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Abstract

We consider a finite state-action uncertain constrained Markov deci-
sion process under discounted and average cost criteria. The running
costs are defined by random variables and the transition probabili-
ties are known. The uncertainties present in the objective function
and the constraints are modelled using chance constraints. We assume
that the random cost vectors follow multivariate elliptically sym-
metric distributions and dependence among the random constraints
is driven by a Gumbel-Hougaard copula. We propose two second
order cone programming problems whose optimal values give lower
and upper bounds of the optimal value of the uncertain constrained
Markov decision process. As an application, we study a stochastic
version of a service and admission control problem in a queueing
system. The proposed approximation methods are illustrated on ran-
domly generated instances of queueing control problem as well as
on well known class of Markov decision problems known as Garnets.

Keywords: Constrained Markov decision process, Joint chance constraint,
Second order cone programming problem, Copula, Elliptical distribution,
Queueing problem.

1
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1 Introduction

Markov decision process (MDP) is a decision making framework for a stochas-
tic system which evolves over finite/infinite horizon. The system can have a
finite or infinite number of states, and at each state, a controller chooses an
action from a set of available actions at that state. The system moves from one
state to another state according to a controlled Markov chain. At every stage,
the system incurs cost whenever a state is visited and an action is taken. The
objective is to find a policy which minimizes the expected cost incurred over a
period of time. The discounted and average cost criteria are most commonly
used in the literature. For a finite state-action MDP with known transition
probabilities and running costs, there exists a stationary deterministic opti-
mal policy, and it can be obtained by using dynamic programming and Linear
programming (LP) based methods [1, 3, 19]. MDPs can also be solved via pol-
icy iteration [25]. In many real-life examples, there are more than one running
costs incurred at every stage whenever the Markov chain visits a state and an
action is taken. For instance, in [1], the author studies the example of service
and admission control in a queueing system in which the controller incurs three
different costs at every stage. In [22], the authors study a variant of a machine
replacement problem by considering the case when the controller incurs oppor-
tunity cost together with maintenance cost at every stage. In such cases, one
type of running cost defines a long-run expected cost function which needs to
be minimized and other types of running costs define the long-run expected
cost functions on which constraints are imposed. This class of MDP is called a
constrained Markov decision process (CMDP). For a finite state-action CMDP
problem, when running costs and transition probabilities are stationary and
exactly known, there exists a stationary randomized optimal policy which can
be obtained by solving an equivalent LP problem [1].

In practice, the MDP model parameters such as running costs and transi-
tion probabilities are not exactly known. They are either learnt with experience
or from historical data, thereby leading to errors in the optimal policies
[15]. The early literature on MDPs with uncertain parameters dates back to
the 1970s, where MDPs under uncertain transition probabilities were studied
[20, 23]. Previous studies have accounted for the uncertainties in MDPs under
a robust optimization framework by considering the worst case realization
of the uncertain parameters [12, 17, 24]. Recently, the equivalent reformula-
tions of robust CMDP problem, with uncertain costs and known transition
probabilities, for various uncertainty sets are proposed by Varagapriya et
al. [22]. Delage and Mannor [7] observed that robust optimization problems
can give highly conservative optimal solutions. As an alternative approach,
they considered an uncertain MDP problem under discounted cost criterion
where either running costs or transition probabilities are defined as random
variables and proposed a chance constraint programming based formulation.
The chance constraint based MDP is equivalent to a second-order cone pro-
gramming (SOCP) problem when the running cost vector follows a normal
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distribution and transition probabilities are known [7]. When the prior tran-
sition probabilities follow Dirichlet distribution and running costs are known,
the uncertain MDP problem becomes intractable and optimal policies can be
computed using approximation methods [7].

To the best of our knowledge, CMDPs where either running costs or tran-
sition probabilities are defined using random variables are not considered in
the literature. In this paper, we consider a finite state-action CMDP problem
under both discounted and average cost criteria where running cost vectors
are random vectors and transition probabilities are known. We use chance con-
straint programming [4, 18] to model the uncertainties present in the objective
function and the constraints of the CMDP problem. For a given policy, the
chance constraint based objective function of the CMDP problem gives a mini-
mum long-run expected cost which is incurred with at least a given probability
level. The random constraints of the CMDP problem are defined as a joint
chance constraint which guarantees that the random constraints are jointly
satisfied with at least a given probability level. We call this uncertain CMDP
as a joint chance-constrained Markov decision process (JCCMDP). In general,
the random constraint vectors present in the joint chance constraint can be
dependent random vectors. In order to study the dependence structure of ran-
dom variables, the concept of copula was introduced by Abe Sklar in 1959 [21].
We consider the case when running cost vectors follow multivariate elliptically
symmetric distribution and dependence among random constraint vectors is
driven by a Gumbel-Hougaard copula. The choice of elliptical distributions is
due to the fact that it is a generalization of normal distributions and contains
a list of important symmetric distributions [9] and they are closed under lin-
ear transformations. The Gumbel-Hougaard copula is considered because it is
separable in nature. Using the fact that the elliptical distributions are closed
under a linear transformation and Gumbel-Hougaard copula is separable, we
propose a deterministic non-convex optimization problem which is equivalent
to the JCCMDP problem. We approximate the equivalent non-convex problem
by two SOCP problems whose optimal values give lower and upper bounds of
the optimal value of the JCCMDP problem. As an application, we study the
problem of admission and service control in a queueing system and perform
numerical experiments by considering various instances of different sizes.

The rest of the paper is organized as follows. Section 2 introduces the
definition of a CMDP. Section 3 presents a JCCMDP problem and its SOCP
based approximations. Section 4 gives the results of numerical experiments
carried out on the queueing control problem and on random CMDPs. We
conclude the paper in Section 5.

2 Constrained Markov decision processes

We define an infinite horizon CMDP by the following objects [1]:
(i) S is a finite set of states whose generic element is denoted by s.
(ii) A is a finite set of actions and A(s) denotes the set of actions available

at state s.
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(iii) K = {(s, a) ∣ s ∈ S, a ∈ A(s)} is the set of all state-action pairs; ∣K∣ denotes
the cardinality of K.

(iv) γ = (γ(s))s∈S is a probability distribution according to which an initial
state is chosen.

(v) p ∶ K → ℘(S) is a transition probability function where ℘(S) is the set of
probability distributions on S; p(s′∣s, a) is the probability of moving from
state s to s′ when the controller chooses an action a ∈ A(s).

(vi) c = (c(s, a))(s,a)∈K denotes the running cost vector associated with the

objective function, where c(s, a) is the cost incurred at state s when an
action a ∈ A(s) is chosen.

(vii) dk = (dk(s, a))(s,a)∈K, k = 1,2, . . . ,K, denote the running cost vectors

associated with the constraints, where dk(s, a) is the cost incurred at state
s when an action a ∈ A(s) is chosen.

