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Starting from individual judgments given as categories (i.e., a profile of partitions on an X set), we attempt to establish collective categories that we name concepts in the sequel. For that task, we compare two combinatorial approaches. The first one allows to calculate a consensus partition, namely the median partition of the profile, which is the partition of X whose sum of distances to the individual judgments is minimum. The concepts are the classes of this partition. The second one consists in first calculating a distance D on X based on the profile and then in building an X-tree associated to D. The concepts are then some of its subtrees. We compare these two approaches and more specifically study in what extent they produce the same concepts.

Introduction

In this paper, we propose to compare two combinatorial methods for the treatment of categorical data. These data correspond to subjects also called experts which distribute items -photos, sounds, products -according to individual categories gathering close item. We assume that an item is only classified once by each expert and so each subject expresses his judgment in the form of a partition with an open number of classes, thus carrying out a free categorization. Therefore, these data define a profile Π of partitions on the same X set. Such a situation is encountered also:

• when items are described by nominal variables, in such a way that each variable defines a partition. As a particular case, binary data constitute a two-class partition. • when applying competing partitioning methods on the same X set and seeking to obtain a synthesis of the results.

We then aim at classifying the elements of X, i.e. to go from one partition profile based on individual categories to a unique partition whose collective classes are called concepts here.

For this task we propose two methods:

• The first one consists in building the median partition for Π, i.e. a partition whose sum of distances to the partitions of the profile is minimum.

This partition best represents the set of individual categorizations and can be considered as the collective judgment of the experts. • The second has been developed by Barthélemy et Dubois (1991) and consists in calculating a distance D between items and to represent this distance in the form of an X-tree denoted A. This tree is such that the set of leaves is X and the nodes are the roots of the subtrees corresponding to classes. The distance on X, that takes into account all the partitions in the profile, enables to go from the individual to the collective categorization and the A subtrees are regarded as concepts.

The point is to know if these two methods produce similar results on the same data. Rather than comparing concepts built on classical data (benchmark), we are going to establish a simulation protocol. From any given partition, we generate a profile of similar partitions by effecting a fixed number of transfers. For each profile, we build on the one hand, the consensus partition and on the other hand, a series of scissions of the corresponding X-tree. We then calculate indices whose mean values allow to measure the adequacy of both methods.

The rest of the paper is organized as follows. In Section 2 we describe a way to calculate median partitions that are either optimal for limited size profiles or approximative for larger size profiles. In Section 3, we accurately review Barthélemy & Dubois's method and give a way to determine the optimal partition in an X-tree. In Section 4 we describe the simulation process used to measure the adequacy of these methods. This process leads to conclude that the median consensus method has better ability to build concepts from categorical data than the X-tree procedure.

Consensus partition

A pioneer work about consensus of partitions is S. Régnier (1965)'s paper. Starting from the problem of partitioning items described by nominal variables, the author introduces the concept of central or median partition, defined as the partition that minimizes the sum of the distances to the partitions of the profile.

Consensus formalization

Let X be a set of cardinality n. We call partition of X any collection of disjoints and non empty classes of elements of X whose reunion equals X. Hereafter, we denote by P the set of all the partitions of X and by Π = (P 1 , . . . , P m ) a profile of m partitions of P. Moreover, for any given partition P ∈ P and any element x i ∈ X, we denote by P (i) the class of x i in P . Then, for given Π, finding the consensus partition consists in determining a partition π ⊂ P as close as possible to Π for some criterion.

