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Abstract

We consider a finite state-action uncertain constrained Markov deci-
sion process under discounted and average cost criteria. The running
costs are defined by random variables and the transition probabili-
ties are known. The uncertainties present in the objective function
and the constraints are modelled using chance constraints. We assume
that the random cost vectors follow multivariate elliptically sym-
metric distributions and dependence among the random constraints
is driven by a Gumbel-Hougaard copula. We propose two second
order cone programming problems whose optimal values give lower
and upper bounds of the optimal value of the uncertain constrained
Markov decision process. As an application, we study a stochastic
version of a service and admission control problem in a queueing
system. The proposed approximation methods are illustrated on ran-
domly generated instances of queueing control problem as well as
on well known class of Markov decision problems known as Garnets.

Keywords: Constrained Markov decision process, Joint chance constraint,
Second order cone programming problem, Copula, Elliptical distribution,
Queueing problem.
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1 Introduction

Markov decision process (MDP) is a decision making framework for a stochas-
tic system which evolves over finite/infinite horizon. The system can have a
finite or infinite number of states, and at each state, a controller chooses an
action from a set of available actions at that state. The system moves from one
state to another state according to a controlled Markov chain. At every stage,
the system incurs cost whenever a state is visited and an action is taken. The
objective is to find a policy which minimizes the expected cost incurred over a
period of time. The discounted and average cost criteria are most commonly
used in the literature. For a finite state-action MDP with known transition
probabilities and running costs, there exists a stationary deterministic opti-
mal policy, and it can be obtained by using dynamic programming and Linear
programming (LP) based methods [1, 3, 19]. MDPs can also be solved via pol-
icy iteration [25]. In many real-life examples, there are more than one running
costs incurred at every stage whenever the Markov chain visits a state and an
action is taken. For instance, in [1], the author studies the example of service
and admission control in a queueing system in which the controller incurs three
different costs at every stage. In [22], the authors study a variant of a machine
replacement problem by considering the case when the controller incurs oppor-
tunity cost together with maintenance cost at every stage. In such cases, one
type of running cost defines a long-run expected cost function which needs to
be minimized and other types of running costs define the long-run expected
cost functions on which constraints are imposed. This class of MDP is called a
constrained Markov decision process (CMDP). For a finite state-action CMDP
problem, when running costs and transition probabilities are stationary and
exactly known, there exists a stationary randomized optimal policy which can
be obtained by solving an equivalent LP problem [1].

In practice, the MDP model parameters such as running costs and transi-
tion probabilities are not exactly known. They are either learnt with experience
or from historical data, thereby leading to errors in the optimal policies
[15]. The early literature on MDPs with uncertain parameters dates back to
the 1970s, where MDPs under uncertain transition probabilities were studied
[20, 23]. Previous studies have accounted for the uncertainties in MDPs under
a robust optimization framework by considering the worst case realization
of the uncertain parameters [12, 17, 24]. Recently, the equivalent reformula-
tions of robust CMDP problem, with uncertain costs and known transition
probabilities, for various uncertainty sets are proposed by Varagapriya et
al. [22]. Delage and Mannor [7] observed that robust optimization problems
can give highly conservative optimal solutions. As an alternative approach,
they considered an uncertain MDP problem under discounted cost criterion
where either running costs or transition probabilities are defined as random
variables and proposed a chance constraint programming based formulation.
The chance constraint based MDP is equivalent to a second-order cone pro-
gramming (SOCP) problem when the running cost vector follows a normal
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distribution and transition probabilities are known [7]. When the prior tran-
sition probabilities follow Dirichlet distribution and running costs are known,
the uncertain MDP problem becomes intractable and optimal policies can be
computed using approximation methods [7].

To the best of our knowledge, CMDPs where either running costs or tran-
sition probabilities are defined using random variables are not considered in
the literature. In this paper, we consider a finite state-action CMDP problem
under both discounted and average cost criteria where running cost vectors
are random vectors and transition probabilities are known. We use chance con-
straint programming [4, 18] to model the uncertainties present in the objective
function and the constraints of the CMDP problem. For a given policy, the
chance constraint based objective function of the CMDP problem gives a mini-
mum long-run expected cost which is incurred with at least a given probability
level. The random constraints of the CMDP problem are defined as a joint
chance constraint which guarantees that the random constraints are jointly
satisfied with at least a given probability level. We call this uncertain CMDP
as a joint chance-constrained Markov decision process (JCCMDP). In general,
the random constraint vectors present in the joint chance constraint can be
dependent random vectors. In order to study the dependence structure of ran-
dom variables, the concept of copula was introduced by Abe Sklar in 1959 [21].
We consider the case when running cost vectors follow multivariate elliptically
symmetric distribution and dependence among random constraint vectors is
driven by a Gumbel-Hougaard copula. The choice of elliptical distributions is
due to the fact that it is a generalization of normal distributions and contains
a list of important symmetric distributions [9] and they are closed under lin-
ear transformations. The Gumbel-Hougaard copula is considered because it is
separable in nature. Using the fact that the elliptical distributions are closed
under a linear transformation and Gumbel-Hougaard copula is separable, we
propose a deterministic non-convex optimization problem which is equivalent
to the JCCMDP problem. We approximate the equivalent non-convex problem
by two SOCP problems whose optimal values give lower and upper bounds of
the optimal value of the JCCMDP problem. As an application, we study the
problem of admission and service control in a queueing system and perform
numerical experiments by considering various instances of different sizes.

The rest of the paper is organized as follows. Section 2 introduces the
definition of a CMDP. Section 3 presents a JCCMDP problem and its SOCP
based approximations. Section 4 gives the results of numerical experiments
carried out on the queueing control problem and on random CMDPs. We
conclude the paper in Section 5.

2 Constrained Markov decision processes

We define an infinite horizon CMDP by the following objects [1]:
(i) S is a finite set of states whose generic element is denoted by s.
(ii) A is a finite set of actions and A(s) denotes the set of actions available
at state s.
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(i) £={(s,a)|seS,aeA(s)} is the set of all state-action pairs; |K| denotes
the cardinality of /.

(iv) v = (7(8))ses is a probability distribution according to which an initial
state is chosen.

