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Abstract

In this paper, we derive deterministic inner approximations for single and
joint independent or dependent probabilistic constraints based on classical
inequalities from probability theory such as the one-sided Chebyshev inequal-
ity, Bernstein inequality, Chernoff inequality and Hoeffding inequality (see
[31]). The dependent case has been modelled via copulas. New assump-
tions under which the bounds based approximations are convex allowing to
solve the problem efficiently are derived. When the convexity condition can
not hold, an efficient sequential convex approximation approach is further
proposed to solve the approximated problem. Piecewise linear and tangent
approximations are also provided for Chernoff and Hoeffding inequalities al-
lowing to reduce the computational complexity of the associated optimization
problem. Extensive numerical results on a blend planning problem under un-
certainty are finally provided allowing to compare the proposed bounds with
the Second Order Cone (SOCP) formulation and Sample Average Approxi-
mation (SAA).
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1. Introduction

Chance constrained optimization problems are an important class of op-
timization problems under uncertainty which involve constraints that are re-
quired to hold with specified probabilities. The reader is referred to [36, 41]
for in-deep results and extensive reviews on the theory and applications of
chance constrained optimization problems.

Several applications of chance constraints are considered in economics and
finance [3], water reservoir management [2, 29], system optimization [14], the
electrical industry [48], optimal power flow [47] and many others.

The main difficulty of this class of problems is that their feasible sets
are generally non-convex. On this purpose [32] investigated a wide family
of logarithmically concave distributions, showing that under this assumption
the feasible set is convex. For the case of symmetric elliptical probability
distributions, convex relaxations or reformulations via Second Order Cone
Programming (SOCP) were proposed in [16, 7, 8, 6, 23].

In order to solve chance constrained problems efficiently, we need both
the convexity of the corresponding feasible set and efficient computability of
the considered probability [28]. This combination is rare, and very few are
the cases in which chance constraints can be processed efficiently (see [10,
20]). Moreover, when the random variables are not elliptically distributed,
e.g., truncated distributions, SOCP cannot be used. Whenever this is the
case, bounds and tractable approximations of chance constraints can be very
useful. On this purpose, [33, 35] present a method to obtain sharp lower and
upper bounds based on the knowledge of some of the binomial moments of
the number of events which occur, using linear programming. In particular
[33] shows that by the solution of an aggregated LP problem one can get any
Bonferroni-type bound in an algorithmic way. Partial disaggregation of the
LP problem has been considered by [37], where the obtained lower bounds
generalize the bounds of [9] and [19]. Further Bonferroni-type inequalities
and a summary of them can be found in the book [13] and [4]. Improved
bounds on the probability of the union of events some of whose intersections
are emptly are discussed in [46]. [43] improve the previous bounds using the
shape information of the distribution of the random variable based on the
knowledge of some binomial moments.

Another class of bounds relies on (hyper)graph structures, see [4] and
references therein.

A computationally tractable approximation of chance constrained prob-
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lems could also be given by scenario approaches, based on Monte Carlo sam-
pling techniques [24, 28, 30], where the probabilistic constraint is replaced
by a sampled set of constraints. The sample size is chosen to guarantee that
a solution to the sampled problem is feasible to the probabilistic constrained
one with a high probability. See [27] for a survey of safe and scenario ap-
proximations of chance constraints.

An alternative to scenario approaches consists in providing bounds based
on using deterministic analytical approximations of chance constraints. For
the case of individual chance constraint, the bounds are mainly based on
extensions of Chebyshev inequality which requires the knowledge only of the
first two moments of the distribution [18, 31]. For joint chance constraints,
deterministic equivalent approximations have been discussed in [7, 8, 6, 23]
and for special distributions, such as the multivariate gamma, in [44]. In
[5] a new formulation for approximating joint chance constrained problems
that improves upon the standard approach using Bonferroni inequality is
proposed. The approach decomposes the joint chance constraints into a
problem with individual chance constraints, and then applies safe robust op-
timization approximation on each one of them. Connections with bounds
on the conditional-value-at-risk (CVaR) measure are also provided. Besides,
in [28] a class of analytical approximations of single and joint independent
chance constraints are developed and referred to as Bernstein approxima-
tions. Relaxations and approximations of linear chance constraints in the
setting of a finite distribution of the stochastic parameters has been studied
in [40, 34, 38, 10, 1, 11, 39]. The case of integer programs with probabilistic
constraints has been addressed in [12] and bounds via binomial moments
proposed. They also show how limited information about the distribution
can be used to construct such bounds.

Relaxations for probabilistically constrained stochastic programming prob-
lems in which the random variables are in the right-hand sides of the stochas-
tic inequalities defining the joint chance constraints are reviewed and pro-
vided in [21].

The convexity of chance constraints with dependent random variables
modeled via copulae and random right-hand side has been investigated in
[17].

In this paper, we study deterministic inner approximations (restrictions)
for single and joint independent or dependent probabilistic constraints. The
dependent case has been modelled via copulas. The derived upper bounds
are based on classical inequalities from probability theory such as the one-
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sided Chebyshev inequality, Bernstein inequality, Chernoff inequality and
Hoeffding inequality (see [31]). Notice that our proposed bounds do not re-
quire any particular assumption on probability distributions. We derive new
assumptions under which the bounds based approximations of joint chance
constrained problems are convex and the approximated problem can be op-
timized efficiently. When the convexity condition can not hold, an efficient
sequential convex approximation approach is further proposed to solve the
approximated problem. Piecewise linear and tangent approximations are
also provided for Chernoff and Hoeffding inequalities allowing to reduce the
computational complexity of the associated optimization problem. To the
best of our knowledge, these results are new in the literature since the ma-
jority of the abovementioned contributions deals with symmetric elliptical
distributions.

The bounds are tested on a refinery multiproduct blend planning prob-
lem with uncertain raw materials qualities, where each product is required
to be on specification with a high probability (see [45]). The associated op-
timization model is a joint probabilistic constrained optimization model in
which the number of joint independent chance constraints equals the number
of final products. In each joint chance constraint the uncertainty appears in
the left-hand side coefficient matrix having independent or dependent ma-
trix vector rows, and it ensures that all the qualities are on specification
with a high probability. Extensive numerical results on this problem are pro-
vided allowing to compare the proposed bounds with the Second Order Cone
(SOCP) formulation for individual chance constraints and Sample Average
Approximation (SAA) for joint chance constraints.

The main contributions and research questions of the paper can be sum-
marized as follows:

� to review inner approximations for individual chance constraints based
on classical probabilistic inequalities such as the one-sided Chebyshev,
Chernoff, Bernstein and Hoeffding inequalities (see [31]);

� to extend such approximations to the joint independent and dependent
case with copulas;

� to derive new sufficient conditions under which the aforementioned ap-
proximations are tractable via logarithmic transformation;

� to propose a sequential convex approximation method for the cases in
which a logarithmic transformation cannot be applied;
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� to provide an extensive numerical campaign based on a blending prob-
lem, with the aim of:

– understanding the performance of the considered inner approx-
imations in terms of percentage GAP, CPU time and optimal
blending recipes with respect to the exact SOCP reformulation
for the single chance constraint case and with respect to the Sam-
ple Average Approximations (SAA) method for the joint chance
constraints case;

– reducing the computational complexity of the derived problems
via a piecewise linear approximation based on tangent and seg-
ment approximations;

– analyzing the sensitivity of the solution for increasing values of
considered products qualities;

– analyzing the performance of the solutions obtained using the
aforementioned bounds over the realization of different probability
distributions including truncated distributions;

– providing managerial insights on the usage of bounds.

The paper is organized as follows: Section 1 revises basic facts about
copulas necessary for our following investigation. Section 3 investigates how
to derive Chebyshev, Chernoff, Bernstein and Hoeffding bounds both for in-
dividual and joint probabilistic constrained problems. A refinery blending
problem under uncertainty is described in Section 4 and a probabilistic con-
strained model for this problem presented. Numerical results on the refinery
blend planning problem are in Section 5. Conclusions follow.

2. Basic facts about copulas

We first mention some basic facts about copulas necessary for our follow-
ing investigation. For most of the notions here we refer to the book [26].
Definition 1. A copula is the distribution function C : [0, 1]K → [0, 1]
of some K-dimensional random vector whose marginals are uniformly dis-
tributed on [0, 1].

Proposition 1 (Sklar’s Theorem [42]). For any K-dimensional distribution
function F : RK → [0, 1] with marginals F1, . . . , FK , there exists a copula C
such that

∀z ∈ R
K , F (z) = C(F1(z1), . . . , FK(zK)).
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If, moreover, Fk are continuous, then C is uniquely given by

C(u) = F (F−1
1 (u1), . . . , F

−1
K (uK)).

Otherwise, C is uniquely determined on range F1 × . . .× range FK .

Sklar’s Theorem allow us to handle an arbitrary dependence structure.
Notice that if we know the marginal distributions Fk together with the copula
representing the dependence, we can exactly determine the joint distribution.
Secondly, the copula can be uniquely derived from the knowledge of the joint
and all marginal distributions.

Consider the following two classes of copulas:

1. Independent (product) copula, defined by

C∏(u) :=
K∏
k=1

uk.

Indeed, the independent copula represents the joint distribution of in-
dependent random variables uk, k = 1, . . . , K.

2. Gumbel-Hougaard family of copulas, given for a θ ≥ 1 by

Cθ(u) := exp

−

[
K∑
k=1

(− lnuk)
θ

]1/θ .

It is easy to see that the independent copula is a special case of the
Gumbel-Hougaard copula with θ = 1.

3. Bounds for probabilistic constrained problems

We consider the following joint chance constrained linear program:

min
x

cTx

s.t. P {Ξx ≤ H} ≥ α,

x ∈ X, (1)

where H = (h1, . . . , hK) ∈ R
K , Ξ = [ξ1, . . . , ξK ]

T is a K × n random matrix,
with ξk, k = 1, . . . , K a random vector in Rn. We denote with P a probability

6



measure, x a decision vector with feasible set X ⊆ R
n
+, c ∈ R

n and 0 < α <
1 a prespecified confidence parameter. Notice that the objective function
parameters c can also be considered as random variables. For the sake of
simplicity we replace them by their means. Our goal is to come up with a
deterministic equivalent problem of (1) such that the feasible set S(α) :=
{x ∈ X : P

{
ΞTx ≤ H

}
≥ α} of (1) is convex.

In particular, an individual chance constrained problem can be written
as follows:

min
x

cTx

s.t. P
{
ξTx ≤ h

}
≥ α,

x ∈ X. (2)

If we consider the case of a multivariate normally distributed vectors ξ
with mean ξ̄ = E(ξ) and positive definite variance-covariance matrix Σ, the
following relations hold true:

P(ξTx ≤ h) ≥ α, (3)

⇕
ξ̄Tx+ F−1(α)

∥∥Σ1/2x
∥∥ ≤ h, (4)

where F−1(·) is the inverse of F , the standard normal cumulative distribu-
tion function. The same scheme can be applied to elliptical distributions, e.g.,
normal distribution, Laplace distribution, t-Student distribution, Cauchy dis-
tribution, Logistic distribution [7, 23].

We now consider the joint chance constrained case. For each k = 1, . . . , K,
we assume that ζk(x) = ξTk x. Therefore, the chance constraint P{Ξx ≤ H} ≥
α can be equivalently rewritten as

P{ζk(x) ≤ hk, ∀k} ≥ α.

We have the following result:

Lemma 2. If the random vector (ζ1(x), · · · , ζK(x))T has a joint distribution
driven by the Gumbel-Hougaard copula Cθ with some θ ≥ 1, then the chance
constraint P{Ξx ≤ H} ≥ α can be equivalently reformulated as

P{ξTk x ≤ hk} ≥ αy
1/θ
k , k = 1, . . . , K,

K∑
k=1

yk = 1,

yk ≥ 0, k = 1, . . . , K.
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The proof is similar to the proof of Lemma 1 in [6].
In particular, if ξk, k = 1, . . . , K are independent row vectors, P {Ξx ≤ H} ≥

α is equivalent to

K∏
k=1

P
{
ξTk x ≤ hk

}
≥ α =

K∏
k=1

αyk , (5)

with
∑K

k=1 yk = 1, yk ≥ 0, k = 1, . . . , K and y = (y1, . . . , yK)
T .

Remark 3. We can notice that, when θ = 1, the reformulation with Gumbel-
Hougaard copula is equivalent to the reformulation under independent as-
sumption.

