝈𝒂,𝑘

ℎ,• , 𝒓
𝒂,𝑘
ℎ,• , 𝝀

𝒂,𝑘
ℎ,•) ∈ 𝚺𝒂,𝑘

ℎ,N,C,• ×𝑼𝒂
ℎ × 𝚲𝒂

ℎ be the solution to
the following problem:

(𝝈𝒂,𝑘
ℎ,• , 𝝉ℎ)𝜔𝒂 + (𝒓𝒂,𝑘ℎ,• , div 𝝉ℎ)𝜔𝒂 + (𝝀𝒂,𝑘ℎ,• , 𝝉ℎ)𝜔𝒂 = (𝝉𝒂,𝑘ℎ,• , 𝝉ℎ)𝜔𝒂 ∀𝝉ℎ ∈ 𝚺𝒂

ℎ,

(div𝝈𝒂,𝑘
ℎ,• , 𝒗ℎ)𝜔𝒂 = (𝒗𝒂,𝑘ℎ,• , 𝒗ℎ)𝜔𝒂 ∀𝒗ℎ ∈ 𝑼𝒂

ℎ,

(𝝈𝒂,𝑘
ℎ,• , 𝝁ℎ)𝜔𝒂 = 0 ∀𝝁ℎ ∈ 𝚲𝒂

ℎ,

where

𝝉𝒂,𝑘ℎ,• B

{
𝜓𝒂𝝈(𝒖𝑘

ℎ) if • = dis,
0 if • = lin,

𝒗𝒂,𝑘ℎ,• B

{
−𝜓𝒂 𝒇 + 𝝈(𝒖𝑘

ℎ)∇𝜓𝒂 − 𝒚𝒂,𝑘 if • = dis,
𝒚𝒂,𝑘 if • = lin.

Extending 𝝈𝒂,𝑘
ℎ,• by zero outside the patch 𝜔𝒂, we set 𝝈𝑘

ℎ,• B
∑

𝒂∈Vℎ
𝝈𝒂,𝑘

ℎ,• , and we define 𝝈𝑘
ℎ B

𝝈𝑘
ℎ,dis + 𝝈𝑘

ℎ,lin.
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By definition, 𝒚𝒂,𝑘 ensures that the forcing terms 𝒗𝒂,𝑘ℎ,• satisfy the following compatibility
conditions for 𝒂 ∈ Vb

ℎ \ VD
ℎ :

(𝒗𝒂,𝑘
ℎ,dis, 𝒛)𝜔𝒂 =

(
Π𝚺ℎ𝒏𝜔𝒂

(
𝜓𝒂𝒈N

)
, 𝒛

)
𝜕𝜔𝒂∩ΓN

+
(
Π𝚺ℎ𝒏𝜔𝒂

𝜓𝒂𝑷dis(𝒖𝑘
ℎ), 𝒛

)
𝜕𝜔𝒂∩ΓC

,

(𝒗𝒂,𝑘
ℎ,lin, 𝒛)𝜔𝒂 =

(
Π𝚺ℎ𝒏𝜔𝒂

𝜓𝒂𝑷lin(𝒖𝑘
ℎ), 𝒛

)
𝜕𝜔𝒂∩ΓC

for any 𝒛 ∈ 𝑹𝑴𝑑 , recalling that 𝑷dis(𝒖𝑘
ℎ) and 𝑷lin(𝒖𝑘

ℎ) are defined by (4.2) and (4.3), respectively.
The obtained tensor 𝝈𝑘

ℎ is an equilibrated stress reconstruction in the sense of Definition 2 as stated
by the following lemma.

Lemma 13 (Properties of 𝝈𝑘
ℎ). Let 𝝈𝑘

ℎ be defined by Construction 12. Then

1. 𝝈𝑘
ℎ,dis,𝝈

𝑘
ℎ,lin,𝝈

𝑘
ℎ ∈ H(div,Ω);

2. For every 𝑇 ∈ Tℎ and every 𝒗𝑇 ∈ P
𝑝−1(𝑇), (div𝝈𝑘

ℎ + 𝒇 , 𝒗𝑇 )𝑇 = 0;

3. For every 𝐹 ∈ F N
ℎ and every 𝒗𝐹 ∈ P

𝑝 (𝐹), (𝝈𝑘
ℎ𝒏, 𝒗𝐹)𝐹 = (𝒈N, 𝒗𝐹)𝐹;

4. For every 𝐹 ∈ F C
ℎ and every 𝒗𝐹 ∈ P

𝑝 (𝐹),

(𝜎𝑘,𝑛
ℎ,dis, 𝑣

𝑛
𝐹)𝐹 =

( [
𝑃𝑛

1,𝛾 (𝒖𝑘
ℎ)

]
R−

, 𝑣𝑛𝐹

)
𝐹
, (𝝈𝑘,𝒕

ℎ,dis, 𝒗
𝒕
𝐹)𝐹 =

( [
𝑷𝒕

1,𝛾 (𝒖𝑘
ℎ)

]
𝑆ℎ (𝒖𝑘

ℎ
)
, 𝒗𝒕𝐹

)
𝐹

,

(𝜎𝑘,𝑛
ℎ,lin, 𝑣

𝑛
𝐹)𝐹 =

(
𝑃𝑛,𝑘−1

lin (𝒖𝑘
ℎ) −

[
𝑃𝑛

1,𝛾 (𝒖𝑘
ℎ)

]
R
− , 𝑣

𝑛
𝐹

)
𝐹
,

and
(𝝈𝑘,𝒕

ℎ,lin, 𝒗
𝒕
𝐹)𝐹 =

(
𝑃𝑘−1,𝒕

lin (𝒖𝑘
ℎ) −

[
𝑷𝒕

1,𝛾 (𝒖𝑘
ℎ)

]
𝑆ℎ (𝒖𝑘

ℎ
)
, 𝒗𝒕𝐹

)
𝐹

.

Proof. For the proof of 1.–3., the arguments of [14, Lemma 16] can be easily adapted here. We
focus on the proof of 4. Let 𝐹 ∈ F C

ℎ and let 𝒗𝐹 ∈ P 𝑝 (𝐹) = (𝚺ℎ𝒏) |𝐹 . Then, applying the definition
(4.1) of 𝚺𝒂

ℎ,N,C,•, we get, for • ∈ {dis, lin},

(𝝈𝑘
ℎ,•𝒏, 𝒗𝐹)𝐹 =

∑︁
𝒂∈V𝐹

(𝝈𝒂,𝑘
ℎ,•𝒏, 𝒗𝐹)𝐹 =

∑︁
𝒂∈V𝐹

(
𝜓𝒂𝑷•(𝒖𝑘

ℎ), 𝒗𝐹
)
𝐹
=

(
𝑷•(𝒖𝑘

ℎ), 𝒗𝐹
)
𝐹
,

where we have used the fact that
∑

𝒂 ∈ V𝐹𝜓𝒂 (𝒙) = 1 for any 𝒙 ∈ 𝐹 to conclude. Point 4.
follows using the decomposition into normal and tangential components and observing that, by the
definitions (4.2) of 𝑷dis and (4.3) of 𝑷lin,

𝑃𝑛
dis(𝒖𝑘

ℎ) =
[
𝑃𝑛

1,𝛾 (𝒖𝑘
ℎ)

]
R−

, 𝑷𝒕
dis(𝒖𝑘

ℎ) =
[
𝑷𝒕

1,𝛾 (𝒖𝑘
ℎ)

]
𝑆ℎ (𝒖𝑘

ℎ
)
,

𝑃𝑛
lin(𝒖𝑘

ℎ) = 𝑃𝑛,𝑘−1
lin (𝒖𝑘

ℎ) −
[
𝑃𝑛

1,𝛾 (𝒖𝑘
ℎ)

]
R−

, 𝑷𝒕
lin(𝒖𝑘

ℎ) = 𝑷𝒕 ,𝑘−1
lin (𝒖𝑘

ℎ) −
[
𝑷𝒕

1,𝛾 (𝒖𝑘
ℎ)

]
𝑆ℎ (𝒖𝑘

ℎ
)
. □

Remark 14 (Alternative expressions of local estimators). Thanks to Lemma 13, we can rewrite the
oscillation (3.10a), Neumann (3.10d), contact (3.10e), and friction (3.10f) estimators as follows:

𝜂𝑘osc,T =
ℎ𝑇
𝜋




 𝒇 −𝚷𝑝−1
𝑇 𝒇





𝑇
, (4.4a)

𝜂𝑘Neu,T =
∑︁
𝐹∈FC

𝑇

𝐶𝑡 ,𝑇,𝐹 ℎ
1/2
𝐹



𝒈N −𝚷𝑝
𝐹 𝒈N




𝐹
, (4.4b)
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ΓD ΓC

ΓN,1

ΓN,2

𝒈N𝒇

Figure 4: Rectangular domain of the numerical cases of Section 5.1 and 5.2 with representation of
internal and lateral forces, and division of the domain’s boundary. In particular, a uniform load 𝒈N
is enforced on ΓN,1, while homogeneous Neumann conditions are enforced on ΓN,2. The portion
of the boundary ΓD is fixed, while contact is possible on ΓC.

