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Abstract

We consider a finite state-action uncertain constrained Markov deci-
sion process under discounted and average cost criteria. The running
costs are defined by random variables and the transition probabilities are
known. The uncertainties present in the objective function and the con-
straints are modelled using chance constraints. The dependence among
the random constraint vectors is driven by a Gumbel-Hougaard cop-
ula. We propose two second order cone programming problems whose
optimal values give upper and lower bounds of the optimal value of
the uncertain constrained Markov decision process. As an applica-
tion, we study a stochastic version of a service and admission control
problem in a queueing system and illustrate the proposed approxi-
mation methods on randomly generated instances of different sizes.

Keywords: Constrained Markov decision process, Joint chance constraint,
Second order cone programming problem, Copula, Elliptical distribution,
Queueing problem.
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1 Introduction

Markov decision process (MDP) is a decision making framework for a stochas-
tic system which evolves over finite/infinite horizon. The system can have a
finite or infinite number of states, and at each state, a controller chooses an
action from a set of available actions at that state. The system moves from one
state to another state according to a controlled Markov chain. At every stage,
the system incurs cost whenever a state is visited and an action is taken. The
objective is to find a policy which minimizes the expected cost incurred over a
period of time. The discounted and average cost criteria are most commonly
used in the literature. For a finite state-action MDP with known transition
probabilities and running costs, there exists a stationary deterministic opti-
mal policy and it can be obtained by using dynamic programming and Linear
programming (LP) based methods [1, 4, 18]. In many real-life examples, there
are more than one running costs incurred at every stage whenever the Markov
chain visits a state and an action is taken [1–3]. One type of running cost
defines an expected cost function which needs to be minimized and other types
of running costs define the expected cost functions on which constraints are
imposed. This class of MDP is called a constrained Markov decision process
(CMDP). When running costs and transition probabilities are stationary and
exactly known, there exists a stationary randomized optimal policy for a finite
state-action CMDP problem and it can be obtained by solving an equivalent
LP problem [1].

In practice, the MDP model parameters such as running costs and transi-
tion probabilities are not exactly known. They are either learnt with experience
or from historical data, thereby leading to errors in the optimal policies
[13]. The early literature on MDPs with uncertain parameters dates back to
the 1970s, where MDPs under uncertain transition probabilities were studied
[19, 22]. Previous studies have accounted for the uncertainties in MDPs under
a robust optimization framework by considering the worst case realization of
the uncertain parameters [11, 15, 23]. Recently, the equivalent reformulations
of robust CMDP problem, with uncertain costs and known transition proba-
bilities, for various uncertainty sets are proposed by Varagapriya et al. [21].
Delage and Mannor [8] observed that robust optimization problems can give
highly conservative optimal solutions. As an alternative approach, they consid-
ered an uncertain MDP problem under discounted cost criterion where either
running costs or transition probabilities are defined as random variables and
proposed a chance constraint programming based formulation. The chance
constraint based MDP is equivalent to a second order cone programming
(SOCP) problem when the running cost vector follows a normal distribution
and transition probabilities are known [8]. When the prior transition probabil-
ities follow Dirichlet distribution and running costs are known, the uncertain
MDP problem becomes intractable and optimal policies can be computed using
approximation methods [8].

To the best of our knowledge, CMDPs where either running costs or transi-
tion probabilities are defined using random variables are not considered in the
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literature. In this paper, we consider a CMDP problem under both discounted
and average cost criteria where running cost vectors are random vectors and
transition probabilities are known. We use chance constraint programming
[5, 17] to model the uncertainties present in the objective function and the
constraints of the CMDP problem. For a given policy, the chance constraint
based objective function of the CMDP problem gives a minimum long run
expected cost which is incurred with at least a given probability level. The
random constraints of the CMDP problem is defined as a joint chance con-
straint which guarantees that the random constraints are jointly satisfied with
at least a given probability level. We call this uncertain CMDP as a joint
chance-constrained Markov decision process (JCCMDP). In general, the ran-
dom constraint vectors present in the joint chance constraint can be dependent
random vectors. In order to study the dependence structure of random vari-
ables, the concept of copula was introduced by Abe Sklar in 1959 [20]. We
consider the case when running cost vectors follow multivariate elliptically
symmetric distribution and dependence among random constraint vectors is
driven by a Gumbel-Hougaard copula. The deterministic equivalent of the
JCCMDP problem is a non-convex optimization problem. We approximate
the latter by proposing two SOCP problems whose optimal values give upper
and lower bounds of the optimal value of the JCCMDP problem. As an appli-
cation, we study the problem of admission and service control in a queueing
system and perform numerical experiments by considering various instances
of different sizes.

The rest of the paper is organized as follows. Section 2 introduces the
definition of a CMDP. Section 3 presents a JCCMDP problem and its SOCP
based approximations. Section 4 gives the results of numerical experiments
carried out on the queueing control problem. We conclude the paper in Section
5.