The criterion used in the sequel may be computed as follows. For any (P, Q) ∈ P 2 , we first define the similitude S between P and Q as the number of pairs of elements of X that are gathered or separated in both P and Q. Actually, S equals the non normalized Rand index, which is the complementary number of the symmetric difference cardinality. We then define the score of the partition P relatively to the profile Π as S Π (P ) = i=1,...,m S(P, P i ). So, with respect to this criterion, the optimal partition is the median partition of Π. Actually, [START_REF] Régnier | Sur quelques aspects mathématiques des problèmes de classification automatique[END_REF] shows that maximizing S Π is equivalent to maximize over P the quantity

W Π (P ) = (i<j)∈R(P ) T ij - m 2 , (1) 
where T ij denotes the number of partitions of Π in which x i and x j are gathered and R(P ) is the set of every gathered pairs in P . The value W Π (P ) has a very intuitive meaning. Indeed, it points out that a gathered pair in P has a positive (resp. negative) contribution to the criterion as soon as its elements are joined in more (resp. less) than half of the partitions of Π.

The Fusion-Transfer method F T

Let K n be the complete graph on X whose edges are weighted by

W i,j = (T ij - m 2 )
. Thus, maximizing W Π turns out to build a partition or equivalently, a set of disjoint cliques in (K n , W ) having maximal weight. This problem generalizes Zahn (1971)'s NP-hard problem to weighted graphs. Therefore, we do not know any polynomial algorithm leading to an optimal solution. As it has already been noticed by [START_REF] Régnier | Sur quelques aspects mathématiques des problèmes de classification automatique[END_REF], finding the consensus (central) partition is a discrete optimization problem which can be solved by integer linear programming methods with n(n -1)/2 variables and 3 n 3 constraints. Exact solving methods exist, which allow to find a partition π achieving the optimum of W Π over the set P. For n = 100, one has 4950 binary variables and 485 100 constraints. This is the limiting size GLPK (GNU Linear Programming Kit) software can deal with.

A lot of heuristics have been proposed. Among them, Régnier's transfer method consists in affecting an element of the initial partition π to another class of π as long as the W Π criterion increases. This optimization method achieves a local maximum of the score criterion. In the following, we propose a new heuristic leading to excellent results for the optimization of W Π . It is based on average-linkage and transfer methods followed by a stochastic optimization procedure.

• Firstly, we apply an ascendant hierarchical method that we call Fusion.

Starting from the atomic partition P 0 , we join, at each step, both classes maximizing the resulting partition score. These are the classes whose sum of the between-class edge average weight is maximum. The process stops when no more fusion leads to increase the criterion. The obtained partition π = (X 1 , . . . , X p ) is such that every partition π ij obtained by gathering the classes X i et X j has a weaker score:

W Π (π ij ) < W Π (π).
• Secondly, we implement a transfer procedure. We begin with calculating the weight of the assignment of each element x i to each class X k of π by

K(i, k) = xj ∈X k w(i, j). If x i ∈ X k , K(i, k
) denotes the contribution of x i to his class, and to W Π (π). Otherwise, it corresponds to the weight of a possible assignment to another class X k and the difference K(i, k ) -K(i, k) is the variation of the criterion due to the shift (transfer) of x i from class X k to class X k . Our procedure consists in selecting, at each step, the element x i and class X k maximizing this variation, then (unless

K(i, k ) < 0) in moving x i from X k to X k .
Let us notice that X k may be created, if there is no existing class to which x i positively contributes. In this last case, the element becomes a singleton and has a null contribution to the score, thus increasing the criterion. From now on, we denote by π the partition obtained at the end of the process. • Finally, we add a stochastic optimization procedure to the two aforementioned deterministic steps. Having observed that the transfer step is very efficient, we decide to apply it to random partitions obtained from the best current one by swapping random elements taken in two classes.

For that task, two parameters have to be defined: the maximum number of swaps to start transfers (SwapM ax) and the maximum number of consecutive trials without improving W Π (N bEs).

Thanks to a simulation protocol allowing to generate profiles on which the optimal consensus partition can be calculated, we have shown [START_REF] Guénoche | Consensus de partitions : une approche constructive[END_REF]) that F T method provides results that are optimals in 80% of cases and very near from optimum in every other cases, even for difficult problems.