𝜂𝑘cnt,T =
∑︁
𝐹∈FC

𝑇

ℎ
1/2
𝐹




[𝑃𝑛
1,𝛾 (𝒖𝑘

ℎ)
]
R−

− Π𝑝
𝐹

[
𝑃𝑛

1,𝛾 (𝒖𝑘
ℎ)

]
R−





𝐹
, (4.4c)

𝜂𝑘frc,T =
∑︁
𝐹∈FC

𝑇

ℎ
1/2
𝐹





[𝑷𝒕
1,𝛾 (𝒖𝑘

ℎ)
]
𝑆ℎ (𝒖𝑘

ℎ
)
−𝚷𝑝

𝐹

[
𝑷𝒕

1,𝛾 (𝒖𝑘
ℎ)

]
𝑆ℎ (𝒖𝑘

ℎ
)






𝐹

, (4.4d)

where 𝚷𝑝−1
𝑇 , 𝚷𝑝

𝐹 , and Π𝑝
𝐹 denote the 𝐿2-orthogonal projectors on the polynomial spaces P𝑝−1(𝑇),

P
𝑝 (𝐹), and P 𝑝 (𝐹), respectively. Here, P𝑝 (𝐹) is either [P 𝑝 (𝐹)]𝑑 or [P 𝑝 (𝐹)]𝑑−1 depending on

the context.

5 Numerical results

In this section, we present a panel of numerical results obtained applying Algorithm 1, using the
open source finite element library FreeFem++ (see [20] and visit https://freefem.org/ for
details). With this flexible tool, we are able to implement the discrete problem (2.11) and com-
pute the estimators (3.10)–(3.11) in a manner closely resembling their mathematical description.
Specifically, the command trunc has been used to implement the local problems of Construc-
tion 12 in combination with the definition of hat function 𝜓𝒂. This command is also used to obtain
sequences of uniformly refined meshes. Adaptive mesh refinement is, on the other hand, obtained
using the splitmesh, ensuring that we automatically generate a conformal mesh satisfying the
regularity requirements.

5.1 Tresca friction

Let Ω = (−1, 1) × (0, 1) be a rectangular domain with the configuration represented in Figure 4,
characterized by the following parameters: Young modulus 𝐸 = 1 and Poisson ratio 𝜈 = 0.3
(resulting in the Lamé coefficients 𝜇 ≈ 0.385 and 𝜆 ≈ 0.577), a weight force 𝒇 = (0,−0.02), a
horizontal surface loading 𝒈N = (−0.028, 0) on Γ𝑁,1 and 𝒈N = 0 on Γ𝑁,2. The Nitsche parameter
is set to 𝛾0 = 10𝐸 , and Tresca friction conditions are enforced on the contact boundary portion ΓC,
i.e.,

[
𝑷𝒕

1,𝛾 (𝒖ℎ)
]
𝑆ℎ (𝒖ℎ )

=


𝑷𝒕

1,𝛾 (𝒖ℎ) if
��𝑷𝒕

1,𝛾 (𝒖ℎ)
�� ≤ 𝑠,

𝑠
𝑷𝒕

1,𝛾 (𝒖ℎ)��𝑷𝒕
1,𝛾 (𝒖ℎ)

�� otherwise,
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IsoValue
-0.020546
-0.0187292
-0.0175181
-0.0163069
-0.0150957
-0.0138846
-0.0126734
-0.0114622
-0.010251
-0.00903987
-0.00782869
-0.00661752
-0.00540635
-0.00419518
-0.00298401
-0.00177284
-0.000561667
0.000649504
0.00186068
0.0048886

(a) Vertical displacement in the deformed do-
main (amplification factor = 5).

IsoValue
-0.0493296
-0.0456299
-0.0431634
-0.0406969
-0.0382304
-0.035764
-0.0332975
-0.030831
-0.0283645
-0.025898
-0.0234316
-0.0209651
-0.0184986
-0.0160321
-0.0135656
-0.0110992
-0.00863268
-0.0061662
-0.00369972
0.00246648

(b) Horizontal displacement in the deformed do-
main (amplification factor = 5).

Figure 5: Vertical (left) and horizontal displacement (right) in the deformed configuration for the
Tresca test case of Section 5.1.

with constant friction function defined as 𝑠 = 5 · 10−3 on all ΓC. For this problem, a closed-
form solution is not available. Therefore, we adopt as reference solution the solution 𝒖̄ℎ of the
discrete problem (2.11) obtained using P2 Lagrange finite elements on a fine mesh with mesh size
ℎ ≈ 8.34 · 10−3. The approximate solution 𝒖ℎ is obtained using P1 Lagrange finite elements, and
we employ the Newton method outlined in Subsection 3.2 for its computation. We remark that,
although P1 finite elements are known to lock in the quasi-incompressible limit, it is admissible
for the set of parameters considered here and it aligns with the use of the lowest-order mixed finite
elements available in FreeFem++ for the computation of the equilibrated stress reconstructions
described in Section 4. Figure 5b shows the vertical and horizontal displacement in the deformed
configuration with an amplification factor equal to 5. In this configuration, the domain is in contact
with the rigid foundation 𝑦 = 0 in a non-empty interval 𝐼𝐶 which is approximately (0.035, 0.844).

In our adaptive approach, we base the refinement of the mesh on the distribution of the total
local estimator 𝜂tot,T (3.14), as stated by Algorithm 1. Here, for the sake of simplicity, we omit
the superscript 𝑘 . Starting with the initial coarse mesh in Figure 6a, after 4, 8, and 10 steps of
adaptive spatial remeshing, we get the meshes shown in Figures 6b, 6c, and 6d, respectively. In
this example, at least 6.2% of the elements are refined at each refinement iteration. Figure 6d
shows that most of the refinement is along the contact boundary part ΓC and at the endpoints
of ΓD, where two singularities arise due to the homogenous Dirichlet boundary conditions. In
Figure 7a, we compare uniform and adaptive convergence focusing on the 𝐻1-norm ∥𝒖̄ − 𝒖ℎ∥1,Ω
and energy norm ∥𝒖̄ − 𝒖ℎ∥en defined by (3.16). As expected, the rate of convergence with respect
to the number of degrees of freedom dim(𝑽h) is better using the adaptive approach. Specifically,
the asymptotic rates of convergence for the 𝐻1-norm and energy norms are approximately 0.328
and 0.282 in the uniform case, and 0.450 and 0.463 in the adaptive one. In Figure 7b, we visualize
the value of the global total estimator constructed from the definition of the local total estimator
(3.14) as

𝜂tot B

( ∑︁
𝑇∈Tℎ

(
𝜂tot,𝑇

)2
)1/2

,

and we compare it with the following quantities defined from Theorem 8 and Theorem 9, respec-
tively:

L(𝒖ℎ) B 𝜇
1/2 ∥𝒖̄ℎ − 𝒖ℎ∥en (5.1)
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(a) Initial mesh (b) 4rd mesh refinement iteration

(c) 8th mesh refinement iteration (d) 10th mesh refinement iteration

Figure 6: Initial mesh and adaptively refined mesh after 4, 8, and 10 remeshing steps, respectively,
for the Tresca test case of Section 5.1.

and

U(𝒖ℎ) B(𝑑𝜆 + 4𝜇)1/2 ∥𝒖̄ℎ − 𝒖ℎ∥en +
©­­«

∑︁
𝐹∈FC

ℎ

ℎ𝐹




𝜎𝑛 (𝒖̄ℎ) −
[
𝑃𝑛

1,𝛾 (𝒖ℎ)
]
R−




2

𝐹

ª®®¬
1/2

+
©­­«

∑︁
𝐹∈FC

ℎ

ℎ𝐹





𝝈𝒕 (𝒖̄ℎ) −
[
𝑷𝒕

1,𝛾 (𝒖ℎ)
]
𝑆ℎ (𝒖ℎ )





2

𝐹

ª®®¬
1/2

.