(v) p: K — p(S) is a transition probability function where p(.S) is the set of
probability distributions on S; p(s’|s,a) is the probability of moving from
state s to s’ when the controller chooses an action a € A(s).

(vi) ¢ = (c(s,a))(s a)ekc denotes the running cost vector associated with the

objective function, where ¢(s,a) is the cost incurred at state s when an
action a € A(s) is chosen.
(vii) d¥ = (dk(s,a))(s’a)d{, k = 1,2,..., K, denote the running cost vectors

associated with the constraints, where d* (s, a) is the cost incurred at state
s when an action a € A(s) is chosen.
(viii) (&), are the bounds for the constraints.

We consider a discrete-time vector stochastic process (X, A¢)52,, where
(X¢,A;) denotes the state-action pair at time ¢. At time ¢ = 0, the state of
the Markov chain is sg € S according to an initial distribution + and the con-
troller chooses an action ag € A(sp). As a consequence, running costs ¢(sg, ag),
d*(so,a0), k= 1,2,..., K, are incurred. The Markov chain moves to state s
at time ¢t = 1 with probability p(s1]sg,a0) and the same thing repeats at s;
and it continues for the infinite horizon. In general, the decision at time ¢ may
depend on the history h; = (so, a0, $1,01,---,St-1,01-1,5¢) at time t. Let H,
be the set of all possible histories at time ¢. A history dependent decision rule
f+ at time ¢ is a function f; : Hy - p(A), where for every h; € H; with final
state sy, fi(he) € p(A(st)). A sequence of history dependent decision rules
I = (f1)52, is called a history dependent policy. When each f; in the sequence
(ft)i2o depends only on the state at time ¢, it is called a Markovian policy. A
Markovian policy (f:)s2, is called a stationary policy if there exists a decision
rule f such that f; = f for all t. We write a stationary policy (f, f,...) by f
with abuse of notation, and define f = (f(s))ses such that f(s) € p(A(s)) for
every s € S. According to a stationary policy f, whenever the Markov chain
visits state s, the controller chooses an action from A(s) according to the
decision rule f(s). We denote the set of all history dependent and stationary
policies by Fyp and Fg, respectively.

The policy f" and initial distribution v define a probability measure P,{ "
over the state and action trajectories (for details see Section 2.1.6 of [19]), and

E,J:h denotes the expectation operator corresponding to probability measure

ow " For a given history dependent policy f* € Fyp and an initial distribution
v, the expected discounted costs at a discount factor « € (0,1) are defined as
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Calr 1) = (1= ) 30l BS oy, )
t=0

> Y gl £ s,a)e(s,a),

seS aeA(s)
i h
Da(v, ") = (1-a) 3 o' BY d" (X, Ar)
t=0

=5 ga(r M s,a)d (s,a),

seS aeA(s)

for all k = 1,2,...,K, where (1 - ) is a normalization constant. The set
{ga(7, f; s, a)}(s,a) is the occupation measure defined by

ga (7, 5 s,0) = (1-a) Y. o' PI" (X, = 5,A¢ = a), ¥ (5,a) € K.
t=0

For a given history dependent policy f" and an initial distribution -, the
expected average costs are defined as [1]

) 1 n-1 n
Cea(’% fh) = hmsup ; Z E'{/t C(XhAt)
t=0

n—00

= Z Z gea(’%fh; s,a)c(s,a),

seS aeA(s)

) 1 n-1 h
Dg, (v, f) = limsup — 3% ELd* (X, Ay)
t=0

n— oo

= Z Z gea(’%fh§ S,a)dk(s,a)7

seS acA(s)

for all k=1,2,..., K. The set {geq (7, f™ s,a)}(s)a) is an occupation measure
obtained from the accumulation points of {{g”, (v, f"; s, a)}(s,a) fn, where

1n—1
gga(’)/vfh; S?a) = Z P"yfh(Xt :SaAt :CL), V(s,a) e K.
n =0

The optimal policy of a CMDP problem can be obtained by solving the
following optimization problem

min  Cy(7, fh)
fh'eFHD (1)

st. DF(y, fMY <&, YEk=1,2,... K,

where v = @ and v = ea represent a CMDP problem with discounted cost
criterion and average cost criterion, respectively.



6 Joint Chance-Constrained Markov Decision Processes

We make the following assumption on the average cost criterion throughout
the paper.

Assumption 1. For the CMDP problem with average cost criterion, we
assume that the CMDP is unichain, i.e., under any stationary determinis-
tic policy, the Markov chain is aperiodic and irreducible (with possibly some
transient states) [1, 19].

Assumption 1  ensures that the accumulation points  of
{{92 (7, " $,a)}(5,a) }n is unique and independent of the initial distribution
~. Therefore, the expected average costs are well defined. We do not need
Assumption 1 in the case of discounted cost criterion. It is well known that
the CMDP problem (1) for v € {e, ea} can be restricted to the class of station-
ary policies without loss of optimality when the running costs and transition
probabilities are stationary, i.e., they depend only on states and actions but
time. This follows from the fact that the set of occupation measures defined
with respect to history dependent policies and the set of occupation measures
defined with respect to stationary policies are equal (see Theorems 3.1 and
4.1 of [1]). Moreover, it follows from Theorem 3.2 (resp. Theorem 4.2) of [1]
that the set of occupation measures defined with respect to stationary policies
for the discounted (resp. average) cost criterion and the set Q,(v) (resp.
Q.a(7)) are equal. For v € {a, ea}, the set Q,(v) is defined as

Qu(7) ={p e R | ( %:Kp(s,a)(t;(s,S')—np(S'lsaa)) = (L= (s'), Vs €5,

> p(s,0) =1, p(s,a) 20, ¥ (5,0) €K},

(s,a)ek

where 7 € (0,1] and 6(s,s") is the Kronecker delta which takes the value 1
when s = s/, and 0 otherwise. If < 1, we take it as the discount factor a
and Qu(v) = Qu(7), while if n = 1, Qu(7y) = Qea(y). Therefore, the CMDP
problem (1) is equivalent to the following LP problem

mgn Y > p(s,a)e(s,a)

seS acA(s)

s.t. Z Z p(s,a)d"(s,a) <&, ¥V k=1,2,... K, (2)
seS acA(s)

peQu(v).