(viii) (ξk)Kk=1 are the bounds for the constraints.
We consider a discrete-time vector stochastic process (Xt,At)∞t=0, where

(Xt,At) denotes the state-action pair at time t. At time t = 0, the state of
the Markov chain is s0 ∈ S according to an initial distribution γ and the con-
troller chooses an action a0 ∈ A(s0). As a consequence, running costs c(s0, a0),
dk(s0, a0), k = 1,2, . . . ,K, are incurred. The Markov chain moves to state s1
at time t = 1 with probability p(s1∣s0, a0) and the same thing repeats at s1
and it continues for the infinite horizon. In general, the decision at time t may
depend on the history ht = (s0, a0, s1, a1, . . . , st−1, at−1, st) at time t. Let Ht

be the set of all possible histories at time t. A history dependent decision rule
ft at time t is a function ft ∶ Ht → ℘(A), where for every ht ∈ Ht with final
state st, ft(ht) ∈ ℘(A(st)). A sequence of history dependent decision rules
fh = (ft)∞t=0 is called a history dependent policy. When each ft in the sequence
(ft)∞t=0 depends only on the state at time t, it is called a Markovian policy. A
Markovian policy (ft)∞t=0 is called a stationary policy if there exists a decision
rule f such that ft = f for all t. We write a stationary policy (f, f, . . . ) by f
with abuse of notation, and define f = (f(s))s∈S such that f(s) ∈ ℘(A(s)) for
every s ∈ S. According to a stationary policy f , whenever the Markov chain
visits state s, the controller chooses an action from A(s) according to the
decision rule f(s). We denote the set of all history dependent and stationary
policies by FHD and FS , respectively.

The policy fh and initial distribution γ define a probability measure P fh

γ

over the state and action trajectories (for details see Section 2.1.6 of [19]), and

Efh

γ denotes the expectation operator corresponding to probability measure

P fh

γ . For a given history dependent policy fh ∈ FHD and an initial distribution
γ, the expected discounted costs at a discount factor α ∈ (0,1) are defined as
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[1]

Cα(γ, fh) = (1 − α)
∞
∑
t=0

αtEfh

γ c(Xt,At)

= ∑
s∈S

∑
a∈A(s)

gα(γ, fh; s, a)c(s, a),

Dk
α(γ, fh) = (1 − α)

∞
∑
t=0

αtEfh

γ dk(Xt,At)

= ∑
s∈S

∑
a∈A(s)

gα(γ, fh; s, a)dk(s, a),

for all k = 1,2, . . . ,K, where (1 − α) is a normalization constant. The set
{gα(γ, fh; s, a)}(s,a) is the occupation measure defined by

gα(γ, fh; s, a) = (1 − α)
∞
∑
t=0

αtP fh

γ (Xt = s,At = a), ∀ (s, a) ∈ K.

For a given history dependent policy fh and an initial distribution γ, the
expected average costs are defined as [1]

Cea(γ, fh) = lim sup
n→∞

1

n

n−1
∑
t=0

Efh

γ c(Xt,At)

= ∑
s∈S

∑
a∈A(s)

gea(γ, fh; s, a)c(s, a),

Dk
ea(γ, fh) = lim sup

n→∞

1

n

n−1
∑
t=0

Efh

γ dk(Xt,At)

= ∑
s∈S

∑
a∈A(s)

gea(γ, fh; s, a)dk(s, a),

for all k = 1,2, . . . ,K. The set {gea(γ, fh; s, a)}(s,a) is an occupation measure

obtained from the accumulation points of {{gnea(γ, fh; s, a)}(s,a)}n, where

gnea(γ, fh; s, a) = 1

n

n−1
∑
t=0

P fh

γ (Xt = s,At = a), ∀ (s, a) ∈ K.

The optimal policy of a CMDP problem can be obtained by solving the
following optimization problem

min
fh∈FHD

Cv(γ, fh)

s.t. Dk
v(γ, fh) ≤ ξk, ∀ k = 1,2, . . . ,K,

(1)

where v = α and v = ea represent a CMDP problem with discounted cost
criterion and average cost criterion, respectively.
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We make the following assumption on the average cost criterion throughout
the paper.

Assumption 1. For the CMDP problem with average cost criterion, we
assume that the CMDP is unichain, i.e., under any stationary determinis-
tic policy, the Markov chain is aperiodic and irreducible (with possibly some
transient states) [1, 19].

Assumption 1 ensures that the accumulation points of
{{gnea(γ, fh; s, a)}(s,a)}n is unique and independent of the initial distribution
γ. Therefore, the expected average costs are well defined. We do not need
Assumption 1 in the case of discounted cost criterion. It is well known that
the CMDP problem (1) for v ∈ {α, ea} can be restricted to the class of station-
ary policies without loss of optimality when the running costs and transition
probabilities are stationary, i.e., they depend only on states and actions but
time. This follows from the fact that the set of occupation measures defined
with respect to history dependent policies and the set of occupation measures
defined with respect to stationary policies are equal (see Theorems 3.1 and
4.1 of [1]). Moreover, it follows from Theorem 3.2 (resp. Theorem 4.2) of [1]
that the set of occupation measures defined with respect to stationary policies
for the discounted (resp. average) cost criterion and the set Qα(γ) (resp.
Qea(γ)) are equal. For v ∈ {α, ea}, the set Qv(γ) is defined as

Qv(γ) ={ρ ∈ R∣K∣ ∣ ∑
(s,a)∈K

ρ(s, a)(δ(s, s′) − ηp(s′∣s, a)) = (1 − η)γ(s′), ∀ s′ ∈ S,

∑
(s,a)∈K

ρ(s, a) = 1, ρ(s, a) ≥ 0, ∀ (s, a) ∈ K},

where η ∈ (0,1] and δ(s, s′) is the Kronecker delta which takes the value 1
when s = s′, and 0 otherwise. If η < 1, we take it as the discount factor α
and Qv(γ) = Qα(γ), while if η = 1, Qv(γ) = Qea(γ). Therefore, the CMDP
problem (1) is equivalent to the following LP problem

min
ρ
∑
s∈S

∑
a∈A(s)

ρ(s, a)c(s, a)

s.t. ∑
s∈S

∑
a∈A(s)

ρ(s, a)dk(s, a) ≤ ξk, ∀ k = 1,2, . . . ,K,

ρ ∈ Qv(γ).

(2)

If ρ∗ is an optimal solution of (2), the optimal stationary policy f∗ of the

CMDP problem is defined as f∗(s, a) = ρ∗(s,a)
∑a∈A(s) ρ

∗(s,a) for all s ∈ S, a ∈ A(s),
provided the denominator is non-zero (if it is zero, we choose f∗(s) arbitrarily
from ℘(A(s))).
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3 CMDP under chance constraints

In real-life scenario, the model parameters such as running costs and transition
probabilities are subject to errors and are not exactly known. In this paper,
we assume that the transition probabilities are stationary and exactly known
while the running cost vectors are random vectors defined on a probability
space (Ω,F ,P). We denote the running cost vectors corresponding to objective
function and constraints by ĉ and d̂k, k = 1,2, . . . ,K, respectively. Therefore,
for each realization ω ∈ Ω, ĉ(s, a,ω), d̂k(s, a,ω) represents the real valued costs
which are incurred at state s when an action a is chosen. We assume that
the uncertainty in running costs is stationary in nature, i.e., the random cost
vectors ĉ and d̂k, k = 1,2, . . . ,K, do not vary with time. For a given fh ∈ FHD,
the costs corresponding to the objective function and the constraints of (1),
denoted by, Ĉv(γ, fh), D̂k

v(γ, fh), k = 1,2, . . . ,K, are random variables and
it makes (1) a stochastic optimization problem. We consider the case where
the controller is interested in the minimum long-run expected cost which is
incurred with at least p0 probability, and the random constraints are jointly
satisfied with at least p1 probability. This leads to the following joint chance
constraint programming based formulation of the CMDP problem

min
t,fh∈FHD

t

s.t. P(Ĉv(γ, fh) ≤ t) ≥ p0,

P(D̂k
v(γ, fh) ≤ ξk, k = 1,2, . . . ,K) ≥ p1.

(3)

We call (3) a joint chance-constrained Markov decision process (JCCMDP)
problem.