(5.2)

The corresponding effectivity indices shown by Figure 7c are defined in the usual way:

𝐼eff,low B
𝜂tot

L(𝒖ℎ) =
𝜂tot

𝜇1/2 ∥𝒖̄ℎ − 𝒖ℎ∥en
and 𝐼eff,up B

𝜂tot
U(𝒖ℎ) . (5.3)

Notice that, for both the uniform and adaptive approaches, at the end of each mesh refinement
iteration we get L(𝒖ℎ) < 𝜂tot < U(𝒖ℎ) or, equivalently 𝐼eff,low > 1 and 𝐼eff,up < 1, validating
the results (3.17) and (3.22). Figure 8 displays the evolution of the distribution of the local total
estimator when refining the mesh with the uniform approach (left) and with the adaptive one
(right). In particular, with the adaptive approach, the interval containing all the local estimators
{𝜂tot,T}𝑇∈Tℎ progressively narrows with each refinement step, and the maximum value decreases
significantly faster than with the uniform approach. Consequently, the distribution of the values of
𝜂tot,T becomes more uniform in the adaptive case.

Finally, Table 3 shows the number of Newton iterations (3.6) required to satisfy the stopping
criterion of Line 8 of the fully adaptive Algorithm 1 with 𝛾lin = 0.01. Figure 9a illustrates the
evolution of the global estimators 𝜂tot, 𝜂str, 𝜂cnt and 𝜂frc as functions of the number of degrees of
freedom. Additionally, the same estimators are represented as functions of the number of Newton
iterations by Figure 9b and 9c for the 2nd and 10th adaptively refined meshes, respectively.
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102 103

10−2.6

10−2.4

10−2.2

10−2

dim(𝑽ℎ)

∥𝒖̄ℎ − 𝒖ℎ∥1,Ω - un.
∥𝒖̄ℎ − 𝒖ℎ∥1,Ω - ad.
∥𝒖̄ℎ − 𝒖ℎ∥en - un.
∥𝒖̄ℎ − 𝒖ℎ∥en - ad.

(a) 𝐻1-norm ∥𝒖̄ℎ − 𝒖ℎ∥1,Ω and energy norm
∥𝒖̄ℎ − 𝒖ℎ∥en.

102 103

10−2.5

10−2

dim(𝑽ℎ)

L(𝒖ℎ) - un.
L(𝒖ℎ) - un.
𝜂tot - un.
𝜂tot - ad.
U(𝒖ℎ) - un.
U(𝒖ℎ) - ad.

(b) Global total estimator 𝜂tot, lower bound L(𝒖ℎ),
and upper bound U(𝒖ℎ).

102 103

0.5

1

1.5

2

2.5

dim(𝑽ℎ)

𝐼eff,low - un.
𝐼eff,low - ad.
𝐼eff,up - un.
𝐼eff,up - ad.

(c) Effectivity indices of the lower bound 𝐼eff,low and
the upper bound 𝐼eff,up.

Figure 7: Comparison between uniform and adaptive refinement (circles and triangles, respectively)
for the Tresca test case of Section 5.1.
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Figure 8: Distribution of the local total estimator 𝜂tot,T for each spatial step with uniform (left) and
adaptive (right) mesh refinement for the Tresca test case of Section 5.1.
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Initial 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

𝑁lin 3 3 3 3 4 4 4 5 5 5 5

Table 3: Number of Newton iterations at each refinement step of Algorithm 1 for the Tresca test
case of Section 5.1.

102 103

10−4

10−3

10−2

dim(𝑽ℎ)

(a) Global estimators

2 4 6

10−4

10−3

10−2

Newton iterations

(b) 2nd adaptively refined mesh

2 4 6 8

10−4

10−3

10−2

Newton iterations

(c) 10th adaptively refined mesh

Figure 9: Evolution of the global estimators 𝜂tot, 𝜂str, 𝜂cnt and 𝜂frc using Algorithm 1 with respect
to the number of degrees of freedom (top), and with respect to the number of Newton iterations for
the 2nd and 10th adaptively refined mesh for the Tresca test case of Section 5.1. The circle indicates
the Newton iteration at which the convergence criterion has been reached.

5.2 Coulomb friction

In this section, we consider again the configuration depicted in Figure 4, using the same parameters
as in the previous numerical example but, this time, Coulomb friction conditions are enforced on
ΓC:
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0.0 0.2 0.4 0.6 0.8 1.0

0

0.5

1

1.5

2

2.5

3

3.5
·10−3

Γ𝐶 - reference conf.
Γ𝐶 - deformed conf. Tresca
Γ𝐶 - deformed conf. Coulomb

(a) Displacement on ΓC in the deformed configura-
tion with Tresca and Coulomb friction. (b) Adaptevily refined mesh after 10 remeshing steps.

Figure 10: Contact region and adaptively refined mesh for the Coulomb test case of Section 5.2.

[
𝑷𝒕

1,𝛾 (𝒖ℎ)
]
𝑆ℎ (𝒖ℎ )

=



0 if 𝑃𝑛
1,𝛾 (𝒖ℎ) > 0,

𝑷𝒕
1,𝛾 (𝒖ℎ) if

��𝑷𝒕
1,𝛾 (𝒖ℎ)

�� ≤ −𝜇Coul 𝑃
𝑛
1,𝛾 (𝒖ℎ),

−𝜇Coul 𝑃
𝑛
1,𝛾 (𝒖ℎ)

𝑷𝒕
1,𝛾 (𝒖ℎ)��𝑷𝒕
1,𝛾 (𝒖ℎ)

�� otherwise,

(5.4)

with the friction parameter 𝜇Coul = 0.5. In Figure 10b, we compare the profiles of the contact
boundary ΓC in the deformed configuration (light blue) with the one in the reference configuration
(black) and with the one in the deformed configuration with the Tresca boundary conditions with
𝑠 = 5 · 10−3 as in the previous example (blue). With the selected choice of friction parameters,
the opening is more significant in the Coulomb friction case. Starting from the coarse mesh
of Figure 6a, we apply the same adaptive approach as in the previous example, and, after 10
remeshing steps, we obtain the mesh of Figure 10b. Once again, the refinement concentrates near
the endpoints of ΓD and on the contact boundary ΓC, particularly along the actual contact interval
𝐼𝐶 ≈ (0.035, 0.802).

We then compare the results obtained with uniform and adaptive approaches: Figure 11
showcases the convergence of the 𝐻1-norm ∥𝒖̄ − 𝒖ℎ∥1,Ω and energy norm ∥𝒖̄ − 𝒖ℎ∥en, along with
the comparison of the global total estimator 𝜂tot with the bounds L(𝒖ℎ) andU(𝒖ℎ) defined by (5.1)
and (5.2), as well as the corresponding effectivity indices (5.3). Additionally, Figure 12 represents
the distribution of the total local estimators {𝜂tot,𝑇 }𝑇∈Tℎ . Notably, the results mirror those observed
in the previous example. Specifically, in this case the asymptotic rates of convergence of 𝐻1-norm
and energy norm are approximately 0.317 and 0.277 for the uniform case, 0.496 and 0.513 for the
adaptive one.