When the probability distributions are not elliptical or not known in ad-
vance, lower and upper bounds on the individual or joint chance constraints,
can be very useful. We will investigate them in the following sections.

3.1. Chebyshev and Chernoff Bounds

In the following, we provide bounds for problems (1) and (2) based on
deterministic approximations of probabilistic inequalities such as the one-
sided Chebyshev and Chernoff inequalities.

3.1.1. Chebychev bounds

We consider the one-sided Chebyshev inequality [31, 22]. We assume that
ξ has finite second moments and denote σ2

ξ = V ar(ξ) and ξ̄ = E(ξ) its mean.
The one-sided Chebyshev inequality is given by

P(ξ − ξ̄ ≥ h) ≤
σ2
ξ

σ2
ξ + h2

. (6)

For the individual chance constraint problem (2), we have the following
result:

Proposition 2. Assume that ξ has finite first and second moments with
variance-covariance matrix Σ and mean ξ̄. Under one-sided Chebyshev in-
equality (6), an inner approximation of Problem (2) is obtained as follows

min
x

cTx

s.t. ξ̄Tx+

√
α

1− α

∥∥Σ1/2x
∥∥ ≤ h,

x ∈ X. (7)
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Moreover, (7) is a convex problem.

Proof. First, we note that, assuming P(ξTx = h) = 0 a.s., then

P
(
ξTx ≤ h

)
≥ α, (8)

⇕
P
(
ξTx≥h

)
≤ 1− α, (9)

⇕
P
(
ξTx− ξ̄Tx≥h− ξ̄Tx

)
≤ 1− α. (10)

Then, we apply (6) to (10):

P
(
ξTx− ξ̄Tx≥h− ξ̄Tx

)
≤

σ2
ξ

σ2
ξ + (h− ξ̄Tx)2

, (11)

where σ2
ξ = xTΣx with variance-covariance matrix Σ. If

σ2
ξ

σ2
ξ+(h−ξ̄T x)2

≤ 1−α,

then (8) will be satisfied. Therefore,

xTΣx

xTΣx+ (h− ξ̄Tx)2
≤ 1− α,⇐⇒ α

1− α
xTΣx ≤ (h− ξ̄Tx)2,

which is equivalent to √
α

1− α

∥∥Σ1/2x
∥∥ ≤ h− ξ̄Tx. (12)

In the following, we extend our results to the case of joint chance con-
straints.

We now provide an upper bound to problem (1) based on the one-sided
Chebyshev inequality. We assume that ξk, k = 1, . . . , K has finite second
moments. Let σξk = V ar(ξk) be the variance of ξk with variance-covariance
matrix Σk and ξ̄k = E(ξk) its mean. The following result holds true:

Proposition 3. Assume that the random vectors ξk, k = 1, . . . , K have
a joint distribution driven by the Gumbel-Hougaard copula Cθ with some
θ ≥ 1. Based on one-sided Chebyshev inequality, an inner approximation of
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joint chance constrained problem (1) can be obtained by solving the following
non linear optimization problem

min
x,y

cTx

s.t. ξ̄Tk x+

√
αy

1/θ
k

1− αy
1/θ
k

∥∥∥Σ1/2
k x

∥∥∥ ≤ hk, k = 1, . . . , K,

K∑
k=1

yk = 1, yk ≥ 0, k = 1, . . . , K, x ∈ X. (13)

Proof. From Lemma 2 and the inner approximation for individual chance
constraint based on Chebyshev inequality, we can immediately obtain the
conclusion.

Assumption 4. X = R
n
+ ∩ L, L is selected such that Z = {z ∈ R

n : zj =
ln(xj), j = 1, . . . , n, x ∈ L} is convex.

Problem (13) is not convex but biconvex (see [15] for the definition) be-
cause of the first group of constraints. To come-up with a tractable convex
reformulation, with Assumption 4, we use the following logarithmic transfor-
mation z = lnx. In this case, Problem (13) can be reformulated as follows

min
z,y

cT ez

s.t. ξ̄Tk e
z +

∥∥∥∥∥∥∥∥Σ
1/2
k e

ln

√√√√ α
y
1/θ
k

1−α
y
1/θ
k

·en+z

∥∥∥∥∥∥∥∥ ≤ hk, k = 1, . . . , K,

K∑
k=1

yk = 1, yk ≥ 0, k = 1, . . . , K, z ∈ Z. (14)

where en is an n× 1 vector of ones.
We now prove that problem (14) is convex for all α ∈ [0, 1].

Lemma 5. Given the sets X, Y, Z with X, Y convex sets; let f : X → Y be
a convex function in C2 and g : Y → Z be a nonincreasing concave function
in C2. Then, g ◦ f : X → Z is a concave function.
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The proof is given in Appendix A.

Assumption 6. c ≥ 0. For each k = 1, . . . , K, all the components of ξ̄k and
Σ

1/2
k are non-negative.

Proposition 4. If Assumptions 4 and 6 hold, then problem (14) is convex
for all α ∈ [0, 1].

Proof. To show the convexity of problem (14), we firstly need to show the

convexity of ln

(√
α
y
1/θ
k

1−α
y
1/θ
k

)
in yk, when

√
αyk

1−αyk
≥ 0. As ln

(√
α
y
1/θ
k

1−α
y
1/θ
k

)
=

1
2

(
y
1/θ
k lnα− ln

(
1− αyk

1/θ
))

and y
1/θ
k lnα is convex since y

1/θ
k is concave, we

can deduce the convexity of function ln

(√
αyk

1/θ

1−αyk
1/θ

)
if the term ln

(
1− αyk

1/θ
)

is concave.
Since p 7→ ln (1− p) is decreasing and concave with respect to p and

yk 7→ αy
1/θ
k is convex as θ ≥ 1 with respect to yk, we have that ln

(
1− αy

1/θ
k

)
is concave with respect to yk as shown by Lemma 5.

Since the norm is a convex function and it is also a nondecreasing function

on nonnegative space, then the composition function

∥∥∥∥∥∥∥∥Σ
1/2
k e

ln

√√√√ α
y
1/θ
k

1−α
y
1/θ
k

·en+z

∥∥∥∥∥∥∥∥
is a convex function. Moreover, the function z 7→ ξ̄Tk e

z in problem (14) is
convex because ξ̄k ≥ 0. Hence, the problem (14) is convex for all α ∈ [0, 1].

When Assumption 4 does not hold, a natural approach is to apply the
sequential convex approximation by adjusting yk, k = 1, . . . , K with respect
to x. Following [23], given y∗k such that

∑K
k=1 y

∗
k = 1, y∗k ≥ 0, we first fix

yk = y∗k and obtain x∗ by solving

min
x

cTx

s.t. ξ̄Tk x+

√
α(y∗k)

1/θ

1− α(y∗k)
1/θ

∥∥∥Σ1/2
k x

∥∥∥ ≤ hk, k = 1, . . . , K,

x ∈ X, (15)
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and then fix x = x∗ and update yk by solving

min
y

ψTy

s.t.

√
αy

1/θ
k

1− αy
1/θ
k

≤ hk − ξ̄Tk x
∗∥∥∥Σ1/2

k x∗
∥∥∥ , k = 1, . . . , K,

K∑
k=1

yk = 1, yk ≥ 0, k = 1, . . . , K. (16)

Here, ψ is a chosen searching direction. The constraint√
αyk1/θ

1− αyk1/θ
≤ hk − ξ̄Tk x

∗∥∥∥Σ1/2
k x∗

∥∥∥ ,
can be reformulated as

yk ≥
(
logα

(τnk )
2

1 + (τnk )
2

)θ

,

where τnk =
hk−ξ̄Tk x∗∥∥∥Σ1/2

k x∗
∥∥∥ .

Theorem 2 in [23] shows the convergence of this algorithm, which provides
an upper bound for problem (13).

3.1.2. Chernoff bounds

We consider now the Chernoff bound :

P(ξ ≥ h) ≤ E(etξ)

eth
, (17)

where E(etξ) is the moment generating function of the random variable ξ and
t > 0. We denote with ξ̄ the mean of ξ and with σ2 = V ar(ξ) its variance.

First, we proof the convexity of E(etξ
T x).

Lemma 7. For any t > 0, x 7→ E(etξ
T x) is a convex function.

The proof is given in Appendix A.
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Proposition 5. If ξ follows a normal distribution with mean vector ξ̄ and
variance-covariance matrix Σ, under Chernoff bound (17), an inner approxi-
mation of Problem (2) is obtained as follows

min
x

cTx

s.t. ξ̄Tx+

√
2 ln

1

(1− α)

∥∥Σ1/2x
∥∥ ≤ h,

x ∈ X. (18)

Moreover, Problem (18) is a convex optimization problem.

Proof. First, we have from (9)

P(ξTx ≤ h) ≥ α ⇐⇒ P(ξTx ≥ h) ≤ 1− α.

This implies

P(ξTx ≥ h) ≤ E(etξ
T x)

eth
. (19)

Given t > 0, if we choose E(etξ
T x)

eth
≤ 1 − α, then we get an upper bound to

problem (2) with feasible region

S̄(α) =
{
x ∈ X ⊆ R

n
+|E(etξ

T x) ≤ (1− α)eth
}
, (20)

which is convex as x 7→ E(etξ
T x) is convex, as shown by Lemma 7.

If ξ is a normal distribution with mean ξ̄ and variance-covariance Σ, i.e.
ξ ∼ N(ξ̄,Σ) then in (20) we have E(etξ

T x) = etξ̄
T x · e 1

2
xTΣxt2 . The feasible

region S̄(α) can be written as:

S̄(α) =

{
x ∈ X ⊆ R

n
+|∃ t > 0 :

1

2
xTΣxt2 + tξ̄Tx− th ≤ ln(1− α)

}
. (21)

The set (21) is equivalent to:

inf
t>0

{
1

2
xTΣxt2 + tξ̄Tx− th

}
≤ ln(1− α). (22)

From d
dt
(1
2
xTΣxt2 + tξ̄Tx− th) = 0, we get t = h−ξ̄T x

xTΣx
. Since t > 0 we require

h− ξ̄Tx > 0.
Therefore (21) is equivalent to

S̄(α) =
{
x ∈ X ⊆ R

n
+| − (h− ξ̄Tx)2 ≤ 2 ln(1− α)xTΣx

}
, (23)
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which is equivalent to the following convex set:

S̄(α) =

{
x ∈ X ⊆ R

n
+|h− ξ̄Tx ≥

√
2 ln

1

(1− α)
∥Σ1/2x∥

}
. (24)

We extend our results to the case of joint chance constraints.
If we assume that ξk, k = 1, . . . , K are multivariate normally distributed

row vectors having a joint distribution driven by the Gumbel-Hougaard cop-
ula, with mean vector ξ̄k = (ξ̄k1, . . . , ξ̄kn)

T and covariance matrix Σk, we can
derive a deterministic reformulation of problem (1) based on (5). We consider
now an upper bound to problem (1) based on Chernoff bound.

Proposition 6. If ξk, k = 1, . . . , K are normally distributed with mean
vector ξ̄k and covariance matrix Σk having a joint distribution driven by the
Gumbel-Hougaard copula Cθ with some θ ≥ 1, based on Chernoff bound,
an inner approximation of Problem (1) is obtained by solving the following
problem

min
z,y

cTx

s.t. ξ̄Tk x+

√
2 ln

(
1

1− αyk1/θ

)
∥Σ1/2

k x∥ ≤ hk, k = 1, . . . , K,

K∑
k=1

yk = 1, yk ≥ 0, k = 1, . . . , K, x ∈ X. (25)

Proof. First, we note that

P(ξTk x ≤ hk) ≥ αyk
1/θ ⇐⇒ P(ξTk x ≥ hk) ≤ 1− αyk

1/θ

, k = 1, . . . , K.