Proposition 1. Let Assumption 1 holds for average cost criterion. Then,
the JCCMDP problem (3) can be restricted to the class of stationary policies
without loss of optimality. Moreover, it can be equivalently written using the
decision vector (t, ρ) as

min
t,ρ

t

s.t. (i) P( ∑
(s,a)∈K

ρ(s, a)ĉ(s, a) ≤ t) ≥ p0,

(ii) P( ∑
(s,a)∈K

ρ(s, a)d̂k(s, a) ≤ ξk, k = 1,2, . . . ,K) ≥ p1,

(iii) ρ ∈ Qv(γ).

(4)

If ρ∗ is a part of an optimal solution vector of (4), the optimal stationary

policy f∗ of the JCCMDP problem is given by f∗(s, a) = ρ∗(s,a)
∑a∈A(s) ρ

∗(s,a) for all
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s ∈ S, a ∈ A(s), provided the denominator is non-zero (if it is zero, we choose

f∗(s) arbitrarily from ℘(A(s))).

Proof Fix a realization ω ∈ Ω. Let (t, fh) be a feasible solution of (3). It follows
from Theorems 3.1 and 4.1 of [1] that the set of occupation measures corresponding
to history dependent strategies and stationary strategies are the same, i.e., there
exists f ∈ FS such that gv(γ, f

h; s, a) = gv(γ, f ; s, a) for all (s, a) ∈ K. Hence,

Ĉv(γ, f
h, ω) = Ĉv(γ, f, ω) and D̂k

v(γ, f
h, ω) = D̂k

v(γ, f, ω), k = 1,2, . . . ,K. Thus, we
can restrict the JCCMDP problem (3) to the class of stationary policies and obtain
the following equivalent problem

min
t,f∈FS

t

s.t. P(Ĉv(γ, f) ≤ t) ≥ p0,

P(D̂k
v(γ, f) ≤ ξk, k = 1,2, . . . ,K) ≥ p1.

(5)

Now, we show that (4) and (5) are equivalent. Let (t, f) be a feasible point of (5).
Define a vector ρ such that ρ(s, a) = gv(γ, f ; s, a) for all (s, a) ∈ K. It follows from
Theorems 3.2 and 4.2 of [1] that ρ ∈ Qv(γ) and Ĉv(γ, f, ω) = ∑

(s,a)∈K
ρ(s, a)ĉ(s, a,ω)

and D̂k
v(γ, f, ω) = ∑

(s,a)∈K
ρ(s, a)d̂k(s, a,ω), k = 1,2, . . . ,K. Hence, (t, ρ) is a feasible

point of (4). Conversely, if (t, ρ) is a feasible solution of (4), then there exists f ∈ FS

defined as f(s, a) =
ρ(s,a)

∑a∈A(s) ρ(s,a)
, whenever the denominator is nonzero (if it is zero,

we choose f(s) arbitrarily from ℘(A(s))). For such an f , we have Ĉv(γ, f, ω) =

∑

(s,a)∈K
ρ(s, a)ĉ(s, a,ω) and D̂k

v(γ, f, ω) = ∑

(s,a)∈K
ρ(s, a)d̂k(s, a,ω), k = 1,2, . . . ,K.

This implies that (t, f) is a feasible solution of (5). Thus, (5) is equivalent to (4).
□

The problem (4) is an LP problem with a joint chance constraint [14]. In
general, such problems are hard to solve. This is because, for any given ρ,
finding the feasibility of the joint chance constraint requires multi-dimensional
integration, which is NP-hard [10]. Moreover, the feasible set of this constraint
is not convex. In order to obtain an equivalent deterministic optimization prob-
lem, we need the information of the distributions of random variables ρT ĉ and
ρT d̂k. These random variables are linear combinations of random running cost
vectors ĉ and d̂k. Therefore, we assume that the running cost vectors ĉ, d̂k fol-
low multivariate elliptically symmetric distributions. The class of elliptically
symmetric distributions is a generalization of the normal distribution [9] and it
is closed under linear transformation (Theorem 2.16 of [9]). Thus, the distribu-
tion of running cost vectors extends to the associated long-run expected costs.
Further, we assume the dependence among the random constraints present
under the joint chance constraint of (4) is driven by Gumbel-Hougaard cop-
ula. The separable nature of this copula enables us to express the joint chance
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constraint as a set of individual chance constraints. We first review a few def-
initions and results on copulas and elliptical distributions, which will be used
in subsequent analysis.

3.1 Preliminaries

Definition 1 (Copula [6, 13, 16]) A K-dimensional copula, where K ≥ 2, is a dis-

tribution function on [0,1]K such that all its one dimensional marginals follow a
uniform distribution on [0,1].

The relation between the joint distribution of a random vector X =
(X1,X2, . . . ,XK) and a copula is given by the Sklar’s theorem [16].

Theorem 1 (Sklar’s theorem [16]). For a given K-dimensional distribution
function Φ̂ and all its one dimensional marginals Φ̂1, Φ̂2, . . . , Φ̂K , there exists
a copula C that satisfies

Φ̂(v1, v2, . . . , vK) = C(Φ̂1(v1), Φ̂2(v2), . . . , Φ̂K(vK)), ∀ v1, v2, . . . , vK ∈ R.

When all the marginals are continuous, C is unique throughout its domain; else
it is unique on ⨉K

i=1Range Φ̂i,

where Range Φ̂i denotes the set of all possible values Φ̂i can take for i =
1,2, . . . ,K. In this paper, we consider a particular class of copulas, namely, the
Gumbel-Hougaard family of copulas, denoted by Cθ, defined as in [6]

Cθ(u) = exp
⎧⎪⎪⎨⎪⎪⎩
− [

K

∑
k=1
( − ln(uk))

θ]
1
θ ⎫⎪⎪⎬⎪⎪⎭

, (6)

where u = (u1, u2, . . . , uK)T ∈ [0,1]K , θ ≥ 1 and exp is the exponential function.
When θ = 1, C1(u) = ∏K

k=1 uk is the product copula. The joint distribution
function of a random vector X defined by a product copula implies that the
random variables X1,X2, . . . ,XK are independent.

Definition 2 (Elliptical distribution [9]) A K-dimensional random vector X is said
to follow a multivariate elliptically symmetric distribution if its characteristic func-

tion has the form E(eib
TX
) = eib

Tµφ(bTΣb), where µ ∈ RK is the location parameter,
the matrix Σ ∈ RK×K is the scale parameter and φ is the characteristic generator.
We denote it as X ∼ EK(µ,Σ, φ).

If X ∼ EK(µ,Σ, φ) and the density function of X, denoted by ϕ exists, then
it has the form

ϕ(x) = 1√
det(Σ)

g((x − µ)TΣ−1(x − µ)),
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where the scale matrix Σ is positive definite, det(Σ) is the determinant of
Σ, and the function g is the density generator. In such a case, we also write
X ∼ EK(µ,Σ, g). From Theorem 2.16 of [9], a linear combination of the compo-
nents of an elliptically distributed random vector follows a univariate elliptical
distribution. Thus, if X ∼ EK(µ,Σ, φ), for a b ∈ RK , bTX ∼ E1(bTµ, bTΣb,φ).
Moreover, if Σ is a positive definite matrix, then bTX−bTµ

∥Σ
1
2 b∥2

is a spherically

distributed random variable with characteristic generator φ.

3.2 Second order cone approximations

By using Sklar’s theorem given in Section 3.1, the joint chance constraint (ii)
of (4) can be equivalently written as

P( ∑
(s,a)∈K

ρ(s, a)d̂k(s, a) ≤ ξk, k = 1,2, . . . ,K)

= Cθ,ρ(P(ρT d̂1 ≤ ξ1),P(ρT d̂2 ≤ ξ2), . . . ,P(ρT d̂K ≤ ξK)) ≥ p1,

where Cθ,ρ denotes the copula that defines the joint distribution of the random

vector (ρT d̂1, ρT d̂2, . . . , ρT d̂K)T . We make the following assumption on this
copula.