5.3 A test case from literature

We conclude this section by considering the setting of the numerical test investigated in [21]. We
consider an elastic object represented by the square domain Ω = (0, 1)2, with Young modulus
𝐸 = 106 and Poisson ratio 𝜈 = 0.3. This domain is subject to a vertical force 𝒇 = (0,−76518), it is
clamped on ΓD = {0} × (0, 1), and no force is applied on ΓN = (0, 1) × {0} ∩ {1}. On the contact
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102 103

10−2.6

10−2.4

10−2.2

10−2

dim(𝑽ℎ)

∥𝒖̄ℎ − 𝒖ℎ∥1,Ω - un.
∥𝒖̄ℎ − 𝒖ℎ∥1,Ω - ad.
∥𝒖̄ℎ − 𝒖ℎ∥en - un.
∥𝒖̄ℎ − 𝒖ℎ∥en - ad.

(a) 𝐻1-norm ∥𝒖̄ − 𝒖ℎ∥1,Ω and energy norm
∥𝒖̄ − 𝒖ℎ∥en.

102 103

10−2.5

10−2

dim(𝑽ℎ)

L(𝒖ℎ) - un.
L(𝒖ℎ) - un.
𝜂tot - un.
𝜂tot - ad.
U(𝒖ℎ) - un.
U(𝒖ℎ) - ad.

(b) Global total estimator 𝜂tot, lower bound L(𝒖ℎ),
and upper bound U(𝒖ℎ).

102 103
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𝐼eff,low - un.
𝐼eff,low - ad.
𝐼eff,up - un.
𝐼eff,up - ad.

(c) Effectivity indices of the lower bound 𝐼eff,low and
the upper bound 𝐼eff,up.

Figure 11: Comparison between uniform and adaptive refinement (circles and triangles, respec-
tively) for the Coulomb test case of Section 5.2.
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Figure 12: Distribution of the local total estimator 𝜂tot,T for each spatial step with uniform (left)
and adaptive (right) refinement approach for the Coulomb test case of Section 5.2.

boundary part ΓC = {1}× (0, 1), Coulomb boundary conditions (5.4) are enforced with the friction
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ΓD ΓC

ΓN

𝒇

(a) Configuration schematic representation.

IsoValue
-0.0579201
-0.0517149
-0.0475781
-0.0434414
-0.0393046
-0.0351678
-0.031031
-0.0268942
-0.0227574
-0.0186206
-0.0144838
-0.010347
-0.00621026
-0.00207347
0.00206332
0.00620011
0.0103369
0.0144737
0.0186105
0.0289524

(b) Horizontal displacement in the deformed config-
uration.

Figure 13: Square domain for the test case of Section 5.3 (configuration from [21]) with repre-
sentation of internal forces and division of the domain’s boundary. In particular, homogeneous
Neumann conditions are enforced on ΓN. The portion of the boundary ΓD is fixed, while contact
is possible on ΓC.

(a) Initial mesh (b) 5th mesh refinement iteration (c) 9th mesh refinement iteration

Figure 14: Initial mesh and adaptively refined mesh after 5, and 9 remeshing steps, respectively,
for the test case of Section 5.3.

parameter 𝜇Coul = 0.2. Additionally, the Nitsche parameter is set to 𝛾0 = 𝐸 as in [7]. Figure 13
shows this setting (left) together with the horizontal displacement in the deformed configuration
(right). For this configuration, as before, the reference solution 𝒖̄ℎ is computed solving the discrete
problem (2.11) using P2 Lagrange finite elements on a fine mesh with mesh size ℎ ≈ 8.34 · 10−3,
while the approximate solution 𝒖ℎ is obtained using P1 Lagrange finite elements and the adaptive
algorithm described in Subsection 3.2. Also in this case, on the contact boundary ΓC we observe
both slip and separation.

We start from the mesh depicted in Figure 14a and refine at each spatial iteration at least 6.2%
of the elements. After 5 and 9 steps, respectively, we obtain the meshes of Figures 14b and 14c.
Notice that the refinement is concentrated around the endpoints of ΓD and the actual contact interval
𝐼C ⊂ ΓC. Additionally, Figure 15a shows the evolution of the 𝐻1-norm ∥𝒖̄ − 𝒖ℎ∥1,Ω and energy
norm ∥𝒖̄ − 𝒖ℎ∥en, which asymptotic rates are approximatively 0.404 and 0.353 in the uniform case,
and 0.516 and 0.522 in the adaptive one. The total estimators 𝜂tot, the lower bound L(𝒖ℎ), and
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102.2 102.4 102.6 102.8 103 103.2 103.4

10−2.2

10−2

10−1.8

10−1.6

dim(𝑽ℎ)

∥𝒖̄ℎ − 𝒖ℎ∥1,Ω - un.
∥𝒖̄ℎ − 𝒖ℎ∥1,Ω - ad.
∥𝒖̄ℎ − 𝒖ℎ∥en/

√
𝐸 - un.

∥𝒖̄ℎ − 𝒖ℎ∥en/
√
𝐸 - ad.

(a) 𝐻1-norm ∥𝒖̄ − 𝒖ℎ∥1,Ω and energy norm
∥𝒖̄ − 𝒖ℎ∥en /

√
𝐸 .

102.2 102.4 102.6 102.8 103 103.2 103.4

10−2.5

10−2

10−1.5

dim(𝑽ℎ)

L(𝒖ℎ)/𝐸 - un.
L(𝒖ℎ)/𝐸 - un.
𝜂tot/𝐸 - un.
𝜂tot/𝐸 - ad.
U(𝒖ℎ)/𝐸 - un.
U(𝒖ℎ)/𝐸 - ad.

(b) Global total estimator 𝜂tot, lower bound L(𝒖ℎ),
and upper bound U(𝒖ℎ), divided by 𝐸 .

102.2 102.4 102.6 102.8 103 103.2 103.4

1

1.5

2

2.5

dim(𝑽ℎ)

𝐼eff,low - un.
𝐼eff,low - ad.
𝐼eff,up - un.
𝐼eff,up - ad.

(c) Effectivity indices of the lower bound 𝐼eff,low
and the upper bound 𝐼eff,up.

Figure 15: Comparison between uniform and adaptive refinement (circles and triangles, respec-
tively) for the test case of Section 5.3.

the upper bound U(𝒖ℎ) are displayed in Figure 15b, and the corresponding effectivity indices in
Figure 15c. Results similar to the ones of Figure 8 can be obtained for the distribution of the local
total estimators.

6 Efficiency of the estimators

In this section, we prove the efficiency of the estimators introduced in Section 3.2 using the stress
reconstruction 𝝈ℎ described in Section 4. As before, we will use the notation 𝑎 ≲ 𝑏, 𝑎, 𝑏 ∈ Rwhen
𝑎 ≤ 𝐶𝑏 where 𝐶 > 0 is a constant independent of the mesh size ℎ and of the Nitsche parameter
𝛾0. We start presenting the results of local and global efficiency, and then we explain the main idea
of their proofs.

To show local efficiency, we work on local patches around elements of the mesh [26]. For any
mesh element 𝑇 ∈ Tℎ, we introduce the patch 𝜔̃𝑇 defined as the union of all elements sharing at
least one vertex with 𝑇 and denote by T𝑇 the corresponding set of elements. Then, we define the
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local residual operator RT𝑇 : 𝑽ℎ → (𝑯1
D(𝜔̃𝑇 ))∗ by: For all 𝒘ℎ ∈ 𝑽ℎ and all 𝒗 ∈ 𝑯1

D(𝜔̃𝑇 ).〈RT𝑇 (𝒘ℎ), 𝒗
〉
𝜔̃𝑇
B ( 𝒇 , 𝒗)𝜔̃𝑇 + (𝒈N, 𝒗)𝜕𝜔̃𝑇∩ΓN − (

𝝈(𝒘ℎ), 𝜺(𝒗)
)
𝜔̃𝑇

+
( [
𝑃𝑛

1,𝛾 (𝒘ℎ)
]
R−

, 𝑣𝑛
)
𝜕𝜔̃𝑇∩ΓC

+
( [
𝑷𝒕

1,𝛾 (𝒘ℎ)
]
𝑆ℎ (𝒘ℎ )

, 𝒗𝒕ℎ

)
𝜕𝜔̃𝑇∩ΓC

.