2 Constrained Markov decision processes

We define an infinite horizon CMDP by the following objects [1]:
(i) S is a finite set of states whose generic element is denoted by s.
(ii) A is a finite set of actions and A(s) denotes the set of actions available

at state s.
(iii) K = {(s, a) ∣ s ∈ S, a ∈ A(s)} is the set of all state-action pairs; ∣K∣ denotes

the cardinality of K.
(iv) γ = (γ(s))s∈S is a probability distribution according to which an initial

state is chosen.
(v) p ∶ K → ℘(S) is a transition probability function where ℘(S) is the set of

probability distributions on S; p(s′∣s, a) is the probability of moving from
state s to s′ when the controller chooses an action a ∈ A(s).

(vi) c = (c(s, a))(s,a)∈K denotes the running cost vector associated with the

objective function, where c(s, a) is the cost incurred at state s when an
action a ∈ A(s) is chosen.
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(vii) dk = (dk(s, a))(s,a)∈K, k = 1,2, . . . ,K, denote the running cost vectors

associated with the constraints, where dk(s, a) is the cost incurred at state
s when an action a ∈ A(s) is chosen.

(viii) (ξk)Kk=1 are the bounds for the constraints.
We consider a discrete-time infinite horizon controlled Markov chain

(Xt,At)∞t=0, where (Xt,At) denotes the state-action pair at time t. At time
t = 0, the state of the Markov chain is s0 ∈ S according to an initial distribution
γ and the controller chooses an action a0 ∈ A(s0). As a consequence, run-
ning costs c(s0, a0), dk(s0, a0), k = 1,2, . . . ,K, are incurred. The Markov chain
moves to state s1 at time t = 1 with probability p(s1∣s0, a0) and the same thing
repeats at s1 and it continues for the infinite horizon. In general, the decision
at time t may depend on the history ht = (s0, a0, s1, a1, . . . , st−1, at−1, st) at
time t. Let Ht be the set of all possible histories at time t. A history dependent
decision rule ft at time t is a function ft ∶Ht → ℘(A), where for every ht ∈Ht

with final state st, ft(ht) ∈ ℘(A(st)). A sequence of history dependent deci-
sion rules fh = (ft)∞t=0 is called a history dependent policy. When each ft in
the sequence (ft)∞t=0 depends only on the state at time t, it is called a Marko-
vian policy. A Markovian policy (ft)∞t=0 is called a stationary policy if there
exists a decision rule f such that ft = f for all t. We write a stationary pol-
icy (f, f, . . . ) by f with abuse of notation, and define f = (f(s))s∈S such that
f(s) ∈ ℘(A(s)) for every s ∈ S. According to a stationary policy f , whenever
the Markov chain visits state s, the controller chooses an action from A(s)
according to the decision rule f(s). We denote the set of all history dependent
and stationary policies by FHD and FS , respectively.

The policy fh and initial distribution γ define a probability measure P f
h

γ

over the state and action trajectories, and Ef
h

γ denotes the expectation oper-

ator corresponding to probability measure P f
h

γ . For a given history dependent

policy fh ∈ FHD and an initial distribution γ, the expected discounted costs
at a discount factor α ∈ (0,1) are defined as [1]

Cα(γ, fh) = (1 − α)
∞
∑
t=0

αtEf
h

γ c(Xt,At)

= ∑
s∈S

∑
a∈A(s)

gα(γ, fh; s, a)c(s, a),

Dk
α(γ, fh) = (1 − α)

∞
∑
t=0

αtEf
h

γ dk(Xt,At)

= ∑
s∈S

∑
a∈A(s)

gα(γ, fh; s, a)dk(s, a),
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for all k = 1,2, . . . ,K, where (1 − α) is a normalization constant. The set
{gα(γ, fh; s, a)}(s,a) is the occupation measure defined by

gα(γ, fh; s, a) = (1 − α)
∞
∑
t=0

αtP f
h

γ (Xt = s,At = a), ∀(s, a) ∈ K.

For a given history dependent policy fh and an initial distribution γ, the
expected average costs are defined as [1]

Cea(γ, fh) = lim sup
n→∞

1

n

n−1

∑
t=0

Ef
h

γ c(Xt,At)

= ∑
s∈S

∑
a∈A(s)

gea(γ, fh; s, a)c(s, a),

Dk
ea(γ, fh) = lim sup

n→∞

1

n

n−1

∑
t=0

Ef
h

γ dk(Xt,At)

= ∑
s∈S

∑
a∈A(s)

gea(γ, fh; s, a)dk(s, a),

for all k = 1,2, . . . ,K. The set {gea(γ, fh; s, a)}(s,a) is an occupation measure

obtained from the accumulation points of {{gnea(γ, fh; s, a)}(s,a)}n, where

gnea(γ, fh; s, a) = 1

n

n−1

∑
t=0

P f
h

γ (Xt = s,At = a), ∀(s, a) ∈ K.