If p* is an optimal solution of (2), the optimal stationary policy f* of the

CMDP problem is defined as f*(s,a) = % for all s € .S,a € A(s),

provided the denominator is non-zero (if it is zero, we choose f*(s) arbitrarily

from p(A(s))).
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3 CMDP under chance constraints

In real-life scenario, the model parameters such as running costs and transition
probabilities are subject to errors and are not exactly known. In this paper,
we assume that the transition probabilities are stationary and exactly known
while the running cost vectors are random vectors defined on a probability
space (2, F,P). We denote the running cost vectors corresponding to objective
function and constraints by ¢ and cik, k=1,2,..., K, respectively. Therefore,
for each realization w € 2, é(s,a,w), cik(s, a,w) represents the real valued costs
which are incurred at state s when an action a is chosen. We assume that
the uncertainty in running costs is stationary in nature, i.e., the random cost
vectors ¢ and dk, k=1,2,...,K, do not vary with time. For a given f" ¢ Fyp,
the costs corresponding to the objective function and the constraints of (1),
denoted by, Co(v, f*),DE(~, f), k = 1,2,..., K, are random variables and
it makes (1) a stochastic optimization problem. We consider the case where
the controller is interested in the minimum long-run expected cost which is
incurred with at least pg probability, and the random constraints are jointly
satisfied with at least p; probability. This leads to the following joint chance
constraint programming based formulation of the CMDP problem

min ¢
t,fhreFyp

s.t. P(C’U('y,fh) < t) > po, (3)

P(DE(y, /") <&, k=1,2,....K) 2 p1.

We call (3) a joint chance-constrained Markov decision process (JCCMDP)
problem.

Proposition 1. Let Assumption 1 holds for average cost criterion. Then,
the JCCMDP problem (3) can be restricted to the class of stationary policies
without loss of optimality. Moreover, it can be equivalently written using the
decision vector (t,p) as

min ¢
t,p

s.t. (i) ]P’( > p(s,a)é(s,a) < t) 2 po,
(s,a)ek (4)

(i1) ]P’( Z p(s,a)dk(&a) <&, k= 1,27...,K) >p1,
(s,a)ek

(iii) p e Qu(7).

If p* is a part of an optimal solution vector of (4), the optimal stationary

policy f* of the JCCMDP problem is given by f*(s,a) = % for all
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s €S, ae A(s), provided the denominator is non-zero (if it is zero, we choose
f*(s) arbitrarily from p(A(s)))

Proof Fix a realization w € €. Let (¢, f*) be a feasible solution of (3). It follows
from Theorems 3.1 and 4.1 of [1] that the set of occupation measures corresponding
to history dependent strategies and stationary strategies are the same, i.e., there
exists f € Fg such that gu('y,fh; s,a) = go(v, f; s,a) for all (s,a) € K. Hence,
C'n(y,fh,w) = C’n(w,f,w) and ﬁ]g(y,fh,w) = ﬁg(w,f,w), k=1,2,...,K. Thus, we
can restrict the JCCMDP problem (3) to the class of stationary policies and obtain
the following equivalent problem

min ¢
t,feFgs

ot ]P’(C‘u(%f) < t) > po, (5)

P(Dlg(’y7f)££k7 k":]‘?27"'7K)2p1'

Now, we show that (4) and (5) are equivalent. Let (¢, f) be a feasible point of (5).
Define a vector p such that p(s,a) = gu (7, f; s,a) for all (s,a) € K. It follows from
Theorems 3.2 and 4.2 of [1] that p € Qu(y) and Cy (v, f,w) = > p(s,a)é(s,a,w)
(s,a)ek
and ﬁ@(v,f,w) = Z p(s,a)dk(s,a,w), k=1,2,...,K. Hence, (t,p) is a feasible
(s,a)ek
point of (4). Conversely, if (¢, p) is a feasible solution of (4), then there exists f € Fg

defined as f(s,a) = %, whenever the denominator is nonzero (if it is zero,
acA(s s

we choose f(s) arbitrarily from p(A(s))). For such an f, we have Co(y, f,w) =
S p(s.a)i(s,aw) and DE( fiw) = Y pls,a)d (s, a,0), k = 1,2,..., K.
(s,a)e (s,a)ek
This implies that (¢, f) is a feasible solution of (5). Thus, (5) is equivalent to (4).
|

The problem (4) is an LP problem with a joint chance constraint [14]. In
general, such problems are hard to solve. This is because, for any given p,
finding the feasibility of the joint chance constraint requires multi-dimensional
integration, which is NP-hard [10]. Moreover, the feasible set of this constraint
is not convex. In order to obtain an equivalent deterministic optimization prob-
lem, we need the information of the distributions of random variables pré and
p”'d". These random variables are linear combinations of random running cost
vectors ¢ and d. Therefore, we assume that the running cost vectors ¢, d* fol-
low multivariate elliptically symmetric distributions. The class of elliptically
symmetric distributions is a generalization of the normal distribution [9] and it
is closed under linear transformation (Theorem 2.16 of [9]). Thus, the distribu-
tion of running cost vectors extends to the associated long-run expected costs.
Further, we assume the dependence among the random constraints present
under the joint chance constraint of (4) is driven by Gumbel-Hougaard cop-
ula. The separable nature of this copula enables us to express the joint chance
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constraint as a set of individual chance constraints. We first review a few def-
initions and results on copulas and elliptical distributions, which will be used
in subsequent analysis.

3.1 Preliminaries

Definition 1 (Copula [6, 13, 16]) A K-dimensional copula, where K > 2, is a dis-
tribution function on [0,1]% such that all its one dimensional marginals follow a
uniform distribution on [0, 1].

The relation between the joint distribution of a random vector X =
(X1, Xo,...,Xk) and a copula is given by the Sklar’s theorem [16].

Theorem 1 (Sklar’s theorem [16]). For a given K-dimensional distribution
function ® and all its one dimensional marginals ®1, Py, ..., P, there exists
a copula C that satisfies

@(vhvg, C L UK) = C(<i>1(v1),<i>2(vg)7 e ,Ci)K(UK)), YV vp,vs,..., 0K € R.