Here, the space 𝑯1
D(𝜔̃𝑇 ) is the natural restriction of 𝑯1

D(Ω) to the patch 𝜔̃𝑇 , i.e.,

𝑯1
D(𝜔̃𝑇 ) B

{
𝒗 ∈ 𝑯1(𝜔̃𝑇 ) : 𝒗 = 0 on 𝜕𝜔̃𝑇 ∩ ΓD and on 𝜕𝜔̃𝑇 ∩Ω

}
.

Finally, letting

|||𝒗 ||| 𝜔̃𝑇 B
(
∥∇𝒗∥2

𝜔̃𝑇
+ |𝒗 |2𝐶,𝜔̃𝑇

)1/2
=

(
∥∇𝒗∥2

𝜔̃𝑇
+

∑︁
𝐹∈FC

T𝑇

1
ℎ𝐹

∥𝒗∥2
𝐹

)1/2

,

with F C
T𝑇 denoting the (possibly empty) set of faces of T𝑇 that lie on ΓC, we get, for a function

𝒘ℎ ∈ 𝑽ℎ, the local residual norm

|||RT𝑇 (𝒘ℎ) |||∗, 𝜔̃𝑇 = sup
𝒗∈𝑯1

D ( 𝜔̃𝑇 ) , |||𝒗 ||| 𝜔̃𝑇 =1

〈RT𝑇 (𝒘ℎ), 𝒗
〉
𝜔̃𝑇

. (6.1)

Theorem 15 (Local efficiency). Assume 𝑑 = 2. Let 𝒖𝑘
ℎ ∈ 𝑽ℎ be the approximate solution obtained

with Algorithm 1 replacing Line 8 with the local stopping criterion (3.15), and let 𝝈𝑘
ℎ be the stress

field resulting from Construction 12. Then, for every element 𝑇 ∈ Tℎ, it holds

𝜂𝑘str,T ≲ |||RT𝑇 (𝒖𝑘
ℎ) |||∗, 𝜔̃𝑇 + 𝜂𝑘osc,T𝑇 + 𝜂𝑘Neu,T𝑇 + 𝜂𝑘cnt,T𝑇 + 𝜂𝑘frc,T𝑇 , (6.2)

and, as a consequence,

𝜂𝑘osc,𝑇 + 𝜂𝑘str,𝑇 + 𝜂𝑘Neu,𝑇 + 𝜂𝑘cnt,𝑇 + 𝜂𝑘frc,𝑇 + 𝜂𝑘lin,𝑇

≲ |||RT𝑇 (𝒖𝑘
ℎ) |||∗, 𝜔̃𝑇 + 𝜂𝑘osc,T𝑇 + 𝜂𝑘Neu,T𝑇 + 𝜂𝑘cnt,T𝑇 + 𝜂𝑘frc,T𝑇 , (6.3)

where

𝜂𝑘•,T𝑇 B

[ ∑︁
𝑇 ′∈T𝑇

(
𝜂𝑘•,𝑇 ′

)2
] 1/2

with • ∈ {osc,Neu, cnt}. (6.4)

Theorem 16 (Global efficiency). Assume 𝑑 = 2. Let 𝒖𝑘
ℎ ∈ 𝑽ℎ the approximate solution obtained

with Algorithm 1, and let 𝝈𝑘
ℎ be the stress field resulting from Construction 12. Then, it holds

𝜂𝑘str ≲ |||R(𝒖𝑘
ℎ) |||∗ + 𝜂𝑘osc + 𝜂𝑘Neu + 𝜂𝑘cnt + 𝜂𝑘frc, (6.5)

and, as a consequence,

𝜂𝑘osc + 𝜂𝑘str + 𝜂𝑘Neu + 𝜂𝑘cnt + 𝜂𝑘frc + 𝜂𝑘lin ≲ |||R(𝒖𝑘
ℎ) |||∗ + 𝜂𝑘osc + 𝜂𝑘Neu + 𝜂𝑘cnt + 𝜂𝑘frc. (6.6)
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6.1 Proof of the local efficiency

We illustrate the main steps of the proof of Theorem 15. To this end, we will need the notion of
bubble function of an element 𝑇 ∈ Tℎ and of a face 𝐹 ∈ Fℎ defined starting from the hat function
𝜓𝒂:

𝜓𝑇 B 𝛼𝑇

∏
𝒂∈V𝑇

𝜓𝒂 ∈ P𝑑+1(𝑇), 𝜓𝐹 B 𝛼𝐹

∏
𝒂∈V𝐹

𝜓𝒂 ∈ P𝑑 (𝜔𝐹),

where the constants 𝛼𝑇 and 𝛼𝐹 are determined by the conditions max𝒙∈𝑇 𝜓𝑇 (𝒙) = 1 and
max𝒙∈𝐹 𝜓𝐹 (𝒙) = 1. Additionally, we will need the following four properties of these bubble
functions (see [27, Section 3.1]):

∥𝒗∥2
𝑇 ≲ (𝜓𝑇𝒗, 𝒗)𝑇 ≤ ∥𝒗∥2

𝑇 , (6.7a)

∥𝜓𝑇𝒗∥1,𝑇 ≲
1
ℎ𝑇

∥𝒗∥𝑇 , (6.7b)

∥𝝋∥2
𝐹 ≲ (𝜓𝐹𝝋, 𝝋)𝐹 ≤ ∥𝝋∥2

𝐹 , (6.7c)

∥𝜓𝐹𝝋∥𝜔𝐹 + ℎ𝐹 ∥𝜓𝐹𝝋∥1,𝜔𝐹 ≲ ℎ
1/2
𝐹 ∥𝝋∥𝐹 , . (6.7d)

where 𝑇 ∈ Tℎ, 𝐹 ∈ Fℎ, 𝒗, and 𝝋 are 𝑑-valued polynomials of degree at most 𝑟 defined on 𝑇 and
𝜔𝐹 , respectively. The hidden constants depend only on the polynomial degree 𝑟 and on the shape
regularity parameter of the mesh.
Remark 17 (Extension of (6.7a) and (6.7c)). Following the path of [15], it is possible to show that
for any S ⊆ Tℎ and any 𝒗 ∈ P

𝑟 (S)(∑︁
𝑇∈S

ℎ2
𝑇 ∥𝒗∥2

𝑇

)1/2

≲ sup
𝒘∈P𝑟 (S) ,
∥𝒘 ∥𝜔S=1

∑︁
𝑇∈S

(𝒗, ℎ𝑇𝜓𝑇𝒘)𝑇 . (6.8)

where 𝜔S B
⋃

𝑇∈S 𝑇 and ∥𝒘∥𝜔S B
(∑

𝑇∈S ∥𝒘∥2
𝑇

)1/2. In a similar way, for any E ⊆ Fℎ and any
𝝋 ∈ P

𝑟 (E) (∑︁
𝐹∈E

ℎ𝐹 ∥𝝋∥2
𝐹

)1/2

≲ sup
𝝓∈P𝑟 (E) ,
∥𝝓∥E=1

∑︁
𝐹∈E

(𝝋, ℎ1/2
𝐹 𝜓𝐹𝝓)𝐹 (6.9)

where ∥𝝓∥E B
(∑

𝐹∈E ∥𝝓∥2
𝐹

)1/2.
Following [26], for any element 𝑇 ∈ Tℎ we introduce a local residual based estimator defined

on the local patch 𝜔̃𝑇 :

𝜂𝑘
♯,𝑇
B

( ∑︁
𝑇 ′∈T𝑇

ℎ2
𝑇 ′



div𝝈(𝒖𝑘
ℎ) +𝚷𝑝

𝑇 ′ 𝒇


2
𝑇 ′

)1/2

+
( ∑︁
𝐹∈Fi

T𝑇

ℎ𝐹


⟦𝝈(𝒖𝑘

ℎ)𝒏𝐹⟧


2
𝐹

)1/2

+
( ∑︁
𝐹∈FN

T𝑇

ℎ𝐹




𝝈(𝒖𝑘
ℎ)𝒏 −𝚷𝑝+1

𝐹 𝒈N




2

𝐹

)1/2

+
( ∑︁
𝐹∈FC

T𝑇

ℎ𝐹




𝜎𝑛 (𝒖𝑘
ℎ) − Π𝑝+1

𝐹

[
𝑃𝑛

1,𝛾 (𝒖𝑘
ℎ)

]
R−




2

𝐹

)1/2

+
( ∑︁
𝐹∈FC

T𝑇

ℎ𝐹





𝝈𝒕 (𝒖𝑘
ℎ) −𝚷𝑝+1

𝐹

[
𝑷𝒕

1,𝛾 (𝒖𝑘
ℎ)

]
𝑆ℎ (𝒖𝑘

ℎ
)





2

𝐹

)1/2

.

