
HAL Id: hal-04375376
https://hal.science/hal-04375376

Submitted on 5 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Displayed Monoidal Categories for the Semantics of
Linear Logic

Benedikt Ahrens, Ralph Matthes, Niels van der Weide, Kobe Wullaert

To cite this version:
Benedikt Ahrens, Ralph Matthes, Niels van der Weide, Kobe Wullaert. Displayed Monoidal Categories
for the Semantics of Linear Logic. Certified Programs and Proofs (CPP 2024), Jan 2024, London,
United Kingdom. à paraître, �10.1145/3636501.3636956�. �hal-04375376�

https://hal.science/hal-04375376
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Displayed Monoidal Categories for the Semantics of
Linear Logic

Benedikt Ahrens
Delft University of Technology

Netherlands
University of Birmingham

UK
b.p.ahrens@tudel�.nl

Ralph Matthes
IRIT - Université de Toulouse - CNRS - Toulouse INP - UT3

France
ralph.ma�hes@irit.fr

Niels van der Weide
Radboud University Nijmegen

Netherlands
nweide@cs.ru.nl

Kobe Wullaert
Delft University of Technology

Netherlands
K.F.Wullaert@tudel�.nl

Abstract

We present a formalization of di�erent categorical structures
used to interpret linear logic. Our formalization takes place
in UniMath, a library of univalent mathematics based on the
Coq proof assistant.
All the categorical structures we formalize are based on

monoidal categories. As such, one of our contributions is a
practical, usable library of formalized results on monoidal
categories. Monoidal categories carry a lot of structure, and
instances of monoidal categories are often built from com-
plicated mathematical objects. This can cause challenges of
scalability, regarding both the vast amount of data to be man-
aged by the user of the library, as well as the time the proof
assistant spends on checking code. To enable scalability, and
to avoid duplication of computer code in the formalization,
we develop “displayed monoidal categories”. These gadgets
allow for the modular construction of complicated monoidal
categories by building them in layers; we demonstrate their
use in many examples. Speci�cally, we de�ne linear-non-
linear categories and construct instances of them via Lafont
categories and linear categories.

CCS Concepts: • Theory of computation→ Linear logic;
Categorical semantics.

Keywords: linear logic, categorical semantics, monoidal cat-
egories, Coq, UniMath

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for pro�t or commercial advantage and that copies

bear this notice and the full citation on the �rst page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

CPP ’24, January 15–16, 2024, London, UK

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0488-8/24/01

h�ps://doi.org/10.1145/3636501.3636956

ACM Reference Format:

Benedikt Ahrens, Ralph Matthes, Niels van der Weide, and Kobe

Wullaert. 2024. Displayed Monoidal Categories for the Semantics of

Linear Logic. In Proceedings of the 13th ACM SIGPLAN International

Conference on Certi�ed Programs and Proofs (CPP ’24), January 15–

16, 2024, London, UK. ACM, New York, NY, USA, 14 pages. h�ps:

//doi.org/10.1145/3636501.3636956

1 Introduction

Linear logic [16] has been an active �eld of research with a
wide variety of applications. Intuitively, linear logic is a form
of logic where we see our hypotheses as resources, meaning
that we must use every assumption exactly once.1 Among
the applications are separation logic [29] and type systems
with uniqueness types [6].

To actually apply linear logic, denotational semantics is
key. An interpretation using l-cpos allows one to apply
linear logic to programming languages [32]. Linear logic
can also be interpreted using game semantics [1, 10] (for
instance). Implicit complexity is another application of linear
logic [22]. For the purpose of denotational semantics, many
di�erent categorical structures for the interpretation of linear
logic have been developed, and the relationship between
them has been studied, e.g., by De Paiva [14] and Melliès
[26, 27].

Monoidal categories play a key role in the categorical se-
mantics of linear logic. To formally develop the categorical
semantics of linear logic, one thus needs to develop the the-
ory of monoidal categories in a proof assistant. However,
this goal comes with numerous challenges, and one of them
lies in constructing examples of monoidal categories. Many
categories that one meets in the semantics of linear logic,
have rather complicated structure on the objects.

As mentioned before, interesting instances can be drawn
from order theory (like l-cpos), but the abstract notions
build a hierarchy of category-theoretic concepts, starting

1An “unconsumed” resource has to be managed, and this also counts as

“use” in this picture.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

260

https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-6786-4538
https://orcid.org/0000-0002-7299-2411
https://orcid.org/0000-0003-1146-4161
https://orcid.org/0000-0003-4281-2739
https://doi.org/10.1145/3636501.3636956
https://doi.org/10.1145/3636501.3636956
https://doi.org/10.1145/3636501.3636956

CPP ’24, January 15–16, 2024, London, UK Ahrens, Ma�hes, Van der Weide, and Wullaert

with just categories, but extending them to monoidal cate-
gories and then re�ning those into braided, symmetric, and
closed monoidal categories, respectively. We are also study-
ing comonoids in those monoidal categories and consider
comonads whose coalgebras are again organized into (sym-
metric) monoidal categories.
A successful formalization of this wealth of variants of

concepts needs to avoid copying code. Re�nements of a no-
tion have to build on the given notion and only deal with
the di�erence, be it extra data or extra laws. We will follow
a layered approach throughout. As an easy example, a mo-
noidal category is obtained by adding to a given category C

a monoidal structure " for it. The notion of the monoidal
structure is used in subsequent notion building. In our hier-
archies, we often build a (more complex) category out of the
material of a given category C, by adding structure and/or
laws to the objects and/or morphisms of C, one of the easiest
cases being the notion of a full subcategory by imposing only
a condition on the objects. The precise terminology is that of
a displayed category [3]: it is a description D of data and laws

from which the total category
∫
D is obtained generically,

together with a functor back into C, which is why D is called
a displayed category over C (cf. the leftmost part of Fig. 1).
In the same spirit, there is the notion of displayed bicat-

egory [2] that will not be used in this paper. Let us just
say that the bicategory of categories can be re�ned into a
total bicategory of monoidal categories by adding the mo-
noidal structures" to the objects C of that bicategory and
adapting the 1-cells and 2-cells accordingly to re�ect having
monoidal functors and monoidal natural transformations,
respectively. The displayed approach capitalizes on the bicat-
egory of categories, and only the added monoidal structure
needs veri�cation.

As an original contribution for this paper, we are propos-
ing the notion of a displayed monoidal category (in De�ni-
tion 4.5) that achieves a very di�erent kind of modularization.
This time, it is about building monoidal structures in layers.
Put simply, it integrates the horizontal extension of a category
C by a monoidal structure" and the vertical extension given
by a displayed category D over C. It is the description DM in

terms of D and" of what has to be added to
∫
D to turn it

into a monoidal category that “builds on the material” in" ,
cf. the three right-hand side quarters of Fig. 1. In fact, there is
a generic construction (Construction 4.7) of a total monoidal

structure
∫
DM from DM, serving as monoidal structure for∫

D (and there is a strict monoidal functor from the obtained
monoidal category back into the one on C). This o�ers a
modularization of our constructions since the generic con-
struction is done once and for all and thus pro�ts from "

being a monoidal structure for C and D being a displayed
category over C. The construction and veri�cation e�ort is
thus limited to the extras described by D, and this only for
the monoidal operations.

We apply displayed monoidal categories to the study of
the semantics of linear logic. The �rst categorical model of
linear logic is given by Lafont categories [21]. The category
of comonoids is key to Lafont categories. However, this no-
tion of model comes with a serious limitation: Girard’s key
model of coherence spaces is not an instance of a Lafont cat-
egory. Linear categories [7] overcome this limitation. Instead
of looking at the category of comonoids, one looks at the
Eilenberg-Moore category of a comonad. Both the monoidal
category of comonoids and the (monoidal) Eilenberg-Moore
categories can nicely be de�ned using displayed monoidal
categories.
The main notion of model for linear logic used in this

paper is given by linear-non linear models [6]. Both Lafont
categories and linear categories give rise to such models,
and we use this to construct concrete models of linear logic.
The leading example of a Lafont category in this paper is
the relational model, and the monoidal category of pointed
posets together with the lifting comonad gives an example
of a linear category.

Contributions and Overview. In this paper, we discuss
our formalization of monoidal categories and linear logic.

• We start in Section 2 with a formalization of the notion
of monoidal category and important examples.
• In Section 3, we formalize the notion of linear-non
linear model (De�nition 3.5).
• The main technical contribution of this paper, the no-
tion of displayed monoidal category, is introduced in
Section 4 (De�nition 4.5), and we illustrate this no-
tion with numerous examples. Examples of particular
importance to this paper are the Eilenberg-Moore cat-
egory of a comonad (Example 4.13) and the category
of comonoids (Example 4.14).
• Next we formalize a characterization of cartesian mo-
noidal categories in Section 5 (Corollary 5.2).
• Finally, we give concrete models of linear logic in Sec-
tion 6 (Example 6.5 and Example 6.9).

We discuss related work in Section 7, and we conclude in
Section 9.

1.1 Formalization

Our formalization takes place in univalent foundations, speci-
�cally, in the library UniMath [38] built for the proof assistant
Coq [35]. Many constructions and results are independent
of univalent foundations and, in particular, of the univalence
axiom. The displayed machinery, however, relies crucially
on dependent types. In the remainder of this section, we
give an overview of the prerequisites from univalent foun-
dations in general and UniMath speci�cally that we use in
our formalization.

We write 0 = 1 for the type of identi�cations / equalities /
paths from 0 to 1. We do not rely on any inductive types
other than the ones speci�ed in the prelude of UniMath, such

261

Displayed Monoidal Categories for the Semantics of Linear Logic CPP ’24, January 15–16, 2024, London, UK

cat.
∫
D disp. cat. D disp.mon. cat. DM mon. struct.

∫
DM mon. cat. (

∫
D,

∫
DM)

cat. C mon. struct." mon. cat. (C, ")

←

→
proj.

←

→descr. for

←→

conforms to ←→ extends

←

→
descr. for ←

→
snd. comp. of

←→ strict mon. proj.← →vert. extension

←

→
hor. extension ←

→
snd. comp. of

Figure 1. Overview of the concept of displayed monoidal category with parameters C," and D

as identity types, sum types, natural numbers, and booleans.
Indeed, part of the work consists of the construction of cer-
tain initial algebras from dependent products, dependent
sums, identities, and natural numbers. We use the notions
of propositions and sets of Univalent Foundations: a type -
is a proposition if

∏
G,~:- G = ~ is inhabited, and a set if the

type G = ~ is a proposition for all G,~ : - . Hence, despite
working in Coq, we do not rely on the universes Prop or Set.

Our main constructions and results, while conveniently
expressed using univalent foundations, are not dependent on
the full univalence axiom. On top of Martin-Löf type theory,
we rely on propositional truncation (for the composition
of relations, see Example 2.6) and functional extensionality
(for instance, when comparing morphisms in the category
of partially ordered sets in Example 2.5).

Propositional truncation in UniMath is implemented via an
impredicative encoding [4] (for instance, giving details). Such
an impredicative encoding requires a form of propositional
resizing to avoid raising the universe level of the truncation
compared to that of the original type. In order to implement
resizing rules (not otherwise available in Coq), UniMath uses
type-in-type, and hence is in principle inconsistent. We are
careful not to use any consequences of type-in-type except
for the resulting resizing rules. For the purposes of this pa-
per, a resizing axiom as implemented, for instance, in the
Coq-HoTT library2 would work just as well — propositional
truncation is only used in the example on relations.