When all the marginals are continuous, C is unique throughout its domain; else
1t 1S unique on XfilRange P,

where Range ®, denotes the set of all possible values ®, can take for i =
1,2,..., K. In this paper, we consider a particular class of copulas, namely, the
Gumbel-Hougaard family of copulas, denoted by Cy, defined as in [6]

K )17
Cg(u):exp{—[l;l(—ln(uk)) ] }, (6)

where u = (u1,us,...,ux)? €[0,1]%, 0 > 1 and exp is the exponential function.
When 6 = 1, C;(u) = [T}, ug is the product copula. The joint distribution
function of a random vector X defined by a product copula implies that the
random variables X1, Xs,..., Xk are independent.

Definition 2 (Elliptical distribution [9]) A K-dimensional random vector X is said
to follow a multivariate elliptically symmetric distribution if its characteristic func-
tion has the form E(eibTX) = eibT”go(bTEb), where p € R¥ is the location parameter,
the matrix & € RF i the scale parameter and ¢ is the characteristic generator.
We denote it as X ~ Ex (1, 2, ).

If X ~Ex(p, X, @) and the density function of X, denoted by ¢ exists, then
it has the form

o(x) = 9((z = p)"'S Nz - p)),

1
det(X)
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where the scale matrix ¥ is positive definite, det(X) is the determinant of
Y., and the function ¢ is the density generator. In such a case, we also write
X ~Ex(p, %, g). From Theorem 2.16 of [9], a linear combination of the compo-
nents of an elliptically distributed random vector follows a univariate elliptical
distribution. Thus, if X ~ Ex (1, %, @), for a b e RE b7 X ~ £ (b7 1, bTSb, ).
T T
Moreover, if ¥ is a positive definite matrix, then ﬁ is a spherically
20|2
distributed random variable with characteristic generator ¢.

3.2 Second order cone approximations

By using Sklar’s theorem given in Section 3.1, the joint chance constraint (i)
of (4) can be equivalently written as

IP( > p(s,a)cfk(s,a)s&c,k:1,2,...,K)

(s,a)ek

= Cop(P(p"d" <&1),P(p" d* <&),...,P(p"d" <&x)) 2 1,

where Cy,, denotes the copula that defines the joint distribution of the random
vector (pTd, pTd?,...,pTd"5)T. We make the following assumption on this
copula.

Assumption 2. There exists a K-dimensional Gumbel-Hougaard copula, Cy
gwen by (6), such that Cy , = Cy for all pe Qu(7).

Proposition 2. Let Assumption 2 holds, and ¢ ~ Ej(pe, Xe, 0e), dr ~
Eic) (g, Xgrs 0gn ), k=1,2,..., K, such that X, X5, k=1,2,..., K, are pos-
itive definite matrices. Then, the JCCMDP problem (4) is equivalent to the
following non-linear programming problem,

min ¢
t,0,(yr) e,
st (i) pl e+ @7 (po) |22 02 <,
1
[ 1
(”) pr’cZk + (I)éll(p?k )HE;’;CPHQ < gkv Vk= 1,27 . . ’7K7 (7)

K
Git) Yyp=1, 420,V k=1,2,... K,
k=1

(iv) pe Qu(7),

where po, p1 € (0.5,1) and ;1 (-), @;,1 (+) are the quantile functions of spherical

distributions corresponding to ¢, dk, respectively.
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Proof Since, ¢~ &|(1e, Te, ¢e), the constraint (i) of (4) is equivalent to constraint
(i) of (7) (see Lemma 2.2 of [11]). It follows from Lemma 1 of [6] that the joint
chance constraint (i7) of (4) can be equivalently written as

1

R I
P(p"d" <€) 2pl vV k=1,2,... K,

i yi =1, (8)
l=1

>0,V k=1,2,..., K.

We provide the proof to make our paper self-contained. Let p be a feasible point
of the joint chance constraint (i) of (4). Define g, yx, k = 1,2,..., K, such that

1

3 0
]P’(pTdk <&) =p?1lk s Le., P = (

From the joint chance constraint (iz) of (4), we have

D SIP)( Z p(s7a)dk(s7a)£€k7 k:1a2>"'7K)
(s,a)ek

InP(p" d*<gs)

In(p1) K

0 _
) for all k, and y = yik_ for all k.
Zk=1 Yk

=Co(P(p"d" <&1),P(pTd® < &),.... P(p"d" <€)

I
@
»
e}
——
|
—
b
M
<
=
—_
=]
s~
SN—
=)
[S—
=
—_——

=

K _
where the first equality follows by Sklar’s theorem. The condition p; < pg Zie-1 yk)

implies that Zi(:l yi < 1. Then, from the definition of yj, we have g < y;. for all k,
which in turn implies that

-

N 0
P(pTd" <€) 2pl , VE=1,2,...,K.

The other two constraints of (8) follow from the definition of y.
Conversely, suppose (p, (yk)szl) is feasible for (8). By Sklar’s theorem and the first
constraint of (8),

]P’( > p(s,a)dk(s,a)sfk,k:1,2,...,K)

(s,a)ek
=Co(P(p"d" <&1),P(p"d* < &), P(p" d" <£k))
1 1
(2 0 9
2 Ce(p?lh 7p:f2 yoe- 7p,£1JK)
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p{[ > (—m@f{fne]é} -1

k=1

Hence, p is a feasible solution of (i7) of (4). Since, dr ~ SIK\(“&k72£k7‘pdk)7 k=
1,2,..., K, it follows from Lemma 2.2 of [11] that the set of constraints in (8) can
be equivalently written as

T 1 ud e
P bgn + P4 (pr" )HE;‘z’kaz <&,Vk=12,... K,

K
>ouk=1,
k=1
e >0,V k=1,2,... K.
Thus, (4) is equivalent to (7). O

Remark 1. When K = 1, the constraint (iii) of (7) gives y1 = 1 and (7)
reduces to the following SOCP problem

min ¢
t,p

T -1 1
st ppe+®; (po) |22 pll2 <t,
1
P g+ 03 (023,012 < &,
peQu(7).

For K > 2, the optimization problem (7) is a non-convex optimization
1

b1
problem due to the product terms @;,1 (py* )||E§k,o|\2 present in its constraints.

We approximate (7) by two SOCP problems whose optimal values give lower
and upper bounds on the optimal value of the JCCMDP problem. Our
approximations hold under the following assumption.