(6.10)
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Lemma 18 (Control of the residual-based estimator 𝜂𝑘
♯,𝑇

). Let 𝒖𝑘
ℎ ∈ 𝑽ℎ, let 𝝈𝑘

ℎ be the equilibrated
stress defined by Construction 12, and let 𝜂𝑘

♯,𝑇
be the local residual-based estimator defined by

(6.10). Then, for any element 𝑇 ∈ Tℎ,

𝜂𝑘
♯,𝑇
≲ |||RT𝑇 (𝒖𝑘

ℎ) |||∗, 𝜔̃𝑇 + 𝜂𝑘osc,T𝑇 + 𝜂𝑘Neu,T𝑇 + 𝜂𝑘cnt,T𝑇 + 𝜂𝑘frc,T𝑇 . (6.11)

Proof of Lemma 18. Let us fix an element 𝑇 ∈ Tℎ. We analyze each term on the right-hand side
of (6.10) separately. For simplicity, we denote them with J1, J2, J3, J4, and J5, respectively.
The key idea is to use the above-mentioned inequalities involving the bubble functions: (6.8) with
S = T𝑇 for J1 and (6.9) with E = F i

T𝑇 , F N
T𝑇 , F C

T𝑇 for J2, J3, J4, and J5.
Since (∇ · 𝝈(𝒖𝑘

ℎ)) |𝑇 ′ +𝚷𝑝
𝑇 ′ 𝒇 |𝑇 ′ ∈ P

𝑝 (𝑇 ′) for every 𝑇 ′ ∈ T𝑇 , applying (6.8) we get

J1 ≲ sup
𝒘∈P𝑝 (T𝑇 ) ,
∥𝒘 ∥ 𝜔̃𝑇 =1

∑︁
𝑇 ′∈T𝑇

(div𝝈(𝒖𝑘
ℎ) +𝚷𝑝

𝑇 ′ 𝒇 , ℎ𝑇 ′𝜓𝑇 ′𝒘)𝑇 ′ . (6.12)

Notice that here we simply write ∥𝒘∥ 𝜔̃𝑇 instead of ∥𝒘∥𝜔T𝑇 . Fix 𝒘 ∈ P
𝑝 (T𝑇 ) with ∥𝒘∥ 𝜔̃𝑇 = 1,

and define 𝝀 |𝑇 ′ B ℎ𝑇 ′𝜓𝑇 ′𝒘 |𝑇 ′ for every 𝑇 ′ ∈ T𝑇 . Notice that 𝝀 ∈ P
𝑝+𝑑+1(T𝑇 ) ∩ 𝑯1

𝐷 (𝜔̃𝑇 ). Then,
using an integration by parts on each element 𝑇 ′ ∈ T𝑇 , the definition of the residual, and the
Cauchy–Schwarz inequality we obtain∑︁

𝑇 ′∈T𝑇
(div𝝈(𝒖𝑘

ℎ) +𝚷𝑝
𝑇 ′ 𝒇 , ℎ𝑇 ′𝜓𝑇 ′𝒘)𝑇 ′

≲ |||RT𝑇 (𝒖𝑘
ℎ) |||∗, 𝜔̃𝑇 |||𝝀 ||| 𝜔̃𝑇 +

( ∑︁
𝑇 ′∈T𝑇

ℎ2
𝑇 ′




 𝒇 −𝚷𝑝−1
𝑇 ′ 𝒇




2

𝑇 ′

)1/2 ( ∑︁
𝑇 ′∈T𝑇

∥𝜓𝑇 ′𝒘∥2
𝑇 ′

)1/2

.

(6.13)

Here, we have also used the fact that ∥ 𝒇 −𝚷𝑝
𝑇 ′ 𝒇 ∥𝑇 ′ ≤ 2∥ 𝒇 −𝚷𝑝−1

𝑇 ′ 𝒇 ∥𝑇 ′ for 𝑝 > 0. By the definition
of 𝝀, properties (6.7a) and (6.7b), along with the fact that ∥𝒘∥ 𝜔̃𝑇 = 1, it is possible to show that

|||𝝀 ||| 𝜔̃𝑇 ≲ 1 and

( ∑︁
𝑇 ′∈T𝑇

∥𝜓𝑇 ′𝒘∥2
𝑇 ′

)1/2

≲ 1,

and, combining the above results with (4.4a), we conclude

J1 ≲ |||RT𝑇 (𝒖𝑘
ℎ) |||∗, 𝜔̃𝑇 + 𝜂𝑘osc,T𝑇 . (6.14)

Now, we analyze for instance the term J5: J2, J3 and J4 can be treated in a similar way. Using
the fact that 𝝈𝒕 (𝒖𝑘

ℎ) −𝚷𝑝+1
𝐹

[
𝑷𝒕

1,𝛾 (𝒖𝑘
ℎ)

]
𝑆ℎ (𝒖𝑘

ℎ
)
∈ P

𝑝+1(𝐹) for every 𝐹 ∈ F C
T𝑇 along with (6.9), we

have
J4 ≲ sup

𝝓∈P𝑝+1 (FC
T𝑇 ) ,

∥𝝓∥FC
T𝑇

=1

∑︁
𝐹∈FC

T𝑇

(
𝝈𝒕 (𝒖𝑘

ℎ) −𝚷𝑝+1
𝐹

[
𝑷𝒕

1,𝛾 (𝒖𝑘
ℎ)

]
𝑆ℎ (𝒖𝑘

ℎ
)
, ℎ

1/2
𝐹 𝜓𝐹𝝓

)
𝐹

. (6.15)

Fix 𝝓 ∈ P
𝑝+1(F C

T𝑇 ) with ∥𝝓∥FC
T𝑇

= 1, and define 𝝀 ∈ P
𝑝+𝑑+1(T𝑇 ) ∩ 𝑯1

𝐷 (𝜔̃𝑇 ) satisfying 𝝀 |𝐹 =

ℎ
1/2
𝐹 𝜓𝐹𝝓 |𝐹 for every 𝐹 ∈ F C

T𝑇 and vanishing outside of
⋃

𝐹∈FC
T𝑇
𝜔𝐹 . Then, using the Cauchy–
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Schwarz inequality together with (4.4a) and (4.4d) we get∑︁
𝐹∈FC

T𝑇

(
𝝈𝒕 (𝒖𝑘

ℎ) −𝚷𝑝+1
𝐹

[
𝑷𝒕

1,𝛾 (𝒖𝑘
ℎ)

]
𝑆ℎ (𝒖𝑘

ℎ
)
, ℎ

1/2
𝐹 𝜓𝐹𝝓

)
𝐹

= − ⟨RT𝑇 (𝒖𝑘
ℎ), 𝝀⟩𝜔̃𝑇 +

∑︁
𝑇 ′∈T𝑇

(∇ · 𝝈(𝒖𝑘
ℎ) + 𝒇 , 𝝀)𝑇 ′

+
∑︁

𝐹∈FC
T𝑇

( [
𝑷𝒕

1,𝛾 (𝒖𝑘
ℎ)

]
𝑆ℎ (𝒖𝑘

ℎ
)
−𝚷𝑝+1

𝐹

[
𝑷𝒕

1,𝛾 (𝒖𝑘
ℎ)

]
𝑆ℎ (𝒖𝑘

ℎ
)
, 𝝀

)
𝐹

≲ |||RT𝑇 (𝒖𝑘
ℎ) |||∗, 𝜔̃𝑇 |||𝝀 ||| 𝜔̃𝑇 + (J1 + 𝜂𝑘osc,T𝑇 )

( ∑︁
𝑇 ′∈T𝑇

1
ℎ2
𝑇 ′
∥𝝀∥2

𝑇 ′

)1/2

+ 𝜂𝑘frc,T𝑇

( ∑︁
𝐹∈FC

T𝑇

1
ℎ𝐹

∥𝝀∥2
𝐹

)1/2

.