We assume the reader to be familiar with the concepts of
category theory as found in the textbook by Mac Lane [23].
A category C in UniMath is given by a type of objects C0

and a family of sets C(G,~) for any G,~ : C0. Following the
choice adopted for the UniMath library, G : C0 is abbreviated
G : C, 5 : C(G,~) is abbreviated 5 : G → ~, and composition
is written in “diagrammatic” order, i. e., the composite of
5 : G → ~ and 6 : ~ → I is denoted 5 · 6 : G → I.
The formalization described in this paper has been inte-

grated into UniMath, in commit 9e43b0d. Throughout the
paper, we are describing the state of the library at that com-
mit, even though the development of UniMath and the mate-
rial discussed here continues. We have put numerous links
(in blue colour) to an HTML version of UniMath at commit
9e43b0d, hosted on Gitlab. Proof-checking and creation of

2See the �le implementing this axiom at h�ps://github.com/HoTT/Coq-

HoTT/blob/27cf62bd61cb5528b800949f6f995955ab5f33fd/theories/

PropResizing/PropResizing.v.

the HTML documentation can easily be reproduced at home
by following the UniMath compilation instructions.

2 Monoidal Categories

In this section, we recall the notion of monoidal categories,
and several variations of this notion. We also discuss numer-
ous examples of monoidal categories.

De�nition 2.1 (monoidal). A monoidal structure for a
category V consists of:

1. an object IV : V, the unit;
2. for all objects G,~ : V, an object G ⊗ ~ : V, the tensor

of G and ~;
3. for all objects G : V and morphisms 6 : ~1 → ~2, a

morphism G◁6 : G ⊗~1 → G ⊗~2, the left whiskering

with G of 6;
4. for all objects ~ : V and morphisms 5 : G1 → G2, a mor-

phism 5 ▷~ : G1 ⊗ ~ → G2 ⊗ ~, the right whiskering

with ~ of 5 ;
5. for all objects G : V, a morphism _G : IV ⊗ G → G

(the family of those morphisms is the left unitor) and
a morphism dG : G ⊗ IV → G (the family of those
morphisms is the right unitor);

6. for all objects G,~, I : V, a morphism UG,~,I : (G ⊗ ~) ⊗

I → G ⊗ (~ ⊗ I) (the family of those morphisms is the
associator);

7. for the same parameters as above, chosen inverses
for the unitors and the associator: _−1G : G → IV ⊗ G ,
d−1G : G → G ⊗ IV and U−1G,~,I : G ⊗ (~ ⊗I) → (G ⊗~) ⊗I,

such that the following equations hold (where we omit the
index V to the unit), where we �rst list the laws that concern
only the tensor and the whiskerings (that replace the require-
ment that tensor is a bifunctor in traditional presentations):

8. G ◁ 1~ = 1G⊗~ ;
9. 1G ▷ ~ = 1G⊗~ ;
10. G ◁ (61 · 62) = (G ◁ 61) · (G ◁ 62);
11. (51 · 52) ▷ ~ = (51 ▷ ~) · (52 ▷ ~);
12. (5 ▷ ~1) · (G2 ◁ 6) = (G1 ◁ 6) · (5 ▷ ~2),

followed by the axioms governing the unitors and the asso-
ciator:

13. for all 5 : G → ~, (I◁ 5) · _~ = _G · 5 (naturality of left
unitor);

14. _G · _
−1
G = 1I⊗G and _−1G · _G = 1G ;

15. for all 5 : G → ~, (5 ▷ I) · d~ = dG · 5 (naturality of
right unitor);

262

https://github.com/UniMath/UniMath/tree/9e43b0d347aea512a2f999f5e3581e8c89ae7236
https://github.com/UniMath/UniMath/tree/9e43b0d347aea512a2f999f5e3581e8c89ae7236
https://github.com/HoTT/Coq-HoTT/blob/27cf62bd61cb5528b800949f6f995955ab5f33fd/theories/PropResizing/PropResizing.v
https://github.com/HoTT/Coq-HoTT/blob/27cf62bd61cb5528b800949f6f995955ab5f33fd/theories/PropResizing/PropResizing.v
https://github.com/HoTT/Coq-HoTT/blob/27cf62bd61cb5528b800949f6f995955ab5f33fd/theories/PropResizing/PropResizing.v
https://benediktahrens.gitlab.io/unimathdoc3/9e43b0d/UniMath.CategoryTheory.Monoidal.Categories.html#monoidal

CPP ’24, January 15–16, 2024, London, UK Ahrens, Ma�hes, Van der Weide, and Wullaert

(G ⊗ I) ⊗ ~ G ⊗ (I ⊗ ~)

G ⊗ ~

←

→
UG,I,~

←

→dG▷~
←→

G◁_~

(F ⊗ G) ⊗ (~ ⊗ I) F ⊗ (G ⊗ (~ ⊗ I))

((F ⊗ G) ⊗ ~) ⊗ I F ⊗ ((G ⊗ ~) ⊗ I)

(F ⊗ (G ⊗ ~)) ⊗ I

←

→
UF,G,~⊗I

←

→UF⊗G,~,I

←

→UF,G,~▷I

←

→F◁UG,~,I

←→
UF,G⊗~,I

Figure 2. Triangle and pentagon laws of monoidal category
in whiskered presentation

G ⊗ (~ ⊗ I) (~ ⊗ I) ⊗ G

(G ⊗ ~) ⊗ I ~ ⊗ (I ⊗ G)

(~ ⊗ G) ⊗ I ~ ⊗ (G ⊗ I)

←

→WG,~⊗I ←→
U~,I,G←

→
UG,~,I

←→
WG,~▷I ←

→
U~,G,I

←

→~◁WG,I

Figure 3. First hexagon law of symmetric monoidal category

16. dG · d
−1
G = 1G⊗I and d−1G · dG = 1G ;

17. for all ℎ : I → I′, UG,~,I · (G ◁ (~ ◁ℎ)) = ((G ⊗~) ◁ℎ) ·
UG,~,I′ , for all 5 : G → G ′, UG,~,I · (5 ▷ (~ ⊗ I)) = ((5 ▷
~) ▷I) ·UG ′,~,I , for all 6 : ~ → ~′, UG,~,I · (G ◁ (6▷I)) =
((G ◁ 6) ▷ I) · UG,~′,I (naturality of associator in each
of the arguments);

18. UG,~,I · U
−1
G,~,I = 1(G⊗~)⊗I and U

−1
G,~,I · UG,~,I = 1G⊗(~⊗I) ;

19. UG,I,~ · (G ◁ _~) = dG ▷ ~ (triangle law); and
20. (UF,G,~ ▷I) ·UF,G⊗~,I · (F ◁UG,~,I) = UF⊗G,~,I ·UF,G,~⊗I

(pentagon law).

For the latter two laws, see Fig. 2 (a notational variant of the
standard textbook de�nition).
For morphisms 5 : G1 → G2 and 6 : ~1 → ~2, we de�ne

5 ⊗ 6 to be G1 ◁ 6 · 5 ▷ ~2 : G1 ⊗ ~1 → G2 ⊗ ~2. A monoidal

category is a pair (V, ") of a category V and a monoidal
structure " for V. We follow common practice and use V
also for the monoidal category.
A symmetric monoidal category V consists of

1. a monoidal category V;
2. for all objects G and~, a morphismWG,~ : G ⊗~ → ~⊗G ,

such that W is natural in both arguments, that WG,~ and W~,G
are inverses to each other, and that the �rst hexagon law

holds, that is, the diagram in Fig. 3 commutes. It is well-
known that in a symmetric monoidal category, the second
hexagon law (not shown here) is then derivable (as well as
laws concerning the associator and the unitors, for example,
WG,I · _G = dG). A symmetric monoidal closed category V

consists of a symmetric monoidal category V such that for

every G : V, the functor that sends objects ~ : V to G ⊗ ~ has
a right adjoint.

Remark 2.2. In De�nition 2.1 we use a whiskered style for
presenting monoidal categories: for morphisms, we have a
left- and a right-whiskering operation (from which 5 ⊗ 6 is
derived above). This is used “behind the scenes” in Section 4
to make the de�nition of a displayed monoidal category
easier to handle in the implementation.

In the remainder of this section, we look at numerous
examples of monoidal categories.

Example 2.3 (cartesian_monoidal). Suppose that C is a cat-
egory with (chosen) �nite products. Then C has a monoidal
structure where the tensor operation is given by the binary
product and the unit is given by the terminal object.

The monoidal category described in Example 2.3 is of a
special kind: it is a cartesian monoidal category.

De�nition 2.4 (is_cartesian). Let V be a monoidal category.
We say that V is semi-cartesian if the unit I is a terminal
object. Note that whenever V is semi-cartesian, for all objects
G,~ : Vwe have amap c1 : G⊗~ → G de�ned as the following
composition.

G ⊗ ~ G ⊗ I G

←

→
G◁C ←

→
dG

Here C is the unique map from ~ to the object I, which is
terminal by assumption. Similarly, we can de�ne a map c2 :

G ⊗ ~ → ~. We say V is cartesian if V is semi-cartesian and
if for all G,~ : V the following diagram is a product.

G G ⊗ ~ ~

←

→
c2

←

→c1

However, not every monoidal category is cartesian. One
such example is given by the smash product.

Example 2.5 (pointed_poset_sym_mon_closed_cat). Apar-

tially ordered set (poset) is a set P together with a re�exive,
anti-symmetric, and transitive relation ≤P. A pointed poset

is a poset together with an element ⊥P : P such that for
all G we have ⊥P ≤P G . The element ⊥P is called the bot-
tom element of P. Note that we have a category Poset∗
whose objects are pointed posets, and whose morphisms are
monotone maps that preserve the bottom element.
Suppose that we have two pointed posets P1 and P2. The

smash product of P1 and P2 is the quotient of P1 × P2 where
all elements of the shape (G,⊥P2) and (⊥P1 , ~) are identi�ed.
The category Poset∗ forms a symmetric monoidal category
whose monoidal product is given by the smash product and
whose unit is given by the poset of booleans. In addition,
Poset∗ is monoidal closed: the right adjoint of the smash
product is de�ned by the type of strict monotone functions.

Note that the category of pointed posets has multiple mo-
noidal structures: one can look at the monoidal structure

263

https://benediktahrens.gitlab.io/unimathdoc3/9e43b0d/UniMath.CategoryTheory.Monoidal.Examples.CartesianMonoidal.html#cartesian_monoidal
https://benediktahrens.gitlab.io/unimathdoc3/9e43b0d/UniMath.CategoryTheory.Monoidal.Structure.Cartesian.html#is_cartesian
https://benediktahrens.gitlab.io/unimathdoc3/9e43b0d/UniMath.CategoryTheory.Monoidal.Examples.PosetsMonoidal.html#pointed_poset_sym_mon_closed_cat

Displayed Monoidal Categories for the Semantics of Linear Logic CPP ’24, January 15–16, 2024, London, UK

arising from products (the cartesian one), the monoidal struc-
ture arising from coproducts (the cocartesian one), and at
the monoidal structure coming from the smash product. The
reason why we are interested in the one with the smash
product is because we get a nice symmetric monoidal closed
category from it.

Example 2.6 (REL_sym_mon_closed_cat). We de�ne the
category Rel to be the category whose objects are sets and
whose morphisms are relations. The monoidal product in Rel
is given by the cartesian product of sets, and this turns Rel
into a symmetric monoidal category. The category Rel is also
a monoidal closed category: the right adjoint of tensoring is
given by the cartesian product of sets as well.

Note that the monoidal product in Rel is taken as the
product of sets, and this might suggest that Rel is a cartesian
monoidal category. However, this is not the case. In Rel,
products and coproducts coincide and they are given by
coproducts of sets.

3 Models of Linear Logic

In this paper, we are interested in the use of monoidal cate-
gories for the categorical semantics of intuitionistic linear
logic. There are three key features to linear logic: the mul-

tiplicative conjunction, the linear implication, and the bang
modality, where the latter is the exponential by which intu-
itionistic implication can be de�ned from linear implication.
To interpret multiplicative conjunction and the linear impli-
cation in categories, we use symmetric monoidal categories.
The tensor is used to interpret multiplicative conjunction
and the right adjoint of the tensor is used to interpret linear
implication.