The optimal policy of a CMDP problem can be obtained by solving the
following optimization problem

min
fh∈FHD

Cv(γ, fh)

s.t. Dk
v(γ, fh) ≤ ξk, ∀ k = 1,2, . . . ,K,

(1)

where v = α and v = ea represent a CMDP problem with discounted cost
criterion and average cost criterion, respectively.

Assumption 1. For the CMDP problem with average cost criterion, we
assume that the CMDP is unichain, i.e., under any stationary determinis-
tic policy, the Markov chain is aperiodic and irreducible (with possibly some
transient states) [1, 18].

It is well known that the CMDP problem (1) for v ∈ {α, ea} can be restricted
to the class of stationary policies without loss of optimality when the running
costs and transition probabilities are stationary, i.e., they depend only on states
and actions but time. This follows from the fact that the set of occupation
measures defined with respect to history dependent policies and the set of
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occupation measures defined with respect to stationary policies are equal (see
Theorems 3.1 and 4.1 of [1]). Moreover, it follows from Theorems 3.2 and 4.2
of [1] that the set of occupation measures defined with respect to stationary
policies for the discounted cost criterion is equal to the set Qα(γ), and for the
average cost criterion it is equal to the set Qea(γ). For v ∈ {α, ea}, the set
Qv(γ) is defined as

Qv(γ) ={ρ ∈ R∣K∣ ∣ ∑
(s,a)∈K

ρ(s, a)(δ(s, s′) − ηp(s′∣s, a)) = (1 − η)γ(s′), ∀ s′ ∈ S,

∑
(s,a)∈K

ρ(s, a) = 1, ρ(s, a) ≥ 0, ∀(s, a) ∈ K},

where δ(s, s′) is the Kronecker delta and η ∈ (0,1]. If η < 1, we take it as
the discount factor α and Qv(γ) = Qα(γ), while if η = 1, Qv(γ) = Qea(γ).
Therefore, the CMDP problem (1) is equivalent to the LP problem

min
ρ

∑
s∈S

∑
a∈A(s)

ρ(s, a)c(s, a)

s.t. ∑
s∈S

∑
a∈A(s)

ρ(s, a)dk(s, a) ≤ ξk, ∀ k = 1,2, . . . ,K,

ρ ∈ Qv(γ).

(2)

If ρ∗ is an optimal solution of (2), the optimal stationary policy f∗ of the

CMDP problem is defined as f∗(s, a) = ρ∗(s,a)
∑a∈A(s) ρ∗(s,a)

for all s ∈ S, a ∈ A(s),
provided the denominator is non-zero (if it is zero, we choose f∗(s) arbitrarily

from ℘(A(s))).

3 CMDP under chance constraints

In real-life scenario, the model parameters such as running costs and transition
probabilities are subject to errors and are not exactly known. In this paper,
we assume that the transition probabilities are stationary and exactly known
while the running cost vectors c, dk, k = 1,2, . . . ,K, are random vectors defined
on a probability space (Ω,F ,P). The uncertainty in running costs is stationary
in nature, i.e., the random cost vectors c, dk, k = 1,2, . . . ,K, do not vary with
time. For a given fh ∈ FHD, the costs Cv(γ, fh),Dk

v(γ, fh), k = 1,2, . . . ,K,
corresponding to the objective function and the constraints are random vari-
ables. We consider the case where the controller is interested in the minimum
long run expected cost which is incurred with at least p0 probability, and the
random constraints are jointly satisfied with at least p1 probability. This leads
to the following joint chance constraint programming based formulation of the
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CMDP problem

min
t,fh∈FHD

t

s.t. P(Cv(γ, fh) ≤ t) ≥ p0,

P(Dk
v(γ, fh) ≤ ξk, k = 1,2, . . . ,K) ≥ p1.

(3)

We call (3) a joint chance-constrained Markov decision process (JCCMDP)
problem.

Proposition 1. The JCCMDP problem (3) can be restricted to the class of
stationary policies without loss of optimality. Moreover, it can be equivalently
written using the decision vector (t, ρ) as

min
t,ρ

t

s.t. P( ∑
(s,a)∈K

ρ(s, a)c(s, a) ≤ t) ≥ p0,

P( ∑
(s,a)∈K

ρ(s, a)dk(s, a) ≤ ξk, k = 1,2, . . . ,K) ≥ p1,

ρ ∈ Qv(γ).

(4)

If ρ∗ is a part of an optimal solution vector of (4), the optimal stationary

policy f∗ of the JCCMDP problem is given by f∗(s, a) = ρ∗(s,a)
∑a∈A(s) ρ∗(s,a)

for all

s ∈ S, a ∈ A(s), provided the denominator is non-zero (if it is zero, we choose

f∗(s) arbitrarily from ℘(A(s))).