Assumption 2. There exists a K-dimensional Gumbel-Hougaard copula, Cθ
given by (6), such that Cθ,ρ = Cθ for all ρ ∈ Qv(γ).

Proposition 2. Let Assumption 2 holds, and ĉ ∼ E∣K∣(µĉ,Σĉ, φĉ), d̂k ∼
E∣K∣(µd̂k ,Σd̂k , φd̂k), k = 1,2, . . . ,K, such that Σĉ,Σd̂k , k = 1,2, . . . ,K, are pos-
itive definite matrices. Then, the JCCMDP problem (4) is equivalent to the
following non-linear programming problem,

min
t,ρ,(yk)Kk=1

t

s.t. (i) ρTµĉ +Φ−1ĉ (p0)∥Σ
1
2

ĉ ρ∥2 ≤ t,

(ii) ρTµd̂k +Φ−1d̂k(p
y

1
θ
k

1 )∥Σ
1
2

d̂k
ρ∥2 ≤ ξk, ∀ k = 1,2, . . . ,K,

(iii)
K

∑
k=1

yk = 1, yk ≥ 0, ∀ k = 1,2, . . . ,K,

(iv) ρ ∈ Qv(γ),

(7)

where p0, p1 ∈ (0.5,1) and Φ−1ĉ (⋅), Φ−1d̂k
(⋅) are the quantile functions of spherical

distributions corresponding to ĉ, d̂k, respectively.
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Proof Since, ĉ ∼ E∣K∣(µĉ,Σĉ, φĉ), the constraint (i) of (4) is equivalent to constraint
(i) of (7) (see Lemma 2.2 of [11]). It follows from Lemma 1 of [6] that the joint
chance constraint (ii) of (4) can be equivalently written as

P(ρT d̂k ≤ ξk) ≥ p
y

1
θ
k

1 , ∀ k = 1,2, . . . ,K,

K

∑

k=1
yk = 1,

yk ≥ 0, ∀ k = 1,2, . . . ,K.

(8)

We provide the proof to make our paper self-contained. Let ρ be a feasible point
of the joint chance constraint (ii) of (4). Define ȳk, yk, k = 1,2, . . . ,K, such that

P(ρT d̂k ≤ ξk) = p
ȳ

1
θ
k

1 , i.e., ȳk = (
lnP(ρT d̂k≤ξk)

ln(p1) )

θ

for all k, and yk =
ȳk

∑
K
k=1 ȳk

for all k.

From the joint chance constraint (ii) of (4), we have

p1 ≤ P( ∑

(s,a)∈K
ρ(s, a)d̂k(s, a) ≤ ξk, k = 1,2, . . . ,K)

= Cθ(P(ρ
T d̂1 ≤ ξ1),P(ρT d̂2 ≤ ξ2), . . . ,P(ρT d̂K ≤ ξK))

= Cθ(p
ȳ

1
θ
1

1 , p
ȳ

1
θ
2

1 , . . . , p
ȳ

1
θ
K

1 )

= exp

⎧
⎪⎪
⎨
⎪⎪
⎩

− [

K

∑

k=1
( − ln(p

ȳ
1
θ
k

1 ))
θ
]

1
θ ⎫⎪⎪
⎬
⎪⎪
⎭

= exp

⎧
⎪⎪
⎨
⎪⎪
⎩

− [

K

∑

k=1
ȳk( ln

1

p1
)

θ

]

1
θ ⎫⎪⎪
⎬
⎪⎪
⎭

= exp

⎧
⎪⎪
⎨
⎪⎪
⎩

(

K

∑

k=1
ȳk)

1
θ

ln(p1)

⎫
⎪⎪
⎬
⎪⎪
⎭

= p
(∑K

k=1 ȳk)

1
θ

1 ,

where the first equality follows by Sklar’s theorem. The condition p1 ≤ p
(∑K

k=1 ȳk)

1
θ

1

implies that ∑
K
k=1 ȳk ≤ 1. Then, from the definition of yk, we have ȳk ≤ yk for all k,

which in turn implies that

P(ρT d̂k ≤ ξk) ≥ p
y

1
θ
k

1 , ∀ k = 1,2, . . . ,K.

The other two constraints of (8) follow from the definition of yk.

Conversely, suppose (ρ, (yk)
K
k=1) is feasible for (8). By Sklar’s theorem and the first

constraint of (8),

P( ∑

(s,a)∈K
ρ(s, a)d̂k(s, a) ≤ ξk, k = 1,2, . . . ,K)

= Cθ(P(ρ
T d̂1 ≤ ξ1),P(ρT d̂2 ≤ ξ2), . . . ,P(ρT d̂K ≤ ξK))

≥ Cθ(p
y

1
θ
1

1 , p
y

1
θ
2

1 , . . . , p
y

1
θ
K

1 )
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= exp

⎧
⎪⎪
⎨
⎪⎪
⎩

− [

K

∑

k=1
( − ln(p

y
1
θ
k

1 ))
θ
]

1
θ ⎫⎪⎪
⎬
⎪⎪
⎭

= p1.

Hence, ρ is a feasible solution of (ii) of (4). Since, d̂k ∼ E∣K∣(µd̂k ,Σd̂k , φd̂k), k =
1,2, . . . ,K, it follows from Lemma 2.2 of [11] that the set of constraints in (8) can
be equivalently written as

ρTµ
d̂k +Φ

−1
d̂k(p

y
1
θ
k

1 )∥Σ
1
2

d̂k
ρ∥2 ≤ ξk, ∀ k = 1,2, . . . ,K,

K

∑

k=1
yk = 1,

yk ≥ 0, ∀ k = 1,2, . . . ,K.

Thus, (4) is equivalent to (7). □

Remark 1. When K = 1, the constraint (iii) of (7) gives y1 = 1 and (7)
reduces to the following SOCP problem

min
t,ρ

t

s.t. ρTµĉ +Φ−1ĉ (p0)∥Σ
1
2

ĉ ρ∥2 ≤ t,

ρTµd̂1 +Φ−1d̂1 (p1)∥Σ
1
2

d̂1
ρ∥2 ≤ ξ1,

ρ ∈ Qv(γ).

For K ≥ 2, the optimization problem (7) is a non-convex optimization

problem due to the product terms Φ−1
d̂k
(py

1
θ
k

1 )∥Σ
1
2

d̂k
ρ∥2 present in its constraints.

We approximate (7) by two SOCP problems whose optimal values give lower
and upper bounds on the optimal value of the JCCMDP problem. Our
approximations hold under the following assumption.

Assumption 3. For each k = 1,2, . . . ,K, the quantile function Φ−1
d̂k
(py

1
θ
k

1 ) is a
convex function of yk.

For the spherical distributions listed in Table 1, Assumption 3 holds true.

This follows from the fact that Φ−1
d̂k
(py

1
θ
k

1 ) is a composition of functions p
y

1
θ
k

1

and Φ−1
d̂k
(yk), where former is a convex function of yk ∈ [0,1] and latter is non-

decreasing and convex function of yk ∈ [p1,1]. The convexity of Φ−1
d̂k
(yk) for

the probability distributions listed in Table 1 can be verified by checking the
following condition for all k,

(Φ−1
d̂k)

′′
(y) =

−ϕ′
d̂k
(Φ−1

d̂k
(y))

(ϕd̂k(Φ−1
d̂k
(y)))3 ≥ 0, ∀ y ∈ [p1,1),
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where ϕd̂k(⋅) is the probability density function of the spherical distribution
whose cumulative distribution function is Φd̂k(⋅). The convexity of Φ−1

d̂k
(yk)

for all k, on [p1,1] holds because it is a continuous function at yk = 1. We

Table 1 List of some spherical distributions.

