
HAL Id: hal-04375577
https://hal.science/hal-04375577

Submitted on 5 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

AMBRE-teacher: a module helping teachers to facilitate
the integration of AMBRE in classrooms

Stéphanie Jean-Daubias, Nathalie Guin

To cite this version:
Stéphanie Jean-Daubias, Nathalie Guin. AMBRE-teacher: a module helping teachers to facilitate
the integration of AMBRE in classrooms. RR-LIRIS-2009-017, LIRIS UMR 5205 CNRS/INSA de
Lyon/Université Claude Bernard Lyon 1/Université Lumière Lyon 2/École Centrale de Lyon. 2009.
�hal-04375577�

https://hal.science/hal-04375577
https://hal.archives-ouvertes.fr

RR-LIRIS-2009-017

AMBRE-teacher: a module helping teachers to generate problems, S. Jean-Daubias, N. Guin. 1

AMBRE-teacher: a module helping teachers
to facilitate the integration of AMBRE in

classrooms

Stéphanie Jean-Daubias, Nathalie Guin

Université de Lyon, France
Université Lyon 1 – LIRIS, CNRS, UMR5205

43 bd du 11 novembre 1918, 69622 Villeurbanne Cedex, France

{Stephanie.Jean-Daubias, Nathalie.Guin}@liris.univ-lyon1.fr

Abstract. If teachers use few ILEs (Interactive Learning
Environments) with their students, it may be because they don’t
have the opportunity to act upon the available environments. To
permit the adoption of ILEs by teachers, these systems must be
adaptable to the learning context and to the teacher’s pedagogical
approach. To achieve this we propose a module dedicated to the
teacher in the context of the AMBRE project. This module, AMBRE-
teacher, allows the user to configure the ILE he wants to use. We
identified the functionalities necessary to adapt an AMBRE ILE. We
notably designed a knowledge based system allowing the teacher
to generate the problems he wants to propose to his students in the
ILE. Our approach is implemented for AMBRE-add, an ILE
proposing word additive problems in elementary school.

Keywords. adaptation of ILE, role of teacher, problem
generation, knowledge.

1. Introduction

The AMBRE project is a multidisciplinary study in computer science, cognitive
sciences, mathematical didactics and educational science, which aims at designing
learning environments for the acquisition of a specific method in problem solving. In
each application domain, a method is based on the classification by the learner of
problems and solving tools. We propose, to help the learner acquire such methods, to
use Case-Based Reasoning, a paradigm developed in Artificial Intelligence and inspired
by research in psychology on reasoning by analogy. After the evaluation of a first
prototype for the numbering problems domain (final scientific year level, 18 year-old
students), we implemented and tested a complete system for additive word problems
solving which are studied in primary school: AMBRE-add [13].

RR-LIRIS-2009-017

AMBRE-teacher: a module helping teachers to generate problems, S. Jean-Daubias, N. Guin. 2

In order to facilitate the integration of AMBRE in education, we conceived a module
dedicated to teachers, AMBRE-teacher. In this paper, after presenting the functionalities
of this module, we describe the functionality dedicated to problem generation and
present the architecture of the knowledge based system allowing to implement it.

2. AMBRE : “which role for the teacher?”

Most ILEs (Interactive Learning Environments) focus on the computer/learner
couple, thus often masking the important role of teachers in these environments [17].
ILEs rarely consider the teacher as a potential user distinct from the learner. Besides,
we can notice that only a very small part of ILEs intelligence is devoted to teachers.
Now it seems essential to consider that teacher’s place is distinct from learners’ one in
ILEs, and that a part of the system should be developed for him [1] [10]. For this, it is
necessary to identify the different roles that teachers may play in ILEs: designer or
design partners, prescribers or user.