Chernoff bound leads to

P(ξTk x ≥ hk) ≤
E(etξ

T
k x)

ethk
, k = 1, . . . , K, (26)

given t > 0. An upper bound to problem (1) is then obtained by solving the
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following problem for a given t > 0:

min
z,y

cTx

s.t. E(etξ
T
k x) ≤ (1− αyk

1/θ

)ethk , k = 1, . . . , K,
K∑
k=1

yk = 1, yk ≥ 0, k = 1, . . . , K, x ∈ X. (27)

However, if the probability distributions of ξk, k = 1, . . . , K are not
known, the main difficulty of the model (27) is given by the computation
of E(etξ

T
k x). On the other hand, if we assume ξk, k = 1, . . . , K are normal

distributions with mean ξ̄k and variance-covariance Σk, i.e. ξk ∼ N(ξ̄k,Σk),

then we have that E(etξ
T
k x) = etξ̄

T
k x · e 1

2
xTΣkxt

2
, k = 1, . . . , K. Consequently

problem (27) can be written as

min
z,y

cTx

s.t.
1

2
xTΣkxt

2 + tξ̄Tk x− thk ≤ ln(1− αyk
1/θ

), k = 1, . . . , K,

K∑
k=1

yk = 1, yk ≥ 0, k = 1, . . . , K, x ∈ X. (28)

Similarly to the individual chance constraint case, we have:

min
z,y

cTx

s.t. hk − ξ̄Tk x ≥

√
2 ln

(
1

1− αyk1/θ

)
∥Σ1/2

k x∥, k = 1, . . . , K,

K∑
k=1

yk = 1, yk ≥ 0, k = 1, . . . , K, x ∈ X.

Problem (25) is not a convex optimization problem. Therefore, with
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Assumption 4, we apply the transformation z = lnx and get:

min
z,y

cT ez

s.t. ξ̄Tk e
z +

∥∥∥∥∥∥∥∥∥Σ
1/2
k e

ln


√√√√√2 ln

 1

1−α
y
1/θ
k


+z

∥∥∥∥∥∥∥∥∥ ≤ hk, k = 1, . . . , K,

K∑
k=1

yk = 1, yk ≥ 0, k = 1, . . . , K, z ∈ Z. (29)

Moreover, if ξ̄k ≥ 0, k = 1, 2, . . . , K, and the function ln

(√
2 ln

(
1

1−α
y
1/θ
k

))
is convex, then Problem (29) is convex. The following lemma shows the con-

vexity of ln

(√
2 ln

(
1

1−α
y
1/θ
k

))
.

Lemma 8. If α ≥ 1−e−1 ≈ 0.6321, then the function yk 7→ ln

(√
2 ln

(
1

1−α
y
1/θ
k

))
is convex.

The proof is given in Appendix A. Therefore, when c ≥ 0, α ≥ 1 − e−1,
ξ̄k ≥ 0, k = 1, 2, . . . , K, problem (29) is convex.

When Assumption 4 and the convexity condition for problem (29) do not
hold, a sequential convex approximation algorithm can be applied to problem
(25) in a similar way of what proposed before for Chebyshev bounds.

Notice that SOCP requires the inverse of a CDF which is typically a
difficult function to deal with in the case of joint chance constraints. However,
Chernoff bound doesn’t require any CDF function, and its main advantage
is then its easy-use especially from implementation point of view (the CDF
is not implemented in current software platform developments). Moreover,
the Chernoff bound can be applied with any distribution if the corresponding
generated moment function can be reformulated explicitly.

3.2. Bernstein and Hoeffding Bounds

Bernstein and Hoeffding bounds are considered as exponential type esti-
mates of probabilities. These inequalities are frequently used for investigating
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for instance the law of large numbers. They are also often used in statistics
and probability theory. In this section, we investigate these bounds for the
case of individual (2) and joint chance constraints (1).

3.2.1. Bernstein bounds

In this section, we consider Bernstein bound [31]. We assume that the
mean and the range parameters for all independent components ξi of the
random vector ξ are known, i.e. li ≤ ξi ≤ ui, and E(ξi) = ξ̄i, for i = 1, . . . , n.
The Bernstein-type exponential estimate, given by

e−g∗h
n∏

i=1

{
ui − ξ̄i
ui − li

eg
∗li +

ξ̄i − li
ui − li

eg
∗ui

}
≤ α, (30)

with arbitrary g∗ > 0, implies P(
∑n

i=0 ξi ≥ h) ≤ α.

Proposition 7. Given a random vector ξ with components ξi such that
li ≤ ξi ≤ ui, and E(ξi) = ξ̄i, for i = 1, . . . , n, an upper bound for problem (2)
can be obtained by solving the following problem

min
x

cTx

s.t.
n∑

i=1

ln

{
ui − ξ̄i
ui − li

eg
∗lixi +

ξ̄i − li
ui − li

eg
∗uixi

}
≤ ln(1− α) + g∗h,

x ∈ X (31)

with arbitrary constant g∗ > 0.

Proof. Applying Bernstein inequality to the chance constraint in (2), and
passing to the logarithm both sides, the proof follows.

We provide now an upper bound to Problem (1) based on the Bernstein
inequality.

Proposition 8. Given the random vectors ξk for k = 1, . . . , K, having a joint
distribution driven by the Gumbel-Hougaard copula Cθ with some θ ≥ 1,
with components (ξk)i such that (lk)i ≤ (ξk)i ≤ (uk)i, and E[(ξk)i] = (ξ̄k)i,
for k = 1, . . . , K and i = 1, . . . , n, an inner approximation of Problem (2)
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can be obtained by solving the following problem

min
x,y

cTx

s.t.
n∑

i=1

ln

{
(uk)i − (ξ̄k)i
(uk)i − (lk)i

eg
∗
k(lk)ixi +

(ξ̄k)i − (lk)i
(uk)i − (lk)i

eg
∗
i (uk)ixi

}
≤ g∗khk +

ln(1− αy
1/θ
k ), k = 1, . . . , K,

K∑
k=1

yk = 1, yk ≥ 0, k = 1, . . . , K, x ∈ X, (32)

with arbitrary constants g∗k > 0, k = 1, . . . , K.

Proof. According to Bernstein-type exponential estimate, the condition

e−g∗khk

n∏
i=1

{
(uk)i − (ξ̄k)i
(uk)i − (lk)i

eg
∗
k(lk)ixi +

(ξ̄k)i − (lk)i
(uk)i − (lk)i

eg
∗
k(uk)ixi

}
≤ αy

1/θ
k , (33)

with arbitrary g∗k > 0, implies P(
∑n

i=0(ξk)ixi ≥ hk) ≤ αy1θk , k = 1, . . . , K.
We note that

P
(
ξTk x ≤ hk

)
≥ αy

1/θ
k , k = 1, . . . , K, (34)

⇕

P

(
n∑

i=1

(ξk)ixi ≥ hk

)
≤ 1− αy

1/θ
k , k = 1, . . . , K. (35)

Problem (35) can be approximated as

n∑
i=1

ln

{
(uk)i − (ξ̄k)i
(uk)i − (lk)i

eg
∗
k(lk)ixi +

(ξ̄k)i − (lk)i
(uk)i − (lk)i

eg
∗
k(uk)ixi

}
≤ ln(1−αy

1/θ
k ) + g∗khk,

for any g∗k > 0, k = 1, . . . , K.

From Proposition 4.1 in [31] and the concavity of function ln(1− αy
1/θ
k ),

problem (32) is convex.
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3.2.2. Hoeffding bounds

We consider now an approximation based on Hoeffding inequality ([18])
given as follows:

P(
ξT en
n

− ξ̄T en
n

≥ h) ≤ e
−2n2h2∑n

i=1
(ui−li)

2
, (36)

with li, ui the range parameters of the independent components ξi of the
random vector ξ, i.e. li ≤ ξi ≤ ui, i = 1, . . . , n, ξ̄ = E(ξ) and en ∈ R

n is a
vector with all elements equal to 1.

Proposition 9. With the assumption of ξ mentioned above, an inner ap-
proximation of Problem (2) can be obtained by solving the following convex
problem

min
x

cTx

s.t. ξ̄Tx+

√
2

2

√
− ln(1− α)∥Mx∥ ≤ h,

x ∈ X, (37)

where M = diag(u− l), u = (u1, . . . , un)
T , l = (l1, . . . , ln)

T .

Proof. We note that

P
(
ξTx ≤ h

)
≥ α, (38)

⇕
P
(
ξTx− ξ̄Tx ≥ h− ξ̄Tx

)
≤ 1− α. (39)

Then, we apply (36) to (39) and get:

P
(
ξTx− ξ̄Tx ≥ h− ξ̄Tx

)
≤ e

−2(h−ξ̄T x)2∑n
i=1

(ui−li)
2x2

i . (40)

If

e
−2(h−ξ̄T x)2∑n
i=1

(ui−li)
2x2

i ≤ 1− α, (41)

then (38) will be satisfied. Logarithmic transformation of (41) leads to

−2(h− ξ̄Tx)2∑n
i=1(ui − li)2x2i

≤ ln(1− α), (42)
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which can be written as

h− ξ̄Tx ≥
√
2

2

√
− ln(1− α)∥Mx∥, (43)

where M = diag(u− l) and then (43) is a convex inequality.

Proposition 10. Assume that the random vectors ξk, k = 1, . . . , K have
a joint distribution driven by the Gumbel-Hougaard copula Cθ with some
θ ≥ 1 and that the mean and the range parameters for all independent
components (ξk)i of ξk are known, i.e. (lk)i ≤ (ξk)i ≤ (uk)i, for k = 1, . . . , K
and i = 1, . . . , n. An inner approximation of problem (1) based on Hoeffding
inequality can be given by

min
x,y

cTx

s.t. ξ̄Tk x+

√
2

2

√
ln

(
1

1− αy
1/θ
k

)
∥Mkx∥ ≤ hk, k = 1, . . . , K,

K∑
k=1

yk = 1, yk ≥ 0, k = 1, . . . , K, x ∈ X, (44)

where Mk = diag(uk − lk), uk = ((uk)1, . . . , (uk)n)
T , lk = ((lk)1, . . . , (lk)n)

T ,
k = 1, . . . , K.

Proof. With almost the same proof as Proposition 9, the conclusion can be
obtained.

Additionally, with Assumption 4, an equivalent inner approximation of
problem (1) based on Hoeffding inequality can be obtained by applying the
following transformation z = lnx:

min
z,y

cT ez

s.t. ξ̄Tk e
z +

1

2
∥Mke

ln


√√√√√2 ln

 1

1−α
y
1/θ
k


+z

∥ ≤ hk, k = 1, . . . , K,

K∑
k=1

yk = 1, yk ≥ 0, k = 1, . . . , K, z ∈ Z. (45)
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From Lemma 8, function ln

(√
2 ln( 1

1−α
y
1/θ
k

)

)
is convex, when α ≥ 1 −

e−1. Hence, if c ≥ 0, α ≥ 1− e−1, Problem (45) is convex.
When Assumption 4 and the convexity condition for problem (45) do not

hold, we should apply a sequential convex approximation algorithm similar
to what proposed before for the Chebyshev bound.

4. A Refinery Blend Planning Problem under Uncertainty

In this section, we describe a problem of refinery operations which was
originally proposed in [45]. An important blend planning problem for a
refinery consists of determining the optimal quantities xip ∈ R+ of material
i ∈ B to blend together to obtain final products p ∈ P to sell on the market.
The refinery operation incurs a cost vi ∈ R+ for producing or acquiring one
unit of blendstock i ∈ B. On the other hand, selling the end product on
the market yields a revenue fp ∈ R+, p ∈ P per unit. The objective of the
refinery is to maximize the profit defined as the difference between revenues
made from selling the end product and the cost of acquiring all blendstocks
taking into account of the maximum production capacity mp of each product
p ∈ P , a maximum flow rate mfi, a density di of each blendstock i ∈ B, and
a maximum target density d̄p of each product p ∈ P .

Typically, quality targets are imposed by law to prevent companies from
selling substandard products which may damage engines and/or pollute the
environment. We denote the target for quality k ∈ K in product p by tkp and
let ζki the random value of quality k in blendstock i ∈ B. We assume that
quality k ∈ K of a product p ∈ P is a linear function of the fraction of each
blendstock used to produce it. Notice that the true qualities of blendstocks
are actually unknown in real life applications. This means that if the operator
considers ζki fixed to a nominal value ζ̄ki, the blending plan will lead to a
significant loss since it will often yield off specification products which cannot
be sold in the market. This issue implies that the refinery operator should
explicitly account for uncertainties. In the following we consider a model
which achieves this goal.