Probability Distribution Density Function (ϕ
d̂k
(u))

Normal ce
−u2

2

Pearson Type VII c(1 + u2

s )
−N

; N > 1
2 , s > 0

t c(1 + u2

m)
−(1+m)

2 ; m > 0 an integer

Cauchy c(1 + u2

s )
−1

; s > 0

Logistic ce−u
2

(1+e−u2)2

Laplace ce−∣u∣

The constant c > 0 is the normalization factor that ensures the density function
gives 1 on integration.

approximate the functions Φ−1
d̂k
(py

1
θ
k

1 ), k = 1,2, . . . ,K, using piecewise tangent
and linear approximations to obtain two SOCP problems whose optimal values
give the lower and upper bounds for the optimal value of (7).

3.2.1 Lower bound approximation

For every k, we approximate the term Φ−1
d̂k
(py

1
θ
k

1 ) in (7) by choosing N tangent

points y1k < y2k < . . . < yNk from the interval (0,1]. We denote the Taylor series

expansion around the point yik by Φ−1
d̂k
(py

1
θ
k

1 )i and define it as

Φ−1
d̂k(p

y
1
θ
k

1 )i = Φ−1d̂k(p
yi
k

1
θ

1 ) + (yk − yik)
d

dyk
(Φ−1

d̂k(p
yi
k

1
θ

1 ))

= Φ−1
d̂k(p

yi
k

1
θ

1 ) − (y
i
k)

1
θ p

yi
k

1
θ

1 ln(p1)

θϕd̂k(Φ−1
d̂k
(py

i
k

1
θ

1 ))
+ p

yi
k

1
θ

1 ln(p1)(yik)
1
θ−1yk

θϕd̂k(Φ−1
d̂k
(py

i
k

1
θ

1 ))
= āik + b̄ikyk, ∀ i = 1,2, . . . ,N,

where āik = Φ−1d̂k(p
yi
k

1
θ

1 ) − (y
i
k)

1
θ p

yi
k

1
θ

1 ln(p1)

θϕd̂k(Φ−1
d̂k
(py

i
k

1
θ

1 ))
, b̄ik =

p
yi
k

1
θ

1 ln(p1)(yik)
1
θ−1

θϕd̂k(Φ−1
d̂k
(py

i
k

1
θ

1 ))
.
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Theorem 2. Let Assumption 3 holds. A lower bound for the optimal value
of the equivalent JCCMDP problem (7) is given by the optimal value of the
following SOCP problem

min
t,ρ,(xkj)Kk=1,

∣K∣
j=1,(zkj)Kk=1,

∣K∣
j=1

t

s.t. ρTµĉ +Φ−1ĉ (p0)∥Σ
1
2

ĉ ρ∥2 ≤ t,

ρTµd̂k + ∥Σ
1
2

d̂k
zk∥2 ≤ ξk, ∀ k = 1,2, . . . ,K,

zkj ≥ (āikρj + b̄ikxkj), ∀ k = 1,2, . . . ,K, j = 1,2, . . . , ∣K∣, i = 1,2, . . . ,N,

K

∑
k=1

xkj = ρj , ∀ j = 1,2, . . . , ∣K∣,

xkj ≥ 0, ∀ k = 1,2, . . . ,K, j = 1,2, . . . , ∣K∣,
ρ ∈ Qv(γ),

(9)

where ρj is the j-th component of ρ ∈ R∣K∣ and zk = (zkj)∣K∣j=1 for every k =
1,2, . . . ,K.

Proof It is sufficient to show that for every feasible solution of (7) there exists a
feasible solution of (9). The proof is similar to Theorem 3.1.1 of [5]. Suppose the

vector (t, ρ, (yk)
K
k=1) is a feasible solution of (7). Under Assumption 3, we obtain

Φ−1
d̂k(p

y
1
θ
k

1 ) ≥ max
1≤i≤N

(āik + b̄
i
kyk) for all k. Therefore,

ρTµ
d̂k + max

1≤i≤N
(āik + b̄

i
kyk)∥Σ

1
2

d̂k
ρ∥2 ≤ ξk, ∀ k = 1,2, . . . ,K.

The vectors zk, k = 1,2, . . .K, where zkj = max
1≤i≤N

(āikρj+b̄
i
kykρj) for all k = 1,2, . . . ,K,

j = 1,2, . . . , ∣K∣, satisfy

ρTµ
d̂k + ∥Σ

1
2

d̂k
zk∥2 ≤ ξk, ∀ k = 1,2, . . . ,K,

zkj ≥ ā
i
kρj + b̄

i
kykρj , ∀ k = 1,2, . . . ,K, j = 1,2, . . . , ∣K∣, i = 1,2, . . . ,N.

Then, the vector (t, ρ, (xkj)
K
k=1,

∣K∣
j=1, (zkj)

K
k=1,

∣K∣
j=1) where

xkj = ykρj , ∀k = 1,2, . . . ,K, j = 1,2, . . . , ∣K∣,

is a feasible solution for the problem (9). □

3.2.2 Upper bound approximation

For every k, we approximate the term Φ−1
d̂k
(py

1
θ
k

1 ) in (7) by choosing N interpo-

lation points y1k < y2k < . . . < yNk from the interval (0,1], such that the point y1k
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is sufficiently close to 0. We denote the linear interpolating polynomial pass-

ing through the points (yik,Φ−1d̂k
(py

i
k

1
θ

1 )) and (yi+1k ,Φ−1
d̂k
(py

i+1
k

1
θ

1 )) by Φ−1
d̂k
(py

1
θ
k

1 )i
and define it as

Φ−1
d̂k(p

y
1
θ
k

1 )i = Φ−1d̂k(p
yi
k

1
θ

1 ) + yk − yik
yi+1k − yik

(Φ−1
d̂k(p

yi+1
k

1
θ

1 ) −Φ−1
d̂k(p

yi
k

1
θ

1 ))

=
yi+1k Φ−1

d̂k
(py

i
k

1
θ

1 ) − yikΦ−1d̂k
(py

i+1
k

1
θ

1 )
yi+1k − yik

+
(Φ−1

d̂k
(py

i+1
k

1
θ

1 ) −Φ−1
d̂k
(py

i
k

1
θ

1 ))yk
yi+1k − yik

= âik + b̂ikyk, ∀ i = 1,2, . . . ,N − 1,

where âik =
yi+1k Φ−1

d̂k
(py

i
k

1
θ

1 ) − yikΦ−1d̂k
(py

i+1
k

1
θ

1 )
yi+1k − yik

, b̂ik =
Φ−1

d̂k
(py

i+1
k

1
θ

1 ) −Φ−1
d̂k
(py

i
k

1
θ

1 )
yi+1k − yik

.