However, as is well-known, the interpretation of the bang
modality is more subtle. There are several formalisms to in-
terpret the bang modality, among which are linear-non linear
models, Lafont categories, and linear categories, all of which
we formalized in UniMath. In this section, we review linear-
non linear models [6], which we use as the main framework
for the categorical semantics of linear logic. This is because
the two others give rise to two families of examples of linear-
non linear models, cf. Construction 6.4 and Construction 6.8
in Section 6.
The key notion for de�ning linear-non linear models is

that of symmetric monoidal adjunction. In order to de�ne
those, we �rst need to recall some other well-known concepts
for monoidal categories that we present in our whiskered
format, but which are mathematically equivalent to the text-
book notions.

De�nition 3.1 (fmonoidal_lax). Let V1 and V2 be monoidal
categories and let F : V1 → V2 be a functor. A lax monoidal

structure on F consists of

1. a morphism unitF : IV2
→ F IV1

;

IV2
⊗ FG F IV1

⊗ FG

FG F (IV1
⊗ G)

←

→
unitF▷FG

←

→

tensF (IV1 ,G)

←

→F_FG

←

→

_FG

FG ⊗ IV2
FG ⊗ F IV1

FG F (G ⊗ IV1
)

←

→
FG◁unitF

←

→
tensF (G,IV1)

←

→F dFG

←

→

dFG

(FG ⊗ F~) ⊗ F I FG ⊗ (F~ ⊗ F I)

F (G ⊗ ~) ⊗ F I FG ⊗ F (~ ⊗ I)

F ((G ⊗ ~) ⊗ I) F (G ⊗ (~ ⊗ I))

←

→

tensF (G,~)▷FI

←

→
tensF (G⊗~,I)

←

→
FUG,~,I ←

→

tensF (G,~⊗I)

←

→

FG◁tensF (~,I)

←

→
UFG,F~,FI

FG1 ⊗ F~ F (G1 ⊗ ~)

FG2 ⊗ F~ F (G2 ⊗ ~)

←

→

F 5 ▷F ~

←

→
tensF (G1,~)

←

→
tensF (G2,~)

←

→

F (5 ▷~)

FG ⊗ F~1 F (G ⊗ ~1)

FG ⊗ F~2 F (G ⊗ ~2)

←

→

FG◁F6

←

→
tensF (G,~1)

←

→
tensF (G,~2)

←

→

F (G◁6)

Figure 4. Laws governing a lax monoidal functor

2. for all objects G,~ : V1, a morphism tensF (G,~) : FG ⊗

F~ → F (G ⊗ ~);

such that the diagrams in Fig. 4 commute for any G , G1, G2,
~, ~1, ~2, I : C (the �rst two express naturality of tensF). A
lax monoidal functor consists of a functor F : V1 → V2

together with a lax monoidal structure on it. We usually just
write F to indicate a lax monoidal functor. A lax monoidal
functor F is called strong if unitF and tensF (G,~) are isomor-
phisms for all G and ~. If they are even dependently equal to
identity morphisms, then F is called strict.

If V1 and V2 are symmetric monoidal categories with sym-
metric braidings W1 and W2, then a lax monoidal functor is
called symmetric if the following diagram commutes:

FG ⊗ F~ F~ ⊗ FG

F (G ⊗ ~) F (~ ⊗ G)

←

→
W2
FG,F~

←

→

tensF (G,~) ←

→

tensF (~,G)

←

→
FW1

G,~

Note that in the literature on monoidal categories, there
also is the notion of oplax monoidal functors. These are dual
to lax monoidal functors: we require unitF and tensF (G,~)

to be in the reverse direction. However, in this paper, we are
only concerned with lax and strong monoidal functors.
An example of a lax monoidal functor is given by the

lift operation on pointed posets. This operation adds a new
bottom element to a pointed poset; that is, a new element
that is smaller than all the other elements.

264

https://benediktahrens.gitlab.io/unimathdoc3/9e43b0d/UniMath.CategoryTheory.Monoidal.Examples.Relations.html#REL_sym_mon_closed_cat
https://benediktahrens.gitlab.io/unimathdoc3/9e43b0d/UniMath.CategoryTheory.Monoidal.Functors.html#fmonoidal_lax

CPP ’24, January 15–16, 2024, London, UK Ahrens, Ma�hes, Van der Weide, and Wullaert

Example 3.2 (lax_monoidal_li�_poset_comonad). We have
a lax monoidal functor Li� : Poset∗ → Poset∗. It sends every
poset P to the poset Li�(P) whose carrier is the type P + 1.
We denote the added element by ⊥. The order of Li�(P) is
given by G ≤Li�(P) ~ if either G ≤P ~ or if G = ⊥

Note that in Example 3.2 we use pointed posets instead
of arbitrary posets. This is actually a meaningful di�erence:
the monoidal structure on the category of pointed posets is
given by the smash product, whereas the monoidal structure
on the category of posets is given by the cartesian product.
Next we recall the notion of monoidal transformations.

De�nition 3.3 (is_mon_nat_trans). Suppose that we have
lax monoidal functors F,G : V1 → V2. Amonoidal natural

transformation \ consists of a natural transformation \ :

F⇒ G such that the following diagrams commute:

I

F I G I

←→unitF ←

→
unitG

←

→
\ (I)

FG ⊗ F~ GG ⊗ G~

F (G ⊗ ~) G (G ⊗ ~)

←

→
\ (G)⊗\ (~)

←

→

tensG (G,~)

←

→
\ (G⊗~)←

→

tensF (G,~)

With the notion of monoidal transformation in place, we
can de�ne monoidal adjunctions.

De�nition 3.4 (is_sym_monoidal_adjunction). A mono-

idal adjunction between monoidal categories V1 and V2

consists of an adjunction L [
Y
R such that L and R are lax

monoidal functors and its unit [and its counit Y are monoidal
transformations.

A monoidal adjunction is called a symmetric monoidal

adjunction if L and R are symmetric lax monoidal functors.

Now we present the key notion of this section: linear-non
linear models.

De�nition 3.5 ([6], linear_non_linear_model). A linear-

non linear model consists of a symmetric monoidal adjunc-

tion L [
Y
M where L : M → L such that M is a cartesian

monoidal category and L is a symmetric monoidal closed
category. This is partly visualized by

M ⊢ L

←

→
L

←→

M

As we announced in the introduction to this section, the
multiplicative conjunction and linear implication can now
be interpreted as the tensor product and the right adjoint of
the tensor product in L.
To interpret the bang modality, we need to exploit the

symmetric monoidal adjunction. The main point is that this

modality is interpreted as a symmetric monoidal comonad

on L. Recall that a comonad F on a category C consists of
an endofunctor F : C→ C and natural transformations YF :
F⇒ id (the counit) and XF : F⇒ F · F (the comultiplication)
such that the following diagrams commute for any G : C.

FG

FG F (FG) FG

←

→
1FG←

→

1FG ←→XF (G)

←

→

YF (FG)

←

→
F (YF (G))

FG F (FG)

F (FG) F (F (FG))

←

→
XF (G)

←

→
XF (G)

←

→
XF (FG)

←

→

F (XF (G))

De�nition 3.6 (symmetric_monoidal_comonad). A sym-

metric monoidal comonad consists of a comonad F such
that F is a symmetric lax monoidal functor and YF and XF are
monoidal transformations.

To get familiar with symmetric monoidal comonads, let
us look at two examples.

Example 3.7 (li�_poset_symmetric_monoidal_comonad).
The lax monoidal functor Li� has the structure of a symmet-
ric monoidal comonad, on the monoidal category Poset∗.

In addition, every symmetric monoidal adjunction gives
rise to a symmetric monoidal comonad.

Problem 3.8. Given a symmetric monoidal adjunction L [
Y

R where L : V1 → V2, to construct a symmetric monoidal

comonad AdjToCmd(L [
Y
R) on V2.

Construction 3.9 (for Problem 3.8; sym_monoidal_adjunc-

tion_to_sym_monoidal_cmd). The adjunction L [
Y
R gives

rise to a comonad V2: the endofunctor of this comonad is
given by R · L, the counit of the comonad is given by Y, and
the comultiplication is given by composition and whiskering
using Y and [. To establish that this comonad is symmetric
monoidal, we only need to check that the de�ned functor
and natural transformations are (symmetric) lax monoidal.
This follows from the fact that (symmetric) lax monoidal
functors and transformations are closed under composition
and whiskering. □

If we have a linear-non linear model, then from Construc-
tion 3.9 we get a comonad on L. Since M is cartesian, the
weakening and contraction rules in linear logic follow.

In the remainder of the paper, our goal is to construct
examples of linear-non linear models. To do so, we take
three steps.

1. We construct the monoidal categories M and L. In
the examples that we are interested in,M is either the
category of commutative comonoids in somemonoidal
category or the Eilenberg-Moore category of some
comonad. In Section 4, we discuss how to construct
such categories using displayed monoidal categories.

265

https://benediktahrens.gitlab.io/unimathdoc3/9e43b0d/UniMath.CategoryTheory.Monoidal.Examples.LiftPoset.html#lax_monoidal_lift_poset_comonad
https://benediktahrens.gitlab.io/unimathdoc3/9e43b0d/UniMath.CategoryTheory.Monoidal.Functors.html#is_mon_nat_trans
https://benediktahrens.gitlab.io/unimathdoc3/9e43b0d/UniMath.CategoryTheory.Monoidal.Adjunctions.html#is_sym_monoidal_adjunction
https://benediktahrens.gitlab.io/unimathdoc3/9e43b0d/UniMath.Semantics.LinearLogic.LinearNonLinear.html#linear_non_linear_model
https://benediktahrens.gitlab.io/unimathdoc3/9e43b0d/UniMath.CategoryTheory.Monoidal.FunctorCategories.html#symmetric_monoidal_comonad
https://benediktahrens.gitlab.io/unimathdoc3/9e43b0d/UniMath.CategoryTheory.Monoidal.Examples.LiftPoset.html#lift_poset_symmetric_monoidal_comonad
https://benediktahrens.gitlab.io/unimathdoc3/9e43b0d/UniMath.CategoryTheory.Monoidal.Adjunctions.html#sym_monoidal_adjunction_to_sym_monoidal_cmd
https://benediktahrens.gitlab.io/unimathdoc3/9e43b0d/UniMath.CategoryTheory.Monoidal.Adjunctions.html#sym_monoidal_adjunction_to_sym_monoidal_cmd

Displayed Monoidal Categories for the Semantics of Linear Logic CPP ’24, January 15–16, 2024, London, UK

2. We prove thatM is cartesian. To do so, we use a general
theorem that we discuss in Section 5.

3. We construct a symmetric monoidal adjunction be-
tween M and L. To check whether an adjunction is
symmetric monoidal, it su�ces to check whether the
left adjoint is strong. We prove this in Section 6.

4 Displayed Monoidal Categories

In this section, we devise a modular way of constructing
monoidal categories. As explained in the introduction, we
introduce displayed monoidal categories for this purpose.
These need the concept of displayed categories [3] that we
recall here for self-containedness.

4.1 The Theory

De�nition 4.1 ([3, De�nition 3.1], disp_cat). Given a cate-
gory C, a displayed category D over C consists of:

1. for each object G : C, a type DG of objects over G ;
2. for each morphism 5 : G → ~ in C, Ḡ : DG and ~̄ :

D~ , a set of morphisms from Ḡ to ~̄ over 5 , with

membership of 5̄ in this set denoted as 5̄ : Ḡ →5 ~̄;
3. for each G : C and Ḡ : DG , an identity morphism

1Ḡ : Ḡ →1G Ḡ ;
4. for all morphisms 5 : G → ~ and 6 : ~ → I in C

and objects Ḡ : DG , ~̄ : D~ and Ī : DI , a composition

morphism 5̄ ·6̄ : Ḡ →5 ·6 Ī for 5̄ : Ḡ →5 ~̄ and 6̄ : ~̄ →6

Ī,

such that, for all suitably typed inputs, we have:

5. 5̄ · 1~ =∗ 5̄ ,

6. 1G · 5̄ =∗ 5̄ ,

7. 5̄ · (6̄ · ℎ̄) =∗ (5̄ · 6̄) · ℎ̄.