4.1. A probabilistic constrained programming formulation

In this section, we present a probabilistic constrained programming for-
mulation of the refinery blend planning problem under uncertainty described
above. We assume that the uncertain qualities ζki are modeled as random
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variables defined in the probability space (RK×n,F ,P) which consists of the
sample space RK×n, σ−algebra F and probability measure P.
Let us now define the following notation:
Sets:

� B := {1, . . . , n}: set of materials to blend (blendstocks);

� P := {1, . . . , P}: set of final products to produce;

� K := {1, . . . , K}: set of qualities;

Deterministic parameters:

� vi: cost for producing or acquiring one unit of blendstock i ∈ B;

� fp: revenue for selling one unit of product p ∈ P ;

� tkp: target for quality k ∈ K in product p ∈ P ;

� mp: maximum production of each type of gasoline;

� mfi: maximum flow of each blendstock i ∈ B;

� di: density of each blendstock i ∈ B;

� d̄p: maximum target density for product p ∈ P ;

� ζ̄ki: expected value of quality k ∈ K in blendstock i ∈ B;

� α: target probability;

Uncertain parameters:

� ζki: value of quality k ∈ K in blendstock i ∈ B;

Decision variables:

� xip: quantity of blendstock i ∈ B to blend to obtain product p ∈ P .
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The probabilistic constrained programming model for the blend planning
problem is formulated as follows:

min
∑
p∈P

∑
i∈B

(vi − fp)xip (46)

s.t. P

{∑
i∈B

(ζkixip) ≤ tkp
∑
i∈B

xip, ∀k ∈ K

}
≥ α, ∀p ∈ P , (47)∑

i∈B

xip ≤ mp, ∀p ∈ P , (48)∑
p∈P

xip ≤ mfi, ∀i ∈ B, (49)∑
i∈B

dixip ≤ d̄p
∑
i∈B

xip, ∀p ∈ P , (50)

xip ≥ 0,∀i ∈ B, ∀p ∈ P . (51)

The objective function (46) expresses a minimization of the refinery costs de-
fined as the difference between cost of acquiring all blendstocks and revenues
made from selling. Constraints (47) guarantee that each product p ∈ P is on-
specification with probability greater than α only when all qualities k ∈ K
jointly meet their targets. This generates the so-called joint probabilistic
constraints. If these constraints cannot be satisfied, the resulting loss can
be reflected in the objective function. In gasoline blending, for example, if
octane rating is not well maintained in the product, it will damage the engine
and may result in traffic problems. The fine, law sues, and safety issues can-
not be easily quantified. Moreover, if unqualified product is produced in the
refinery, the cost of compensation is significantly larger than the normal op-
erations. How to estimate that cost and processing time is also challenging.
The deterministic resource constraints (48)-(49)-(50) respectively impose a
maximum production of each product, a maximum flow rate of each blend-
stock and a maximum target density of each product. Finally constraints
(51) define the decision variables of the problem.

Problem (46)-(51) is typically noncovex and thus difficult to solve. A
simple approach to deal with it, is to decompose the joint chance constraint
(47), for each product p ∈ P into K individual chance constraints as follows:

P

{∑
i∈B

(ζkixip) ≤ tkp
∑
i∈B

xip

}
≥ α, ∀p ∈ P , ∀k ∈ K, (52)
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which corresponds to an inner approximation to constraint (47) according
to Bonferroni inequality [7]. In the following we will solve problem (46)-(51)
based on probabilistic inequalities derived in Section 3 which will enable us
to obtain much less conservative approximations.

5. Numerical results

In this section, we provide an extensive numerical campaign to investigate
the performance of the bounds proposed in Section 3 on the refinery blend
planning problem under uncertainty (46)-(51), with the aim of:

� understanding the performance of the considered inner approximations
in terms of percentage GAP, CPU time and optimal blending recipes
with respect to the exact SOCP reformulation for the single chance
constraint case (see Subsection 5.1) and with respect to the Sample
Average Approximations (SAA) method for the joint chance constraint
case (see Subsection 5.2);

� reducing the computational complexity of the derived problems via a
piecewise linear approximation based on tangent and segment approx-
imation (see Appendix B);

� analyzing the sensitivity of the solution for increasing values of consid-
ered products qualities;

� analyzing the performance of the solutions obtained using the afore-
mentioned bounds over the realization of different probability distribu-
tions (see Subsection 5.3).

The bounds have been implemented under Matlab R2018b environment
using the CVX software, a modeling system for constructing and solving
convex programs and SeDuMi solver. The computations have been performed
on a 64-bit machine with 8 GB of RAM and a 1.8 GHz Intel i7 processor.

We first considered benchmark instances available in the literature (see
[45]) with some slight modifications as follows: by blending 10 types of inter-
mediate flows B = {1, . . . , 10}, three types of gasoline P = {Type-1, Type-2, Type-3}
are produced. The maximum production of each type of gasoline is mp = 50
and the set of qualities to be met isK = {RVP, (RON+MON)/2, Sulfur, Benzene}.
We assume that the random variable ζki is distributed according to a normal
distribution with mean ζ̄ki and standard deviation σki reported in tables 5-6
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available in the Supplementary Material, respectively. Under this assump-
tion, chance constraints can be equivalently reformulated as Second Order
Cone Programming (SOCP) constraints as in (4). This will allow us to make
a fair comparison of the bounds with the exact SOCP reformulation. Ta-
bles 7-8 in the Supplementary Material report the deterministic parameters
mfi, vi, di, with i ∈ B and d̄p, fp, with p ∈ P . Finally the targets tkp for qual-
ity k ∈ K in product p ∈ P are reported in Table 9. For both the individual
and joint chance constraints cases, we choose a target probability α = 0.95.
Typical values for an oil company are in the range α ∈ [95%; 99%] (see [45]).

Secondly, we generate a set of instances extending the number of qual-
ities up to |K| = 100. The new data (expected values ζ̄ki and standard
deviations σki) are uniformly generated respectively in the intervals [1, 125]
and (0, 1) and reported in Supplementary Material (see Tables 10, 11 and
12). Although the problems which give upper bounds obtained by Cheby-
shev, Chernoff and Hoeffding inequalities for problem (1) are convex under
some conditions, they are still hard to solve directly by current tools because

of the following term: ln

(√
2 ln( 1

1−α
y
1/θ
k

)

)
. In Appendix B we propose piece-

wise linear approximations for this function based on tangent and segment
approximations as in [7].

5.1. The individual chance constrained case

We first consider model (46)-(51) for the blend planning problem where
for any product p ∈ P the probabilistic constraints (47) are replaced by
K individual chance constraints as in equation (52). Table 1 exhibits a
comparison of the objective function optimal values and percentage gaps
of the four bounds (Chebyshev, Chernoff, Hoeffding, and Bernstein) versus
SOCP formulation assuming a normal distribution, as well as the CPU time
(given in seconds) considering the data reported in Tables 5-9. As upper and
lower bounds (uki and lki) for random vector ζki are needed in Bernstein and
Hoeffding bounds, we generate 3000 samples following normal distributions
with means ζ̄ki and standard deviations σki specified before. The maximal
values of these 3000 samples are selected as upper bounds while the minimal
values as lower bounds.

We first refer to the case of a collection of |K|×|P| = 12 individual chance
constraints. Results show that the best upper bound is obtained by Chernoff
reformulation with a percentage gap of only 0.74%, followed respectively by

25



Chebyshev, Bernstein and Hoeffding having a percentage gap of 14.05%. In
terms of CPU time, the most expensive is the Bernstein bound while the
others are relatively comparable with SOCP.

SOCP Chebyshev Chernoff Hoeffding Bernstein
Optimal value -775.86 -747.16 -770.05 -666.85 -717.09
GAP (%) - 3.69% 0.74% 14.05% 7.57%
CPU time 1.3125 0.9531 1.0781 0.8281 2.7344

Table 1: Comparison of SOCP formulation versus bounds for the refinery blending plan-
ning problem with |K| × |P| = 12 individual chance constraints as in (52).

The blending recipes xip for the three types of gasolines (Type-1, Type-2,
Type-3) over the ten blendstocks, are shown in Figures 1(a)-2 in Supple-
mentary Material, for the SOCP formulation and all the considered bounds
respectively.

Results show that the most similar compositions to SOCP solution (0 for
Type-1, 50 for Type-2 and 38.43 for Type-3) are given by Chernoff followed
by Chebyshev ones, suggesting not to produce Type-1 and to saturate the
production of Type-2, while they slightly underestimate the production of
Type-3 with only 36.88 and 27.38 units respectively. Different is the compo-
sition obtained with Bernstein (0.20 for Type-1, 50 for Type-2 and 14.32 for
Type-3) and Hoeffding solutions (5.55 for Type-1, 50 for Type-2 and 12.68
for Type-3) where Type-1 is suggested to be produced and the production of
Type-3 is strongly underestimated.

We secondly refer to the case of a collection of |K|× |P| = 3K individual
chance constraints with |K| = 1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 qualities
and |P| = 3 products. A comparison between the results of the exact SOCP
formulation and its approximations (Chebyshev, Chernoff, Hoeffding, and
Bernstein) is reported in Table 13 in Supplementary Material. Specifically,
these results are obtained by considering the data corresponding to the first
K rows of Tables 10, 11 and 12 (see Supplementary Material).

As in the case of |K| = 4, numerical results confirm that the Cher-
noff approximation outperforms the others, as its percentage gaps vary in
the interval 0.25%–10.30% increasing with an increasing number of quali-
ties |K|. On the other hand, gaps for Chebyshev approximations range be-
tween 0.83%–34.98%, while gaps for Hoeffding approximations span between
1.53%–44.69%. A comparison of the percentage gap values with respect to
SOCP formulation for increasing number of qualities |K| = 5, . . . , 100 is
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shown in Figure 4 in Supplementary Material. Results confirm the domi-
nance of Chernoff bound, followed by Chebyshev and then by Hoeffding and
the increasing behavior for considering a lager number of qualities |K|. The
optimal total costs and corresponding percentage gaps of Bernstein bound
have been obtained only in the case of one and five qualities with percentage
gaps of respectively 2.51% (|K| = 1) and 30.50% (|K| = 5). For larger val-
ues (|K| ≥ 10) the approximated problem via Bernstein becomes infeasible
via CVX software. Albeit Bernstein approximation seems performing better
that the Hoeffding approximation, there is not enough empirical evidence to
support this conclusion because of lack of numerical results for larger number
of qualities.

Finally Table 13 and Figure 5 in Supplementary Material show the CPU
time of Chebyshev,Chernoff and Hoeffding bounds for increasing number of
qualities |K| = 1, . . . , 100. Bernstein approximation CPU time is omitted
since considerably larger than the one required by the others (and as said
before we cannot compute the bound for more than |K| = 5). CPU time
for both Chebyshev and Chernoff approximations increases with the number
of qualities in a similar way reaching a maximum of 7 CPU seconds, while
Hoeffding approximation takes a maximum of only 1.81 CPU seconds with
|K| = 100. Results suggest to use Hoeffding bound only when we need a
rough solution in short time at expenses of low precision.

5.2. Joint chance constraint case

We investigate now the performance of the bounds for the blend planning
problem with joint probabilistic constraints based on model (46)-(51).

Notice that, the blending problem cannot be solved according to the
proposed logarithmic transformation for the following reasons: because of
equation (47), after applying the logarithmic transformation on xip, the set Z
for the new variable z is not convex. This is in contradiction with Assumption
1. Besides, the convexity condition for problems (14)-(29)-(45) does not hold,
being c < 0. Therefore, the Chebyshev, Chernoff and Hoeffding bounds
will be computed via a sequential convex approximation algorithm described
above.

Besides, a Sample Average Approximation (SAA) method (see [30]) to
solve the original joint chance constrained model (46)-(51), has been adopted.
We now study the performance of the four bounds versus SAA assuming a
normal distribution for ζki, k ∈ K, i ∈ B. As for the individual chance
constraints case, as upper and lower bounds (uki and lki) for random vector
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ζki are needed in Bernstein and Hoeffding bounds, we generate 3000 samples
following normal distributions with means ζ̄ki and standard deviations σki
specified before. The maximal values of these 3000 samples are selected
as upper bounds while the minimal values as lower bounds. Besides, 1000
samples are generated according to the corresponding normal distribution of
ζki for SAA method.

As before, we first refer to the case of joint chance constraints with |K| = 4
and |P| = 3 considering the data reported in Tables 5-9. Results in Table
2 refer to the independent case (θ = 1). They show that the best upper
bound is obtained by Chernoff reformulation with a percentage gap of only
0.24%, followed respectively by Bernstein, Chebyshev and Hoeffding having
a percentage gap of 14.48%. The CPU time required by all the four bounds
is considerably lower than the one required by SAA. This is due to the fact
that the good quality of SAA solution requires a large size sample with an
important number of binary variables and a high computational effort as
consequence.