Proof The proof follows from the fact that the set of occupation measures for history
dependent strategies is the same as Qv(γ) as discussed in Section 2. �

We consider the case where the running cost vectors c, dk, k = 1,2 . . . ,K,
follow multivariate elliptically symmetric distributions and the dependence
among the random constraints present under the joint chance constraint of (4)
is driven by Gumbel-Hougaard copula. We first review a few definitions and
results on copulas and elliptical distributions, which will be used in subsequent
analysis.

3.1 Preliminaries

Definition 1 (Copula [7, 12, 14]) A K-dimensional copula, where K ≥ 2, is a dis-

tribution function on [0,1]K such that all its one dimensional marginals follow a
uniform distribution on [0,1].
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The relation between the joint distribution of a random vector X =
(X1,X2, . . . ,XK) and a copula is given by the Sklar’s theorem [14].

Theorem 1 (Sklar’s theorem [14]). For a given K-dimensional distribution
function Φ̂ and all its one dimensional marginals Φ̂1, Φ̂2, . . . , Φ̂K , there exists
a copula C that satisfies

Φ̂(v1, v2, . . . , vK) = C(Φ̂1(v1), Φ̂2(v2), . . . , Φ̂K(vK)), ∀ v1, v2, . . . , vK ∈ R.

When all the marginals are continuous, C is unique throughout its domain; else
it is unique on ⨉Ki=1Range Φ̂i.

In this paper, we consider a particular class of copulas, namely, the Gumbel-
Hougaard family of copulas, denoted by Cθ, defined as [7]

Cθ(u) = exp

⎧⎪⎪⎨⎪⎪⎩
− [

K

∑
k=1

( − ln(uk))
θ]

1
θ ⎫⎪⎪⎬⎪⎪⎭
, (5)

where u = (u1, u2, . . . , uK)T ∈ [0,1]K and θ ≥ 1. When θ = 1, C1(u) = ∏K
k=1 uk

is the product copula. The joint distribution function of a random vector X
defined by a product copula implies that the random variables X1,X2, . . . ,XK

are independent.

Definition 2 (Elliptical distribution [9]) A K-dimensional random vector X is said
to follow a multivariate elliptically symmetric distribution if its characteristic func-

tion has the form E(eib
TX

) = eib
Tµϕ(bTΣb), where µ ∈ RK is the location parameter,

the matrix Σ ∈ RK×K is the scale parameter and ϕ is the characteristic generator.
We denote it as X ∼ EK(µ,Σ, ϕ).

If X ∼ EK(µ,Σ, ϕ) and the density function of X, denoted by φ exists, then
it has the form

φ(x) = 1√
det(Σ)

g((x − µ)TΣ−1(x − µ)),

where the scale matrix Σ is positive definite and the function g is the density
generator. In such a case, we also write X ∼ EK(µ,Σ, g). From Theorem 2.16 of
[9], a linear combination of the components of an elliptically distributed ran-
dom vector follows a univariate elliptical distribution. Thus, ifX ∼ EK(µ,Σ, ϕ),
for a b ∈ RK , bTX ∼ E1(bTµ, bTΣb,ϕ). Moreover, if Σ is a positive defi-

nite matrix, then bTX−bTµ
∥Σ

1
2 b∥2

is a spherically distributed random variable with

characteristic generator ϕ.
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3.2 Second order cone approximations

The deterministic optimization problem equivalent to the JCCMDP problem
(4), under certain conditions on random cost vectors c and dk, is given by the
following Proposition 2.

Proposition 2. Under the assumptions that
(i) the joint distribution of the random vector (ρT d1, ρT d2, . . . , ρT dK)T is

defined using the Gumbel-Hougaard family of copulas given by (5), and
(ii) c ∼ E∣K∣(µc,Σc, ϕ), dk ∼ E∣K∣(µdk ,Σdk , ϕ), k = 1,2, . . . ,K, such that

Σc,Σdk , k = 1,2, . . . ,K, are positive definite matrices,
the JCCMDP problem (4) is equivalent to the following non-linear program-
ming problem

min
t,ρ,(yk)Kk=1

t

s.t. ρTµc +Φ−1(p0)∥Σ
1
2
c ρ∥2 ≤ t,

ρTµdk +Φ−1(py
1
θ
k

1 )∥Σ
1
2

dk
ρ∥2 ≤ ξk, ∀ k = 1,2, . . . ,K,

K

∑
k=1

yk = 1,

yk ≥ 0, ∀ k = 1,2, . . . ,K,

ρ ∈ Qv(γ),

(6)

where p0, p1 ∈ (0.5,1) and Φ−1(⋅) is the quantile function of a spherical
distribution.

Proof The proof follows from Lemma 2 of [16] and Lemma 2.2 of [10]. �

Remark 1. If K = 1, the optimization problem (6) is an SOCP problem which
implies that the JCCMDP problem (4) is equivalent to an SOCP problem.

For K ≥ 2, the optimization problem (6) is a non-convex optimization
problem. We approximate (6) by two SOCP problems whose optimal values
give lower and upper bounds on the optimal value of the JCCMDP problem.
Our approximations hold under the following assumption.