Designer or design partner The teacher can take part directly into the ILE design,
this can be achieve by taking him into account in different manners [7]. Participatory
design [16] allows teachers to be actors of the design: they are not only observed and
questioned about their practices, but also integrated in the design process, where they
can make innovative propositions and even participate directly in the design choices,
thus allowing the creation of a software really matching their needs and real practices.
Informant design [15] can be defined as an approach calling users as informants during
design, without restricting them to a passive role, but not either considering them as full
partners. For example they can work with the designers on prototypes, but don’t take
part in final decisions.

Author The teacher himself can be an ILE designer as user of an authoring tool.
Such tools allow teachers to build educational software. As ILEs are very complicated
software, authoring tools are generally limited to the creation of courses resources or
intelligent tutoring systems. GenDoc, developed in the context of the ARIADNE
project, is an example of such systems [4].

Prescriber In most ILEs, the teacher has the role of prescriber: he chooses the
system to be used by his pupils, according to his needs and pedagogical choices.

Secondary user This is the most frequent role of teachers in ILEs, mostly implicit.
In that case, the ILE is mainly centered on the learner, but leaves a place to the teacher
to handle the use of the ILE. The teacher can thus adapt and personalize the system
dedicated to learners, add pedagogical situations, interact with learners during the use
of the ILE, but also make a report of the learners’ session. The teacher thus uses the
ILE to adapt it into his pedagogical strategies, and to its main users, the learners, as
permitted for example by the systems Roboteach [9] and Aplusix [11].

Main user Some systems are dedicated directly to the teacher by proposing him
tools helping him in his work. ILEs of this type have an approach centered on the
teacher and not on the learner. This is the case of Eprofilea environment which
proposes a set of tools to facilitate the following up of learners by the teacher [8].

RR-LIRIS-2009-017

AMBRE-teacher: a module helping teachers to generate problems, S. Jean-Daubias, N. Guin. 3

In the AMBRE project, if several teachers took part as design partners in the
framework of differentiated design [7], teachers’ major role is main user of a module
dedicated exclusively to them. Thus they explicitly take their role of secondary user of
the AMBRE learner module through the proposed environment, by adapting and defining
the parameters of the learner environment. Finally, teachers keep their role of
prescribers, by choosing the ILE used in their classroom.

3. AMBRE-teacher

In the context of the AMBRE project, which gives rise to the creation of ILEs
intended to learning methods, we want to propose to the teacher an environment
allowing him to tune the learner environment, to create sequences for the whole class or
specifically for some learners, and more particularly to generate problems to be solved.
This environment, specifically intended to teachers has to match their needs and to
permit them to integrate and adapt an AMBRE ILE to their approach, to their
pedagogical strategies, but also to the contexts in which they work. For this, AMBRE-
teacher allows them to generate problems, to create learning sequences (sets of
activities intended to learners) and exercises themes, but also to tune the learner
environment, to create lists of pupils and to assign the work (sequences and exercises)
to classes or learners.

The learner environment tuning consists of the personalization by the teacher of
the learner software interface: mainly colors and language choice. AMBRE-teacher must
also permit teachers to establish the list of learners for their classes.

 Some exercises, created by the designers, are furnished with the ILE. But in order
to allow teachers to propose problems with characteristics that they define for their
learners, AMBRE-teacher includes a problems generation module. This generation is a
possibility offered to teachers, not an obligation. This approach seems therefore to be
necessary to increase and vary the set of exercises of AMBRE ILE, and to adapt the
wordings to the learners. To generate a problem to be solved in the AMBRE ILE
consists of proposing a wording in natural language and a description of the problem
consistent with the solver used by the learner software. From the teacher point of view,
generating the problem consists of specifying some characteristics of the problem. The
problem generation can be more or less automated depending on the teacher’s choice:
he can either specify all the problem characteristics, only some of them, or none of
them.