Tree representation of partitions

In order to determine the collective categories corresponding to a partition profile, J.P. Barthélemy and D. Dubois came up with the idea, in the nineties, of measuring a distance between items and of representing it in the form of an additive distance tree, called X-tree. An X-tree is such that its leaves (external vertices) are the elements of X, its nodes (internal vertices) have at least a degree 3 and its edges have a non negative length [START_REF] Barthélemy | and Trees and Proximity Representations[END_REF]. To each X-tree A is associated a tree distance D A such that D A (x, y) is the path length in the tree between the leaves x and y ; it is the sum of the edge lengths on this single path. So, for a given distance D between items, one builds an X-tree A whose tree distance D A is as near as possible of D. This is an approximation problem.

To equip X with a metric allows to go from individual judgments to collective categories, via subtrees. An item is connected to a set of elements that form a subtree, not because it is nearer, as in a hierarchical tree, but because it associates to others elements of this subtree at the opposite of the pairs located outside this subtree. This is the notion of score developed by [START_REF] Sattah | Additive Similarity Trees[END_REF] which makes that a pair (x, y) is opposed in the tree to another pair (z, t) because: D(x, y) + D(z, t) ≤ min{D(x, z) + D(y, t), D(x, t) + D(y, z)}.

(

) 2 
It means that at least one edge separates pair (x, y) from pair (z, t). This notion is different to that of score of the consensus pairs so that we use the term weight in place of score in the sequel. Precisely, the weight of a pair (x, y) is the number of pairs (z, t) satisfying Equation 2. The Sattah & Tversky algorithm, ADDTREE, aims at gathering, at each step, the maximum weight pairs and then builds an X-tree associated to a D distance.

The problem of how to choose a metric on X based on a partition profile has been solved as follows: since partitions essentially consist of relations on the either gathered or separated pairs of elements of X, a natural distance between x and y is the number of partitions of the profile in which x and y are separated, that is the separation distance. With the notations of Section 2:

D s (x i , x j ) =| {P (i) = P (j)} P ∈Π |= m -T ij

X-trees and subtrees

Initially, the tree has been built using ADDTREE method (cf. [START_REF] Barthélemy | and Trees and Proximity Representations[END_REF]. Let us remind that ADDTREE is a clustering (ascending) method such that at each iteration:

• the weight of each pair is evaluated by enumerating every quartets;

• the maximal weight pair(s) is gathered and connected to a new node in the tree. • the edge lengths are calculated (by formulae that are not displayed here); • the dimension of the distance table is reduced, replacing the gathered elements by their common adjacent node in the tree.

The main drawback of ADDTREE is its complexity (with an order of O(n 4 ) at each iteration). Therefore, the NJ method (Saitou & Ney, 1987) has subsequently been used in place of ADDTREE. Moreover, NJ tends to have more ability to approach the initial distance and to recover a known tree. Unlike hierarchical trees, X-trees are not rooted so that the notion of subtree has to be clarified. Indeed, an X-tree is a set of bipartitions (splits), each of them being defined by an edge of the tree setting on both sides one class against the other. Since there are n -3 internal edges in a fully resolved tree, there are 2(n -3) possible classes or subtrees that are not reduced to 1 or n -1 elements.

Reading these X-trees can be made easier by considering the length of the internal edges leading to subtrees: the longer is an edge, the more robust can be apreciated the corresponding subtree so that it can be interpreted as a collective category underlined by the distance. Such long edges, with probably above average lengths indicate "'well separated"' classes chosen by the user according to the tree. But their number remains to define. For that task, we use the number of classes with more than one element of the consensus partition.

Adequacy of both methods

in order to assess if the two abovementionned methods are congruent, we have set up a simulation protocol and defined several criteria allowing to quantify their adequacy.