SAA Chebyshev Chernoff Hoeffding Bernstein
Optimal value -767.56 -682.80 -765.69 -656.36 -714.57
GAP (%) - 11.04% 0.24% 14.48% 6.90%
CPU time 152023 2.9 4.5 3.4 2

Table 2: Comparison of SAA method versus bounds for the refinery blending planning
problem with joint independent chance constraints with |K| = 4 and |P| = 3.

The corresponding blending recipes xip for the three types of gasolines
(Type-1, Type-2, Type-3) over the ten blendstocks, are shown in Figures
1(b)-3 in Supplementary Material for the SAA method and all the consid-
ered bounds respectively. Results show that the most similar compositions
to SOCP solution (0 for Type-1, 50 for Type-2 and 36.27 for Type-3) are
given by Chernoff one, suggesting not to produce Type-1 and to saturate
the production of Type-2, while it slightly underestimates the production of
Type-3 with only 35.39. Different is the composition obtained with Bernstein
(0.22 for Type-1, 50 for Type-2 and 12.02 for Type-3) where a small quantity
of Type-1 is suggested to be produced and the production of Type-3 is un-
derestimated. Finally both Chebyshev solution (0 for Type-1, 50 for Type-2
and 7.75 for Type-3) and Hoeffding solution (0 for Type-1, 50 for Type-2
and 4.13 for Type-3) match the correct quantities of Type-1 and Type-2 but
strongly underestimate the one of Type-3.
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A comparison of the bounds and SAA in the dependent case are shown
in Table 3 for different values of θ = 2, . . . , 20. The quality of the bounds
is similar as for the independent case, i.e., Chernoff followed by Chebyshev,
Bernstein and Hoeffding.

θ SAA Chebyshev Chernoff Hoeffding Bernstein
2 -777.1350 -727.6951 -767.7922 -666.6903 -716.1562
5 -777.2989 -740.0444 -769.1264 -676.7506 -716.1793
10 -777.2989 -743.6869 -769.5864 -680.3782 -716.1888
15 -777.2989 -744.8644 -769.7416 -681.6208 -716.1923
20 -777.2989 -745.4466 -769.8195 -682.2485 -716.1936

Table 3: Comparison of SAA method versus bounds for the refinery blending planning
problem with joint chance constraints with |K| = 4 and |P| = 3 for different θ.

As done for the single chance constrained case, we extend now the inves-
tigation for the independent case, considering a larger number of qualities
up to |K| = 100 with 3 products i.e., |P| = 3. Table 14 in Supplementary
Material shows the comparison between the results of SAA and its approx-
imations (Chebyshev, Chernoff, Hoeffding, and Bernstein) for, respectively,
|K| = 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100. Specifically, the results are
obtained by considering the data corresponding to the first K rows of Tables
10, 11 and 12 (see Supplementary Material). Similarly to the individual case,
the results in Table 14 show that the Chernoff approximation outperforms
the others, as its percentage gaps vary in the interval 0.25%–11.02% and it
increases with an increasing number of qualities. On the other hand, gaps
for Chebyshev and Hoeffding bounds reach a percentage gap of 100% when
|K| ≥ 20. The optimal total costs and corresponding percentage gaps for
Bernstein bound can be obtained only in the case of five qualities with per-
centage gaps of 25.63%. This is because, when |K| ≥ 10, the approximated
problem based on Bernstein bound becomes infeasible via CVX software.
The gaps for Hoeffding approximations span between 42.98%–66.26% when
|K| = 5, 10 while it becomes 100% when |K| ≥ 20.

A comparison of the percentage gap values with respect to SAA for in-
creasing number of qualities |K| = 5, . . . , 100 is shown in Figure 6 in Sup-
plementary Material. Results confirm the dominance of Chernoff bound,
followed by Bernstein for K = 5, and then by Hoeffding and Chebyshev.
The increasing behavior for increasing numbers of qualities is also confirmed.
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Results show that for large number of qualities, only Chernoff bound is appro-
priated in a joint chance constraint context, while the other approximations
provide very loose bounds for large number of joint probabilistic conditions.

Finally Table 14 and Figure 7 in Supplementary Material show the CPU
time of Chebyshev,Chernoff and Hoeffding bounds for increasing number
of qualities |K| = 5, . . . , 100. Bernstein approximation CPU time is omit-
ted since the approximated problem based on Bernstein bound is infeasible
when K ≥ 10. CPU time for both Chebyshev and Hoeffding approximations
increases with the number of qualities in a similar way reaching a maximum
of 7.72 CPU seconds for 100 qualities, while Chernoff approximation takes
a maximum of 13.11 CPU seconds with 10 qualities. The most remarkable
result is that for |K| ≥ 5, the CPU time required by all the four bounds is
considerably lower than the one required by SAA (see Table 14). In case of
large number of joint probabilistic constraints, results suggest to use Cher-
noff bound while the other ones only when we need a rough solution in short
time at expenses of low precision.

5.3. The error of the bounds

In this section we analyze the performance of the solutions obtained us-
ing the aforementioned bounds over the realization of different truncated
probability distributions (see [25]).

Let xξ be the solution obtained by solving problem (2) using the proba-
bility distribution ξ and zξ(xξ) be its optimal objective function value.

Let xbound be the solution obtained by solving problem (2) using one of the
considered bounds (Chebyshev, Chernoff, Hoeffding and Bernstein) and let
zξ(xbound) the corresponding objective function value. Notice that zξ(xbound)
provides an upper bound of zξ(xξ). We define the Percentage Error of the
Bound %EB as

%EB :=
zξ(xbound)− zξ(xξ)

zξ(xξ)
· 100. (53)

The greater is %EB, the greater is the objective function value increase of
using the solution xbound when ξ occurs. When xbound is not feasible under
distribution ξ we set %EB = ∞.

In Table 4 we compute %EB using one of the bounds (Chebyshev, Cher-
noff, Hoeffding and Bernstein via SAA) while the distribution ξ can be
Cauchy, Logistic, Laplace and T-Student (with degree of freedom respec-
tively equal to 2 and 3). Notice that the aforementioned distributions have
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been truncated in the same interval [lki, uki] specified for Bernstein and Ho-
effding bounds. Results refer to the case of a collection of |K| × |P| = 12
individual chance constraints. Chebyshev bound performs very well having
%EB ∈ [3.07%, 3.32%]. Excellent is the performance of the Chernoff bound
when ξ follows a Laplace or a T-Student (with degree of freedom equal to 3)
with %EB ∈ [0.16%, 0.34%] while is infeasible when a Cauchy, a Logistic or
T-Student (with degree of freedom equal to 2) occur. Larger are the errors
using Bernstein bound solution having %EB ∈ [7.30%, 7.55%]. Worse is the
performance of Hoeffding bound solution having %EB ∈ [15.83%, 16.05%].

Bounds
zbound(xbound)

zξ(xξ)
zξ(xbound)

%EB

Chebyshev Chernoff Hoeffding Bernstein

D
is
t
r
ib

u
t
io

n
ξ

Truncated Cauchy

-747.16
-772.89
-747.16
3.32

-770.05
-772.89

∞
∞

-648.79
-772.89
-648.79
16.05

-714.51
-772.89
-714.51
7.55

Truncated Logistic

-747.16
-770.85
-747.16
3.07

-770.05
-770.85

∞
∞

-648.79
-770.85
-648.79
15.83

-714.51
-770.85
-714.51
7.30

Truncated Laplace

-747.16
-771.30
-747.16
3.12

-770.05
-771.30
-770.05
0.16

-648.79
-771.30
-648.79
15.88

-714.51
-771.30
-714.51
7.36

Truncated T-Student
(2)

-747.16
-771.70
-747.16
3.17

-770.05
-771.70

∞
∞

-648.79
-771.70
-648.79
15.92

-714.51
-771.70
-714.51
7.41

Truncated T-Student
(3)

-747.16
-772.69
-747.16
3.30

-770.05
-772.69
-770.05
0.34

-648.79
-772.69
-648.79
16.03

-714.51
-772.69
-714.51
7.52

Table 4: Percentage Error of the Bound (%EB) obtained solving problem (2) using one
of the bounds (Chebyshev, Chernoff, Hoeffding and Bernstein) while the distribution ξ
(among truncated Cauchy, truncated Logistic, truncated Laplace and truncated T-Student
with degree of freedom respectively equal to 2 and 3) occurs.

6. Conclusions

In this paper, we study deterministic inner approximations for single and
joint probabilistic constraints. The derived upper bounds are based on clas-
sical inequalities from probability theory such as the one-sided Chebyshev
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inequality, Bernstein inequality, Chernoff inequality and Hoeffding inequal-
ity. We show that under mild assumptions, the bounds based approximations
of joint chance constrained problems are convex and the approximated prob-
lem can be solved efficiently. When the convexity condition can not hold,
we show how to apply an efficient sequential convex approximation approach
to solve the approximated problem. Piecewise linear and tangent approxi-
mations are also provided for Chernoff and Hoeffding inequalities allowing
to reduce the computational complexity of the associated optimization prob-
lem. To the best of our knowledge, these results are new in the literature
since the majority of the contributions deals with symmetric elliptical dis-
tributions while we do not require any particular assumption on probability
distributions.

Interesting results were also obtained by the computational experiments
we carried out on a refinery blend planning problem under uncertainty. Com-
paring the bounds in terms of objective function, blending receipts and CPU
time with respect to an exact SOCP formulation or SAA method, we found
that the Chernoff approximation outperforms the others, both in case of in-
dividual and joint probabilistic constraints. In the individual case, results
suggest to use Bernstein approximation only for a limited number of prob-
abilistic constraints while to use Hoeffding bound when we need a rough
solution in short time at expenses of low precision. A remarkable result in
the joint case is that the CPU time required by all the four bounds is consid-
erably lower than the one needed by SAA which requires to solve a difficult
mixed integer program with binary variables. Finally a comparison of the
error of using the solutions obtained by the bounds over different truncated
probability distributions, has confirmed the good performance of Chebyshev
bound followed by Bernstein and finally by Hoeffding. Chernoff bound should
be considered more carefully having excellent error bounds with Laplace and
T-Student (with degree of freedom equal to 3) while is infeasible for all the
other considered probability distributions.

Future developments include the investigation of bounds for joint non-
linear chance constraints. This could be relevant to better model the non-
linear mixing laws of a blending problem, where for example, viscosity and
octane blending are highly nonlinear.
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[36] Prékopa, A., 2003. Probabilistic programming. Handbooks in operations
research and management science 10, 267–351.
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Appendix A

Proof of Lemma 5

Proof. Since f is convex, we have that for λ ∈ [0, 1] and x1, x2 ∈ X,
f(λx1 + (1 − λ)x2) ≤ λf(x1) + (1 − λ)f(x2). Therefore, as g : Y → Z
be a nonincreasing concave function, we have

g◦f(λx1+(1−λ)x2) ≥ g(λf(x1)+(1−λ)f(x2)) ≥ λg◦f(x1)+(1−λ)g◦f(x2),

which proves the thesis.

Proof of Lemma 7

Proof. Since etξ
T x is convex with respect to x ∈ X, we have that for λ ∈ [0, 1]

and x1, x2 ∈ X, etξ
T (λx1+(1−λ)x2) ≤ λetξ

T x1 + (1− λ)etξ
T x2 . Therefore,

E(etξ
T (λx1+(1−λ)x2)) ≤ E(λetξ

T x1+(1−λ)etξT x2) = λE(etξ
T x1)+(1−λ)E(etξT x2),

which proves the thesis.

Proof of Lemma 8

Proof. We only need to prove the convexity of the function b 7→ ln
(√

2 ln( 1
1−b

)
)

since the convexity of composite function ln

(√
2 ln

(
1

1−α
y
1/θ
k

))
is implied

when yk 7→ αy
1/θ
k is convex and b 7→ ln

(√
2 ln( 1

1−b
)
)
is nondecreasing and

convex. As ln
(√

2 ln( 1
1−b

)
)
is monotone (since d

db
ln
(√

2 ln( 1
1−b

)
)
= 1

2(1−b) log( 1
1−b)

<

0 with b < 1), we need to show the convexity of b 7→ ln
(√

2 ln( 1
1−b

)
)
. We

can notice that ln
(√

2 ln( 1
1−b

)
)
=

1

2
ln
(
2 ln( 1

1−b
)
)
. Therefore, we only need

to focus on the convexity of b 7→ ln
(
2 ln( 1

1−b
)
)
.