Remark 4.2. These axioms are all dependent equalities, over
equalities of morphisms in C. For instance, if 5̄ : Ḡ →5 ~̄,

then 5̄ · 1~̄ : Ḡ →5 ·1~ ~̄, so the displayed right unit axiom

5̄ · 1~̄ =∗ 5̄ is over the ordinary right unit axiom 5 · 1~ = 5

of C. Since we generally assume hom-sets for our categories
C, the dependent equality does not depend on how that
base equality is proven. As is done in [3], we therefore omit
the precise base equalities as indices to = and indicate their
presence by ∗.

De�nition 4.3 ([3, De�nition 3.2], total_category, pr1_cate-
gory). Given a displayed category D over category C, we
de�ne

1. the total category of D, written
∫
D, whose objects

are pairs (G, Ḡ) with G : C and G : DG and whose
morphisms from (G, Ḡ) to (~, ~̄) are pairs (5 , 5̄) with
5 : G → ~ and 5̄ : Ḡ →5 ~̄. (We omit identities and
composition, as well as proofs of the axioms since they
are straightforwardly obtained from C and D);

2. the evident forgetful functor from
∫
D to C that sim-

ply takes the �rst projection, both on objects and mor-
phisms.

There is also the notion of displayed functor between dis-
played categories D1 over C1 and D2 over C2 over a functor
� : C1 → C2 [3, De�nition 3.11]. With the whiskered style of
the tensor operation in a monoidal structure comes the need
for a dedicated de�nition of whiskered displayed bifunctors;
the analogue of the tensor in a displayed monoidal category
is the speci�c case where the source displayed categories
and the target displayed category coincide. For the sake of
brevity, we only detail the de�nition of displayed tensor in
the paper.

De�nition 4.4 (disp_bifunctor). Given a displayed category
D over category V and a tensor operation on V given by
Item 2, Item 3 and Item 4 of De�nition 2.1, a displayed

tensor for D is given by

1. for all G,~ : V and Ḡ : DG and ~̄ : D~ , a displayed object
Ḡ ⊗̄ ~̄ : DG⊗~ ;

2. for all G,~1, ~2 : V, Ḡ ∈ DG , ~̄1 ∈ D~1 , ~̄2 ∈ D~2 , 6 :

~1 → ~2 and 6̄ : ~̄1 →6 ~̄2, a displayed morphism
Ḡ ◁̄ 6̄ : Ḡ ⊗̄ ~̄1 →G◁6 Ḡ ⊗̄ ~̄2;

3. for all G1, G2, ~ : V, Ḡ1 ∈ DG1 , Ḡ2 ∈ DG2 , ~̄ ∈ D~ , 5 :

G1 → G2 and 5̄ : Ḡ1 →5 Ḡ2, a displayed morphism

5̄ ▷̄ ~̄ : Ḡ1 ⊗̄ ~̄ →5 ▷~ Ḡ2 ⊗̄ ~̄,

such that, for all suitably typed inputs, we have:

4. Ḡ ◁̄ 1~̄ =∗ 1Ḡ ⊗̄~̄ ;
5. 1Ḡ ▷̄ ~̄ =∗ 1Ḡ ⊗̄~̄ ;
6. Ḡ ◁̄ (6̄1 · 6̄2) =∗ (Ḡ ◁̄ 6̄1) · (Ḡ ◁̄ 6̄2);
7. (5̄1 · 5̄2) ▷̄ ~̄ =∗ (5̄1 ▷̄ ~̄) · (5̄2 ▷̄ ~̄);
8. (5̄ ▷̄ ~̄1) · (Ḡ2 ◁̄ 6̄) =∗ (Ḡ1 ◁̄ 6̄) · (5̄ ▷̄ ~̄2).

These dependent equalities are in lockstep with the laws gov-
erning tensor and whiskerings in V and are to be understood
over those laws.

De�nition 4.5 (disp_monoidal). Given a monoidal cate-
gory (V, ") and a displayed category D over V, a displayed
monoidal category DM for V," and D consists of

1. a displayed object �̄DM : DIV (henceforth written with-
out the index);

2. a displayed tensor for D over the tensor in" ;
3. for all G : V, Ḡ : DG , displayed morphisms

_̄Ḡ : �̄ ⊗̄ Ḡ →_G Ḡ

and
d̄Ḡ : Ḡ ⊗̄ �̄ →dG Ḡ ;

4. for all G,~, I : V, Ḡ : DG , ~̄ : D~ and Ī : DI , a displayed
morphism ŪḠ,~̄,Ī : (Ḡ ⊗̄ ~̄) ⊗̄ Ī →UG,~,I Ḡ ⊗̄ (~̄ ⊗̄ Ī);

5. for the same parameters as above, chosen displayed
inverses (over the inverse base morphisms) for the two
preceding items: _̄−1Ḡ : Ḡ →_−1G

�̄ ⊗̄ Ḡ , d̄−1Ḡ : Ḡ →d−1G

Ḡ ⊗̄ �̄ , and Ū−1Ḡ,~̄,Ī : Ḡ ⊗̄ (~̄ ⊗̄ Ī) →U−1G,~,I
(Ḡ ⊗̄ ~̄) ⊗̄ Ī,

such that the thirteen families of dependent equations hold
that follow in lockstep the equations in Item 13 to Item 20
of De�nition 2.1, precisely after the model of the laws in
De�nition 4.4. Here we only detail the last two of them:

266

https://benediktahrens.gitlab.io/unimathdoc3/9e43b0d/UniMath.CategoryTheory.DisplayedCats.Core.html#disp_cat
https://benediktahrens.gitlab.io/unimathdoc3/9e43b0d/UniMath.CategoryTheory.DisplayedCats.Total.html#total_category
https://benediktahrens.gitlab.io/unimathdoc3/9e43b0d/UniMath.CategoryTheory.DisplayedCats.Total.html#pr1_category
https://benediktahrens.gitlab.io/unimathdoc3/9e43b0d/UniMath.CategoryTheory.DisplayedCats.Total.html#pr1_category
https://benediktahrens.gitlab.io/unimathdoc3/9e43b0d/UniMath.CategoryTheory.Monoidal.Displayed.WhiskeredDisplayedBifunctors.html#disp_bifunctor
https://benediktahrens.gitlab.io/unimathdoc3/9e43b0d/UniMath.CategoryTheory.Monoidal.Displayed.Monoidal.html#disp_monoidal

CPP ’24, January 15–16, 2024, London, UK Ahrens, Ma�hes, Van der Weide, and Wullaert

6. ŪḠ,�̄ ,~̄ · (Ḡ ◁̄ _̄~̄) =∗ d̄Ḡ ▷̄ ~̄;
7. (ŪF̄,Ḡ,~̄ ▷̄Ī) ·ŪF̄,Ḡ ⊗̄~̄,Ī · (F̄ ◁̄ŪḠ,~̄,Ī) =∗ ŪF̄⊗̄Ḡ,~̄,Ī ·ŪF̄,Ḡ,~̄⊗̄Ī .

Problem 4.6. Given a displayed monoidal category DM for

V, " and D, construct a monoidal structure
∫
DM for

∫
D

and a strong monoidal forgetful functor from (
∫
D,

∫
DM)

to (V, ").

Construction 4.7 (for Problem 4.6; total_monoidal, projec-
tion_fmonoidal). De�nition 4.3 restricts the design space to
one single solution: the �rst components of the unit, the ten-
sor (objects), the whiskerings, the unitors and the associator
come from" , and the respective second components come
from DM. All the laws are then dependent equalities of pairs,
where the �rst components are dealt with by the axioms of
" , and the second components can then be dealt with by the
laws of DM. A lax monoidal functor F based on F := cD

1
is

obtained with unitF and tensF ((G, Ḡ), (~, ~̄)) suitable identity
morphisms, whence this is a strict monoidal functor and in
particular a strong monoidal functor. □

The terminology of “displayed monoidal category” is now
justi�ed as being the “material” to obtain a monoidal cat-
egory from the total category of a displayed category by
using a given monoidal structure on its base. By itself, a
displayed monoidal category is neither a displayed category
nor a (monoidal) category.

Remark 4.8. The whole point of identifying the notion of
displayed monoidal category is to avoid having to give this
“boilerplate code” in the construction of monoidal categories

on total categories
∫
D. For example, whenD is locally propo-

sitional (that is, when the displayed morphisms from Ḡ to
~̄ over 5 always form a proposition), all the laws of a dis-
played tensor and a displayed monoidal category trivially
hold, cf. make_disp_monoidal_locally_prop. However, Con-
struction 4.7 does not become trivial in this case since the
laws of" still enter the veri�cation.

The modularization continues with the notion of displayed
symmetric monoidal category, which we describe more com-
pactly since it follows the same pattern of lifting the further
horizontal extension according to a given vertical extension
described by a displayed category.

De�nition 4.9 (disp_symmetric). Let (V, ") andD be given
as in De�nition 4.5, and let DM be a displayed monoidal cate-
gory for these parameters. Assume the additional structure of
a symmetric monoidal category for V (the symmetric braid-
ing W and its laws). A displayed symmetric monoidal

category DS is given by

1. for all G,~ : V and Ḡ : DG and ~̄ : D~ , a displayed
morphism W̄Ḡ,~̄ : Ḡ ⊗̄ ~̄ →WG,~ ~̄ ⊗̄ Ḡ ;

such that the families of dependent equations hold that fol-
low in lockstep the equations expressing the naturality of W,
and the �rst hexagon law, of which we detail the latter:

2. ŪḠ,~̄,Ī · W̄Ḡ,~̄⊗̄Ī · Ū~̄,Ī,Ḡ =∗ (W̄Ḡ,~̄ ▷̄ Ī) · Ū~̄,Ḡ,Ī · (~̄ ◁̄ W̄Ḡ,Ī)

Given a displayed symmetric monoidal category DS with
the parameters given above, we readily construct the to-

tal symmetric structure
∫
DS that, together with the to-

tal monoidal structure
∫
DM, turns the total category

∫
D

into a symmetric monoidal category, the total symmetric

monoidal category for the given parameters. The strong
monoidal functor described in Construction 4.7 is immedi-
ately seen to be symmetric as well. For the formalization, see
total_symmetric and projection_is_symmetric.

4.2 The Examples

Example 4.10 (disp_monoidal_fullsub, disp_symmetric_

fullsub). Given a monoidal category V and a family (%G)G :V
of types (indexed over the objects of V), there is the locally
propositional displayed category D, with DG := %G and the
unit type for all sets of displayed morphisms, which de-

termines identity and composition in a trivial way.
∫
D is

then (a notational variant of) the full subcategory induced
by (%G)G :V. The monoidal structure of V comes into play
when asking for D : %I and a family (CG,~)G,~:V of functions
CG,~ : %G → %~ → %G⊗~ . A displayed monoidal category
is then constructed with the displayed tensor given by the
(CG,~)G,~:V, and with �̄ := D. All the other data are displayed
morphisms, hence trivially determined, and the displayed
laws are trivial. Provided that V even has a symmetric struc-
ture, a symmetric displayed monoidal category is then ob-
tained trivially as well, with W̄Ḡ,~̄ the inhabitant of the unit
type. Thus, as the total structure, we get the symmetric mo-
noidal full subcategory induced by (%G)G :V, D and (CG,~)G,~:V.