Assumption 2. For each k = 1,2, . . . ,K, the quantile function Φ−1(py
1
θ
k

1 ) is a
convex function of yk.

For the spherical distributions listed in Table 1, Assumption 2 holds true.

This follows from the fact that Φ−1(py
1
θ
k

1 ) is a composition of functions p
y

1
θ
k

1
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and Φ−1(yk), where former is a convex function of yk ∈ [0,1] and latter is non-
decreasing and convex function of yk ∈ [p1,1]. The convexity of Φ−1(yk) for
the probability distributions listed in Table 1 can be verified by checking the
following condition

(Φ−1)
′′
(y) = −φ′(Φ−1(y))

(φ(Φ−1(y)))3
≥ 0, ∀ y ∈ [p1,1),

where φ(⋅) is the corresponding probability density function. The convexity
of Φ−1(yk) on [p1,1] holds because it is a continuous function at yk = 1. We

Table 1 List of some spherical distributions.

Probability Distribution Density Function (φ(u))

Normal ce
−u2
2

Pearson Type VII c(1 + u2

s )
−N

; N > 1
2 , s > 0

t c(1 + u2m)
−(1+m)

2 ; m > 0 an integer

Cauchy c(1 + u2

s )
−1

; s > 0

Logistic ce−u
2

(1+e−u2)2

Laplace ce−∣u∣

The constant c > 0 is the normalization factor that ensures the density function
gives 1 on integration.

approximate the functions Φ−1(py
1
θ
k

1 ), k = 1,2, . . . ,K, using piecewise tangent
and linear approximations to obtain two SOCP problems whose optimal values
give the lower and upper bounds for the optimal value of (6).

3.2.1 Lower bound approximation

For every k, we approximate the term Φ−1(py
1
θ
k

1 ) in (6) by choosing N tangent
points y1

k < y2
k < . . . < yNk from the interval (0,1]. We denote the Taylor series

expansion around the point yik by Φ−1(py
1
θ
k

1 )i and define it as

Φ−1(py
1
θ
k

1 )i = Φ−1(py
i
k

1
θ

1 ) + (yk − yik)
d

dyk
(Φ−1(py

i
k

1
θ

1 ))

= Φ−1(py
i
k

1
θ

1 ) − (yik)
1
θ p
yik

1
θ

1 ln(p1)

θφ(Φ−1(py
i
k

1
θ

1 ))
+ p

yik
1
θ

1 ln(p1)(yik)
1
θ−1yk

θφ(Φ−1(py
i
k

1
θ

1 ))
= āik + b̄ikyk, ∀ i = 1,2, . . . ,N,
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where āik = Φ−1(py
i
k

1
θ

1 ) − (yik)
1
θ p
yik

1
θ

1 ln(p1)

θφ(Φ−1(py
i
k

1
θ

1 ))
, b̄ik =

p
yik

1
θ

1 ln(p1)(yik)
1
θ−1

θφ(Φ−1(py
i
k

1
θ

1 ))
,

and φ(⋅) is the probability density function of the spherical distribution whose
cumulative distribution function is Φ(⋅).

Theorem 2. Let Assumption 2 holds. The lower bound for the optimal value
of the equivalent JCCMDP problem (6) is given by the optimal value of the
following SOCP problem

min
t,ρ,(xkj)Kk=1,

∣K∣
j=1,(zkj)

K
k=1,

∣K∣
j=1

t

s.t. ρTµc +Φ−1(p0)∥Σ
1
2
c ρ∥2 ≤ t,

ρTµdk + ∥Σ
1
2

dk
zk∥2 ≤ ξk, ∀ k = 1,2, . . . ,K,

zkj ≥ (āikρj + b̄ikxkj), ∀ k = 1,2, . . . ,K, j = 1,2, . . . , ∣K∣, i = 1,2, . . . ,N,

K

∑
k=1

xkj = ρj , ∀ j = 1,2, . . . , ∣K∣,

xkj ≥ 0, ∀ k = 1,2, . . . ,K, j = 1,2, . . . , ∣K∣,
ρ ∈ Qv(γ),

(7)

where ρj is the j-th component of ρ ∈ R∣K∣ and zk = (zkj)∣K∣j=1 for every k =
1,2, . . . ,K.

Proof It is sufficient to show that for every feasible solution of (6) there exists a
feasible solution of (7). The proof is similar to Theorem 3.1.1 of [6]. Suppose the

vector (t, ρ, (yk)
K
k=1) is a feasible solution of (6). Under Assumption 2, we obtain

Φ−1
(p
y

1
θ
k

1 ) ≥ max
1≤i≤N

(āik + b̄
i
kyk) for all k. Therefore,

ρTµdk + max
1≤i≤N

(āik + b̄
i
kyk)∥Σ

1
2

dk
ρ∥2 ≤ ξk, ∀ k = 1,2, . . . ,K.

