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Abstract
We consider an n-player non-cooperative game where the payoff function of each 
player follows a multivariate distribution. This formulation is adopted to model a 
zonal electricity market in which generators operate by running conventional and 
renewable-based plants. The players in the market compete as in a Cournot model. 
We formulate this problem as a chance-constrained game by defining the payoff 
function of each player using a chance constraint. A full empirical analysis has been 
conducted on the Italian electricity market to test the impact of renewable genera-
tors in the light of decarbonization of the market and the impact of the volatility 
of the cost of conventional plants, mainly related to the volatility of gas prices. We 
finally test the robustness of the chance constraint formulation with an out of sample 
analysis.
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1 Introduction

1.1  Background

Since the beginning of the nineties, wholesale electricity markets have been intro-
duced to increase competitiveness among electricity companies and to enable power 
systems to reach higher efficiency levels and to reduce the cost of electricity for 
consumers (Conejo and Sioshansi 2016). In the last years, the deregulation of the 
European electricity markets has been accompanied by the introduction of a set of 
environmental policies aiming at reducing carbon emissions (see, e.g., Commis-
sion (2012b), Commission (2019), Commission (2022a)). This led to a progressive 
integration of renewable energy sources (RES) in the European power systems that 
have to be decarbonized by 2050 [see Commission (2012a), Commission (2019)]. 
The introduction of renewable-based power production has modified the way Euro-
pean power systems are operated and planned, and have also impacted on the plant 
merit order in the day-ahead electricity markets [see Morales et al. (2014), Pérez-
Arriaga and Battle (2012)]. Among the conventional units, natural gas-fired power 
plants have also been considered as a strategic technology to reach the decarboniza-
tion targets in the European power systems (see Commission (2012a)). However, the 
energy crisis that Europe is currently facing [see Commission (2022b)] has made 
gas wholesale prices highly volatile, reaching levels never seen before on most of 
the European gas hubs (Commission 2022). As a consequence, electricity compa-
nies with gas-fired power plants have lost competitiveness and profitability.1

1.2  Literature review

The competitive behavior of the economic agents operating in the electricity market 
can be represented through a game setting. In particular, Cournot was the pioneer 
to study and widespread the use of the equilibrium under market conditions in 1838 
(Cournot 1897).

In the fifties, Nash showed that there exists an equilibrium point for a finite stra-
tegic games, commonly called Nash equilibrium (Nash 1951). Strategic games are 
widely studied in the literature, despite their practical limitations (Başar and Ols-
der 1999; Debreu 1952; Fan 1966). The original Nash equilibrium theory was con-
ceived for deterministic games, which makes it limited to handle real applications 
with random payoffs and strategy sets. Nash games can be reformulated, under 
suitable assumptions, by collecting the Karush-Kuhn-Tucker conditions of all play-
ers and then transforming the problem into a complementarity problem. Clearly, if 
one is modeling the economic behavior of electricity producers, the assumption of 
deterministic input parameters is unrealistic. Then, to tackle stochasticity in costs, 
demand, or production quantities, different methodological approaches can be used. 
A stream of literature endogenizes the uncertainty by introducing a set of scenarios 
and each player of the game has to take decisions before the state of the world is 