We also want to offer the teacher the possibility to create learning sequences (sets
of problems to be solved in one or several sessions of software use) by using the
learning material (the problems) that he created. This functionality can permit him to
instantiate his strategy and his pedagogical approach, by integrating, as he wants, the
problems of his choice in a sequence. For this, we propose to the user two ways to
create a sequence: manual or automated. For the manual creation, the teacher selects the
exercises he wants to integrate in his sequence. He can choose to make them appear
chronologically or randomly, depending on his strategy. For example, he can create a
sequence in which the difficulty level increases progressively with the problems to be
solved. In that case, he will choose by himself the order of the problems presentation in

RR-LIRIS-2009-017

AMBRE-teacher: a module helping teachers to generate problems, S. Jean-Daubias, N. Guin. 4

the sequence. The teacher can then define the behavior of the learner software for the
exercises sequence: number of attempts allowed for the learner for each exercise step
(and what to do if this number is reached), number of verification or help functionalities
uses allowed during one exercise, behavior of the diagnosis (always diagnose or let the
learner make mistakes at certain resolution steps), etc. We define the default behavior
for all exercises of the sequence. However, if the teacher wants to integrate a
progression in the sequence, he may define a different behavior depending on the
exercises (he may thus for example allow the highest level of diagnosis at the beginning
of the sequence and reduce it progressively). For the automated creation of a sequence,
the teacher chooses only the exercises folder in which the system will take the exercises
and the number of exercises he wants in the sequence. The system then chooses
randomly the exercises. The teacher can then modify the system’s propositions (delete,
add or replace a problem), or reorder exercises differently, define a specific behavior,
etc.

AMBRE-teacher must also allow to assign the work to learners, that is to say to
associate the whole class or each learner with one or several sequences. The teacher can
propose the same sequences to all of his students or choose to individualize learning by
proposing specific sequences to certain learners.

To allow the teacher to entirely adapt the generated problems to his environment
and to his students’ context, AMBRE-teacher will permit to manage surface features
that will be used in the exercises. The teacher may then create, modify and delete
exercises themes and surface features linked to the themes (for example specific objects
and characters, associated actions, etc.).

4. A problem generator for AMBRE

We have chosen a semi-automatic generators approach [6] [14] [5], which builds
the wording of the problems, but let the user intervene in the creation process. Actually,
on the one hand, automatic generators [1] [12], permitting no interaction with users, are
not suitable to our aim. On the other hand, manual generators [3], like authoring tools,
are not able to solve the problems they allow to create nor to propose any diagnosis of
the learner’s answers or help functionalities.

An AMBRE ILE is based on a knowledge based system which relies on a problem
solver and allows to provide the learner with help, a diagnosis of his answers and
explanations concerning his errors [5]. The problems proposed to the learner must be
understandable by the solver to allow the ILE to provide these functionalities.

With AMBRE-teacher, teachers can influence the problems to be generated, by
specifying a set of constraints on the exercises to generate. As the problems are built by
the system from these constraints, the result of the generation will not only be a
wording in natural language, but also a model of the problem usable by the solver.

RR-LIRIS-2009-017

AMBRE-teacher: a module helping teachers to generate problems, S. Jean-Daubias, N. Guin. 5

4.1. The problem generation environment for the teacher

We designed and implemented a tool for problem generation dedicated to teachers,
for the word additive problems domain suited to AMBRE-add used in primary school.
Problems of this domain describe concrete situations, for example a marbles play:
“Alex had 32 marbles. At the end of play, he has 45. How many marbles did he win?”.
This domain has been widely studied in mathematical didactics and several problems
classifications have been established. The one we use in AMBRE-add is presented in [5].

For word additive problems, the teacher can define constraints of four types:
structure features, surface features, values and complication (Figure 1 gives an
overview of constraints available in AMBRE-teacher).

Figure 1. Report screen of the teacher environment of AMBRE-add,
with the preview of an exercise generated by the system.

The structure of a problem to be generated corresponds to the class of the problem.
This class is defined by several attributes that can be set or not.