Example 4.11 (dialgebra_monoidal). Let V1 and V2 be mo-
noidal categories, F a strong monoidal functor and G a lax
monoidal functor, both from V1 to V2. For simplicity of our
formalization, F is required to be strong, however it could
be relaxed to oplax. We construct the category of monoidal
dialgebras as a locally propositional displayed category D

over V1 as follows: for G : V1, the type DG is the type of
morphisms in V2 from FG to GG . The set of displayed mor-
phisms from Ḡ : FG → GG to ~̄ : F~ → G~ over 5 : G → ~

is the proposition that the following diagram commutes:

FG F~

GG G~

←

→

Ḡ

←

→
F 5

←

→

~̄

←

→
G 5

The constructions 1Ḡ and 5̄ · 6̄ for D are nothing but the
obvious proofs of commutation of the diagrams:

FG FG

GG GG

←

→

Ḡ

←

→
F 1G

←

→

Ḡ

←

→
G 1G

and
FG F I

GG G I

←

→

Ḡ

←

→
F (5 ·6)

←

→

Ī←

→

Ī

←

→
G (5 ·6)

(For the second diagram, this is the horizontal pasting of the
two input diagrams for 5̄ and 6̄.) The laws all hold trivially

267

https://benediktahrens.gitlab.io/unimathdoc3/9e43b0d/UniMath.CategoryTheory.Monoidal.Displayed.TotalMonoidal.html#total_monoidal
https://benediktahrens.gitlab.io/unimathdoc3/9e43b0d/UniMath.CategoryTheory.Monoidal.Displayed.TotalMonoidal.html#projection_fmonoidal
https://benediktahrens.gitlab.io/unimathdoc3/9e43b0d/UniMath.CategoryTheory.Monoidal.Displayed.TotalMonoidal.html#projection_fmonoidal
https://benediktahrens.gitlab.io/unimathdoc3/9e43b0d/UniMath.CategoryTheory.Monoidal.Displayed.Monoidal.html#make_disp_monoidal_locally_prop
https://benediktahrens.gitlab.io/unimathdoc3/9e43b0d/UniMath.CategoryTheory.Monoidal.Displayed.Symmetric.html#disp_symmetric
https://benediktahrens.gitlab.io/unimathdoc3/9e43b0d/UniMath.CategoryTheory.Monoidal.Displayed.Symmetric.html#total_symmetric
https://benediktahrens.gitlab.io/unimathdoc3/9e43b0d/UniMath.CategoryTheory.Monoidal.Displayed.Symmetric.html#projection_is_symmetric
https://benediktahrens.gitlab.io/unimathdoc3/9e43b0d/UniMath.CategoryTheory.Monoidal.Examples.Fullsub.html#disp_monoidal_fullsub
https://benediktahrens.gitlab.io/unimathdoc3/9e43b0d/UniMath.CategoryTheory.Monoidal.Examples.Fullsub.html#disp_symmetric_fullsub
https://benediktahrens.gitlab.io/unimathdoc3/9e43b0d/UniMath.CategoryTheory.Monoidal.Examples.Fullsub.html#disp_symmetric_fullsub
https://benediktahrens.gitlab.io/unimathdoc3/9e43b0d/UniMath.CategoryTheory.Monoidal.Examples.MonoidalDialgebras.html#dialgebra_monoidal

Displayed Monoidal Categories for the Semantics of Linear Logic CPP ’24, January 15–16, 2024, London, UK

because of local propositionality. Notice that D is groupoidal
(groupoidal_disp_cat): If 5 : G → ~ is invertible, then so is
the only possible 5̄ : Ḡ →5 ~̄ – the diagram for 5̄ becomes
one for its inverse by interchanging Ḡ and ~̄ and by replacing

5 with its inverse.
∫
D is then the category of dialgebras

for F and G (not yet exploiting monoidal structure) – a com-
mon generalization of F-algebras and their algebra homo-
morphisms (with G the identity) and G-coalgebras and their

coalgebra homomorphisms (with F the identity).
∫
D has a

canonical monoidal structure, induced by those of V1 and V2,
and this is seen through a displayed monoidal category for
V1 and D. Since D is locally propositional, the laws for the
displayed tensor and the displayed monoidal category are all
trivial, but the de�nition of the displayed morphisms in the
construction involves proving those diagrams to commute.
However, the inverses of the unitors and the associator are
obtained generically from D being groupoidal, making the
overall construction less burdensome. Here, we only show
the de�nition of �̄ and Ḡ ⊗̄ ~̄ (from the de�ned tensor action
Ḡ ⊗ ~̄ in V2), given by the commuting diagrams

F IV1

IV2

G IV1

←→ �̄

←

→
unit−1F

←→

unitG

and
F (G ⊗ ~) FG ⊗ F~

G (G ⊗ ~) GG ⊗ G~

←

→

Ḡ ⊗̄~̄

←

→
tensF (G,~)

−1

←

→
Ḡ⊗~̄

←

→

tensG (G,~)

If V1 and V2 and F and G are even symmetric monoidal (cate-
gories resp. functors), then a displayed symmetric monoidal
category is easily obtained. Thanks to local propositionality
of D, only the diagram corresponding to the existence of
W̄Ḡ,~̄ : Ḡ ⊗̄ ~̄ →WG,~ ~̄ ⊗̄ Ḡ has to be shown to commute (which
only uses that F and G are symmetric monoidal and that W is
natural).

Example 4.12 (monoidal_pointed_objects). Given a mo-
noidal category V, the category I/V of slices under the unit

of V is obtained as
∫
D, for D the locally propositional dis-

played category over V, de�ned with DG the morphisms in
V from I to G , and with the set of displayed morphisms from
Ḡ : I → G to ~̄ : I → ~ over 5 : G → ~ the proposition that
Ḡ · 5 = ~̄. Mathematically, this is nothing but an instance
of the previous example, with V1 and V2 set to V, F set to
constantly I (which is strongly monoidal) and G set to the

identity on V. We therefore get a monoidal structure on
∫
D,

and we call it the monoidal category of monoidal-pointed

objects (the name comes from considering Ḡ as a monoidal

point, since its source is the unit and not necessarily a termi-
nal object). As an instance of this construction, we get the
monoidal category of pointed endofunctors on a category
C, where we start with the endofunctor category [C,C] that
is monoidal with ⊗ given by composition (which is another
natural example of a non-cartesian monoidal category) and
the identity on C as unit.

Example 4.13 (sym_monoidal_cat_co_eilenberg_moore).
Let V be a symmetric monoidal category and (F, YF, XF) be a

symmetric monoidal comonad. We construct the symmetric
monoidal Eilenberg-Moore category of this comonad us-
ing our displayed technology, combining Example 4.10 and
Example 4.11. The objects of the category to be constructed
are coalgebras for (F, YF, XF), that is, dialgebras for the iden-
tity and F that are compatible with YF and XF. For a coalgebra
(G, ℎ) with ℎ : G → FG , this asks for the commutation of the
following diagrams:

G FG

G

←

→
ℎ

←

→1G ←

→

YF (G)
and

G FG

FG F (FG)

←

→
ℎ

←

→

ℎ ←

→

XF (G)

←

→
Fℎ

We use Example 4.10 with the symmetric monoidal cate-
gory of dialgebras of Example 4.11 for the identity and F

as parameter V and with % (G,ℎ) the proposition expressing
the commutation of the above diagrams. We are thus left
with providing D and C (G,ℎ),(~,:) in the notation of that ex-
ample, with : : ~ → F~. They are not data but just proofs
of commutation of diagrams (for C depending on assumed
commuting diagrams), for which the assumption that we
started with a monoidal comonad is crucial. We denote the
resulting displayed category and total category by EMd (F)

and EM(F), respectively. We denote the (strict monoidal)
forgetful functor from EM(F) to V by UEM(F) .

Example 4.14. Given a symmetric monoidal category V,
we consider themonoidal category of comonoids that are
internal to V (we need symmetry of V in our construction).
Its objects are triples (G, YG , XG) with counit YG : G → I and
comultiplication XG : G → G ⊗ G , provided commutation of
the following diagrams:

G ⊗ G (G ⊗ G) ⊗ G

G

G ⊗ G G ⊗ (G ⊗ G)

←

→
XG▷G

←→ UG,G,G

←

→
XG

←→
XG ←

→
G▷XG

and
G ⊗ G G G ⊗ G

I ⊗ G G G ⊗ I

←

→

YG▷G

←

→XG ←

→
XG

←

→

1G ←

→

G◁YG

←

→
_G

←

→

dG

The morphisms of this category are meant to follow from
�rst principles, as dictated by a dialgebraic view of counit
and comultiplication. This pro�ts again from the notion of
displayed category. We consider the displayed categories D1

and D2 over V that are the displayed categories of dialgebras
for the (strong monoidal) identity functor as �rst argument
in both cases. For D1, the second argument is the strong mo-
noidal diagonal functor (an object G is mapped to G ⊗ G , and
already the data for a lax monoidal functor requires symme-
try of V). ForD2, the second argument is the strong monoidal
functor that is constantly the unit of V (see Example 4.12).
We use the generic construction of a directed product of
two displayed categories (not shown here) to combine D1

and D2 into a locally propositional displayed category D

over V, and
∫
D then has as objects the triples (G, YG , XG),

but not yet the commutation of the diagrams. Using Exam-
ple 4.10, we get a locally propositional displayed category

D′ (see comonoid_laws_disp_cat) over
∫
D that embodies

268

https://benediktahrens.gitlab.io/unimathdoc3/9e43b0d/UniMath.CategoryTheory.DisplayedCats.Projection.html#groupoidal_disp_cat
https://benediktahrens.gitlab.io/unimathdoc3/9e43b0d/UniMath.CategoryTheory.Monoidal.Examples.MonoidalPointedObjects.html#monoidal_pointed_objects
https://benediktahrens.gitlab.io/unimathdoc3/9e43b0d/UniMath.CategoryTheory.Monoidal.Examples.SymmetricMonoidalCoEilenbergMoore.html#sym_monoidal_cat_co_eilenberg_moore
https://benediktahrens.gitlab.io/unimathdoc3/9e43b0d/UniMath.CategoryTheory.Monoidal.Comonoids.Category.html#comonoid_laws_disp_cat

CPP ’24, January 15–16, 2024, London, UK Ahrens, Ma�hes, Van der Weide, and Wullaert

those laws. Example 4.11 gives us displayed monoidal cate-
gories for D1 and D2, and there is a generic construction of a
directed product of two displayed monoidal categories (not
shown here) in case of local propositionality of the given
displayed categories, hence we get a displayed monoidal cat-
egory for D. To get a displayed monoidal category for D′,
Example 4.10 asks us to provide “operations” D and C , but
they are nothing but requirements about the propagation
of the comonoid laws through the monoidal structure ob-

tained for
∫
D. For a more versatile use, we can repackage

the obtained nested structures so that they are displayed over

the original V and not over
∫
D. This uses a Σ-construction

(corresponding to rearranging the nesting of Σ-types) that is
generically available for locally propositional displayed cate-
gories and provides a suitable displayed monoidal category
although local propositionality is typically lost then. The
displayed monoidal category thus obtained is formalized as
disp_monoidal_comonoids.

We also consider the symmetric monoidal category of

commutative comonoids, internal to V. A commutative
comonoid is a comonoid whose comultiplication is com-
patible with the symmetric braiding of V, expressed in the
following diagram.

G ⊗ G

G

G ⊗ G

←→ WG,~

←

→
XG

←→
XG

making redundant
G G ⊗ G

G G ⊗ I

←

→
XG

←

→
1G ←

→

G◁YG

←
→

dG

The category of commutative comonoids Ccom(V) is the
full subcategory induced by this extra property, while the
redundancy of the mentioned counit law is only embodied
in a convenience constructor in our formalization (make_

commutative_comonoid). Using the same generic tools as
for the comonoids, we obtain a displayed monoidal cate-
gory Ccomd (V), then a displayed symmetric monoidal cat-
egory, thus the announced symmetric monoidal category
of commutative comonoids (symmetric_cat_commutative_

comonoids). We denote the (strict monoidal) forgetful func-
tor from Ccom(V) to V by UCcom

V
. At no point is the reason-

ing speci�c to comonoids repeated in this process, so there
is no duplication of code dealing with the base comonoid
structure.

Note that in the same way, we can construct the category
of monoids.

5 Characterizing Cartesian Monoidal
Categories

In this section, we show that cartesian monoidal categories
can be classi�ed using the existence of commutative co-
monoids. We also use that result to show that the category
of commutative comonoids is cartesian.