1

0
Assumption 3. For each k=1,2,..., K, the quantile function fbéi (%) is a
convex function of yy.

For the spherical distributions listed in Table 1, Assumption 3 holds true.

2 [
This follows from the fact that @5,} (p* ) is a composition of functions pi*
and @;;(yk), where former is a convex function of y;, € [0,1] and latter is non-

decreasing and convex function of yi € [p1,1]. The convexity of @;,}(yk) for
the probability distributions listed in Table 1 can be verified by checking the
following condition for all k,

6, (831(1))

—1\" _
(@a) W)= @)

>0, Vyelp,1),
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where ¢ ;. (-) is the probability density function of the spherical distribution

whose cumulative distribution function is @ ;.(-). The convexity of @g,}(yk)
for all k£, on [p1,1] holds because it is a continuous function at y, = 1. We

Table 1 List of some spherical distributions.

Probability Distribution Density Function (¢ (u))
_u?
Normal ce 2
2\-N 1
Pearson Type VII c(l + “T) i N>3,5>0
5 —(1+m)
t c(l +%) 2 ; m >0 an integer
24\—1
Cauchy c(1+%) ; §>0
2
Logistic %
(14e-u?)
Laplace ce !

The constant ¢ > 0 is the normalization factor that ensures the density function
gives 1 on integration.

1

2
approximate the functions @5,} (plll’“ ), k=1,2,..., K, using piecewise tangent
and linear approximations to obtain two SOCP problems whose optimal values
give the lower and upper bounds for the optimal value of (7).

3.2.1 Lower bound approximation
1
0
For every k, we approximate the term @(‘i; (py* ) in (7) by choosing N tangent

points y,i < y,g <...< y,lcv from the interval (0,1]. We denote the Taylor series
1

. 0
expansion around the point y; by @;zi (p* ); and define it as

iy 4 (o1, yi?
)+(yk—yk)@(¢’gi(pi”“e))

.1
t o

1
9
O (py* )i = @5 (pi*

ST

.1
1 4t e H iy Lo
_1 yﬁ)_(yi)épl{’“ In(py) _pi* n(po) (wi) "
a1
004 (D201 )) 09 (D3L (01 )

=ai +biyr, ¥i=1,2,...,N,

=P

.1 1
: B ) () o, P i)3-1
where aj, = <I>:i,1(pi’ke ) - (i) Py ,(?1)7 bi = Dy (p1)(yx) .

060 (21 0")) B0 (@S (}E))
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Theorem 2. Let Assumption 3 holds. A lower bound for the optimal value
of the equivalent JCCMDP problem (7) is given by the optimal value of the
following SOCP problem

min t
K K K K
N CIR TR CT )

t. pL e+ @t S22y <t
st ppe+ 05 (po) X2 pl2 <t
1
Pl + 22 2kl2 <&y ¥ E=1,2,.. K,
2k 2 (@ +Opwry), ¥V k=1,2,..., K, j=1,2,...,|K|,i=1,2,..., N,

K
> kg =P Vi=12,..,IK],
k=1

T 20,V k=1,2,... K, j=1,2,...,|K|,

p € QD (7)7
9)

where p; is the j-th component of p € R® and 2, = (zkj)l;i‘l for every k =
L,2,.... K.

Proof 1t is sufficient to show that for every feasible solution of (7) there exists a
feasible solution of (9). The proof is similar to Theorem 3.1.1 of [5]. Suppose the

vector (757/)7 (yk)kK=1) is a feasible solution of (7). Under Assumption 3, we obtain
1

4, P o
P (p" )2 lrélia;)](v(az +by,yy,) for all k. Therefore,
T i i 3
P g+ max (@ +bpyp)| 55,012 <€k, V k=12, K.
The vectors 2y, k= 1,2,... K, where z3,; = 1ma)1(\/(&2pj+52ykpj) forallk=1,2,..., K,
<i<
j=1,2,...,|K|, satisfy
T 1
4 AL‘LdAk + ”E;‘kzkHQ Sé’ka Vk= 1527"'5K7
zgj > app; +bpygpj, V k=12, K, j=1,2,... K|, i=1,2,...,N.
K K K K
Then, the vector (¢, p, (:Lckj)k=17|j=‘17 (ij)k=1,|j=|1) where
Tkj = YkPyj, Vk=1,2,....K, j= 1727"~7|IC|7
is a feasible solution for the problem (9). O
3.2.2 Upper bound approximation
1

0
For every k, we approximate the term @5,} (py* ) in (7) by choosing N interpo-
lation points y,i < yi <...< y,JCV from the interval (0,1], such that the point y,ﬁ
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is sufficiently close to 0. We denote the linear interpolating polynomial pass-
1

. . P i % i B i1y B g
ing through the points (yj, @7} (p{* ")) and (g, @5 (pY* 7)) by @3 (p)" )i
and define it as

1 o1 T o1
_ [ _ iy Yk — Y 13 i
Doy )i = %1 )+ L (e () - 0t o))
VAT
yitt P PR P! it
édk (pl ) -y ® gk (py ) N ((I)Cjk (py ) - CZk (P ))yk
y]'L:l yz y7,k+1 _ y’zg

= al + by, Vi=1,2,...,N -1,

1 .

y _ i+
yir o) ) R OO W S ) oLl
yz+l y ’bk: yz+1 y :

where a, =

Theorem 3. Let Assumption 3 holds. An upper bound for the optimal value
of the equivalent JCCMDP problem (7) is given by the optimal value of the
following SOCP problem

min t
0 (U )i g (2) oy

t. plpe+ @5 2 ply <t
st ppe+P; (po) B2 pl2 <t
P g+ 2V <&, ¥ k=12, K,

Zp2al +biyn, VE=1,2,... K, i=1,2,....N—1, (10)
K

Zyk:]-v

k=1

yr >0, Vk=1,2... K,

PGQU('Y)’

1
where p; is the j-th component of p € RI® (E;k ); is the j-th column of the
K| 1
matriz sz and, V¥ = Igax ZpJH( Djlle for every k=1,2,... K.
p

Proof We show that for every feasible solution of (10) there exists a feasible solution

of (7). Suppose the vector (¢, p, (yk)iil, (zk)kK=1) is a feasible solution of (10). It is

enough to show that p is a feasible solution of constraint (i¢) of (7). Under Assump-
1