Surface features are the elements that complete the produced wording. The teacher
can specify some elements of this category, for example themes, objects and characters.

He can also choose the values of the data that will be used in the problems or define
an interval for each required values and the wanted difference between min and max
values, allowing the carrying over or not, etc.

Complication concerns all options proposing to complicate the wording of the
problem to adapt it to the students’ level. Designing this part required a close
collaboration with teachers to identify their needs. The environment proposes language
complications and complications of the wording itself. For word additive problems,

RR-LIRIS-2009-017

AMBRE-teacher: a module helping teachers to generate problems, S. Jean-Daubias, N. Guin. 6

complication takes the form of vocabulary used and turn of phrases complexity, writing
of numbers in full, modification of the sentences order, addition of distractor sentences,
addition of non pertinent data.

Not all constraints are mandatory for the exercises creation. Constraints not
specified by the teacher will be randomly defined by the system. Figure 1 presents the
report screen of the teacher module of AMBRE-add. This screen sums up the constraints
defined by the teacher for the four categories of constraints and presents an example of
problem which could be generated from these constraints.

The four categories defined for word additive problems are not reusable as it for
another application domain of AMBRE. Nevertheless, structure features, surface
features, and probably complication will still be necessary. Values will only be present
for numerical domains.

4.2. The GenAMBRE architecture

The problem generation process that we established in the GENAMBRE architecture
takes as input the set of constraints specified by the teacher and gives as output two
elements: the wording of the problem in natural language for the learner and a
computer-usable formulation of the wording named descriptive model of the problem,
for AMBRE problems solver.

The problem generator architecture for AMBRE is presented in Figure 2 and each of
its components is presented in the following of the section. For a D domain (for
example the additive word problems domain), the five knowledge bases of the domain
level required by the generation level must be defined by using the domain independent
formalisms of knowledge representation. The problem generation process is done in
two stages: the system builds a problem generation model, then builds the wording in
natural language and the descriptive model of the problem. Both these processes are
domain independent. Both processes and the knowledge bases of the D domain,
constitute together a problem generator for the D domain: GenAMBRE-D.

Classification knowledge For each application domain, an expert gives to AMBRE
solver, and consequently to GenAMBRE generator, a problems classification graph. This
hierarchy of classes is used by the solver to classify the problem. This is a domain
dependant class hierarchy, but its representation is the same for all domains.

Knowledge of the themes To generate a problem, it is necessary to know the
concerned theme and the associated surface features (for example objects, characters
and actions). Knowledge of the themes is given by the expert, or created by the teacher
himself, through the surface features management module of AMBRE-teacher.

RR-LIRIS-2009-017

AMBRE-teacher: a module helping teachers to generate problems, S. Jean-Daubias, N. Guin. 7

Figure 2. The GenAMBRE architecture.

Complication knowledge For additive problems, complicating a wording mainly
consists in changing the sentences order and adding distractor sentences. So
complication knowledge answers the following questions: how can one modify the
order of the sentences of the problem? What distractor sentences can we add to
problems and where can we place them?

Generation of the problem model process From the three knowledge bases
previously described and from the constraints keyed in by the teacher, the system has to
generate what we call a generation of the problem model. This model is an extensive
descriptive model, because it also details the problem class and its theme. To build this
model, the process fulfills the constraints defined by the teacher, notably by choosing
random values for the undefined constraints.

Grammatical knowledge The domain expert must furnish a grammar to the
generation system, that is to say a set of sentences structures that could be used in the
domain.

Knowledge on the sentences The generated sentences, notably their structure,
depend on the class of the problem. It is therefore necessary to know what sentences
structures (from the grammar) could be used for the problem to be generated to permit
to generate the wording in natural language. So, knowledge on the sentences allows to
associate the class of the problem to the usable sentences structures, and the associated
elements of the problem.