Theorem 5.1 ([27, Prop. 16],monoidal_is_cartesian_from_

comonoid). Let V be a monoidal category. The monoidal struc-

ture is cartesian if for every object G : V, a comonoid structure

(YG , XG) on G is given, such that

1. every morphism is a comonoid homomorphism;

2. YI = 1I, that is, the counit of the monoidal unit is the

identity;

3. for every G and ~ : V, the following diagram commutes:

G ⊗ ~ (G ⊗ ~) ⊗ (G ⊗ ~)

G ⊗ ~ (G ⊗ I) ⊗ (I ⊗ ~)

←

→
XG⊗~

←

→

1G⊗~ ←

→

(1G⊗Y~)⊗(YG⊗1~)

←

→dG⊗_~

As already remarked by Melliès [27], the coassociativ-
ity law is not used. Furthermore, Melliès [27] (equivalently)
replaces assumption 1 by requiring that the counit and co-
multiplication are part of a natural transformation.
Provided that V is symmetric monoidal, assumptions 2

and 3 in Theorem 5.1 can be rephrased by requiring that the
natural transformations are monoidal:

Corollary 5.2 ([27, Cor. 17],symm_monoidal_is_cartesian_

from_comonoid). Let V be a symmetric monoidal category.

The monoidal structure is cartesian if for every object G : V, a

comonoid structure (YG , XG) on G is given, such that

1. every morphism is a comonoid homomorphism;

2. YI = 1I, that is, the counit of the monoidal unit is the

identity;

3. for every G and ~ : V, the following diagram commutes:

G ⊗ ~ (G ⊗ ~) ⊗ (G ⊗ ~)

(G ⊗ G) ⊗ (~ ⊗ ~)

←

→
XG⊗~

←

→

XG⊗X~ ← →
inner_swap

G,G,~,~

where inner_swapG,~,I,F of type (G ⊗ ~) ⊗ (I ⊗ F) →

(G ⊗ I) ⊗ (~ ⊗F) is de�ned in terms of the symmetric

braiding.

Because commutative comonoids (internal to a symmet-
ric monoidal category) are equivalently comonoids in the
(symmetric) monoidal category of comonoids, we conclude:

Corollary 5.3 ([27, Cor. 18], cartesian_monoidal_cat_of_

comm_comonoids). Every (symmetric) monoidal category of

commutative comonoids, internal to a symmetric monoidal

category, is cartesian.

6 Constructing Models of Linear Logic

The �nal step that we take to construct models of linear
logic, is constructing a symmetric monoidal adjunction. For-
tunately, there is a simple way to check whether an adjunc-
tion is symmetric monoidal: it su�ces to show that the left
adjoint is a strong monoidal functor.

Proposition 6.1 ([26, Lemma 13],sym_monoidal_adjunction

_from_strong). Suppose that we have symmetric monoidal

269

https://benediktahrens.gitlab.io/unimathdoc3/9e43b0d/UniMath.CategoryTheory.Monoidal.Comonoids.Monoidal.html#disp_monoidal_comonoids
https://benediktahrens.gitlab.io/unimathdoc3/9e43b0d/UniMath.CategoryTheory.Monoidal.Comonoids.Category.html#make_commutative_comonoid
https://benediktahrens.gitlab.io/unimathdoc3/9e43b0d/UniMath.CategoryTheory.Monoidal.Comonoids.Category.html#make_commutative_comonoid
https://benediktahrens.gitlab.io/unimathdoc3/9e43b0d/UniMath.CategoryTheory.Monoidal.Comonoids.Symmetric.html#symmetric_cat_commutative_comonoids
https://benediktahrens.gitlab.io/unimathdoc3/9e43b0d/UniMath.CategoryTheory.Monoidal.Comonoids.Symmetric.html#symmetric_cat_commutative_comonoids
https://benediktahrens.gitlab.io/unimathdoc3/9e43b0d/UniMath.CategoryTheory.Monoidal.Comonoids.MonoidalCartesianBuilder.html#monoidal_is_cartesian_from_comonoid
https://benediktahrens.gitlab.io/unimathdoc3/9e43b0d/UniMath.CategoryTheory.Monoidal.Comonoids.MonoidalCartesianBuilder.html#monoidal_is_cartesian_from_comonoid
https://benediktahrens.gitlab.io/unimathdoc3/9e43b0d/UniMath.CategoryTheory.Monoidal.Comonoids.MonoidalCartesianBuilder.html#symm_monoidal_is_cartesian_from_comonoid
https://benediktahrens.gitlab.io/unimathdoc3/9e43b0d/UniMath.CategoryTheory.Monoidal.Comonoids.MonoidalCartesianBuilder.html#symm_monoidal_is_cartesian_from_comonoid
https://benediktahrens.gitlab.io/unimathdoc3/9e43b0d/UniMath.CategoryTheory.Monoidal.Comonoids.CommComonoidsCartesian.html#cartesian_monoidal_cat_of_comm_comonoids
https://benediktahrens.gitlab.io/unimathdoc3/9e43b0d/UniMath.CategoryTheory.Monoidal.Comonoids.CommComonoidsCartesian.html#cartesian_monoidal_cat_of_comm_comonoids
https://benediktahrens.gitlab.io/unimathdoc3/9e43b0d/UniMath.CategoryTheory.Monoidal.Adjunctions.html#sym_monoidal_adjunction_from_strong
https://benediktahrens.gitlab.io/unimathdoc3/9e43b0d/UniMath.CategoryTheory.Monoidal.Adjunctions.html#sym_monoidal_adjunction_from_strong

Displayed Monoidal Categories for the Semantics of Linear Logic CPP ’24, January 15–16, 2024, London, UK

categories V1 and V2 and an adjunction L [
Y

R where L :

V1 → V2 is a lax symmetric monoidal functor. If the adjunc-

tion L [
Y
R is symmetric monoidal, then L is strong monoidal.

Conversely, if L is strong monoidal, then L [
Y
R is symmetric

monoidal.

In the literature, this proposition is usually phrased as
a logical equivalence. However, we refrain from stating it
this way. The reason for that is that in the framework of
homotopy type theory, a logical equivalence is translated
as an equivalence between two propositions (i. e., two types
for which all elements are equal). However, the type that an

adjunction L [
Y
R is symmetric monoidal, is not a proposition

in general, because there could be multiple proofs that a
functor is symmetric monoidal.

6.1 Lafont Categories

We look at two methods to construct examples of linear-
non linear models. The �rst one we look at, is the notion
of Lafont category [14, De�nition 2]. In a Lafont category,
the cartesian category M is the category of commutative
comonoids in some symmetric monoidal closed category, and
the bangmodality is given by the free comonoid construction.
Note that by Corollary 5.3, the category of commutative
comonoids is always cartesian. As such, to show that this
gives rise to a linear-non linear model, it su�ces to shows
that the forgetful functor has a right adjoint.

De�nition 6.2 (lafont_category). A Lafont category con-
sists of a symmetric monoidal closed category L such that
UCcom
L

has a right adjoint.

Problem 6.3. Given a Lafont category, to construct an LNL
model.

Construction 6.4 (for Problem 6.3; linear_non_linear_

model_from_lafont_category). Suppose that we have a La-
font category L. Then we have the following linear-non
linear model

M ⊢ L

←

→

UCcom
L

←→

Note that Ccom(L) is cartesian by Corollary 5.3. In addition,
the adjunction is symmetric monoidal by Proposition 6.1,
because the functor UCcom

L
is strong. □

Examples of Lafont categories are di�cult to �nd in prac-
tice [14]. However, one example is the relational model of

linear logic.

Example 6.5 (relational_model). The symmetric monoidal
closed category Rel (Example 2.6) is a Lafont category. To
establish that, we need to construct a right adjoint of UCcom

Rel
.

The main idea behind the construction of this right adjoint,
is that commutative commonoids in Rel are the same as

commutative monoids of sets. As such, the action of the right
adjoint on some set- is given by the set of �nite multisets of
- [21]. Note that the �nite multiset construction gives a left
adjoint to the forgetful functor from commutative monoids
to sets, and this determines the action on morphisms.

6.2 Linear Categories

Another method to construct linear-non linear models, is via
linear categories. In a linear category, the categoryM is the
category of coalgebras for some comonad over a symmet-
ric monoidal closed category. Note that this directly gives
us the desired adjunction: the adjunction coming from the
Eilenberg-Moore category is symmetric monoidal, because
the left adjoint is a strong monoidal functor. However, the
Eilenberg-Moore category for a comonad is not necessar-
ily cartesian. The extra requirements of a linear category
guarantee that the Eilenberg-Moore category is cartesian.

De�nition 6.6 ([7, Def. 3], linear_category). A linear cate-

gory consists of

1. a symmetric monoidal closed category L;
2. a symmetric monoidal comonad ! on L (recall that its

comultiplication is called X!);
3. for every object G : L, morphisms eG : !G → I and

dG : !G → !G ⊗ !G .

such that the following holds for every object G .

4. the data (!G, eG , dG) forms a commutative comonoid;
5. eG and dG are natural transformations;
6. eG is a coalgebra morphism from X! (G) to unit!;
7. dG is a coalgebra morphism from X! (G) to X! (G) ⊗X! (G) ·

tens! (G, G);
8. X! (G) is a morphism of comonoids from (!G, eG , dG) to
(!!G, e!G , d!G).

Problem 6.7. Given a linear category, to construct a linear-
non linear model.

Construction 6.8 (for Problem 6.7; linear_to_lnl). We con-
struct a linear-non linear model as follows.

EM(!) ⊢ L

←

→

UEM(!)

←→

The adjunction is symmetric monoidal by Proposition 6.1,
because the left adjoint UEM(!) is a strong monoidal functor.
The main work lies in establishing that EM(!) is a cartesian
monoidal category. This follows from the extra conditions
of linear categories and Corollary 5.2. □

One example of a linear category is given by the lifting
operation on pointed posets. This example is used to model
linear features of functional programming languages [6].

270

https://benediktahrens.gitlab.io/unimathdoc3/9e43b0d/UniMath.Semantics.LinearLogic.LafontCategory.html#lafont_category
https://benediktahrens.gitlab.io/unimathdoc3/9e43b0d/UniMath.Semantics.LinearLogic.LafontCategory.html#linear_non_linear_model_from_lafont_category
https://benediktahrens.gitlab.io/unimathdoc3/9e43b0d/UniMath.Semantics.LinearLogic.LafontCategory.html#linear_non_linear_model_from_lafont_category
https://benediktahrens.gitlab.io/unimathdoc3/9e43b0d/UniMath.Semantics.LinearLogic.RelationalModel.html#relational_model
https://benediktahrens.gitlab.io/unimathdoc3/9e43b0d/UniMath.Semantics.LinearLogic.LinearCategory.html#linear_category
https://benediktahrens.gitlab.io/unimathdoc3/9e43b0d/UniMath.Semantics.LinearLogic.LinearToLinearNonLinear.html#linear_to_lnl

CPP ’24, January 15–16, 2024, London, UK Ahrens, Ma�hes, Van der Weide, and Wullaert

Example 6.9 (li�ing_linear_category). In Example 3.7, we
constructed the lifting comonad on pointed posets. This gives
rise to a linear category. One can directly use the universal
property of the smash product to construct the required
morphisms and verify the laws.

7 Related Work

In this section, we discuss related work, categorized into the
two topics formalization (in Section 7.1) and semantics of

linear logic (in Section 7.2).

7.1 Formalization of Monoidal Categories

There are numerous formalizations of monoidal categories
available. In the HoTT library, there is a formalized de�nition
of monoidal category [5, 17, 35], and that de�nition has
been formalized in 1lab [36] (dedicated to cubical methods
in homotopy type theory, based on Agda [28]) as well.

The coherence theorem is one of the corner stones in the
theory of monoidal categories. This theorem has been formal-
ized in multiple libraries, such as Isabelle [34, 39], Mathlib
(Lean) [24] and Agda [18]. However, these formalizations
only consider monoidal categories, and not symmetric mo-
noidal categories. Piceghello studied the coherence theorem
for both monoidal and symmetric monoidal categories [31],
and formalized these theorems using the HoTT library [5].