G L
tion 3, we obtain '135,1 (plllk ) < | Jnax 1(&}C +byyy) for all k. For an arbitrarily fixed
<i<N-
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ke{l,2,...,K}, consider
1 1 1 1
2202 = lp1(E3)1 +p2(53 )2+ + oy (B3, )iy 12

1 1 1
<pi (B30l + o2 (B3 )2ll2 + -+ oyt [(B )iy 12

x|

1
< max ZPJH(E )iz =
PEQU(

The first inequality holds by triangular inequality of | |2, while the second inequality
1

holds because p € Qu (7). Thus, V;' is an upper bound of ||Egkp\|2. Consequently, the
following inequality holds true

1
Ty + O 0 )22 pllo < pTpsy + max (@ +blye) Vi
P Hik qir P1 kP2 =P Bge 1 Yk kYK ) Vi

T *
<P pge 2V -

Therefore,

T -1
P Bge + P (pl’“ )IIZkallz <&, V=12, K

Hence, the vector (¢, p, (yk)i(zl) is a feasible solution for the problem (7). O

4 Numerical experiments

We perform numerical experiments using MOSEK solver of CVX package in
MATLAB optimization toolbox, on an Intel(R) 64-bit Core(TM) i5-8250U
CPU @ 1.60GHz with 8.0 GB RAM machine. We study our approximations
on a queueing control problem [1] in Section 4.1, and on randomly generated
CMDPs in Section 4.2. In all our numerical experiments, we fix pg,p1 = 0.95,
a =0.99, and assume y to be a uniformly distributed vector. For our approx-
imations, we vary N, pick uniformly spaced points between 10~ and 1 and
keep them as both tangent and interpolation points for all the constraints. We
note that the interpolation point y,i is sufficiently close to 0.

4.1 Queueing control problem

We consider a stochastic version of a discrete-time service and admission con-
trol problem in a single queue introduced by Altman (see Chapter 5 of [1]).
The system has two controllers, namely, service and admission controllers. We
consider them as a single controller because their joint objective is to minimize
the expected cost incurred in the long-run. The states represent the queue
length with buffer size L. Thus, S = {0,1,...,L}, where s = 0 indicates that
the queue is empty, while s = L indicates that the queue is full. The action
set of the controller is A' x A%, where A' and A? are finite sets of probabil-
ity values. If (a',a?) € Al x A2, then a' and a® denote the probabilities with
which the controller finishes the service and admits a customer into the sys-
tem, respectively. We assume that A1 [a1 al ..] and A% c [a?,  a?..]

1 mzn’ max mz’rﬂ max
where 0 < ap;, < @b, <1 and 0 < a2, <a2,. <1. Moreover, when s = L,
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we assume no admission takes place. The transition probabilities from [1] are
given by

a'(1-a?) 1<s<L-1,8"=5-1,

ala®+(1-a')(1-a*) 1<s<L-1,¢=s,

1-al)a? 0<s<L-1,8=s+1
s'ls, (at,a?)) = ( . ’ ’
p(s']s, ( ) 1-(1-al)a? s'=5=0,

1—(11 5=L75/:L7

al S:L’SIZL_l-

If at state s € S, the controller chooses an action (a!,a?), it incurs running costs
c(s), d*(a') and d?(a?). The running cost c(s) is the holding cost incurred due
to customers waiting in the queue. Therefore, it only depends on the size of the
queue. The holding cost is zero for an empty queue, i.e., ¢(0) = 0. The running
cost d*(a') is a service cost incurred when a customer is served with probabil-
ity a' and d?(a?) denotes the cost when a customer is not admitted into the
system with (1-a?) probability. The service cost d*(a') increases with a' and
no admission cost d?(a?) decreases with a?. These costs do not depend on the
size of the queue. The controller aims to minimize the expected holding cost
in the long-run by keeping the long-run expected service and admission costs
below certain threshold values. Usually the costs in the queueing system are not
realized before the decisions are taken. Therefore, the running cost vectors c,
d' and d? are better modelled using random vectors. We assume that they fol-
low normal distribution and denote them as & ~ N (1, 5e), d* ~ N (i e, S i),
k=1,2, where ¢ = (&(s))ses, d* = (d*(a))arear and d? = (d?(a?))a2en2.

We consider the case where the number of states is 10, i.e., L = 9, and the
controller finishes the service with probability a' = 0.75. The admission con-
troller has two possible actions: 'No Admission (a? = 0)’ or *Admission with
probability 0.8 (a® = 0.8)". We take ¢,d? to be normally distributed random
vectors and d' to be fixed, thus K = 1. Hence, from Remark 1, it follows
that the JCCMDP problem (4) reduces to an SOCP problem. We take & =9,
pe = (0,1,2,...,9)T, the matrix ¥; € R1%*19 with all diagonal values 0.9 and
off-diagonal values 0.35, and

o (10.0) . (0.80 0.24)
Ha==\760)> “4~\0.24 0.61)"
The optimal values of the JCCMDP problem with the above data for dis-
counted and average cost cases are 5.7963 and 6.2296, respectively. Figure 1
shows the optimal probability of not admitting a customer into the queue at
various states. For both the cases, we conclude that the optimal probability of
"No Admission’ is 1 at the last state.

We consider a system where the action set of the controller is given by
Al x A% = {(0.2,0.75,0.9),(0,0.5,0.8)}. Thus, K = 2, and we compute the
) ) ) p
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°c o o ©
S %5 o =

>

Optimal probability of No admission
o o o o
R

e

0 1 2 3 4 5 6 7 8 9
States

Fig. 1 The solid lines marked with "+’ and "o’ denote the optimal probability of not admitting
a customer into the queue for discounted and average cost problems, respectively.

lower bound and upper bound for the optimal value of the JCCMDP problem
(7) by solving the SOCP problems (9) and (10), respectively. For L =n -1
(IS| = n), we take ps = (0,1,2,...,n - 1), the matrix ¥z € R™™ with all
diagonal values 0.9 and off-diagonal values 0.35, p; = (4.32,9.1875, 10.83)7,
Kz = (10.00,8.50,7.60), and