Theorem 3. Let Assumption 3 holds. An upper bound for the optimal value
of the equivalent JCCMDP problem (7) is given by the optimal value of the
following SOCP problem

min
t,ρ,(yk)Kk=1,(zk)Kk=1

t

s.t. ρTµĉ +Φ−1ĉ (p0)∥Σ
1
2

ĉ ρ∥2 ≤ t,
ρTµd̂k + zkV ∗k ≤ ξk, ∀ k = 1,2, . . . ,K,

zk ≥ âik + b̂ikyk, ∀ k = 1,2, . . . ,K, i = 1,2, . . . ,N − 1,
K

∑
k=1

yk = 1,

yk ≥ 0, ∀ k = 1,2, . . . ,K,

ρ ∈ Qv(γ),

(10)

where ρj is the j-th component of ρ ∈ R∣K∣, (Σ
1
2

d̂k
)j is the j-th column of the

matrix Σ
1
2

d̂k
and, V ∗k = max

ρ̄∈Qv(γ)

∣K∣
∑
j=1

ρ̄j∥(Σ
1
2

d̂k
)j∥2 for every k = 1,2, . . . ,K.

Proof We show that for every feasible solution of (10) there exists a feasible solution

of (7). Suppose the vector (t, ρ, (yk)
K
k=1, (zk)

K
k=1) is a feasible solution of (10). It is

enough to show that ρ is a feasible solution of constraint (ii) of (7). Under Assump-

tion 3, we obtain Φ−1
d̂k(p

y
1
θ
k

1 ) ≤ max
1≤i≤N−1

(âik + b̂
i
kyk) for all k. For an arbitrarily fixed
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k ∈ {1,2, . . . ,K}, consider

∥Σ
1
2

d̂k
ρ∥2 = ∥ρ1(Σ

1
2

d̂k
)1 + ρ2(Σ

1
2

d̂k
)2 + . . . + ρ∣K∣(Σ

1
2

d̂k
)∣K∣∥2

≤ ρ1∥(Σ
1
2

d̂k
)1∥2 + ρ2∥(Σ

1
2

d̂k
)2∥2 + . . . + ρ∣K∣∥(Σ

1
2

d̂k
)∣K∣∥2

≤ max
ρ̄∈Qv(γ)

∣K∣
∑

j=1
ρ̄j∥(Σ

1
2

d̂k
)j∥2 = V

∗
k .

The first inequality holds by triangular inequality of ∥ ⋅∥2, while the second inequality

holds because ρ ∈ Qv(γ). Thus, V
∗
k is an upper bound of ∥Σ

1
2

d̂k
ρ∥2. Consequently, the

following inequality holds true

ρTµ
d̂k +Φ

−1
d̂k(p

y
1
θ
k

1 )∥Σ
1
2

d̂k
ρ∥2 ≤ ρ

Tµ
d̂k + max

1≤i≤N−1
(âik + b̂

i
kyk)V

∗
k

≤ ρTµ
d̂k + zkV

∗
k .

Therefore,

ρTµ
d̂k +Φ

−1
d̂k(p

y
1
θ
k

1 )∥Σ
1
2

d̂k
ρ∥2 ≤ ξk, ∀ k = 1,2, . . . ,K.

Hence, the vector (t, ρ, (yk)
K
k=1) is a feasible solution for the problem (7). □

4 Numerical experiments

We perform numerical experiments using MOSEK solver of CVX package in
MATLAB optimization toolbox, on an Intel(R) 64-bit Core(TM) i5-8250U
CPU @ 1.60GHz with 8.0 GB RAM machine. We study our approximations
on a queueing control problem [1] in Section 4.1, and on randomly generated
CMDPs in Section 4.2. In all our numerical experiments, we fix p0, p1 = 0.95,
α = 0.99, and assume γ to be a uniformly distributed vector. For our approx-
imations, we vary N , pick uniformly spaced points between 10−5 and 1 and
keep them as both tangent and interpolation points for all the constraints. We
note that the interpolation point y1k is sufficiently close to 0.

4.1 Queueing control problem

We consider a stochastic version of a discrete-time service and admission con-
trol problem in a single queue introduced by Altman (see Chapter 5 of [1]).
The system has two controllers, namely, service and admission controllers. We
consider them as a single controller because their joint objective is to minimize
the expected cost incurred in the long-run. The states represent the queue
length with buffer size L. Thus, S = {0,1, . . . , L}, where s = 0 indicates that
the queue is empty, while s = L indicates that the queue is full. The action
set of the controller is A1 × A2, where A1 and A2 are finite sets of probabil-
ity values. If (a1, a2) ∈ A1 ×A2, then a1 and a2 denote the probabilities with
which the controller finishes the service and admits a customer into the sys-
tem, respectively. We assume that A1 ⊆ [a1min, a

1
max] and A2 ⊆ [a2min, a

2
max],

where 0 < a1min ≤ a1max < 1 and 0 ≤ a2min ≤ a2max < 1. Moreover, when s = L,
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we assume no admission takes place. The transition probabilities from [1] are
given by

p(s′∣s, (a1, a2)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1(1 − a2) 1 ≤ s ≤ L − 1, s′ = s − 1,
a1a2 + (1 − a1)(1 − a2) 1 ≤ s ≤ L − 1, s′ = s,
(1 − a1)a2 0 ≤ s ≤ L − 1, s′ = s + 1,
1 − (1 − a1)a2 s′ = s = 0,
1 − a1 s = L, s′ = L,
a1 s = L, s′ = L − 1.

If at state s ∈ S, the controller chooses an action (a1, a2), it incurs running costs
c(s), d1(a1) and d2(a2). The running cost c(s) is the holding cost incurred due
to customers waiting in the queue. Therefore, it only depends on the size of the
queue. The holding cost is zero for an empty queue, i.e., c(0) = 0. The running
cost d1(a1) is a service cost incurred when a customer is served with probabil-
ity a1 and d2(a2) denotes the cost when a customer is not admitted into the
system with (1−a2) probability. The service cost d1(a1) increases with a1 and
no admission cost d2(a2) decreases with a2. These costs do not depend on the
size of the queue. The controller aims to minimize the expected holding cost
in the long-run by keeping the long-run expected service and admission costs
below certain threshold values. Usually the costs in the queueing system are not
realized before the decisions are taken. Therefore, the running cost vectors c,
d1 and d2 are better modelled using random vectors. We assume that they fol-
low normal distribution and denote them as ĉ ∼ N (µĉ,Σĉ), d̂k ∼ N (µd̂k ,Σd̂k),
k = 1,2, where ĉ = (ĉ(s))s∈S , d̂1 = (d̂1(a1))a1∈A1 and d̂2 = (d̂2(a2))a2∈A2 .
We consider the case where the number of states is 10, i.e., L = 9, and the
controller finishes the service with probability a1 = 0.75. The admission con-
troller has two possible actions: ’No Admission (a2 = 0)’ or ’Admission with

probability 0.8 (a2 = 0.8)’. We take ĉ, d̂2 to be normally distributed random

vectors and d̂1 to be fixed, thus K = 1. Hence, from Remark 1, it follows
that the JCCMDP problem (4) reduces to an SOCP problem. We take ξ2 = 9,
µĉ = (0,1,2, . . . ,9)T , the matrix Σĉ ∈ R10×10 with all diagonal values 0.9 and
off-diagonal values 0.35, and

µd̂2 = (
10.0
7.60
) , Σd̂2 = (

0.80 0.24
0.24 0.61

) .

The optimal values of the JCCMDP problem with the above data for dis-
counted and average cost cases are 5.7963 and 6.2296, respectively. Figure 1
shows the optimal probability of not admitting a customer into the queue at
various states. For both the cases, we conclude that the optimal probability of
’No Admission’ is 1 at the last state.