Three of the present authors [40] formalize univalent mo-
noidal categories using the UniMath library [38], and they
show that the bicategory of univalent monoidal categories
is univalent. They also construct a Rezk completion for mo-
noidal categories, which associates, to any monoidal cate-
gory, a univalent one, in a universal way. The same three of
the present authors also used monoidal categories in their
formalization of non-wellfounded syntax [25]. The present
paper makes use of the formalization of monoidal categories
in whiskered style that was done for that work.
Hu and Carette [18] build a library on category theory

in the proof assistant Agda, based on the concept of “E-
categories” [30]. This library contains de�nitions of di�erent
variants of monoidal categories. In particular, it contains the
de�nition of ∗-autonomous category, which is used for mod-
els of classical linear logic. Choudhury and Fiore [13] give
a formalization of �nite multisets in cubical Agda [37], and
they discuss applications to linear logic. However, their for-
malization includes neither monoidal categories nor general
categorical frameworks for the semantics of linear logic.

7.2 Semantics of Linear Logic

The semantics of linear logic has been an active topic of
research since its inception [16]. Several overviews of the
semantics of linear logic have been written, in particular by
De Paiva [14] and Melliès [26, 27].
In this paper, we consider three notions of models of lin-

ear logic. These are linear-non linear-models, introduced by

Benton [6], Lafont categories, introduced by Lafont [21], and
linear categories, introduced by Benton, Bierman, De Paiva,
and Hyland [8, 9]. Many examples of models are given in the
literature [11, 19] (for example). One notion of model that we
do not consider in this paper is that of a Seely category [9, 33].
Note that in many papers on linear logic, ∗-autonomous cat-
egories are considered, which model classical linear logic.

8 Summary of Formalization Choices

In this section, we brie�y summarize the choices we have
made in the formalization.
Firstly, monoidal categories are formalized in whiskered

and curried style — see also Remark 2.2. In particular, work-
ing with a curried tensor operation is much easier than work-
ing with an uncurried one taking pairs as arguments: Coq
seems to have a lot of trouble synthesizing implicit argu-
ments when a pair is expected, even when the synthesis of
the individual components is trivial.
Secondly, we use displayed technology to avoid the du-

plication of code. Indeed, displayed (monoidal) categories
express exactly the di�erence between a mathematical struc-
ture and an “extended” mathematical structure with more
data or properties.
Thirdly, we constructed the monoidal categories that are

used in Section 6 in a di�erent way compared to mathemati-
cal texts. The category of comonoids (Example 4.14) and the
Eilenberg-Moore category (Example 4.13) for a comonad are
usually constructed in one step by specifying the objects and
morphisms. However, we refrained from doing so: instead we
built these structures step by step. More concretely, we �rst
de�ned displayed categories for the relevant operations, and
then we took a full subcategory to guarantee that the neces-
sary laws are satis�ed as well. The reason for doing so is that
it allows us to reuse code: both the category of comonoids
and the Eilenberg-Moore category were constructed as a full
subcategory of the category of dialgebras (Example 4.11). As
such, we did not need to de�ne a monoidal structure speci�c
to either of these categories, but instead, we reused results
about these general constructions.
Finally, the way we phrased the de�nition of linear cat-

egories (De�nition 6.6) in our formalization is slightly dif-
ferent from mathematical texts, since we use an unfolded
de�nition of linear categories. This di�erence is rather minor,
and both would give usable de�nitions. However, we had
a slight preference for the unfolded version. We had two
reasons for doing so. First, the unfolded de�nition clearly
distinguishes data and properties. Second, it is slightly more
convenient to phrase and use. More speci�cally, every linear
category has a counit e− , which is a natural transformation
to the constant functor. If one were to use the standard de�-
nition of natural transformation, each naturality condition
would have an extra identity in it coming from the action of

271

https://benediktahrens.gitlab.io/unimathdoc3/9e43b0d/UniMath.Semantics.LinearLogic.LiftingModel.html#lifting_linear_category

Displayed Monoidal Categories for the Semantics of Linear Logic CPP ’24, January 15–16, 2024, London, UK

the constant functor. The more compact de�nition also re-
quires more careful management of the coalgebra structures,
since one needs to express that both eG and dG are coalgebra
morphisms.

9 Conclusion and Perspectives

We have presented a formalization e�ort for the categorical
semantics of linear logic that calls for a layered approach to
dealing with a variety of structures based on monoidal cate-
gories. Taking seriously this challenge for proof engineering
when it comes to formalization on a computer, we developed
the notion of a displayed monoidal category and deployed a
su�ciently rich library to put this concept to use for a care-
fully chosen fragment of linear logic. We limited ourselves
to the propositional fragment, with only multiplicative con-
junction, linear implication and the “of course” exponential,
denoted “!” (and called bang) that provides controlled forms
of weakening and contraction. This allowed us to pro�t from
the abstraction obtained through the notion of linear-non lin-
ear model [6], while already requiring a certain depth of our
stacked categorical structures. We also formalized that the
linear-non linear models encompass other important classes
of categorical models of linear logic. As compared to Melliès
[27], we deliberately left out the Seely categories and thus
did not formalize its dualizing object ⊥ that is needed for
the interpretation of classical linear logic. Again in contrast
to Melliès [27], we did not embrace the higher categorical
perspective (of 2-categories or bicategories). We could have
done that since the UniMath library already has a substantial
formalization of bicategories [2] (and also the bicategory of
monoidal categories [40]). For the present paper, we consid-
ered that a dependency on bicategories would have asked for
too many prerequisites. Our displayed monoidal categories
have all their interest already in the present setting, and
they already rely essentially on dependent types in the host
language.
The entire formalization took place within the UniMath

library that is a Coq library. This means in particular that all
constructions and proofs can be checked automatically by
a small kernel – much less than the entire Coq system that
helps in doing those constructions and proofs.

The deliberate limitations of our work can easily be trans-
lated into perspectives for future work. A natural step would
be to formalize the Seely categories. A desirable step would
be to connect our formalized categorical models with formal-
ized syntax of linear logic and thus formally verify that cut
elimination does not change the denotation in the categori-
cal models. We could be inspired by formalized meta-theory
of linear logics [12] in a di�erent theorem prover (Abella) or
try to build on the Coq library Yalla by Olivier Laurent3 for
the syntactic aspects. A larger project that could capitalize
on recent research would be the formalization of categorical

3h�ps://perso.ens-lyon.fr/olivier.laurent/yalla/, available on GitHub

semantics for least and greatest �xed points on the level of
the types / formulas of (propositional) linear logic [15, 20].

Acknowledgments

We gratefully acknowledge the work by the Coq develop-
ment team in providing the Coq proof assistant and sur-
rounding infrastructure, as well as their support in keeping
UniMath compatible with Coq. We also thank the anony-
mous referees of CPP 2024 for their helpful comments. This
research was supported by the NWO project “The Power of
Equality” OCENW.M20.380, which is �nanced by the Dutch
Research Council (NWO).

References
[1] Samson Abramsky and Guy McCusker. 1999. Game Semantics. In

Computational Logic, Ulrich Berger and Helmut Schwichtenberg (Eds.).

Springer Berlin Heidelberg, Berlin, Heidelberg, 1–55.

[2] Benedikt Ahrens, Dan Frumin, Marco Maggesi, Niccolò Veltri, and

Niels van derWeide. 2021. Bicategories in univalent foundations. Math.

Struct. Comput. Sci. 31, 10 (2021), 1232–1269. h�ps://doi.org/10.1017/

S0960129522000032

[3] Benedikt Ahrens and Peter LeFanu Lumsdaine. 2019. Displayed Cat-

egories. Log. Methods Comput. Sci. 15, 1 (2019). h�ps://doi.org/10.

23638/LMCS-15(1:20)2019

[4] Steve Awodey, Jonas Frey, and Sam Speight. 2018. Impredicative

Encodings of (Higher) Inductive Types. In Proceedings of the 33rd

Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2018,

Oxford, UK, July 09-12, 2018, Anuj Dawar and Erich Grädel (Eds.). ACM,

76–85. h�ps://doi.org/10.1145/3209108.3209130

[5] Andrej Bauer, Jason Gross, Peter LeFanu Lumsdaine, Michael Shulman,

Matthieu Sozeau, and Bas Spitters. 2017. The HoTT library: a formal-

ization of homotopy type theory in Coq. In Proceedings of the 6th ACM

SIGPLAN Conference on Certi�ed Programs and Proofs, CPP 2017, Paris,

France, January 16-17, 2017, Yves Bertot and Viktor Vafeiadis (Eds.).

ACM, 164–172. h�ps://doi.org/10.1145/3018610.3018615

[6] P. N. Benton. 1994. A Mixed Linear and Non-Linear Logic: Proofs,

Terms and Models (Extended Abstract). In Computer Science Logic,

8th International Workshop, CSL ’94, Kazimierz, Poland, September 25-

30, 1994, Selected Papers (Lecture Notes in Computer Science, Vol. 933),

Leszek Pacholski and Jerzy Tiuryn (Eds.). Springer, 121–135. h�ps:

//doi.org/10.1007/BFb0022251

[7] P. N. Benton, Gavin M. Bierman, Valeria de Paiva, and Martin Hy-

land. 1992. Linear Lambda-Calculus and Categorial Models Revisited.

In Computer Science Logic, 6th Workshop, CSL ’92, San Miniato, Italy,

September 28 - October 2, 1992, Selected Papers (Lecture Notes in Com-

puter Science, Vol. 702), Egon Börger, Gerhard Jäger, Hans Kleine Bün-

ing, Simone Martini, and Michael M. Richter (Eds.). Springer, 61–84.

h�ps://doi.org/10.1007/3-540-56992-8_6

[8] P. N. Benton, Gavin M. Bierman, Valeria de Paiva, and Martin Hyland.

1993. A Term Calculus for Intuitionistic Linear Logic. In Typed Lambda

Calculi and Applications, International Conference on Typed Lambda

Calculi and Applications, TLCA ’93, Utrecht, The Netherlands, March

16-18, 1993, Proceedings (Lecture Notes in Computer Science, Vol. 664),

Marc Bezem and Jan Friso Groote (Eds.). Springer, 75–90. h�ps:

//doi.org/10.1007/BFb0037099

[9] Gavin M. Bierman. 1995. What is a Categorical Model of Intuitionistic

Linear Logic?. In Typed Lambda Calculi and Applications, Second Inter-

national Conference on Typed Lambda Calculi and Applications, TLCA

’95, Edinburgh, UK, April 10-12, 1995, Proceedings (Lecture Notes in Com-

puter Science, Vol. 902), Mariangiola Dezani-Ciancaglini and Gordon D.

Plotkin (Eds.). Springer, 78–93. h�ps://doi.org/10.1007/BFb0014046

272

https://perso.ens-lyon.fr/olivier.laurent/yalla/
https://github.com/olaure01/yalla
https://doi.org/10.1017/S0960129522000032
https://doi.org/10.1017/S0960129522000032
https://doi.org/10.23638/LMCS-15(1:20)2019
https://doi.org/10.23638/LMCS-15(1:20)2019
https://doi.org/10.1145/3209108.3209130
https://doi.org/10.1145/3018610.3018615
https://doi.org/10.1007/BFb0022251
https://doi.org/10.1007/BFb0022251
https://doi.org/10.1007/3-540-56992-8_6
https://doi.org/10.1007/BFb0037099
https://doi.org/10.1007/BFb0037099
https://doi.org/10.1007/BFb0014046

CPP ’24, January 15–16, 2024, London, UK Ahrens, Ma�hes, Van der Weide, and Wullaert

[10] Ana C. Calderon and Guy McCusker. 2010. Understanding Game

Semantics Through Coherence Spaces. In Proceedings of the 26th Con-

ference on the Mathematical Foundations of Programming Semantics,

MFPS 2010, Ottawa, Ontario, Canada, May 6-10, 2010 (Electronic Notes

in Theoretical Computer Science, Vol. 265), Michael W. Mislove and

Peter Selinger (Eds.). Elsevier, 231–244. h�ps://doi.org/10.1016/j.entcs.