0.15 0.05 0.10 0.80 0.35 0.24
Y5 =10.050.10 0.15], X4 =10.35 0.70 0.20
0.10 0.15 0.40 0.24 0.20 0.61

The mean vector ug, where pz(s) = s, captures the fact that the holding cost
increases with s. We take the mean vectors pj and pj, such that u&l(al) =
3(1 +a')? and pj(a®) = 10 - 3a®. It is motivated from the fact that the
service cost increases with a' and no admission cost decreases with a?. We take
& =11.30, & = 11.35. We solve the SOCP problems (9) and (10) for different
values of # and |S]. The higher values of § indicate stronger dependence between
the random constraints driven by Gumbel-Hougaard copula. The numerical
results are summarized in Tables 2 and 3 for the case of discounted and average
cost criteria, respectively. In the average cost criterion, for all states except
s = 0,1, the corresponding p becomes significantly low, such that it has a
negligible effect on the optimal value. Thus, the optimal value remains almost
the same with the number of states. We define the gap between the lower and
upper bounds for the optimal value of the JCCMDP problem (4) by

Opt.(UB)-Opt.(LB)

100.
Opt.(LB)

Gap(%) =

From Tables 2 and 3, we observe that the gap ranges from 0 to 1.3565. The
CPU time analysis shows that the SOCP problems (9) and (10) can be solved
efficiently for our example.
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Table 2 Queueing control problem: Discounted cost criterion.

5 N=10 N=20
6 States B . (. .
Lower Bound (LB)  Upper Bound (UB) Lower Bound (LB) ~ Upper Bound (UB)  Lower Bound (LB)  Upper Bound (UB)
Gap(%) Gap(%) - Gap(%)
Opt CPU(s)  Opt CPU(s) Opt CPU(s)  Opt CPU(s) Opt CPU(s)  Opt CPU(s)

500 1774043 68.25 178639 11.8281  0.696 1774071 757813 1785013 129375 06168 177408  97.7344 1783905 11.9219  0.5538

427266 275938 1

1000 422.0911 3421875 4278169 31.6875  1.3565 4222185 3° 955 422226 4121875 427.2463  39.5156 1.189

! 1500 671.2592 943.6094 677.8156 56.7656  0.9767  671.4757 87T 677.2248  62.8438 0.8562  671.5145  980.75  677.2431  65.8281 0.8531
2000 920.8955 1908.6  927.8149 85.8281 0.7514 9212717 20046  927.2242  87T.7813 0.6461  921.3652  2318.6  927.2425 111.9219  0.6379
500 177.3957  63.2188  177.3996  9.9063 0.0022 1773955  69.7656  177.3988 11.125 0.0019  177.3959  83.4531 177.3984 11.4688 0.0014
3 1000 420.2786  299.2813  423.1495 0.6831 4202828 310.9688 423.1099  28.7031 0.6727 4202915 3459844  423.0939  32.1719 0.6668
‘ 1500 669.3847 829.7344  673.0587 58.5 0.5489  669.4349 892.6406 672.9414  62.3594 0.5238  669.4366 951.6875 672.9065  72.1094 0.5183
2000 9190816 18092 0230578 9GGSTS 0432 90101713 10301 9220407 110.0625 04101 9191847 21058 9229050 1046875  0.4048
Table 3 Queueing control problem: Average cost criterion.
N=5 N=10 N =20
0 States | er Bound (LB) Upper Bound (UB) " Lower Bound (LB) Upper Bound (UB) Lower Bound (LB)  Upper Bound (UB) .
Gap(%) Gap(%) Gap(%)
Opt.  CPU(s)  Opt.  CPU(s) Opt.  CPU(s)  Opt.  CPU(s) Opt.  CPU(s)  Opt.  CPU(s)
500 1.5606 73.75 1.5607 16.6094 0.0064  1.5606 77.2188 1.5607 14.7656 0.0064  1.5606 92.7031 1.5607 14.2188 0.0064
L1000 L5606 FBLO063 IS0 BISOI 000GI L5606 FBI0G LG0T B2T6%  000GI L5606 4124063 15607 SIS 00064
1500 1.5606  980.5313  1.5607 71.875 0.0064  1.5606  927.5313  1.5606 103.5938 0 1.5606  975.5781 1.5607 72,125 0.0064
2000 15606 17768 15606 2723138 0 15605 21958 15607 1195313 00128 15606 22312 15606 136 0
500 1.5606 65.2188 1.5607 12.75 0.0064  1.5606 68.7969 1.5607 12.6563 0.0064  1.5606 84.3906 1.5607 11.3125 0.0064
o J00 IS0 200 LAG0T 053 000GK 15006 266 LAGOT 33062 00061 LA G263 LAGOT  BLGNG 00064
1500 1.5606  882.6875  1.5607 104.1563 0.0064  1.5606  933.2031 1.5607 88.8125 0.0064  1.5606 941 1.5607 68.625 0.0064
2000 13606 19731 15606 176.5625 0 L5605 19487 L3606 1240781 00064 15605 2099 15606 1364219  0.0064

4.2 Random CMDPs

We generate random finite CMDPs with normally distributed cost vectors to
study the efficiency of our proposed methods. Previous literature has con-
ducted experiments on randomly generated finite MDPs known as Garnets
[2, 8]. We construct our system similar to the description in [8], using the
parameter tuple (|S|,|A|,|By|), where |S| and |A| are the number of states and
actions, respectively, while |By| is the branching factor that indicates the num-
ber of states reachable from a given state-action pair. For each state-action pair
(s,a), we draw |By| states using the function sort(randsample(|S|,|By|))
and denote the corresponding states as (sl)‘f{ |, To fix the non-zero probabil-
ity values for these states, we randomly generate |Bf| -1 values in the interval
(0,1) using the function sort(rand(|Bs|-1,1)) and denote them as (qi)i]ffl_l.
We take ¢° = 0 and ¢/Bs! = 1. Following the rule given in Section 4.1 of [8], the

transition probabilities are given by

¢ —q¢t if s =5 i=1,2,...,|Byl,

p(s']s,a) = :
0 otherwise.