1 See https:// www. brueg el. org/ datas et/ natio nal- energy- policy- respo nses- energy- crisis.

https://www.bruegel.org/dataset/national-energy-policy-responses-energy-crisis
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realized. In this framework, the equilibrium solution is taken as an average of the 
solutions of each scenario (see for all Birge and Louveaux (1997)). Other authors 
adopt the perspective of solving stochastic complementarity problems. For instance, 
De Wolf and Smeers (1997) study a stochastic Stackelberg game for the European 
gas market, Gabriel et  al. (2009) develop scenario-reduction methods for stochas-
tic complementarity problems; Genc et  al. (2007) consider dynamic oligopolistic 
games under uncertainty. For all these classes of problems, numerical solution of 
such games is not as common as their deterministic counterparts. Firstly, the accu-
racy of the model increases when the number of considered scenarios increases. 
As a consequence, the size of the problem often renders the model intractable or 
NP-hard to be solved with standard solvers. For these reasons, special algorithms 
for the efficient computation of solutions to stochastic optimization problems have 
been studied (see, for instance, Gabriel and Fuller (2010)). When also including 
random payoffs functions, the expectation function is the most widely used tool in 
the literature (Ravat and Shanbhag 2011) for risk neutral cases. Conversely, the risk 
averse games are generally studied with the risk measure CVaR (Kannan et al. 2013; 
Ravat and Shanbhag 2011) and chance-constrainted programming (Singh et  al. 
2016; Singh and Lisser 2018). Singh et al. (2016) studied a finite strategic games 
where the payoff vector follows an elliptical distribution, and showed the existence 
of a Nash equilibrium. In Singh and Lisser (2018), the authors showed the equiva-
lence between a Nash equilibrium of chance-constrained game (CCG for short) and 
the global optimal solution of a given mathematical program. In the game cited so 
far, the payoff functions of the players are random but their strategy sets are deter-
ministic. However, strategy sets that contains chance constraints are considered in 
many real applications, mainly in electric markets where the resource constraints 
are stochastic. In Peng et al. (2021, 2018, 2021), the authors studied the games with 
chance-constrained strategy sets. Peng et  al. Peng et  al. (2018) showed the exist-
ence of Nash equilibrium for the n-player general-sum games where the strategy 
profile set of each player is defined by a joint chance constraint, and the independent 
random constraint vectors follow either a normal distribution or a mixture of ellip-
tical distributions (Peng et al. 2021). Nguyen et al. (2022) extended the results of 
Peng et al. (2018, 2021) to the general case where the payoff function is random and 
the strategy profile set of each player is defined by elliptically distributed depend-
ent joint chance constraints. In the specific case where the probability distributions 
are not known in advance and belong to a given distributional uncertainty set, Peng 
et al. (2021) formulated the random constraints of each player as a distributionally 
robust joint chance constraint. They considered several uncertainty sets for each they 
showed that there exists a Nash equilibrium of a distributionally robust chance con-
strained game.

1.3  Paper contributions

Considering the current challenges that electricity markets are facing, in this paper, 
we model a zonal electricity market where power generating companies form an 
oligopoly and act as Nash-Cournot competitors who non-cooperatively maximize 
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their own profits. The payoff function of each company is assumed to be stochastic, 
mainly related to the volatility of the generation cost for conventional units. Renew-
able (RES)-based power plants are also included in the formulation of the model, 
introducing a new source of uncertainty. In addition, the Power Exchange (PX) 
clears the day-ahead electricity market by maximizing the consumer’s willingness to 
pay considering the energy balance and the network transmission constraints. While 
the strategic behavior of conventional and renewable producers has been intensively 
studied, this paper proposes an alternative stochastic market design for the electric-
ity sector that uses chance constraints to accurately model both the uncertainty of 
cost parameters and uncertainty of renewable resources, starting from the theoretical 
results obtained by Singh et al. (2016) and Singh and Lisser (2018).

The proposed CCG models are tested on the Italian day-ahead electricity mar-
ket. The considered network accounts for twelve zones that are connected with lines 
characterized by limited transfer capacity. The twelve zones represent the geographi-
cal zones in which Italy is subdivided, plus the foreign countries that are intercon-
nected with the Italian zones.

To specify the contribution of this paper, we tried to answer four main research 
questions. The first one is related to the methodological approach and the rest to the 
empirical application.

Research question RQ1 Which additional insights does CCG provide vis-a-vis 
stochastic complementarity model and how robust are its solution?

Research question RQ2 What will be the impact of stochastic gas cost on electric-
ity prices, production quantities and profits under different levels of risk aversion?

Research question RQ3 How will different profiles of risk aversion between Ital-
ian producers and foreign producers affect strategic production choices?

Research question RQ4 How will the combination of two different sources 
of uncertainty (gas cost and RES production) modify the production mix and the 
agents’ benefits?

In addressing RQ1, from the methodological point of view, CCG models have 
been widely used to treat stochastic parameters in the feasible region. The chance-
constrained payoff in CCG represents the maximal threshold such that the random 
return/payoff is not less than the threshold with a large probability, say, 95% or 90%. 
Value-at-Risk (VaR) can be viewed as a special case of the chance-constrained pay-
off when measuring the risk of an investment loss, which can efficiently capture the 
tail property of the random return/payoff. Thus, in this paper, we study CCG models 
where we assume that each player holds a chance-constrained payoff. To the best 
of our knowledge, this paper provides a first attempt to use CCG in the context of 
energy markets for dealing with a random payoff function. Since in electricity mar-
kets one of the sources of uncertainty is related to the cost of fuels used in con-
ventional plants, we used this new formulation of Nash game with random payoff 
to account for cost randomness. We reformulate the chance constraints using sta-
tistical moments of uncertain quantities, which are readily available from historical 
observations. This avoids the use of scenarios, which are often difficult to obtain and 
increase the complexity of the problem and the computational time for solving it. 
The robustness of the stochastic model developed is, then, tested with an out of sam-
ple analysis. The two tests conducted prove that as far as the risk aversion increases, 



1 3

Complementarity formulation of games with random payoffs  Page 5 of 32 35

the proposed models are able to reduce the error in predicting the total costs and in 
maintaining the feasibility of the optimal solution.