We consider a system where the action set of the controller is given by
A1 × A2 = {(0.2,0.75,0.9), (0,0.5,0.8)}. Thus, K = 2, and we compute the
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Fig. 1 The solid lines marked with ′∗′ and ′○′ denote the optimal probability of not admitting
a customer into the queue for discounted and average cost problems, respectively.

lower bound and upper bound for the optimal value of the JCCMDP problem
(7) by solving the SOCP problems (9) and (10), respectively. For L = n − 1
(∣S∣ = n), we take µĉ = (0,1,2, . . . , n − 1)T , the matrix Σĉ ∈ Rn×n with all
diagonal values 0.9 and off-diagonal values 0.35, µd̂1 = (4.32,9.1875,10.83)T ,
µd̂2 = (10.00,8.50,7.60)T , and

Σd̂1 =
⎛
⎜
⎝

0.15 0.05 0.10
0.05 0.10 0.15
0.10 0.15 0.40

⎞
⎟
⎠
, Σd̂2 =

⎛
⎜
⎝

0.80 0.35 0.24
0.35 0.70 0.20
0.24 0.20 0.61

⎞
⎟
⎠
.

The mean vector µĉ, where µĉ(s) = s, captures the fact that the holding cost
increases with s. We take the mean vectors µd̂1 and µd̂2 such that µd̂1(a1) =
3(1 + a1)2 and µd̂2(a2) = 10 − 3a2. It is motivated from the fact that the
service cost increases with a1 and no admission cost decreases with a2. We take
ξ1 = 11.30, ξ2 = 11.35. We solve the SOCP problems (9) and (10) for different
values of θ and ∣S∣. The higher values of θ indicate stronger dependence between
the random constraints driven by Gumbel-Hougaard copula. The numerical
results are summarized in Tables 2 and 3 for the case of discounted and average
cost criteria, respectively. In the average cost criterion, for all states except
s = 0,1, the corresponding ρ becomes significantly low, such that it has a
negligible effect on the optimal value. Thus, the optimal value remains almost
the same with the number of states. We define the gap between the lower and
upper bounds for the optimal value of the JCCMDP problem (4) by

Gap(%) = Opt.(UB)-Opt.(LB)

Opt.(LB)
× 100.

From Tables 2 and 3, we observe that the gap ranges from 0 to 1.3565. The
CPU time analysis shows that the SOCP problems (9) and (10) can be solved
efficiently for our example.
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Table 2 Queueing control problem: Discounted cost criterion.

θ States

N = 5 N = 10 N = 20

Lower Bound (LB) Upper Bound (UB)
Gap(%)

Lower Bound (LB) Upper Bound (UB)
Gap(%)

Lower Bound (LB) Upper Bound (UB)
Gap(%)

Opt. CPU(s) Opt. CPU(s) Opt. CPU(s) Opt. CPU(s) Opt. CPU(s) Opt. CPU(s)

1

500 177.4043 68.25 178.639 11.8281 0.696 177.4071 75.7813 178.5013 12.9375 0.6168 177.408 97.7344 178.3905 11.9219 0.5538

1000 422.0911 342.1875 427.8169 31.6875 1.3565 422.2185 353.9531 427.266 27.5938 1.1955 422.226 412.1875 427.2463 39.5156 1.189

1500 671.2592 943.6094 677.8156 56.7656 0.9767 671.4757 877.5938 677.2248 62.8438 0.8562 671.5145 980.75 677.2431 65.8281 0.8531

2000 920.8955 1908.6 927.8149 85.8281 0.7514 921.2717 2004.6 927.2242 87.7813 0.6461 921.3652 2318.6 927.2425 111.9219 0.6379

3

500 177.3957 63.2188 177.3996 9.9063 0.0022 177.3955 69.7656 177.3988 11.125 0.0019 177.3959 83.4531 177.3984 11.4688 0.0014

1000 420.2786 299.2813 423.1495 33.875 0.6831 420.2828 310.9688 423.1099 28.7031 0.6727 420.2915 345.9844 423.0939 32.1719 0.6668

1500 669.3847 829.7344 673.0587 58.5 0.5489 669.4349 892.6406 672.9414 62.3594 0.5238 669.4366 951.6875 672.9065 72.1094 0.5183

2000 919.0816 1809.2 923.0578 96.6875 0.4326 919.1713 1930.1 922.9407 110.0625 0.4101 919.1847 2105.8 922.9059 104.6875 0.4048

Table 3 Queueing control problem: Average cost criterion.

θ States

N = 5 N = 10 N = 20

Lower Bound (LB) Upper Bound (UB)
Gap(%)

Lower Bound (LB) Upper Bound (UB)
Gap(%)

Lower Bound (LB) Upper Bound (UB)
Gap(%)

Opt. CPU(s) Opt. CPU(s) Opt. CPU(s) Opt. CPU(s) Opt. CPU(s) Opt. CPU(s)

1

500 1.5606 73.75 1.5607 16.6094 0.0064 1.5606 77.2188 1.5607 14.7656 0.0064 1.5606 92.7031 1.5607 14.2188 0.0064

1000 1.5606 331.9063 1.5607 33.8594 0.0064 1.5606 353.1406 1.5607 32.7656 0.0064 1.5606 412.4063 1.5607 31.875 0.0064

1500 1.5606 980.5313 1.5607 71.875 0.0064 1.5606 927.5313 1.5606 103.5938 0 1.5606 975.5781 1.5607 72.125 0.0064

2000 1.5606 1776.8 1.5606 272.3438 0 1.5605 2195.8 1.5607 119.5313 0.0128 1.5606 2231.2 1.5606 136 0

3

500 1.5606 65.2188 1.5607 12.75 0.0064 1.5606 68.7969 1.5607 12.6563 0.0064 1.5606 84.3906 1.5607 11.3125 0.0064

1000 1.5606 294 1.5607 30.5938 0.0064 1.5606 320.2656 1.5607 33.0625 0.0064 1.5606 346.2656 1.5607 31.6406 0.0064

1500 1.5606 882.6875 1.5607 104.1563 0.0064 1.5606 933.2031 1.5607 88.8125 0.0064 1.5606 941 1.5607 68.625 0.0064

2000 1.5606 1973.1 1.5606 176.5625 0 1.5605 1948.7 1.5606 124.0781 0.0064 1.5605 2099 1.5606 136.4219 0.0064

4.2 Random CMDPs

We generate random finite CMDPs with normally distributed cost vectors to
study the efficiency of our proposed methods. Previous literature has con-
ducted experiments on randomly generated finite MDPs known as Garnets
[2, 8]. We construct our system similar to the description in [8], using the
parameter tuple (∣S∣, ∣A∣, ∣Bf ∣), where ∣S∣ and ∣A∣ are the number of states and
actions, respectively, while ∣Bf ∣ is the branching factor that indicates the num-
ber of states reachable from a given state-action pair. For each state-action pair
(s, a), we draw ∣Bf ∣ states using the function sort(randsample(∣S∣, ∣Bf ∣))
and denote the corresponding states as (si)∣Bf ∣

i=1 . To fix the non-zero probabil-
ity values for these states, we randomly generate ∣Bf ∣−1 values in the interval

(0,1) using the function sort(rand(∣Bf ∣−1,1)) and denote them as (qi)∣Bf ∣−1
i=1 .

We take q0 = 0 and q∣Bf ∣ = 1. Following the rule given in Section 4.1 of [8], the
transition probabilities are given by

p(s′∣s, a) =
⎧⎪⎪⎨⎪⎪⎩

qi − qi−1 if s′ = si, i = 1,2, . . . , ∣Bf ∣,
0 otherwise.