For simplicity, we generate only irreducible transition probability matrices.
This ensures that Assumption 1 is trivially satisfied. We fix 6 = 6, |S| = 500,
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and |A|, K = 10. Thus, é ~ N (pz, Se), d* ~ N(pge, B4 ), k=1,2,...,10 are
random vectors of dimension 5000 x 1. We randomly generate uz in (30,200),
g in (30,150), and & in (75,120) for k = 1,2,...,10 using the function rand.
We generate the square roots of Yg, ¥,k = 1,2,...,10, each of dimension
5000x5000 using the function sprandsym (5000, 0.0005, 3rand(5000,1)). The
generated matrices are symmetric with density 0.0005 and randomly generated
eigenvalues in the interval (0,3). We consider two cases: (i) |By| = 100 (20%
of the states are reachable from each state-action pair), (iz) |By| = 400 (80%
of the states are reachable from each state-action pair). We solve the SOCP
problems (9) and (10), and summarize the results in Tables 4 and 5 for the
case of discounted and average cost criteria, respectively.

In both the tables, the average gap between the lower and upper bounds
reduces as N increases, irrespective of |By|. Furthermore, the average gaps for
|B¢| = 100 are larger than the corresponding gaps for |By| = 400, while the gaps
obtained for the discounted cost criterion are smaller than the corresponding
gaps for the average cost criterion. For the data we generate, the gap ranges
from 1.5155 to 12.9035. This indicates that gaps obtained are data-dependent.
The average CPU time to solve the problem (10) is less than (9), possibly since
the latter problem has K additional second order constraints. Furthermore,
on average it takes more time to solve the problems with |By| = 400 than with
|B¢| = 100 and more time to solve the discounted cost criterion than its average
cost criterion counterpart. However, we conclude that both our approximations
can be solved efficiently for both the cost criteria.

5 Conclusion

We consider a JCCMDP problem under discounted and average cost criteria.
The dependence among the random cost constraint vectors is driven by a
Gumbel-Hougaard copula. When the random cost vectors follow multivariate
elliptically symmetric distributions, we propose SOCP based approximations
which give lower and upper bounds on the optimal value of the JCCMDP
problem. We illustrate our results on queueing control problem and on a class
of randomly generated CMDP problems by considering various small and large
instances. The gap between the lower and upper bounds shows the effectiveness
of the SOCP approximations. The CPU time analysis shows that both the
approximations can be solved efficiently for large instances.
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Table 4 Random CMDPs: Discounted cost criterion.

21

B =100 B =400
fustance N=10 N=10

LB UB  Gap(%) LB UB Gap(%) LB UB  Gap(%) LB UB  Gap(%) LB UB  Gap(%) LB UB  Gap(%)

1 15,6038 L7719 456958 464991 17570 456958 46498 L7555 456793 465135 L8262 456793 465073 18126 456793 465063 18104

2 169667 488036 39111 460667 488026 39030 469668 4S7093 39017 AT.07T62 480200 39366 ATO7T62 48928 39336 470763 489278 3.33

3 IT001 507706 G852 ATS002 S0.6258 65802 ATS002  S0S0TT 6521 477092 S0.8135 GSOGT 477093 S0.6S63 62309 4T7004 506608 61362

1 169037 500805 67922 460039 500866 G786 46904  50.0S6 G7SAL 469617 50.1586 68075 46962 50.1543 67976 46.9621  50.1526  G.7938

5 484004 SLOTS3  GTAGH 484095 SLGT G732 484095 SLGGSG G724  4S4266 SLOGOG  G69GT  AS426T 5LGGSS  GO942 484268 516061  6.6891
6 502195 556035 109001 502199 55.0025 108973 502201 556505 108909 504922 560198 109474 504926 360186 10942 504927 560169 10.9406

7 G807 480525 25871 AGSAOT ASOAL 25625  AGSAOT  4SOAOT 25610  4GS432 480463 25684  AGS432 480352 25MT 468432 480351 25444

8 ITS06L SLSTAG 83065 4TS0G0 518643 S2343  A7TS065 5LSG3L 82816 478878 51SII3 81031 47SSSI SLS00S 81705 478882 5LT98D 1663

0 159614 470868 24456 450614 ATOTT3 24270 450615 AT.OT36 24196 AG1ISI 472540 2465 AGLISI 47245 24435 461181 472416 24361

10 ITO666 524435 93331 470665 524081 92591  AT.O665 523071 92362  4S0067 525019 0.130  4S.0060 524673 00867  AS007 524361  9.0638

1 AT3807 50302 63333 4730 503607 G2876 4730 503565 62508 ATSISE 505060 62801  ATSISG 50484 62405  4TSIST 504695 62008

12 7623 51058 TASST AT6A25 G0.9312 69092 AT6A25  50.9223 GSSI2 476322 5L22M THAI5  ATG320 500760 TO215  ATG324 509651  6.9967

13 ME31 454240 17512 446431 454087 LTIO 446431 454058 1T0R4 446522 453305 15302 446522 458318 1522 MG2 45320 1515

1 17009 493541 49078 AT005 493476 49837 ATO051 493152 49848 ATAML 495231 51131 ATAML 495162 50085  ATAML 49516 5008
15 187016 70060 ASTOIS 525262 18,7019 TE O ASO692 528337 TROIT 480604 528105 78430 489601 528071 78369

16 199025 511960 S60I6 49.0028 511793 85697 490020 SLITTL 8565 40.9506 543096  ST0T  49.9500 50203 86732 499601 512906  S.6679

17 465361 483116 38153 465362 482001 37680 465361 482840 BT AG6312 4SS004 4078 466312 4S4S22 30604 466312 484742 3.0523
13 199315 563042 127620 499319 562062 125657  49.932 561620 124788 40.955 564016 120035 499561 562910 126827 499563 56251  12.6004

19 ATGAL A0STSE 46964 ATGAIL 40856 46401 ATGAIL 498535 46430 4T63S2 08THS  AGOTI  4T63S3 408407 AGA21  AT383  40.SISS 46402

20 172905 511201 81399 472808 507363 7085 AT2808 507212 72765  A7ASI0 50.0132 79015 47851 505678 TA6)  ATAS2 505331 71376

Av.CPUtime 9249644 56140 - 9045365 665758 - 11012228 768516 - 9507674 S2781 - 9921004 803164 1413742 92493
Av. Gap 6.3076 6.1904 61747 62859 6.1765 6161

The last two rows of the table give the average CPU time taken to solve the SOCP problems (against the columns with optimal values) and the average gap between the
lower and upper bounds (against the columns with Gap(%))
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