(6.16)

Exploiting the properties (6.7c) and (6.7d), it is possible to show that

|||𝝀 ||| 𝜔̃𝑇 ≲ 1,

( ∑︁
𝑇 ′∈T𝑇

1
ℎ2
𝑇 ′

∥𝝀∥2
𝑇 ′

)1/2

≲ 1 and

( ∑︁
𝐹∈FC

T𝑇

1
ℎ𝐹

∥𝝀∥2
𝐹

)1/2

≲ 1,

and, combining (6.15), (6.16), and (6.14), we conclude taht

J4 ≲ |||RT𝑇 (𝒖𝑘
ℎ) |||∗, 𝜔̃𝑇 + 𝜂𝑘osc,T𝑇 + 𝜂𝑘frc,T𝑇 .

Proceeding in a similar way, it is possible to obtain the following bounds:

J2 ≲ |||RT𝑇 (𝒖𝑘
ℎ) |||∗, 𝜔̃𝑇 + 𝜂𝑘osc,T𝑇 ,

J3 ≲ |||RT𝑇 (𝒖𝑘
ℎ) |||∗, 𝜔̃𝑇 + 𝜂𝑘osc,T𝑇 + 𝜂𝑘Neu,T𝑇 ,

J4 ≲ |||RT𝑇 (𝒖𝑘
ℎ) |||∗, 𝜔̃𝑇 + 𝜂𝑘osc,T𝑇 + 𝜂𝑘cnt,T𝑇 .

Combining all the results obtained so far gives (6.11). □

Lemma 19 (Control of the local stress estimator). Assume 𝑑 = 2. Let 𝒖𝑘
ℎ ∈ 𝑽ℎ, let 𝝈𝑘

ℎ be the
equilibrated stress defined by Construction 12, and let 𝜂𝑘

♯,𝑇
be the local residual-based estimator

defined by (6.10). Then, for every element 𝑇 ∈ Tℎ,

𝜂𝑘str,𝑇 ≲ 𝜂𝑘
♯,𝑇

. (6.17)

Proof. Following the path of [4], for any element 𝑇 ∈ Tℎ we introduce the following local
nonconforming space [2]:

𝑴𝑇 ≔

{
{𝒎 ∈ P

𝑝+2(𝑇) : 𝒎 |𝐹 ∈ P
𝑝+1(𝐹) for any 𝐹 ∈ F𝑇 } if 𝑝 is even,

{𝒎 ∈ P
𝑝+2(𝑇) : 𝒎 |𝐹 ∈ P

𝑝 (𝐹) ⊕ P̃
𝑝+2(𝐹) for any 𝐹 ∈ F𝑇 } if 𝑝 is odd,

where P̃
𝑝+2(𝐹) is the 𝐿2(𝐹)-orthogonal complement of P

𝑝+1(𝐹) in P
𝑝+2(𝐹). Then, for any

vertex 𝒂, on the patch 𝜔𝒂 we define the spaces

𝑴ℎ (𝜔𝒂) ≔
{
𝒎ℎ ∈ 𝑳2(𝜔𝒂) : 𝒎ℎ |𝑇 ∈ 𝑴𝑇 for any 𝑇 ∈ T𝒂,

(⟦𝒎ℎ⟧, 𝒗ℎ)𝐹 = 0 for any 𝒗ℎ ∈ P
𝑝 (𝐹) and for any 𝐹 ∈ F𝒂 \ F 𝑏

ℎ

}
,
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and

𝑴𝒂
ℎ ≔


{
𝒎ℎ ∈ 𝑴ℎ (𝜔𝒂) : (𝒎ℎ, 𝒛)𝜔𝒂 = 0 for any 𝒛 ∈ 𝑹𝑴2} if 𝒂 ∈ V i

ℎ or 𝒂 ∈ Vb
ℎ \ VD

ℎ ,{
𝒎ℎ ∈ 𝑴ℎ (𝜔𝒂) : (𝒎ℎ, 𝒗)𝐹 = 0

for any 𝒗 ∈ P
𝑝 (𝐹) and for any 𝐹 ∈ F𝒂 ∩ F 𝐷

ℎ

}
if 𝒂 ∈ VD

ℎ .

Now, fix 𝑇 ∈ Tℎ. Combining the definition of the local stress estimator (3.10b), of 𝝈𝑘
ℎ,dis given

by Construction 12, of the hat function 𝝍𝒂 with the triangle inequality, we directly get

𝜂𝑘str,𝑇 =



𝝈𝑘

ℎ,dis − 𝝈(𝒖𝑘
ℎ)





𝑇
≤

∑︁
𝒂∈V𝑇




𝝈𝒂,𝑘
ℎ,dis − 𝜓𝒂𝝈(𝒖𝑘

ℎ)




𝜔𝒂

. (6.18)

Adapting the argument of [4, Section 4.4] to our problem with Neumann and frictional contact
boundary conditions, it is possible to show that, for any 𝒂 ∈ Vℎ,


𝝈𝒂,𝑘

ℎ,dis − 𝜓𝒂𝝈(𝒖𝑘
ℎ)





𝜔𝒂

≲ sup
𝒎ℎ∈𝑴𝒂

ℎ ,

∥∇ℎ𝒎ℎ ∥𝜔𝒂=1

(
𝝈𝒂,𝑘

ℎ,dis − 𝜓𝒂𝝈(𝒖𝑘
ℎ),∇ℎ𝒎ℎ

)
𝜔𝒂

(6.19)

with ∇ℎ denoting the standard broken gradient. Then, applying an integration by parts, using the
properties of 𝑴𝒂

ℎ, and the fact that, by definition, 𝝈𝒂,𝑘
ℎ,dis ∈ 𝚺𝒂,𝑘

ℎ,N,C,dis, we obtain

(𝝈𝒂,𝑘
ℎ,dis − 𝜓𝒂𝝈(𝒖𝑘

ℎ),∇ℎ𝒎ℎ)𝜔𝒂 =
∑︁

𝑇 ′∈T𝒂
(𝝈𝒂,𝑘

ℎ,dis − 𝜓𝒂𝝈(𝒖𝑘
ℎ),∇ℎ𝒎ℎ)𝑇 ′

= −
∑︁

𝑇 ′∈T𝒂

(
div (𝝈𝒂,𝑘

ℎ,dis − 𝜓𝒂𝝈(𝒖𝑘
ℎ)),𝒎ℎ

)
𝑇 ′︸                                              ︷︷                                              ︸

=:I1

+
∑︁
𝐹∈Fi

𝒂

(⟦𝜓𝒂𝝈(𝒖𝑘
ℎ)𝒏𝐹⟧,𝒎ℎ

)
𝐹︸                               ︷︷                               ︸

=:I2

+

+
∑︁
𝐹∈FN

𝒂

(
𝚷𝑝

𝐹

(
𝜓𝒂𝒈𝑁

) − 𝜓𝒂𝝈(𝒖𝑘
ℎ)𝒏,𝒎ℎ

)
𝐹︸                                               ︷︷                                               ︸

=:I3

+

+
∑︁
𝐹∈FC

𝒂

(
Π𝑝

𝐹

(
𝜓𝒂

[
𝑃𝑛

1,𝛾 (𝒖𝑘
ℎ)

]
R
−

)
− 𝜓𝒂𝜎

𝑛 (𝒖𝑘
ℎ), 𝑚𝑛

ℎ

)
𝐹︸                                                             ︷︷                                                             ︸

=:I4

+

+
∑︁
𝐹∈FC

𝒂

(
𝚷𝑝

𝐹

(
𝜓𝒂

[
𝑷𝒕

1,𝛾 (𝒖𝑘
ℎ)

]
𝑆ℎ (𝒖𝑘

ℎ
)

)
− 𝜓𝒂𝝈

𝒕 (𝒖𝑘
ℎ),𝒎𝒕

ℎ

)
𝐹︸                                                                   ︷︷                                                                   ︸

=:I5

.