2010.08.014

[11] Alberto Carraro, Thomas Ehrhard, and Antonino Salibra. 2010. Expo-

nentials with In�nite Multiplicities. In Computer Science Logic, 24th

International Workshop, CSL 2010, 19th Annual Conference of the EACSL,

Brno, Czech Republic, August 23-27, 2010. Proceedings (Lecture Notes

in Computer Science, Vol. 6247), Anuj Dawar and Helmut Veith (Eds.).

Springer, 170–184. h�ps://doi.org/10.1007/978-3-642-15205-4_16

[12] Kaustuv Chaudhuri, Leonardo Lima, and Giselle Reis. 2019. Formalized

meta-theory of sequent calculi for linear logics. Theor. Comput. Sci.

781 (2019), 24–38. h�ps://doi.org/10.1016/j.tcs.2019.02.023

[13] Vikraman Choudhury and Marcelo Fiore. 2023. Free Commutative

Monoids in Homotopy Type Theory. Electronic Notes in Theoretical

Informatics and Computer Science 1 (2023). h�ps://doi.org/10.46298/

entics.10492

[14] Valeria de Paiva. 2014. Categorical Semantics of Linear Logic for All.

Springer Netherlands, Dordrecht, 181–192. h�ps://doi.org/10.1007/

978-94-007-7548-0_9

[15] Thomas Ehrhard and Farzad Jafarrahmani. 2021. Categorical models of

Linear Logic with �xed points of formulas. In 36th Annual ACM/IEEE

Symposium on Logic in Computer Science, LICS 2021, Rome, Italy, June

29 - July 2, 2021. IEEE, 1–13. h�ps://doi.org/10.1109/LICS52264.2021.

9470664

[16] Jean-Yves Girard. 1987. Linear Logic. Theor. Comput. Sci. 50 (1987),

1–102. h�ps://doi.org/10.1016/0304-3975(87)90045-4

[17] Jason Gross, Adam Chlipala, and David I. Spivak. 2014. Experience

Implementing a Performant Category-Theory Library in Coq. In In-

teractive Theorem Proving - 5th International Conference, ITP 2014,

Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Aus-

tria, July 14-17, 2014. Proceedings (Lecture Notes in Computer Science,

Vol. 8558), Gerwin Klein and Ruben Gamboa (Eds.). Springer, 275–291.

h�ps://doi.org/10.1007/978-3-319-08970-6_18

[18] Jason Z. S. Hu and Jacques Carette. 2021. Formalizing category theory

in Agda. In CPP ’21: 10th ACM SIGPLAN International Conference on

Certi�ed Programs and Proofs, Virtual Event, Denmark, January 17-

19, 2021, Catalin Hritcu and Andrei Popescu (Eds.). ACM, 327–342.

h�ps://doi.org/10.1145/3437992.3439922

[19] Martin Hyland and Andrea Schalk. 2003. Glueing and orthogonality

for models of linear logic. Theor. Comput. Sci. 294, 1/2 (2003), 183–231.

h�ps://doi.org/10.1016/S0304-3975(01)00241-9

[20] Farzad Jafarrahmani. 2023. Fixpoints of Types in Linear Logic from a

Curry-Howard-Lambek Perspective. PhD thesis. Université Paris Cité,

France. h�ps://hal.science/tel-04295098v1

[21] Yves Lafont. 1988. The Linear Abstract Machine. Theor. Comput. Sci.

59 (1988), 157–180. h�ps://doi.org/10.1016/0304-3975(88)90100-4

[22] Ugo Dal Lago and Martin Hofmann. 2011. Realizability models and

implicit complexity. Theor. Comput. Sci. 412, 20 (2011), 2029–2047.

h�ps://doi.org/10.1016/J.TCS.2010.12.025

[23] Saunders Mac Lane. 1998. Categories for the Working Mathematician

(second ed.). Graduate Texts in Mathematics, Vol. 5. Springer-Verlag,

New York. xii+314 pages.

[24] The mathlib Community. 2020. The Lean mathematical library. In

Proceedings of the 9th ACM SIGPLAN International Conference on Cer-

ti�ed Programs and Proofs, CPP 2020, New Orleans, LA, USA, January

20-21, 2020, Jasmin Blanchette and Catalin Hritcu (Eds.). ACM, 367–381.

h�ps://doi.org/10.1145/3372885.3373824

[25] Ralph Matthes, Kobe Wullaert, and Benedikt Ahrens. 2023. Substi-

tution for Non-Wellfounded Syntax with Binders through Monoidal

Categories. CoRR abs/2308.05485 (2023). h�ps://doi.org/10.48550/
ARXIV.2308.05485

[26] Paul-André Melliès. 2003. Categorical models of linear logic revis-

ited. (Oct. 2003). h�ps://hal.science/hal-00154229 working paper or

preprint.

[27] Paul-André Melliès. 2009. Categorical Semantics of Linear Logic.

Panorama & Synthèses, Vol. 27. Société Mathématique de France.

h�ps://www.irif.fr/~mellies/papers/panorama-submi�ed.pdf

[28] Ulf Norell. 2008. Dependently Typed Programming in Agda. In Ad-

vanced Functional Programming, 6th International School, AFP 2008,

Heijen, The Netherlands, May 2008, Revised Lectures (Lecture Notes

in Computer Science, Vol. 5832), Pieter W. M. Koopman, Rinus Plas-

meijer, and S. Doaitse Swierstra (Eds.). Springer, 230–266. h�ps:

//doi.org/10.1007/978-3-642-04652-0_5

[29] Peter W. O’Hearn. 2003. On bunched typing. J. Funct. Program. 13, 4

(2003), 747–796. h�ps://doi.org/10.1017/S0956796802004495

[30] Erik Palmgren. 2017. On Equality of Objects in Categories in Construc-

tive Type Theory. In 23rd International Conference on Types for Proofs

and Programs, TYPES 2017, May 29-June 1, 2017, Budapest, Hungary

(LIPIcs, Vol. 104), Andreas Abel, Fredrik Nordvall Forsberg, and Am-

brus Kaposi (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik,

7:1–7:7. h�ps://doi.org/10.4230/LIPIcs.TYPES.2017.7

[31] Stefano Piceghello. 2021. Coherence for Monoidal and Symmetric Mo-

noidal Groupoids in Homotopy Type Theory. The University of Bergen.

h�ps://bora.uib.no/bora-xmlui/handle/11250/2830640

[32] Gordon D. Plotkin. 1993. Type Theory and Recursion (Extended Ab-

stract). In Proceedings of the Eighth Annual Symposium on Logic in

Computer Science (LICS ’93), Montreal, Canada, June 19-23, 1993. IEEE

Computer Society, 374. h�ps://doi.org/10.1109/LICS.1993.287571

[33] R. A. G. Seely. 1989. Linear logic, ∗-autonomous categories and cofree

coalgebras. In Categories in computer science and logic (Boulder, CO,

1987). Contemp. Math., Vol. 92. Amer. Math. Soc., Providence, RI, 371–

382. h�ps://doi.org/10.1090/conm/092/1003210

[34] Eugene W. Stark. 2017. Monoidal Categories. Arch. Formal Proofs 2017

(2017). h�ps://www.isa-afp.org/entries/MonoidalCategory.shtml

[35] The Coq Development Team. 2022. The Coq Proof Assistant. h�ps:

//doi.org/10.5281/zenodo.7313584

[36] The 1Lab Development Team. [n. d.]. The 1Lab. h�ps://1lab.dev

[37] Andrea Vezzosi, Anders Mörtberg, and Andreas Abel. 2019. Cubical

agda: a dependently typed programming language with univalence

and higher inductive types. Proc. ACM Program. Lang. 3, ICFP (2019),

87:1–87:29. h�ps://doi.org/10.1145/3341691

[38] Vladimir Voevodsky, Benedikt Ahrens, Daniel Grayson, et al. [n. d.].

UniMath — a computer-checked library of univalent mathematics.

Available at h�p://unimath.org. h�ps://doi.org/10.5281/zenodo.

7848572

[39] Makarius Wenzel, Lawrence C. Paulson, and Tobias Nipkow. 2008.

The Isabelle Framework. In Theorem Proving in Higher Order Logics,

21st International Conference, TPHOLs 2008, Montreal, Canada, August

18-21, 2008. Proceedings (Lecture Notes in Computer Science, Vol. 5170),

Otmane Aït Mohamed, César A. Muñoz, and So�ène Tahar (Eds.).

Springer, 33–38. h�ps://doi.org/10.1007/978-3-540-71067-7_7

[40] Kobe Wullaert, Ralph Matthes, and Benedikt Ahrens. 2022. Univalent

Monoidal Categories. In 28th International Conference on Types for

Proofs and Programs, TYPES 2022, June 20-25, 2022, LS2N, University of

Nantes, France (LIPIcs, Vol. 269), Delia Kesner and Pierre-Marie Pédrot

(Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 15:1–15:21.

h�ps://doi.org/10.4230/LIPIcs.TYPES.2022.15

Received 2023-09-19; accepted 2023-11-25

273

https://doi.org/10.1016/j.entcs.2010.08.014
https://doi.org/10.1016/j.entcs.2010.08.014
https://doi.org/10.1007/978-3-642-15205-4_16
https://doi.org/10.1016/j.tcs.2019.02.023
https://doi.org/10.46298/entics.10492
https://doi.org/10.46298/entics.10492
https://doi.org/10.1007/978-94-007-7548-0_9
https://doi.org/10.1007/978-94-007-7548-0_9
https://doi.org/10.1109/LICS52264.2021.9470664
https://doi.org/10.1109/LICS52264.2021.9470664
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1007/978-3-319-08970-6_18
https://doi.org/10.1145/3437992.3439922
https://doi.org/10.1016/S0304-3975(01)00241-9
https://hal.science/tel-04295098v1
https://doi.org/10.1016/0304-3975(88)90100-4
https://doi.org/10.1016/J.TCS.2010.12.025
https://doi.org/10.1145/3372885.3373824
https://doi.org/10.48550/ARXIV.2308.05485
https://doi.org/10.48550/ARXIV.2308.05485
https://hal.science/hal-00154229
https://www.irif.fr/~mellies/papers/panorama-submitted.pdf
https://doi.org/10.1007/978-3-642-04652-0_5
https://doi.org/10.1007/978-3-642-04652-0_5
https://doi.org/10.1017/S0956796802004495
https://doi.org/10.4230/LIPIcs.TYPES.2017.7
https://bora.uib.no/bora-xmlui/handle/11250/2830640
https://doi.org/10.1109/LICS.1993.287571
https://doi.org/10.1090/conm/092/1003210
https://www.isa-afp.org/entries/MonoidalCategory.shtml
https://doi.org/10.5281/zenodo.7313584
https://doi.org/10.5281/zenodo.7313584
https://1lab.dev
https://doi.org/10.1145/3341691
http://unimath.org
https://doi.org/10.5281/zenodo.7848572
https://doi.org/10.5281/zenodo.7848572
https://doi.org/10.1007/978-3-540-71067-7_7
https://doi.org/10.4230/LIPIcs.TYPES.2022.15

	Abstract
	1 Introduction
	1.1 Formalization

	2 Monoidal Categories
	3 Models of Linear Logic
	4 Displayed Monoidal Categories
	4.1 The Theory
	4.2 The Examples

	5 Characterizing Cartesian Monoidal Categories
	6 Constructing Models of Linear Logic
	6.1 Lafont Categories
	6.2 Linear Categories

	7 Related Work
	7.1 Formalization of Monoidal Categories
	7.2 Semantics of Linear Logic

	8 Summary of Formalization Choices
	9 Conclusion and Perspectives
	Acknowledgments
	References