Generation of the problem wording process To generate a wording in natural
language, the process uses knowledge on the sentences and domain grammar, as well as
the generation of the problem model previously created. Knowledge on the sentences
allows the system to take conceptual decisions (deciding what to tell), then the process
goes to the text generation step, and establishes syntactical treatments (deciding how to
tell it), lexical and morphological treatments (deciding how to write it).

RR-LIRIS-2009-017

AMBRE-teacher: a module helping teachers to generate problems, S. Jean-Daubias, N. Guin. 8

4.3. Implementation of AMBRE-teacher for AMBRE-add

We implemented this generator for the domain of word additive problems, by
supplying our generic architecture with all the knowledge bases necessary for this
domain. The AMBRE-teacher interface is done in Delphi. Prolog is used for the
knowledge management part and all AI treatments. XML files are used for the
communication between Delphi and Prolog.

Figure 3. Examples of exercises generated by Ambre-teacher for Ambre-add: problems and solutions
(translated from French).

The system allows to create problems for AMBRE-add. On one hand AMBRE-teacher
generates problems wordings in linguistically correct natural language, matching the
constraints defined by the teacher and suitable to teachers’ expectations (cf. Figure 3
for examples of generated problems and solutions). On the other hand, it generates
descriptive models of the problems (cf. Figure 4 to see the descriptive model of the
third problem of Figure 3) suited AMBRE-add’s requirements (Figure 5 shows the use of
this problem in the learner module).

RR-LIRIS-2009-017

AMBRE-teacher: a module helping teachers to generate problems, S. Jean-Daubias, N. Guin. 9

wording_natural(EXres_sub_val,'Its four pm. Ethan had red marbles before playtime. He lost

twenty-seven of them by playing with his friends. Now he has twenty. Look for the initial number

of Ethan’s red marbles.').

wording_plan(EXres_sub_val,[[['number of Ethan’s red marbles', 'initial']], 'lost', 'twenty-seven

of them', 'has twenty']).

distractor_sentences(EXres_sub_val,['Its four o’clock pm.']).

theme_pb(EXres_sub_val,game).

fact(problem(EXres_sub_val)).

fact(verb(EXres_sub_val,'lose')).

fact(action(EXres_sub_val,p)).

fact(is_a(p,play)).

fact(participants(p,'Ethan',i)).

fact(is_a('Ethan',person)).

fact(play(p,t1,t2)).

fact(has('Ethan',t1,e)).

fact(is_a(e,set)).

fact(all_element(e,z)).

fact(is_a(z,'blue marble')).

fact(size(e,t)).

fact(lost('Ethan',p,m27)).

fact(is_a(m27,set)).

fact(all_element(m27,y)).

fact(is_a(y,'blue marble')).

fact(size(m27,27)).

fact(has('Ethan',t2,m20)).

fact(is_a(m20,set)).

fact(all_element(m20,x)).

fact(is_a(x,'blue marble')).

fact(size(m20,20)).

fact(to_compute(EXres_sub_val,t).

Figure 4. Example of descriptive model of a problem generated by AMBRE-teacher for AMBRE-add
(translated from French).

Figure 5. Example of a problem generated by AMBRE-teacher used in AMBRE-add, the learner
module.

RR-LIRIS-2009-017

AMBRE-teacher: a module helping teachers to generate problems, S. Jean-Daubias, N. Guin. 10

5. Conclusion

In this paper, we presented how we designed a module dedicated to teachers for the
AMBRE-add ILE, to allow them to adapt the ILE to the learning context and to their
pedagogical approach. By adopting a generic approach, we identified, with the help
from teachers, functionalities that a teacher module must propose for an AMBRE ILE
(AMBRE-teacher). We have also enabled the teacher to configure the environment,
generating problems suited to his needs, creating learning sequences suited to his
students by choosing the problems and the behavior of the ILE, assigning these
sequences to his students, and creating new themes of exercises.