The first two terms can be treated as in [4, Proof of Theorem 4.7], obtaining

I1 ≲

[ ∑︁
𝑇 ′∈T𝒂

ℎ2
𝑇 ′



div𝝈(𝒖𝑘
ℎ) +𝚷𝑝

𝑇 ′ 𝒇


2
𝑇 ′

] 1/2

∥∇ℎ𝒎ℎ∥𝜔𝒂
,

I2 ≲


∑︁
𝐹∈Fi

𝒂

ℎ𝐹


⟦𝝈(𝒖𝑘

ℎ)𝒏𝐹⟧


2
𝐹


1/2

∥∇ℎ𝒎ℎ∥𝜔𝒂
.
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In a similar way, using the Cauchy–Schwarz inequality, the discrete trace inequality ∥𝒎ℎ∥𝐹 ≲
ℎ−1/2
𝐹 ∥𝒎ℎ∥𝑇 ′ , and the discrete Poincaré inequality [28] when 𝒂 ∉ VD

ℎ and the discrete Friedrichs
inequality [28] when 𝒂 ∈ VD

ℎ , together with the definition of 𝑴𝒂
ℎ, we have

I5 =
∑︁
𝐹∈FC

𝒂

(
𝜓𝒂

( [
𝑷𝒕

1,𝛾 (𝒖𝑘
ℎ)

]
𝑆ℎ (𝒖𝑘

ℎ
)
− 𝝈𝒕 (𝒖𝑘

ℎ)
)
,𝚷𝑝

𝐹𝒎
𝒕
ℎ

)
𝐹

=
∑︁
𝐹∈FC

𝒂

(
𝚷𝑝+1

𝐹

[
𝑷𝒕

1,𝛾 (𝒖𝑘
ℎ)

]
𝑆ℎ (𝒖𝑘

ℎ
)
− 𝝈𝒕 (𝒖𝑘

ℎ), 𝜓𝒂𝚷
𝑝
𝐹𝒎

𝒕
ℎ

)
𝐹

≤

∑︁
𝐹∈FC

𝒂

ℎ𝐹





𝜓𝒂

(
𝚷𝑝+1

𝐹

[
𝑷𝒕

1,𝛾 (𝒖𝑘
ℎ)

]
𝑆ℎ (𝒖𝑘

ℎ
)
− 𝝈𝒕 (𝒖𝑘

ℎ)
)



2

𝐹


1/2 

∑︁
𝐹∈FC

𝒂

1
ℎ𝐹

∥𝒎ℎ∥2
𝐹


1/2

≲


∑︁
𝐹∈FC

𝒂

ℎ𝐹





𝚷𝑝+1
𝐹

[
𝑷𝒕

1,𝛾 (𝒖𝑘
ℎ)

]
𝑆ℎ (𝒖𝑘

ℎ
)
− 𝝈𝒕 (𝒖𝑘

ℎ)




2

𝐹


1/2

∥∇ℎ𝒎ℎ∥𝜔𝒂
,

and also

I3 ≲


∑︁
𝐹∈FN

𝒂

ℎ𝐹




𝚷𝑝+1
𝐹 𝒈𝑁 − 𝝈(𝒖𝑘

ℎ)𝒏



2

𝐹


1/2

∥∇ℎ𝒎ℎ∥𝜔𝒂

I4 ≲


∑︁

𝐹∈F𝐶
𝒂

ℎ𝐹




𝚷𝑝+1
𝐹

( [
𝑃1,𝛾 (𝒖𝑘

ℎ)
]
R− 𝒏

)
− 𝝈(𝒖𝑘

ℎ)𝒏



2

𝐹


1/2

∥∇ℎ𝒎ℎ∥𝜔𝒂

Combining all the above results with (6.18) and (6.19) yields (6.17). □

Remark 20 (Case 𝑑 = 3). In the case 𝑑 = 3, it becomes more challenging to identify a space
similar to 𝑴𝒂

ℎ with the appropriate features to recover (6.19) and do the subsequent analysis. For
this reason, in this paper, we present the proof of Lemma 19 specifically for the case 𝑑 = 2.

Finally, (6.2) follows by combining the results of Lemmas 18 and 19, and (6.3) by using also
the local stopping criterion (3.15).

6.2 Proof of the global efficiency

With the aim to prove (6.5) and (6.6) of Theorem 16 we introduce the global version of the local
estimator 𝜂𝑘

♯,𝑇
:

𝜂𝑘
♯
B

[ ∑︁
𝑇∈Tℎ

(
𝜂𝑘
♯,𝑇

)2
] 1/2

. (6.20)

Lemma 21 (Control of the residual-based estimator 𝜂𝑘
♯
). Let 𝒖𝑘

ℎ ∈ 𝑽ℎ, let 𝝈𝑘
ℎ be the equilibrated

stress defined by Construction 12, and let 𝜂𝑘
♯

be the global residual-based estimator defined by
(6.20). Then, for any 𝑘 ≥ 1

𝜂𝑘
♯
≲ |||R(𝒖𝑘

ℎ) |||∗ + 𝜂𝑘osc + 𝜂𝑘Neu + 𝜂𝑘cnt + 𝜂𝑘frc. (6.21)
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Proof. We have

𝜂𝑘
♯
≲

( ∑︁
𝑇∈Tℎ

ℎ2
𝑇



div𝝈(𝒖𝑘
ℎ) +𝚷𝑝

𝑇 𝒇


2
𝑇

)1/2

︸                                       ︷︷                                       ︸
=:L1

+
©­­«

∑︁
𝐹∈Fi

ℎ

ℎ𝐹


⟦𝝈(𝒖𝑘

ℎ)𝒏𝐹⟧


2
𝐹

ª®®¬
1/2

︸                                ︷︷                                ︸
=:L2

+

+
©­­«

∑︁
𝐹∈FN

ℎ

ℎ𝐹




𝝈(𝒖𝑘
ℎ)𝒏 −𝚷𝑝+1

𝐹 𝒈𝑁




2

𝐹

ª®®¬
1/2

︸                                          ︷︷                                          ︸
=:L3

+

+
©­­«

∑︁
𝐹∈FC

ℎ

ℎ𝐹




𝜎𝑛 (𝒖𝑘
ℎ) − Π𝑝+1

𝐹

[
𝑃𝑛

1,𝛾 (𝒖𝑘
ℎ)

]
R−




2

𝐹

ª®®¬
1/2

︸                                                         ︷︷                                                         ︸
=:L4

+

+
©­­«

∑︁
𝐹∈FC

ℎ

ℎ𝐹





𝝈𝒕 (𝒖𝑘
ℎ) −𝚷𝑝+1

𝐹

[
𝑷𝒕

1,𝛾 (𝒖𝑘
ℎ)

]
𝑆ℎ (𝒖𝑘

ℎ
)





2

𝐹

ª®®¬
1/2

︸                                                              ︷︷                                                              ︸
=:L5

Proceeding as in the proof of Lemma 18, it is possible to show that

L1 ≲ |||R(𝒖𝑘
ℎ) |||∗ + 𝜂𝑘osc, L2 ≲ |||R(𝒖𝑘

ℎ) |||∗ + 𝜂𝑘osc, L3 ≲ |||R(𝒖𝑘
ℎ) |||∗ + 𝜂𝑘osc + 𝜂𝑘Neu,

L4 ≲ |||R(𝒖𝑘
ℎ) |||∗ + 𝜂𝑘osc + 𝜂𝑘cnt, L4 ≲ |||R(𝒖𝑘

ℎ) |||∗ + 𝜂𝑘osc + 𝜂𝑘frc. □

Lemma 22 (Control of the global stress estimator). Let 𝒖𝑘
ℎ ∈ 𝑽ℎ, let 𝝈𝑘

ℎ be the equilibrated stress
defined by Construction 12, and let 𝜂𝑘

♯
be the global residual-based estimator defined by (6.20).

Then, for any 𝑘 ≥ 1,
𝜂𝑘str ≲ 𝜂𝑘

♯
.

Proof. It is an immediate consequence of Lemma 19. □

Finally, (6.5) follows by combining the results of Lemmas 21 and 22, and (6.6) by using also
the global stopping criterion of Line 8 of Algorithm 1.
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