For simplicity, we generate only irreducible transition probability matrices.
This ensures that Assumption 1 is trivially satisfied. We fix θ = 6, ∣S∣ = 500,
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and ∣A∣,K = 10. Thus, ĉ ∼ N (µĉ,Σĉ), d̂k ∼ N (µd̂k ,Σd̂k), k = 1,2, . . . ,10 are
random vectors of dimension 5000 × 1. We randomly generate µĉ in (30,200),
µd̂k in (30,150), and ξk in (75,120) for k = 1,2, . . . ,10 using the function rand.
We generate the square roots of Σĉ, Σd̂k , k = 1,2, . . . ,10, each of dimension
5000×5000 using the function sprandsym(5000, 0.0005, 3rand(5000,1)). The
generated matrices are symmetric with density 0.0005 and randomly generated
eigenvalues in the interval (0,3). We consider two cases: (i) ∣Bf ∣ = 100 (20%
of the states are reachable from each state-action pair), (ii) ∣Bf ∣ = 400 (80%
of the states are reachable from each state-action pair). We solve the SOCP
problems (9) and (10), and summarize the results in Tables 4 and 5 for the
case of discounted and average cost criteria, respectively.

In both the tables, the average gap between the lower and upper bounds
reduces as N increases, irrespective of ∣Bf ∣. Furthermore, the average gaps for
∣Bf ∣ = 100 are larger than the corresponding gaps for ∣Bf ∣ = 400, while the gaps
obtained for the discounted cost criterion are smaller than the corresponding
gaps for the average cost criterion. For the data we generate, the gap ranges
from 1.5155 to 12.9035. This indicates that gaps obtained are data-dependent.
The average CPU time to solve the problem (10) is less than (9), possibly since
the latter problem has K additional second order constraints. Furthermore,
on average it takes more time to solve the problems with ∣Bf ∣ = 400 than with
∣Bf ∣ = 100 and more time to solve the discounted cost criterion than its average
cost criterion counterpart. However, we conclude that both our approximations
can be solved efficiently for both the cost criteria.

5 Conclusion

We consider a JCCMDP problem under discounted and average cost criteria.
The dependence among the random cost constraint vectors is driven by a
Gumbel-Hougaard copula. When the random cost vectors follow multivariate
elliptically symmetric distributions, we propose SOCP based approximations
which give lower and upper bounds on the optimal value of the JCCMDP
problem. We illustrate our results on queueing control problem and on a class
of randomly generated CMDP problems by considering various small and large
instances. The gap between the lower and upper bounds shows the effectiveness
of the SOCP approximations. The CPU time analysis shows that both the
approximations can be solved efficiently for large instances.
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Table 4 Random CMDPs: Discounted cost criterion.

Instance

∣Bf ∣ = 100 ∣Bf ∣ = 400

N = 5 N = 10 N = 20 N = 5 N = 10 N = 20

LB UB Gap(%) LB UB Gap(%) LB UB Gap(%) LB UB Gap(%) LB UB Gap(%) LB UB Gap(%)

1 45.6958 46.5055 1.7719 45.6958 46.4991 1.7579 45.6958 46.498 1.7555 45.6793 46.5135 1.8262 45.6793 46.5073 1.8126 45.6793 46.5063 1.8104

2 46.9667 48.8036 3.9111 46.9667 48.8026 3.9089 46.9668 48.7993 3.9017 47.0762 48.9294 3.9366 47.0762 48.928 3.9336 47.0763 48.9278 3.933

3 47.5001 50.7706 6.8852 47.5002 50.6258 6.5802 47.5002 50.5977 6.521 47.7092 50.8135 6.5067 47.7093 50.6863 6.2399 47.7094 50.6608 6.1862

4 46.9037 50.0895 6.7922 46.9039 50.0866 6.7856 46.904 50.086 6.7841 46.9617 50.1586 6.8075 46.962 50.1543 6.7976 46.9621 50.1526 6.7938

5 48.4094 51.6753 6.7464 48.4095 51.67 6.7352 48.4095 51.6686 6.7324 48.4266 51.6696 6.6967 48.4267 51.6685 6.6942 48.4268 51.6661 6.6891

6 50.2195 55.6935 10.9001 50.2199 55.6925 10.8973 50.2201 55.6895 10.8909 50.4922 56.0198 10.9474 50.4926 56.0186 10.9442 50.4927 56.0169 10.9406

7 46.8407 48.0525 2.5871 46.8407 48.041 2.5625 46.8407 48.0407 2.5619 46.8432 48.0463 2.5684 46.8432 48.0352 2.5447 46.8432 48.0351 2.5444

8 47.8961 51.8746 8.3065 47.8964 51.8643 8.2843 47.8965 51.8631 8.2816 47.8878 51.8113 8.1931 47.8881 51.8008 8.1705 47.8882 51.7989 8.1663

9 45.9614 47.0868 2.4486 45.9614 47.0773 2.4279 45.9615 47.0736 2.4196 46.1181 47.2549 2.465 46.1181 47.245 2.4435 46.1181 47.2416 2.4361

10 47.9666 52.4435 9.3334 47.9668 52.4081 9.2591 47.9668 52.3971 9.2362 48.0967 52.5019 9.159 48.0969 52.4673 9.0867 48.097 52.4564 9.0638

11 47.3897 50.392 6.3353 47.39 50.3697 6.2876 47.39 50.3565 6.2598 47.5184 50.5069 6.2891 47.5186 50.484 6.2405 47.5187 50.4695 6.2098

12 47.6423 51.1958 7.4587 47.6425 50.9342 6.9092 47.6425 50.9223 6.8842 47.6322 51.2244 7.5415 47.6324 50.9769 7.0215 47.6324 50.9651 6.9967

13 44.6431 45.4249 1.7512 44.6431 45.4087 1.7149 44.6431 45.4058 1.7084 44.6522 45.3395 1.5392 44.6522 45.3318 1.522 44.6522 45.3289 1.5155

14 47.0049 49.3541 4.9978 47.005 49.3476 4.9837 47.0051 49.3482 4.9848 47.1141 49.5231 5.1131 47.1141 49.5162 5.0985 47.1141 49.516 5.098

15 48.7016 52.5524 7.9069 48.7018 52.5262 7.8527 48.7019 52.525 7.85 48.9692 52.8337 7.8917 48.9694 52.8105 7.8439 48.9694 52.8071 7.8369

16 49.9025 54.1964 8.6046 49.9028 54.1793 8.5697 49.9029 54.1771 8.565 49.9596 54.3096 8.707 49.9599 54.293 8.6732 49.9601 54.2906 8.6679

17 46.5361 48.3116 3.8153 46.5362 48.2901 3.7689 46.5361 48.2849 3.7579 46.6312 48.5094 4.0278 46.6312 48.4822 3.9694 46.6312 48.4742 3.9523

18 49.9315 56.3042 12.7629 49.9319 56.2062 12.5657 49.932 56.1629 12.4788 49.9556 56.4016 12.9035 49.9561 56.2919 12.6827 49.9563 56.251 12.6004

19 47.641 49.8784 4.6964 47.6411 49.856 4.6491 47.6411 49.8535 4.6439 47.6382 49.8758 4.6971 47.6383 49.8497 4.6421 47.6383 49.8488 4.6402

20 47.2805 51.1291 8.1399 47.2808 50.7363 7.3085 47.2808 50.7212 7.2765 47.1849 50.9132 7.9015 47.1851 50.5678 7.169 47.1852 50.5531 7.1376

Av. CPU time 924.9644 65.6149 - 945.365 66.5758 - 1101.2228 76.8516 - 959.7674 82.7281 - 992.1094 80.3164 - 1141.3742 92.493 -

Av. Gap - - 6.3076 - - 6.1904 - - 6.1747 - - 6.2859 - - 6.1765 - - 6.161

The last two rows of the table give the average CPU time taken to solve the SOCP problems (against the columns with optimal values) and the average gap between the
lower and upper bounds (against the columns with Gap(%)).
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