The vectors zk, k = 1,2, . . .K, where zkj = max
1≤i≤N

(āikρj+b̄
i
kykρj) for all k = 1,2, . . . ,K,

j = 1,2, . . . , ∣K∣, satisfies

ρTµdk + ∥Σ
1
2

dk
zk∥2 ≤ ξk, ∀ k = 1,2, . . . ,K,

zkj ≥ ā
i
kρj + b̄

i
kykρj , ∀ k = 1,2, . . . ,K, j = 1,2, . . . , ∣K∣.

Then, the vector (t, ρ, (xkj)
K
k=1,

∣K∣
j=1

, (zkj)
K
k=1,

∣K∣
j=1

) where

xkj = ykρj , ∀k = 1,2, . . . ,K, j = 1,2, . . . , ∣K∣,

is a feasible solution for the problem (7). �



12 Joint Chance-Constrained Markov Decision Processes

3.2.2 Upper bound approximation

For every k, we approximate the term Φ−1(py
1
θ
k

1 ) in (6) by choosing N inter-
polation points y1

k < y2
k < . . . < yNk from the interval (0,1]. We denote the

linear interpolating polynomial passing through the points (yik,Φ−1(py
i
k

1
θ

1 ))

and (yi+1
k ,Φ−1(py

i+1
k

1
θ

1 )) by Φ−1(py
1
θ
k

1 )i and define it as

Φ−1(py
1
θ
k

1 )i = Φ−1(py
i
k

1
θ

1 ) + yk − yik
yi+1
k − yik

(Φ−1(py
i+1
k

1
θ

1 ) −Φ−1(py
i
k

1
θ

1 ))

= y
i+1
k Φ−1(py

i
k

1
θ

1 ) − yikΦ−1(py
i+1
k

1
θ

1 )
yi+1
k − yik

+
(Φ−1(py

i+1
k

1
θ

1 ) −Φ−1(py
i
k

1
θ

1 ))yk
yi+1
k − yik

= âik + b̂ikyk, ∀ i = 1,2, . . . ,N − 1,

where âik =
yi+1
k Φ−1(py

i
k

1
θ

1 ) − yikΦ−1(py
i+1
k

1
θ

1 )
yi+1
k − yik

, b̂ik =
Φ−1(py

i+1
k

1
θ

1 ) −Φ−1(py
i
k

1
θ

1 )
yi+1
k − yik

.

Theorem 3. Let Assumption 2 holds. The upper bound for the optimal value
of the equivalent JCCMDP problem (6) is given by the optimal value of the
following SOCP problem

min
t,ρ,(yk)Kk=1,(zk)Kk=1

t

s.t. ρTµc +Φ−1(p0)∥Σ
1
2
c ρ∥2 ≤ t,

ρTµdk + zk( max
1≤j≤∣K∣

∥(Σ
1
2

dk
)j∥2) ≤ ξk, ∀ k = 1,2, . . . ,K,

zk ≥ âik + b̂ikyk, ∀ k = 1,2, . . . ,K, i = 1,2, . . . ,N − 1,

K

∑
k=1

yk = 1,

yk ≥ 0, ∀ k = 1,2, . . . ,K,

ρ ∈ Qv(γ),

(8)

where ρj is the j-th component of ρ ∈ R∣K∣ and (Σ
1
2

dk
)j is the j-th column of

the matrix Σ
1
2

dk
.

Proof It is sufficient to show that for every feasible solution of (8) there exists a fea-

sible solution of (6). Suppose the vector (t, ρ, (yk)
K
k=1, (zk)

K
k=1) is a feasible solution

of (8). Under Assumption 2, we obtain Φ−1
(p
y

1
θ
k

1 ) ≤ max
1≤i≤N−1

(âik + b̂
i
kyk) for all k. For
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an arbitrarily fixed k ∈ {1,2, . . . ,K}, consider

∥Σ
1
2

dk
ρ∥2 = ∥ρ1(Σ

1
2

dk
)1 + ρ2(Σ

1
2

dk
)2 + . . . + ρ∣K∣(Σ

1
2

dk
)∣K∣∥2

≤ ρ1∥(Σ
1
2

dk
)1∥2 + ρ2∥(Σ

1
2

dk
)2∥2 + . . . + ρ∣K∣∥(Σ

1
2

dk
)∣K∣∥2

≤ max
1≤j≤∣K∣

∥(Σ
1
2

dk
)j∥2.

The first inequality holds by triangular inequality of ∥ ⋅ ∥2, while the second inequal-
ity holds by the last two conditions of the set Qv(γ). Consequently, the following
inequality holds true

ρTµdk +Φ−1
(p
y

1
θ
k

1 )∥Σ
1
2

dk
ρ∥2 ≤ ρ

Tµdk + max
1≤i≤N−1

(âik + b̂
i
kyk)( max

1≤j≤∣K∣
∥(Σ

1
2

dk
)j∥2)

≤ ρTµdk + zk( max
1≤j≤∣K∣

∥(Σ
1
2

dk
)j∥2).