Generation of more or less scattered random profiles

We start from a partition of X with cardinality n and p balanced classes, which is the initial partition of the profile. Then, we generate m-1 partitions by applying t random transfers to the initial one. A transfer consists in affecting an element taken at random to a class of the current partition or to a new class. For the first transfer, one class between 1 and p + 1 is selected at random ; for the second, one class between 1 and p + 2 is drawn at random if a new class has been created and so on. Therefore, the obtained partitions have generally a different number of classes.

For fixed n and m and according to the value of t, we obtain either homogeneous profiles for which the consensus partition is the initial one or very scattered profiles for which the consensus is, most of times the atomic partition. Varying the numbers of initial classes and transfers, we obtain either strong categorization problems around the classes of the initial partition or weak categorization problems with few gathered pairs in most of partitions, leading to a consensus partition with high number of classes and low score.

Some criteria

Thus, from each profile, we build the consensus partition (π) and the A tree that best approximate the separation distance. We then shall calculate the score of each class of π or subtree of A by the sum of scores of the joined pairs. This method allows to compute the score W Π (P A ) of the best partition contained in the tree as well as that of the well-separated classes. Indeed, the consensus partition indicates the optimal number of collective categories which is the number N c of classes of π with more than one element. This leads to keep the maximum score class of each of the N c splits with greatest edge lengths. That is what would do a user knowing in advance the number of classes to select. These N c classes are used to measure the score W Π (S) of the well separated classes in the tree.

In Table 1, we display the values W Π (π), W Π (P A ) et W Π (S) as well as three criteria:

• One can compare, for each class of π containing at least two elements, the size of the class and the one of the smallest subtree including it. This criterion gives an idea of how similar the X-tree subtrees and the consensus partition classes are. The class and subtree sizes are generally very near or equal, so we indicate below the percentage τ c of classes of the consensus partition that are identical to a subtree. • The percentage of problems for which the score of the maximum score partition P A , built from the 2(n -3) subtrees equals that of π. The former score is never greater than the latter but it is often equal. • The percentage of problems for which the score of the best separated classes equals that of the consensus partition.

Results

Let us recall that n is the number of classified items, m is the number of partitions, p is the class number of the initial partition of the profile and t is the number of transfers done from the initial partition in view to generate the profile. 

n = m p t W Π (π) W Π (P A ) W Π (S) τ c π = P A π = S 10 

Conclusions

One first concluding remark is that the idea of looking for a consensus categorization via trees is pertinent. Whatever the hardness of the problem is, the built X-trees include most of the consensus partition classes. Most of 90 % of the consensus classes are subtrees or they vary from at most one to two elements otherwise. Moreover, the best partitions of the trees into subtrees lead to scores close to optimal ones. The second concluding remark is that it is not always easy to read these trees. The best subtrees, and consequently classes, do not necessarily correspond to the longest edges, and the score of the best separated classes is noticeably weaker than that of the consensus partition as soon as the problem gets harder.

The problem relies on the choice of the classes in the tree. We had attempted to appreciate the robustness of the internal edges [START_REF] Guénoche | Can we have confidence in a tree representation ?[END_REF]) by enumerating the number of quartets whose topology supports each edge ; this can be fixed comparing the three sums in formula [START_REF] Barthélemy | Similitude, arbres et typicalités[END_REF]. This is a general measure for any distance based tree reconstruction, but in the case of distances between partitions, the score of the classes corresponding to subtrees is a better criterion.

Table 1 -

 1 Score of the consensus partition π, of the best partition P A in the tree and of the well-separated classes S.

	3 3 40.2	40.2	39.6 .98 .98	.79
	10 2 5 33.9	33.2	28.8 .83 .80	.25
	20 3 5 463.4 454.1 462.9 .99 .94	.92
	20 5 10 33.0	32.8	-3.4 .92 .92	.01
	20 3 15 11.8	11.2	-114.2 .83 .79	.04
	50 5 10 4954.7 4954.7 4954.7 1.0 1.0	1.0
	50 10 20 233.5 231.7	-10.9 .92 .66	.00
	50 5 30 29.8	29.4 -1876.9 .86 .84	.00