As for RQ2, we assume that all generators in all zones have the same risk attitude. 
We have found that when risk aversion increases, Italian large producers reduce 
electricity production from gas plants, since the expected gas cost increases. This 
behavior impacts on congestion in transmission lines, especially between the South 
of Italy and Sicily and in the Northern Italian zone that imports from France, Swit-
zerland and Slovenia. Both welfare and generators’ profits increase as soon as risk 
aversion decreases. This is directly connected to the increase in the corresponding 
prices.

In answering RQ3, we perform two different analyses. The first analysis attrib-
utes to the Italian generators the same risk aversion level, but different from the one 
of the foreign countries. In this case, the different risk aversion levels modify the 
choices on electricity production from gas-fired plants, but the behavior is similar 
within the Italian producers. More interesting are the results of the second sensitiv-
ity analysis, where the Italian generating companies have different risk aversion lev-
els. In this case, we find that the market size of the company influences its attitude to 
be more risk neutral and consequently its power output.

In assessing RQ4, we consider different confidence levels for measuring the sto-
chasticity of both the production cost of gas-based power plants and the electricity 
production of RES-based units. The results show that the inclusion of an additional 
source of uncertainty leads to a decrease of a total power output. Moreover, to illus-
trate how a stochastic RES generation affects PX’s benefit and welfare, we perform a 
sensitivity analysis on the availability of gas-based capacity. This analysis highlights 
that the PX’s benefit proportionally increases with a larger availability of gas gener-
ation. In contrast, generating companies’ profits have an opposite trend. The impacts 
on welfare depend on the risk aversion level assumed by market players.

The rest of the paper is organized as follows. Section 2 presents the generic CCG 
model with n-players and its application to a multi-zonal electricity market. A case 
study referred to the Italian electricity market is described in Sect. 3. The results of 
our analysis are given in Sect. 4, Sect. 5 is devoted to test the robustness of the CCG 
model and the conclusions are reported in Sect. 6.

2  The CCG model

In this section, we introduce an n-player non-cooperative game where the payoff 
function of each player follows a multivariate distribution. This class of games is 
used for modeling the Nash-Cournot behavior of a set of power generating compa-
nies that compete in the electricity market.

These companies try to maximize their own profit, when producing and then sell-
ing power in the day-ahead electricity market cleared by the Power Exchange (PX). 
The Nash assumption implies that each agent, when making its own decision, con-
siders the decisions of all other agents as given.
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In defining their best strategies, we assume that power companies face two sources 
of uncertainty: (1) the production costs of conventional plants, mainly referred to natu-
ral gas price for gas-fired power plants; and (2) the volumes of electricity that can be 
produced with renewable power plants. Taking as reference the design of the European 
day-ahead electricity market, we consider a zonal configuration of the power system, 
where zones are interconnected by transmission lines with limited transfer capac-
ity. Notice that, the analysis of the re-dispatching issues are out of the scope of the 
paper (for more details on this topic, see. e.g., Oggioni and Smeers (2012), Oggioni and 
Smeers (2013), and Van den Bergh et al. (2016)). We assume that in each zone of the 
market there are both power demand and production. These are variables of the prob-
lem and are endogenously determined. Electricity prices are defined using an inverse 
demand function.

In Sect. 2.1, we first introduce the general formulation for this class of games, and 
we recall the definition of Nash equilibrium for a chance-constrained game. Then, in 
Sect. 2.2 we present the main model with uncertainty in the production costs (random 
payoff) and an equivalent formulation as a quadratic programming (QP) model is stated 
in Sect. 2.3. Finally, in Sect. 2.4 the model introduced in Sect. 2.2 is extended to the 
case of uncertainty on electricity production from wind and solar power plants.