Therefore,

ρTµdk +Φ−1
(p
y

1
θ
k

1 )∥Σ
1
2

dk
ρ∥2 ≤ ξk, ∀ k = 1,2, . . . ,K.

Hence, the vector (t, ρ, (yk)
K
k=1) is a feasible solution for the problem (6). �

4 Queueing control problem

We consider a stochastic version of a discrete-time service and admission con-
trol problem in a single queue introduced by Altman (see Chapter 5 of [1]).
The system has two controllers, namely, service and admission controllers. We
consider them as a single controller because their joint objective is to minimize
the expected cost incurred in the long run. The states represent the queue
length with buffer size L. Thus, S = {0,1, . . . , L}, where s = 0 indicates that
the queue is empty, while s = L indicates that the queue is full. The action
set of the controller is A1 × A2, where A1 and A2 are finite sets of probabil-
ity values. If (a1, a2) ∈ A1 ×A2, then a1 and a2 denote the probabilities with
which the controller finishes the service and admits a customer into the sys-
tem, respectively. We assume that A1 ⊆ [a1

min, a
1
max] and A2 ⊆ [a2

min, a
2
max],

where 0 < a1
min ≤ a1

max < 1 and 0 ≤ a2
min ≤ a2

max < 1. Moreover, when s = L,
we assume no admission takes place. The transition probabilities from [1] are
given by

p(s′∣s, (a1, a2)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1(1 − a2) 1 ≤ s ≤ L − 1, s′ = s − 1,

a1a2 + (1 − a1)(1 − a2) 1 ≤ s ≤ L − 1, s′ = s,
(1 − a1)a2 0 ≤ s ≤ L − 1, s′ = s + 1,

1 − (1 − a1)a2 s′ = s = 0,

1 − a1 s = L, s′ = L,
a1 s = L, s′ = L − 1.

If at state s ∈ S, the controller chooses an action (a1, a2), it incurs running costs
c(s), d1(a1) and d2(a2). The running cost c(s) is the holding cost incurred due
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to customers waiting in the queue. Therefore, it only depends on the size of the
queue. The holding cost is zero for an empty queue, i.e., c(0) = 0. The running
cost d1(a1) is a service cost incurred when a customer is served with probability
a1 and d2(a2) denotes the cost when a customer is not admitted into the
system with (1−a2) probability. The service cost d1(a1) increases with a1 and
no admission cost d2(a2) decreases with a2. These costs do not depend on the
size of the queue. The controller aims to minimize the expected holding cost
in the long run by keeping the long run expected service and admission costs
below certain threshold values. Usually the costs in the queueing system are not
realized before the decisions are taken. Therefore, the running cost vectors c ,d1

and d2 are better modelled using random vectors. We assume that they follow
normal distribution and denote them as c ∼ N(µc,Σc), dk ∼ N(µdk ,Σdk),
k = 1,2, where c = (c(s))s∈S , d1 = (d1(a1))a1∈A1 and d2 = (d2(a2))a2∈A2 .

4.1 Numerical experiments

We perform numerical experiments, using CVX package in MATLAB optimiza-
tion toolbox, on an Intel(R) 64-bit Core(TM) i5-8250U CPU @ 1.60GHz with
8.0 GB RAM machine. In all the numerical experiments, we fix p0, p1 = 0.95,
α = 0.99 and assume γ to be a uniformly distributed vector. We consider the
case where the number of states are 10, i.e., L = 9, and the controller finishes the
service with probability a1 = 0.75. The admission controller has two possible
actions: ’No Admission (a2 = 0)’ or ’Admission with probability 0.8 (a2 = 0.8)’.
We take c, d2 to be normally distributed random vectors and d1 to be fixed,
thus K = 1. Hence, from Remark 1, it follows that the JCCMDP problem (4)
reduces to an SOCP problem. We take ξ2 = 9, µc = (0,1,2, . . . ,9)T , the matrix
Σc ∈ R10×10 with all diagonal values 0.9 and off-diagonal values 0.35, and

µd2 = (10.0
7.60

) , Σd2 = (0.80 0.24
0.24 0.61

) .

The optimal values of the JCCMDP problem with the above data for dis-
counted and average cost cases are 5.7963 and 6.2296, respectively. Figure 1
shows the optimal probability of not admitting a customer into the queue at
various states. For both the cases, we conclude that the optimal probability of
’No Admission’ is 1 at the last state.

We consider a relatively large system where the action set of the controller is
given by A1×A2 = {(0.2,0.75,0.9), (0,0.5,0.8)}. Thus, K = 2, and we compute
the lower bound and upper bound for the optimal value of the JCCMDP
problem (4) by solving the SOCP problems (7) and (8), respectively. For L =
n− 1 (∣S∣ = n), we take µc = (0,1,2, . . . , n− 1)T , the matrix Σc ∈ Rn×n with all
diagonal values 0.9 and off-diagonal values 0.35, µd1 = (4.32,9.1875,10.83)T ,
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Fig. 1 The solid lines marked with ′∗′ and ′o′ denote the optimal probability of not admitting
a customer into the queue for discounted and average cost problems, respectively.