These functionalities are implemented for the word additive problems domain. For
this, we designed a problem generation system whose architecture is domain
independent. Even if we integrated teachers in the design of AMBRE-teacher, it is now
necessary to evaluate it in actual classroom situations with a significant number of
teachers. Finally, we must also validate the functionalities defined for AMBRE-teacher
and the genericity of the GenAMBRE architecture by implementing a teacher module for
an AMBRE ILE for another domain.

6. References

[1] Bouhineau, D., Channac, S. (1996). La programmation logique par contraintes pour l’aide à
l’enseignant, Intelligent Tutoring Systems (ITS’1996), Canada.

[2] Burton, R. R. (1982). Diagnosing bugs in a simple procedural skill. Intelligent Tutoring
Systems. London, Academic Press, 157-184.

[3] David, J.-P., Cogne, A. and Dutel, A. (1996). Hypermedia exercises prototyping and
modelising. Computer Aided Learning and Instruction in Science and Engineering. S. B.
Heidelberg, 252-260.

[4] David, J.P., Guilloux, C., Flament, A. (2002). A learning objects generator with xml-xslt
technology, Conférence TICE2002, session ARIADNE.

[5] Duclosson, N. (2004). Représentation des connaissances dans l’EIAH AMBRE-add,
TICE’2004 conference, France, 164-171.

[6] Giroire, H. (1989). Un système à base de connaissances pour la génération d’exercices dans
des domaines liés au monde réel, PhD Thesis, Université Paris 6.

[7] Jean-Daubias, S. (2009). Differentiated design: a design method for ILE. Research report
RR-LIRIS-2009-015.

[8] Jean-Daubias, S. and Eyssautier-Bavay, C. (2005). An environment helping teachers to
track students' competencies, Workshop Learner Modelling for Reflection, Artificial
Intelligence in Education (AIED'2005), Netherlands, 19-23.

[9] Leroux, P. (1997). ROBOTEACH : un assistant pédagogique logiciel dédié à
l'alphabétisation en technologie, Actes du cinquième Colloque International sur la
Robotique Pédagogique, Montréal, Canada, 45-63.

RR-LIRIS-2009-017

AMBRE-teacher: a module helping teachers to generate problems, S. Jean-Daubias, N. Guin. 11

[10] Leroux, P. (2002). Machines partenaires des apprenants et des enseignants – Étude dans la
cadre d’environnements supports de projets pédagogiques, Habilitation à Diriger des
Recherches en Informatique de l’Université du Maine, Le Mans.

[11] Nicaud J.F., Bouhineau, D., Chaachoua, H. (2004). Mixing microworld and cas features in
building computer systems that help students learn algebra, International Journal of
Computers for Mathmatical Learning, vol. 9, 169-211.

[12] Mitrovic, A., Stoinemov, L., Djordjevic-Kajan, S. (1996). INSTRUCT: Modelling Students
by asking questions, User Modelling and User-Adapted Interaction, vol.6-4, 273-301.

[13] Nogry, S., Jean-Daubias, S., Duclosson, N. (2004). ITS Evaluation in Classroom: The Case
of AMBRE-AWP, ITS’2004 conference, 511-520.

[14] Pecego, G. (1998). SYGEP, un Système de Génération d'Énoncés de Problèmes dans des
domaines variés, PhD Thesis, Université Paris 6.

[15] Scaife, M., Rogers, Y. (1999). Kids as Informants: Telling Us What We Didn’t Know or
Confirming What We Knew Already?. The design of Children’s Technology, Allison Druin
(ed.), Morgan Kaufmann, 28-50.

[16] Schuler, D., Namioka, A. (1993). Participatory design: Principles and practices, Lawrence
Erlbaum Associates, Hillsdale.

[17] Vivet, M. (1990). Uses of ITS: Which role for the teacher?, New Directions for Intelligent
Tutoring Systems, NATO ASI series, Vol. F91, Springer-verlag, Sintra.