We have

d2

d2b
ln

(
2 ln(

1

1− b
)

)
=

ln
(

1
1−b

)
− 1

(b− 1)2 ln2
(

1
1−b

) .
Then, b 7→ ln

(
2 ln( 1

1−b
)
)
is convex if and only if ln(1 − b) + 1 ≤ 0, i.e.

b ≥ 1− e−1.

As yk 7→ αy
1/θ
k is convex and αy

1/θ
k ≥ α for any 0 ≤ yk ≤ 1, if αy

1/θ
k ≥ α ≥

1− e−1, then the function yk 7→ ln

(√
2 ln

(
1

1−α
y
1/θ
k

))
is convex.
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Appendix B

Tangent approximation

We choose S different linear functions:

ls(yk) = asyk + bs, s = 1, . . . , S,

such that
ls(yk) ≤ Υ(yk), ∀yk ∈ [ρ, 1), k = 1, . . . , K.

Here ρ ≥ 0 is a constant such that Υ(yk) is convex on [ρ, 1). Then, Υ(yk)
can be approximated by the following piecewise linear function

l(yk) = max
s=1,...,S

ls(yk),

which provides a lower approximation for Υ(yk).
In order to achieve the expected precision, we set ls(yk) as the tangent

line of Υ(yk) at S points τ1, . . . , τS with τs ∈ [ρ, 1), s = 1, . . . , S. Then, we
have

as =
dΥ(yk)

dyk

∣∣∣∣
yk=τs

, bs = Υ(τs)− asτs.

Thanks to these piecewise linear approximations for Υ(yk), we have the
following results:

Proposition 11. Under the aforementioned convex conditions, if we re-
place in problems (14), (29), and (45) Υ(yk) by l(yk), we obtain their convex
approximations. The optimum values of the approximation problems are
lower bounds for problems (14), (29), (45), respectively. Moreover, the ap-
proximation problems become asymptotically an equivalent reformulation of
problems (14), (29), and (45) when S goes to infinity.

Proof. As the approximation problems are obtained by relaxing some con-
straints in problems (14), (29), (45), it is easy to see that the optimal values
of the approximation problems are lower bounds for problems (14), (29),
(45), respectively.

We know under convex conditions for problems (14), (29), and (45), Υ(yk)
is convex for each problem. As the S tangent functions are selected differ-
ently, when S goes to infinity, the constraints in the approximation problems
are asymptotically equivalent to the constraints in problems (14), (29), and
(45), respectively.
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Segment approximation

In order to come up with conservative bounds for the optimum values
of problems (14), (29), and (45), we use the linear segments āsyk + b̄s, s =
1, . . . , S, between τ1, τ2, . . . , τS+1 ∈ [ρ, 1) to construct a piecewise linear func-
tion

l̄(yk) = max
s=1,...,S

{
āsyk + b̄s

}
, (54)

where

ās =
Υ(τs+1)−Υ(τs)

τs+1 − τs
, b̄s = Υ(τs)− āsτs, s = 1, . . . , S.

Using the piecewise linear function l̄(yk) to replace Υ(yk) in problems
(14), (29), and (45), gives the corresponding approximation problems.

Similar to Proposition 11, we can derive the following result for the linear
approximation:

Proposition 12. Under the aforementioned convex conditions, if we replace
in problems (14), (29), and (45) Υ(yk) by l̄(yk), we obtain the convex ap-
proximations of these problems.

The optimum values of the approximation problems are an upper bound
for problems (14), (29), and (45), respectively. Moreover, the approximation
problems become asymptotically an equivalent reformulation of problems
(14), (29), and (45), respectively, when S goes to infinity.

The proof of this Proposition follows the same pattern as the proof of
Proposition 11.
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Supplementary Material

ζ̄ki 1 2 3 4 5 6 7 8 9 10
RVP 60 10.4 1.6 11.2 2.7 4.6 10.6 4.4 3.3 2.1

(RON+MON)/2 84.8 69.8 71.9 82.1 99 68 91.6 86.7 85.1 93.7
Sulfur 10 0 6 1 0 0 41 111 30 20
Benzene 0 3.8 0.4 0 0 0 0.6 0 0 0

Table 5: Expected value ζ̄ki of quality k ∈ K in blendstock i ∈ B.

σki 1 2 3 4 5 6 7 8 9 10
RVP 0.7746 0.3225 0.1265 0.3347 0.1643 0.2145 0.3256 0.2098 0.1817 0.1449

(RON+MON)/2 2.0591 1.8682 1.8960 2.0261 2.2249 1.8439 2.1401 2.0821 2.0628 2.1645
Sulfur 0.3162 1.e-10 0.2449 0.1 1.e-10 1.e-10 0.6403 1.0536 0.5477 0.4472

Benzene 1.e-10 0.1949 0.0632 1.e-10 1.e-10 1.e-10 0.0775 1.e-10 1.e-10 1.e-10

Table 6: Standard deviation σki of quality k ∈ K in blendstock i ∈ B.

1 2 3 4 5 6 7 8 9 10
mfi 8 2.6 12 20.1 15.6 2.3 26.3 17.5 9.2 18
di 0.565 0.656 0.772 0.618 0.855 0.693 0.679 0.757 0.803 0.713
vi 36 40 39 41 52 42 47 44 45 55

Table 7: Deterministic parameters mfi, di and vi in blendstock i ∈ B.

Type-1 Type-2 Type-3
d̄p 0.79 0.79 0.79
fp 49.7 54.6 52

Table 8: Deterministic parameters d̄p and fp in product p ∈ P.

tkp Type-1 Type-2 Type-3
RVP (max) 7 7 7

(RON+MON)/2 (max) 85 90 85
Sulfur (max) 30 30 10
Benzene (max) 0.6 0.6 0.6

Table 9: Target tkp for quality k ∈ K in product p ∈ P.
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(a) (b)

Figure 1: Optimal blending recipes xip for the three types of gasolines for (a) SOCP and
(b) SAA formulations for the refinery blending planning problem with |K| × |P| = 12
individual and joint independent chance constraints respectively (|P| = 3 and |K| = 4).
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ζ̄ki 1 2 3 4 5 6 7 8 9 10
Quality 1 4 20 50 8 10 24 40 20 14 12
Quality 2 20 8 16 23 9 5 9 7 13 13
Quality 3 42 45 72 9 33 21 75 36 63 45
Quality 4 100 10 120 10 105 5 25 25 20 75
Quality 5 9 2 11 19 6 4 21 20 9 8
Quality 6 68 68 76 76 28 80 56 36 4 68
Quality 7 1 11 5 23 5 20 12 5 21 10
Quality 8 25 1 11 6 19 21 18 25 6 21
Quality 9 96 48 8 52 56 96 96 36 36 44
Quality 10 60 20 80 75 115 90 60 70 10 80
Quality 11 52 52 40 100 100 24 20 12 12 28
Quality 12 12 3 54 12 21 33 9 39 12 21
Quality 13 38 36 30 12 32 4 38 4 18 26
Quality 14 110 35 80 65 85 30 10 75 25 65
Quality 15 22 24 21 12 14 6 13 6 11 13
Quality 16 20 12 18 23 20 10 22 3 19 10
Quality 17 125 95 30 90 55 115 10 10 15 85
Quality 18 60 52 52 8 88 40 44 48 80 40
Quality 19 115 60 55 5 85 120 85 110 15 20
Quality 20 48 26 20 36 46 22 16 44 46 22
Quality 21 44 8 56 44 60 88 80 96 52 72
Quality 22 6 48 16 4 10 28 28 50 8 38
Quality 23 36 40 32 4 32 40 8 46 28 6
Quality 24 54 24 30 69 3 42 24 48 27 72
Quality 25 24 30 20 2 30 16 28 28 48 42
Quality 26 56 48 4 68 12 88 64 64 88 28
Quality 27 5 110 35 95 10 40 15 80 25 105
Quality 28 12 30 12 6 40 30 36 14 42 32
Quality 29 65 105 80 70 95 80 115 125 45 95
Quality 30 18 42 12 33 51 15 57 54 33 21
Quality 31 38 2 14 42 22 34 6 26 28 44
Quality 32 5 2 17 17 3 20 24 20 6 11
Quality 33 34 34 50 40 38 2 4 14 50 28
Quality 34 3 8 25 8 23 11 22 21 19 15
Quality 35 17 18 15 5 7 14 19 11 25 13
Quality 36 70 110 60 30 30 115 80 25 100 55
Quality 37 125 65 30 100 40 110 115 35 40 50
Quality 38 75 63 42 39 3 12 72 51 69 69
Quality 39 42 38 4 10 50 40 48 4 30 32
Quality 40 28 16 56 72 8 96 32 60 16 20
Quality 41 18 28 26 8 40 48 2 32 16 34
Quality 42 72 100 92 36 4 36 8 92 12 16
Quality 43 16 68 92 4 48 32 84 60 80 8
Quality 44 75 85 35 100 115 45 55 5 25 70
Quality 45 75 63 51 54 75 15 42 48 33 21
Quality 46 40 44 40 64 28 76 76 56 24 72
Quality 47 32 60 36 4 76 88 80 60 24 100
Quality 48 75 120 100 65 20 40 125 115 90 120
Quality 49 66 21 75 9 24 27 15 30 27 72
Quality 50 8 32 60 92 60 52 80 48 60 84
Quality 51 56 96 84 28 100 92 64 88 80 44
Quality 52 6 27 75 30 6 51 18 54 6 12
Quality 53 63 39 48 24 66 60 36 45 18 42
Quality 54 54 9 42 15 69 3 51 18 9 36
Quality 55 27 75 12 66 75 6 72 39 15 75
Quality 56 70 95 30 45 75 125 95 60 25 85
Quality 57 42 63 72 6 57 63 15 3 3 72
Quality 58 44 36 6 20 50 44 46 44 46 24
Quality 59 34 30 34 40 48 20 6 2 26 12
Quality 60 88 24 20 56 76 84 12 64 36 28
Quality 61 14 2 8 15 24 9 4 5 15 14
Quality 62 14 30 48 42 36 12 38 14 48 30
Quality 63 21 18 21 3 6 6 21 22 19 16
Quality 64 51 57 3 39 69 3 60 60 30 30
Quality 65 11 17 11 3 18 14 8 12 17 8
Quality 66 24 24 15 16 4 10 11 19 3 19
Quality 67 12 16 25 8 18 13 12 24 8 24
Quality 68 17 11 6 2 12 15 14 17 8 21
Quality 69 10 10 125 10 100 20 55 105 75 75
Quality 70 3 75 12 9 57 66 6 30 51 3
Quality 71 16 3 2 3 2 17 9 16 17 9
Quality 72 36 72 27 39 27 3 66 48 63 60
Quality 73 12 63 21 48 30 63 3 45 54 6
Quality 74 28 56 60 96 40 48 8 92 36 4
Quality 75 42 20 8 48 18 22 14 8 8 24
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ζki 1 2 3 4 5 6 7 8 9 10
Quality 76 10 5 115 45 10 20 30 75 60 70
Quality 77 20 15 20 20 5 6 5 3 4 15
Quality 78 42 44 14 22 8 8 4 2 32 44
Quality 79 12 8 14 8 12 12 13 10 23 4
Quality 80 76 20 16 96 44 32 88 32 80 36
Quality 81 16 15 10 17 3 22 25 24 15 19
Quality 82 7 8 3 25 4 20 22 22 20 18
Quality 83 60 72 12 20 76 92 40 60 12 72
Quality 84 34 46 50 20 2 48 8 48 28 2
Quality 85 20 42 14 44 28 24 14 48 2 50
Quality 86 15 20 20 70 50 30 45 110 95 70
Quality 87 88 8 28 28 56 96 40 76 32 36
Quality 88 42 12 66 57 54 24 69 24 3 63
Quality 89 30 26 14 8 34 8 46 48 2 46
Quality 90 68 28 100 52 92 84 24 40 56 12
Quality 91 45 125 55 45 95 45 110 5 120 95
Quality 92 16 6 14 8 21 21 20 5 14 1
Quality 93 22 12 19 24 23 3 1 19 15 23
Quality 94 42 24 3 42 48 24 45 69 36 72
Quality 95 44 44 16 44 14 50 40 34 32 50
Quality 96 2 18 22 50 46 28 18 46 24 28
Quality 97 16 96 68 80 40 96 72 88 24 40
Quality 98 65 80 30 120 10 40 35 70 90 5
Quality 99 24 60 16 44 16 56 88 92 64 32
Quality 100 8 23 12 22 3 9 1 20 23 24