µd2 = (10.00,8.50,7.60)T , and

Σd1 =
⎛
⎜
⎝

0.15 0.05 0.10
0.05 0.10 0.15
0.10 0.15 0.40

⎞
⎟
⎠
, Σd2 =

⎛
⎜
⎝

0.80 0.35 0.24
0.35 0.70 0.20
0.24 0.20 0.61

⎞
⎟
⎠
.

The mean vector µc, where µc(s) = s, captures the fact that the holding
cost increases with s. We take the mean vectors µd1 and µd2 such that
µd1(a1) = 3(1 + a1)2 and µd2(a2) = 10 − 3a2. It is motivated from the fact
that the service cost increases with a1 and no admission cost decreases with
a2. We take ξ1 = 11.30, ξ2 = 11.35, the sets of tangent and linear points are
{0.01,0.15,0.45} and {10−5,10−3,0.15,1}, respectively, such that the interpo-
lation point y1

k is sufficiently close to 0. We solve the SOCP problems (7) and
(8) for various values of θ and ∣S∣. The higher values of θ indicates stronger
dependence between the random vectors d1(a1) and d2(a2) driven by Gumbel-
Hougaard copula. The numerical results are summarized in Tables 2 and 3 for
the case of discounted and average cost criteria, respectively. The lower bound
and upper bound for the optimal value of JCCMDP problem is given in col-
umn 3 and column 5 of each table, respectively. The computational time to
solve (7) and (8) is given in columns 4 and 6, respectively. The last column of
both the Tables represent the gap between the upper and lower bound for the
optimal value of the JCCMDP problem (4), where the gap is defined by

Gap(%) = Opt.(UB)-Opt.(LB)

Opt.(LB)
× 100.

It is clear from Tables 2 and 3 that in most of the cases the gap is very small.
Only in a few instances it goes up to 2.15%. This shows that the SOCP prob-
lems (7) and (8) are good approximations of the JCCMDP problem. The time
analysis shows that the SOCP problems (7) and (8) can be solved efficiently.
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Table 2 Lower and Upper bounds for Discounted cost case.

θ States
Lower Bound (LB) Upper Bound (UB)

Gap(%)

Opt. CPU(s) Opt. CPU(s)

1

200 47.3240 15.4219 47.3260 10.1875 0.0042

400 131.2503 57.1094 131.3343 23.1094 0.0639

600 224.7818 142.8438 229.3581 72.2656 2.0358

800 322.1396 347.7031 329.0680 161.7188 2.1507

3

200 47.3247 14.8125 47.3260 5.2500 0.0027

400 131.2513 53.8281 131.2536 23.2500 0.0017

600 224.7558 142.5938 224.8627 52.2031 0.0475

800 321.4530 312.4063 323.9796 176.6094 0.7859

6

200 47.3250 13.0938 47.3260 5.0313 0.0021

400 131.2518 49.5313 131.2533 19.4688 0.0011

600 224.7562 140.2188 224.7802 47.6250 0.0106

800 321.4326 314.4531 322.6907 158.7344 0.3914

Table 3 Lower and Upper bounds for Average cost case.

θ States
Lower Bound (LB) Upper Bound (UB)

Gap(%)

Opt. CPU(s) Opt. CPU(s)

1

200 1.5604 19.3438 1.5607 10.8906 0.0192

400 1.5604 61.9531 1.5607 26.1875 0.0192

600 1.5604 166.5781 1.5607 64.7344 0.0192

800 1.5604 340.1719 1.5607 120.9219 0.0192

3

200 1.5605 15.5625 1.5607 5.9688 0.0128

400 1.5605 53.3750 1.5607 29.7344 0.0128

600 1.5605 156.7969 1.5607 71.3594 0.0128

800 1.5605 287.0469 1.5607 131.2813 0.0128

6

200 1.5606 18.2188 1.5607 9.8750 0.0064

400 1.5606 56.7344 1.5607 24.6563 0.0064

600 1.5606 150.8281 1.5607 61.7656 0.0064

800 1.5606 276.4063 1.5607 135.9844 0.0064

5 Conclusion

We consider a CMDP problem with random costs under discounted and aver-
age cost criteria. We formulate it as a joint chance-constrained optimization
problem where the dependence among the random cost constraint vectors is
driven by a Gumbel-Hougaard copula. When the random cost vectors fol-
low multivariate elliptically symmetric distributions, we propose SOCP based
approximations which give upper and lower bounds on the optimal value of the
JCCMDP problem. We illustrate our results on a queueing control problem
by considering various small and large instances. The gap between the upper
and lower bounds is very small in most of our experiments which shows the
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effectiveness of the SOCP approximations. The time analysis shows that both
the approximations can be solved efficiently for large instances.
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