Table 10: Expected value ζ̄ki of quality k ∈ K in blendstock i ∈ B.
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σki 1 2 3 4 5 6 7 8 9 10
Quality 1 0.0333 0.6569 0.3487 0.5053 0.3533 0.2854 0.4984 0.5990 0.3368 0.1889
Quality 2 0.9428 0.0930 0.9699 0.5173 0.1267 0.4141 0.6606 0.6161 0.3154 0.4452
Quality 3 0.6615 0.3144 0.6641 0.6492 0.3878 0.2814 0.1650 0.0289 0.6019 0.3753
Quality 4 0.4221 0.5639 0.8367 0.4091 0.9673 0.7182 0.4576 0.7663 0.9683 0.5440
Quality 5 0.0460 0.7361 0.8123 0.9214 0.4598 0.0405 0.5800 0.4473 0.7305 0.8700
Quality 6 0.2737 0.5691 0.2033 0.0824 0.9303 0.0114 0.0165 0.1831 0.8422 0.5907
Quality 7 0.5929 0.7701 0.1963 0.4749 0.0902 0.9051 0.6335 0.2437 0.8264 0.5979
Quality 8 0.9956 0.5674 0.3659 0.3257 0.4931 0.9409 0.2838 0.3709 0.9550 0.1287
Quality 9 0.7363 0.4086 0.8641 0.7689 0.4371 0.5115 0.2985 0.4879 0.2445 0.6851
Quality 10 0.0377 0.2399 0.6854 0.7733 0.2496 0.0227 0.8833 0.2893 0.6451 0.0660
Quality 11 0.8024 0.4930 0.7012 0.7372 0.5751 0.8220 0.8201 0.2489 0.1335 0.7319
Quality 12 0.6124 0.2711 0.6206 0.2371 0.2535 0.9411 0.9240 0.8942 0.4910 0.3811
Quality 13 0.0325 0.9004 0.5909 0.8833 0.1435 0.4177 0.4116 0.5720 0.2792 0.0980
Quality 14 0.7429 0.7671 0.9523 0.1472 0.9280 0.8428 0.8806 0.0203 0.0660 0.8309
Quality 15 0.7861 0.3307 0.3714 0.9569 0.7326 0.2048 0.4278 0.8758 0.2420 0.7396
Quality 16 0.0041 0.9788 0.7330 0.4686 0.2052 0.1111 0.4831 0.5717 0.2355 0.1559
Quality 17 0.5462 0.8554 0.8626 0.4640 0.1178 0.9143 0.4319 0.2333 0.1506 0.1369
Quality 18 0.4079 0.0298 0.5066 0.9365 0.6543 0.2693 0.2475 0.2605 0.0076 0.3115
Quality 19 0.1087 0.9489 0.4444 0.5722 0.6732 0.1606 0.3227 0.8662 0.7111 0.5713
Quality 20 0.8438 0.0500 0.3592 0.0362 0.9408 0.2178 0.5940 0.4764 0.5453 0.9064
Quality 21 0.0340 0.3293 0.0041 0.2338 0.8450 0.2268 0.0464 0.6244 0.3712 0.2674
Quality 22 0.0103 0.5189 0.2806 0.3052 0.3952 0.6677 0.8258 0.3017 0.4867 0.5713
Quality 23 0.0329 0.6717 0.2023 0.2635 0.8311 0.8382 0.7809 0.3080 0.1408 0.9272
Quality 24 0.5984 0.4712 0.2057 0.4445 0.9471 0.2909 0.1996 0.3804 0.6291 0.7125
Quality 25 0.5461 0.0937 0.7449 0.3835 0.9020 0.0249 0.8419 0.6725 0.7168 0.3197
Quality 26 0.3738 0.8215 0.9610 0.1671 0.3049 0.0625 0.9581 0.2106 0.7718 0.4092
Quality 27 0.3019 0.2386 0.1475 0.3455 0.4950 0.5201 0.8820 0.4415 0.1587 0.2958
Quality 28 0.0243 0.2430 0.4572 0.4646 0.1962 0.0273 0.3150 0.7659 0.8530 0.8030
Quality 29 0.4201 0.4001 0.1417 0.2019 0.9770 0.9072 0.4916 0.7111 0.3220 0.7300
Quality 30 0.0954 0.1283 0.5917 0.4021 0.1455 0.9161 0.6477 0.3540 0.4172 0.0184
Quality 31 0.4211 0.9161 0.4367 0.3937 0.0828 0.7003 0.9229 0.6666 0.4174 0.6039
Quality 32 0.2477 0.1341 0.6600 0.2643 0.5551 0.1339 0.9350 0.3984 0.4407 0.0842
Quality 33 0.4021 0.2000 0.6598 0.2055 0.2038 0.3188 0.8659 0.1788 0.1854 0.0261
Quality 34 0.4148 0.1389 0.9436 0.0096 0.7686 0.2046 0.7646 0.6890 0.6017 0.1839
Quality 35 0.7036 0.6499 0.9894 0.0255 0.7185 0.4853 0.1215 0.7202 0.5509 0.4088
Quality 36 0.5006 0.7891 0.3007 0.7905 0.4175 0.8432 0.1352 0.3075 0.5155 0.6112
Quality 37 0.5010 0.4581 0.3033 0.9125 0.0884 0.6201 0.4941 0.5239 0.6900 0.7752
Quality 38 0.2255 0.4625 0.1650 0.6039 0.1613 0.2811 0.9490 0.6819 0.6354 0.7922
Quality 39 0.9156 0.8472 0.3825 0.1977 0.2701 0.4032 0.7736 0.7733 0.2920 0.1409
Quality 40 0.4384 0.9931 0.0520 0.4561 0.8753 0.6049 0.0146 0.9235 0.7517 0.7000
Quality 41 0.9179 0.5798 0.0125 0.4138 0.9256 0.7911 0.6629 0.6507 0.4778 0.4015
Quality 42 0.9982 0.8910 0.8406 0.6447 0.1977 0.4663 0.9613 0.8388 0.2450 0.9860
Quality 43 0.2504 0.3048 0.1599 0.4070 0.2567 0.9257 0.6421 0.1954 0.0662 0.9646
Quality 44 0.1541 0.3685 0.7339 0.9454 0.6394 0.4436 0.3093 0.0407 0.5600 0.5232
Quality 45 0.6458 0.7752 0.5346 0.6233 0.9799 0.6155 0.2815 0.3584 0.6043 0.1654
Quality 46 0.6043 0.7481 0.4322 0.0764 0.1137 0.7924 0.3126 0.3524 0.2595 0.3995
Quality 47 0.4753 0.9274 0.1562 0.5070 0.9312 0.4318 0.4909 0.6604 0.1478 0.5071
Quality 48 0.1246 0.9934 0.6797 0.0048 0.4979 0.0758 0.3949 0.8198 0.7284 0.0603
Quality 49 0.9630 0.4216 0.6314 0.2995 0.4942 0.6002 0.2119 0.5924 0.6292 0.4539
Quality 50 0.9361 0.0581 0.7038 0.8725 0.0226 0.6633 0.0173 0.2646 0.8423 0.4105
Quality 51 0.2441 0.6092 0.6722 0.9156 0.3682 0.9263 0.0776 0.2513 0.9081 0.5468
Quality 52 0.7519 0.2599 0.7745 0.5755 0.5236 0.4304 0.4321 0.2519 0.0249 0.2250
Quality 53 0.4887 0.9625 0.4735 0.6786 0.7118 0.8561 0.3076 0.3286 0.2978 0.8358
Quality 54 0.0456 0.2964 0.4966 0.3688 0.3375 0.9977 0.2508 0.2223 0.1666 0.9787
Quality 55 0.8683 0.6455 0.8483 0.2994 0.0324 0.1010 0.3874 0.8631 0.8256 0.2095
Quality 56 0.1784 0.3359 0.1689 0.3926 0.3946 0.2085 0.0411 0.7044 0.3232 0.2578
Quality 57 0.3452 0.5581 0.6045 0.4286 0.5995 0.1252 0.4089 0.0295 0.6652 0.7693
Quality 58 0.8231 0.5737 0.2325 0.8416 0.6836 0.7604 0.7338 0.0982 0.8486 0.2388
Quality 59 0.5595 0.3472 0.2648 0.9428 0.0714 0.4674 0.0545 0.8824 0.9779 0.9224
Quality 60 0.4044 0.9961 0.3863 0.4102 0.9954 0.4215 0.7425 0.5270 0.4323 0.5217
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σki 1 2 3 4 5 6 7 8 9 10
Quality 61 0.4772 0.2349 0.1612 0.8853 0.1178 0.7410 0.2448 0.7537 0.3234 0.0316
Quality 62 0.2859 0.0555 0.9350 0.7332 0.3453 0.3676 0.4757 0.2494 0.4846 0.7884
Quality 63 0.1150 0.2930 0.6542 0.2027 0.5455 0.4986 0.5401 0.7224 0.1938 0.9855
Quality 64 0.3184 0.3442 0.6474 0.5931 0.0659 0.0550 0.3472 0.7890 0.5955 0.1383
Quality 65 0.3634 0.3272 0.3759 0.3989 0.1059 0.0697 0.8975 0.0708 0.5258 0.0707
Quality 66 0.9754 0.1441 0.5559 0.5741 0.1261 0.3228 0.5012 0.6042 0.1499 0.3715
Quality 67 0.6903 0.5296 0.4597 0.4005 0.6662 0.2757 0.2474 0.9301 0.8762 0.8995
Quality 68 0.4732 0.5128 0.5136 0.9689 0.0954 0.0690 0.5824 0.0755 0.8055 0.0726
Quality 69 0.3546 0.0449 0.8344 0.9457 0.4365 0.1005 0.4539 0.7725 0.6687 0.3694
Quality 70 0.5312 0.3220 0.1076 0.3974 0.4143 0.7372 0.2158 0.0329 0.1459 0.2827
Quality 71 0.6488 0.4392 0.1194 0.7673 0.7301 0.3245 0.6164 0.6897 0.5144 0.3299
Quality 72 0.7474 0.9928 0.2678 0.8347 0.1690 0.2861 0.8324 0.1817 0.3395 0.1163
Quality 73 0.1885 0.9346 0.7169 0.5234 0.4094 0.8810 0.7645 0.1934 0.8182 0.5723
Quality 74 0.6801 0.6285 0.0468 0.0289 0.2278 0.5674 0.5385 0.6798 0.6102 0.9962
Quality 75 0.7679 0.6824 0.4162 0.6986 0.7982 0.2873 0.8079 0.0826 0.8347 0.2774
Quality 76 0.0808 0.6009 0.6733 0.1482 0.2535 0.4834 0.0221 0.0083 0.9694 0.2680
Quality 77 0.8624 0.0811 0.1077 0.3286 0.1655 0.8978 0.6048 0.4550 0.3411 0.8257
Quality 78 0.4140 0.4418 0.4412 0.4724 0.4233 0.5533 0.8821 0.9131 0.8507 0.2074
Quality 79 0.0137 0.8277 0.9997 0.6230 0.1668 0.5101 0.4471 0.8022 0.3481 0.5956
Quality 80 0.5094 0.5550 0.9763 0.2599 0.8101 0.9689 0.7248 0.2863 0.3862 0.2952
Quality 81 0.8926 0.7215 0.4757 0.3866 0.6835 0.2583 0.3131 0.1109 0.9769 0.4708
Quality 82 0.5500 0.0301 0.4785 0.7279 0.1565 0.4709 0.7704 0.6717 0.8884 0.5115
Quality 83 0.5476 0.0627 0.5923 0.0166 0.0956 0.7241 0.7572 0.0240 0.6161 0.7284
Quality 84 0.0016 0.9905 0.8405 0.9980 0.3402 0.1696 0.5877 0.4417 0.1482 0.5063
Quality 85 0.1194 0.6276 0.4935 0.4713 0.2681 0.5250 0.9057 0.1555 0.1568 0.1306
Quality 86 0.4113 0.0597 0.0326 0.6476 0.1364 0.2948 0.2111 0.6064 0.7942 0.6763
Quality 87 0.5296 0.0711 0.4109 0.9121 0.2321 0.4567 0.2112 0.2378 0.0808 0.5172
Quality 88 0.6646 0.1797 0.7424 0.2337 0.5717 0.2205 0.2700 0.7186 0.4824 0.3903
Quality 89 0.1152 0.5531 0.7315 0.7815 0.0914 0.2611 0.2702 0.6503 0.1632 0.7566
Quality 90 0.5778 0.4326 0.0878 0.7706 0.3139 0.6448 0.2168 0.9748 0.6524 0.5125
Quality 91 0.5093 0.5714 0.6468 0.7977 0.9428 0.0246 0.5088 0.0503 0.8699 0.8842
Quality 92 0.0149 0.6163 0.4274 0.7112 0.9032 0.3244 0.0923 0.4535 0.9566 0.1502
Quality 93 0.6761 0.1179 0.7552 0.6251 0.0655 0.2866 0.2072 0.6199 0.8180 0.0758
Quality 94 0.9731 0.5893 0.0149 0.6509 0.3878 0.2742 0.1344 0.0940 0.7385 0.5840
Quality 95 0.7359 0.6271 0.4554 0.3959 0.9723 0.3735 0.0211 0.0577 0.5339 0.0862
Quality 96 0.4766 0.0651 0.1636 0.9158 0.9592 0.2341 0.5829 0.7824 0.7226 0.0569
Quality 97 0.2723 0.5836 0.6512 0.0617 0.4077 0.7324 0.2464 0.7394 0.4949 0.2204
Quality 98 0.1035 0.1020 0.9511 0.1021 0.2995 0.9621 0.1123 0.5068 0.8616 0.8200
Quality 99 0.9802 0.9545 0.8294 0.6468 0.5163 0.5738 0.5102 0.4837 0.7042 0.3413
Quality 100 0.0986 0.4981 0.3760 0.5903 0.4712 0.3599 0.4393 0.8626 0.4312 0.0811

Table 11: Standard deviation σki of quality k ∈ K in blendstock i ∈ B.

tkp Type-1 Type-2 Type-3

Quality 1 18.18 20.20 22.22
Quality 2 11.07 12.30 13.53
Quality 3 39.69 44.10 48.51
Quality 4 44.55 49.50 54.45
Quality 5 9.81 10.90 11.99
Quality 6 50.40 56.00 61.60
Quality 7 10.17 11.30 12.43
Quality 8 13.77 15.30 16.83
Quality 9 51.12 56.80 62.48
Quality 10 59.40 66.00 72.60
Quality 11 39.60 44.00 48.40
Quality 12 19.44 21.60 23.76
Quality 13 21.42 23.80 26.18
Quality 14 52.20 58.00 63.80
Quality 15 12.78 14.20 15.62
Quality 16 14.13 15.70 17.27
Quality 17 56.70 63.00 69.30
Quality 18 46.08 51.20 56.32
Quality 19 60.30 67.00 73.70
Quality 20 29.34 32.60 35.86
Quality 21 54.00 60.00 66.00
Quality 22 21.24 23.60 25.96
Quality 23 24.48 27.20 29.92
Quality 24 35.37 39.30 43.23
Quality 25 24.12 26.80 29.48
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tkp Type-1 Type-2 Type-3

Quality 26 46.80 52.00 57.20
Quality 27 46.80 52.00 57.20
Quality 28 22.86 25.40 27.94
Quality 29 78.75 87.50 96.25
Quality 30 30.24 33.60 36.96
Quality 31 23.04 25.60 28.16
Quality 32 11.25 12.50 13.75
Quality 33 26.46 29.40 32.34
Quality 34 13.95 15.50 17.05
Quality 35 12.96 14.40 15.84
Quality 36 60.75 67.50 74.25
Quality 37 63.90 71.00 78.10
Quality 38 44.55 49.50 54.45
Quality 39 26.82 29.80 32.78
Quality 40 36.36 40.40 44.44
Quality 41 22.68 25.20 27.72
Quality 42 42.12 46.80 51.48
Quality 43 44.28 49.20 54.12
Quality 44 54.90 61.00 67.10
Quality 45 42.93 47.70 52.47
Quality 46 46.80 52.00 57.20
Quality 47 50.40 56.00 61.60
Quality 48 78.30 87.00 95.70
Quality 49 32.94 36.60 40.26
Quality 50 51.84 57.60 63.36
Quality 51 65.88 73.20 80.52
Quality 52 25.65 28.50 31.35
Quality 53 39.69 44.10 48.51
Quality 54 27.54 30.60 33.66
Quality 55 41.58 46.20 50.82
Quality 56 63.45 70.50 77.55
Quality 57 35.64 39.60 43.56
Quality 58 32.40 36.00 39.60
Quality 59 22.68 25.20 27.72
Quality 60 43.92 48.80 53.68
Quality 61 9.90 11.00 12.10
Quality 62 28.08 31.20 34.32
Quality 63 13.77 15.30 16.83
Quality 64 36.18 40.20 44.22
Quality 65 10.71 11.90 13.09
Quality 66 13.05 14.50 15.95
Quality 67 14.40 16.00 17.60
Quality 68 11.07 12.30 13.53
Quality 69 52.65 58.50 64.35
Quality 70 28.08 31.20 34.32
Quality 71 8.46 9.40 10.34
Quality 72 39.69 44.10 48.51
Quality 73 31.05 34.50 37.95
Quality 74 42.12 46.80 51.48
Quality 75 19.08 21.20 23.32
Quality 76 39.60 44.00 48.40
Quality 77 10.17 11.30 12.43
Quality 78 19.80 22.00 24.20
Quality 79 10.44 11.60 12.76
Quality 80 46.80 52.00 57.20
Quality 81 14.94 16.60 18.26
Quality 82 13.41 14.90 16.39
Quality 83 46.44 51.60 56.76
Quality 84 25.74 28.60 31.46
Quality 85 25.74 28.60 31.46
Quality 86 47.25 52.50 57.75
Quality 87 43.92 48.80 53.68
Quality 88 37.26 41.40 45.54
Quality 89 23.58 26.20 28.82
Quality 90 50.04 55.60 61.16
Quality 91 66.60 74.00 81.40
Quality 92 11.34 12.60 13.86
Quality 93 14.49 16.10 17.71
Quality 94 36.45 40.50 44.55
Quality 95 33.12 36.80 40.48
Quality 96 25.38 28.20 31.02
Quality 97 55.80 62.00 68.20
Quality 98 49.05 54.50 59.95
Quality 99 44.28 49.20 54.12
Quality 100 13.05 14.50 15.95

Table 12: Target tkp for quality k ∈ K in product p ∈ P.
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Figure 2: Optimal blending recipes xip for the three types of gasolines for SOCP for-
mulation and all the considered bounds for the refinery blending planning problem with
|K| × |P| = 12 individual chance constraints as in (52).

48



SOCP Chebyshev Chernoff Hoeffding Bernstein

K = 1
Optimal value -965.34 -957.36 -962.97 -950.57 -941.13
GAP (%) - 0.83% 0.25% 1.53% 2.51%
CPU time 0.72 0.66 0.67 0.50 2.03

K = 10
Optimal value -481.23 -387.48 -453.56 -266.16 -
GAP (%) - 19.48% 5.75% 44.69% -
CPU time 1.17 1.08 1.39 1.22 68.50

K = 20
Optimal value -432.45 -340.23 -407.42 -245.08 -

GAP (%) - 21.32% 5.79% 43.33% -
CPU time 2.78 2.30 2.08 0.88 198.52

K = 30
Optimal value -431.59 -302.97 -400.58 -250.29 -
GAP (%) - 29.80% 7.18% 42.01% -
CPU time 2.89 2.67 2.56 0.95 176.53

K = 40
Optimal value -422.79 -298.04 -396.14 -259.23 -
GAP (%) - 29.51% 6.30% 38.69% -
CPU time 2.73 2.44 2.36 1.11 217.66

K = 50
Optimal value -422.79 -298.04 -396.14 -257.58 -
GAP (%) - 29.51% 6.30% 39.08% -
CPU time 3.06 3.03 2.88 0.95 309.38

K = 60
Optimal value -422.79 -297.80 -396.14 -250.94 -
GAP (%) - 29.56% 6.30% 40.65% -
CPU time 3.75 3.55 3.94 1.22 313.34

K = 70
Optimal value -421.56 -280.52 -383.10 -254.58 -

GAP (%) - 33.46% 9.12% 39.61% -
CPU time 4.36 4.14 4.69 1.67 327.58

K = 80
Optimal value -401.91 -261.34 -360.53 -237.24 -

GAP (%) - 34.98% 10.30% 40.97% -
CPU time 6.78 6.22 5.27 1.56 410.38

K = 90
Optimal value -401.91 -261.34 -360.53 -247.43 -
GAP (%) - 34.98% 10.30% 38.44% -
CPU time 5.41 5.19 5.33 1.67 572.45

K = 100
Optimal value -401.91 -261.34 -360.53 -249.29 -
GAP (%) - 34.98% 10.30% 37.97% -
CPU time 6.03 7.23 6.17 1.81 476.98

Table 13: Comparison of SOCP formulation versus bounds for the refinery blending plan-
ning problem with 3K individual chance constraints as in (52) with K = 1, 10, . . . , 100.
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Figure 3: Optimal blending recipes xip for the three types of gasolines for all the considered
bounds for the refinery blend planning problem with joint independent chance constraints
(|P| = 3 and |K| = 4).
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SAA Chebyshev Chernoff Hoeffding Bernstein

K = 5
Optimal value -454.53 -260.52 -444.14 -259.19 -338.02

GAP (%) - 42.68% 2.2851% 42.98% 25.63%
CPU time 158638.59 3.00 5.67 4.06 26.50

K = 10
Optimal value -447.46 -83.50 -437.24 -150.97 -
GAP (%) - 81.34% 2.28% 66.26% -

CPU time > 106 3.81 13.11 5.75 -
K = 20

Optimal value -409.36 0.00 -389.36 0.00 -
GAP (%) - 100.00% 4.89% 100.00% -

CPU time > 106 2.50 5.13 1.98 -
K = 30

Optimal value -364.98 0.00 -345.63 0.00 -
GAP (%) - 100.00% 5.30% 100.00% -

CPU time > 106 3.02 2.69 2.42 -
K = 40

Optimal value -359.67 0.00 -329.71 0.00 -
GAP (%) - 100.00% 8.33% 100.00% -

CPU time > 106 3.70 3.55 3.25 -
K = 50

Optimal value -357.96 0.00 -326.67 0.00 -
GAP (%) - 100.00% 8.74% 100.00% -

CPU time > 106 4.52 4.05 3.52 -
K = 60

Optimal value -350.83 0.00 -323.55 0.00 -
GAP (%) - 100.00% 8.83% 100.00% -

CPU time > 106 4.64 4.17 4.19 -
K = 70

Optimal value -338.56 0.00 -304.23 0.00 -
GAP (%) - 100.00% 10.14% 100.00% -

CPU time > 106 6.34 5.53 5.02 -
K = 80

Optimal value -316.28 0.00 -282.71 0.00 -
GAP (%) - 100.00% 10.62% 100.00% -

CPU time > 106 6.63 6.48 6.03 -
K = 90

Optimal value -315.28 0.00 -281.37 0.00 -
GAP (%) - 100.00% 10.76% 100.00% -

CPU time > 106 6.47 6.41 6.19 -
K = 100

Optimal value -314.89 0.00 -280.19 0.00 -
GAP (%) - 100.00% 11.02% 100.00% -

CPU time > 106 7.72 7.48 7.08 -

Table 14: Comparison of SAA method versus bounds for the refinery blending planning
problem with joint independent chance constraints with K = 5, . . . , 100 qualities and 3
products.
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Figure 4: % GAP of the bounds with respect to SOCP formulation for the refinery blending
planning problem with 3K individual chance constraints with K = 5, . . . , 100.

Figure 5: CPU time required by the different bounds for the refinery blending planning
problem with 3K individual chance constraints with K = 5, . . . , 100.
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Chebyshev

Chernoff

Hoeffding

Bernstein

Figure 6: % GAP of the bounds with respect to SAA method for the refinery blend
planning problem with joint independent chance constraints with K = 5, . . . , 100 and 3
products.

Chebyshev

Chernoff

Hoeffding

Figure 7: CPU time required by the different bounds for the refinery blending planning
problem with joint independent chance constraints with K = 5, . . . , 100 and 3 products.
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