2.1  The generic model

We consider an n-player strategic game where I = {1, 2,⋯ , n} is the set of all players. 
Each player i has a finite action set Ai with its generic element ai . An action profile of 
the game is denoted by a vector a = (a1, a2,⋯ , an) . The set of all action profiles of the 
game is denoted by A=  ×n

i=1
Ai . Let A−i=  ×n

j=1;j≠i
Ai together with its generic element 

a−i which is a vector of actions aj , j ≠ i . Notice that the action set Ai is the set of the 
pure strategies of player i whilst a mixed strategy set is defined by a probability distri-
bution over the action set. Assume a set Xi of mixed strategies of player i; �i ∈ Xi is a 
mixed strategy represented by �i = (�i(ai))ai∈Ai

 , where �i(ai) ≥ 0 is a probability with 
which player i chooses action ai and 

∑
ai∈Ai

�i(ai) = 1 . The set of all mixed strategies 
profiles of the game is denoted by X=  ×n

i=1
Xi , and � = (�i)i∈I its element. Let X−i = 

×n
j=1;j≠i

Xi and a �−i ∈ X−i a vector of mixed strategies of all players except player i. Let 
(�i, �−i) be a strategy profile where player i and each player j, j ≠ i use strategies �i and 
�j , respectively. Let ri ∶ A → ℝ be a payoff function of player i when action ai is cho-
sen. For a given strategy profile � ∈ X the payoff of player i, i ∈ I , is defined by

For these games Nash showed that there always exists a Nash equilibrium in mixed 
strategies (Nash 1951). In this paper, we consider the situation where the payoff 
vector (ri(a))a∈A of player i, i ∈ I , follows a multivariate distribution. For a given 
strategy profile � ∈ X , the payoff ri(�) of player i, i ∈ I (1) is an univariate random 
variable. These games are generally handled by the mean of the expected value of 
the random variables ri(�) , i ∈ I , � ∈ X which results in an equivalent deterministic 

(1)ri(�) =
∑
a∈A

n∏
j=1

�j(aj)ri(a).
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game. Alternatively, the satisfying payoff criterion is widely used in the literature 
(Blau 1974; Cassidy et al. 1972; Charnes et al. 1968; Song 1992). In the following, 
we assume that at strategy profile � ∈ X , each player seeks for the highest level of 
his payoff that can be achieved with at least a pre-specified level of confidence. The 
latter is known to the other players. These games are called non-cooperative chance-
constrained games due to the use of a chance constraint. Let �i be the confidence 
level of player i and � = (�i)i∈I . For a given strategy profile � ∈ X and a confidence 
level vector � , the payoff of player i, i ∈ I , is defined by

The set of best response strategies of player i, i ∈ I , against a given strategy profile 
�−i of other players is

The following is the definition of Nash equilibrium for chance-constrained games.

Definition 1 Singh et al. (2016) A strategy profile �∗ ∈ X is said to be a Nash equi-
librium for a given � , if for all i ∈ I the following inequality holds,

That is, �∗ is a Nash equilibrium if and only if �∗
i
∈ BRi(�

∗
−i
) for all i ∈ I.

2.2  A CCG model for a zonal electricity market

We consider a zonal electricity market in which generating companies operate and 
compete in quantity, as in a Nash-Cournot model. Electricity can be produced using 
both conventional and intermittent renewable (wind and solar PV) power plants. 
Each generator maximizes its profits taking into account the decision taken by his 
competitors. In this first model, we just account for uncertainty in the operating 
costs of gas-fired stations. Then, we compare this formulation with the one includ-
ing also uncertainty in renewable power production. To complete the analysis, we 
also propose a model that describes the clearing of the day-ahead electricity market, 
in which the power companies participate. This market is operated by the PX, which 
maximizes consumers’ willingness to pay, taking into account the transfer limits of 
the interconnections linking the different zones in which the power market is sub-
divided. The inclusion of transmission constraints when assuming Cournot com-
petition in electricity market has been always challenging (see, e.g., Hobbs (2001), 
Metzler et al. (2003), Wei and Smeers (1999), Willems (2002)). In our model, we 
assume that generators can exercise market power in energy market where they 
operate but cannot consciously manipulate transmission charges (see also Farzad 
et  al. (2023) and Tanaka (2009)). We are aware that this could be a limit of our 
analysis but our main focus is on the CCG model formulation. Therefore, the model 
proposed in the following could be considered as a “pseudo-Nash-Cournot".

(2)u
�i
i
(�) = sup{u|P(ri(�) ≥ u) ≥ �i}.

(3)BRi(𝜏−i) = {𝜏i ∈ Xi|u𝛼ii (𝜏i, 𝜏−i) ≥ u
𝛼i
i
(𝜏i, 𝜏−i), ∀ 𝜏i ∈ Xi}.

u
�i
i
(�∗

i
, �∗

−i
) ≥ u

�i
i
(�i, �

∗
−i
), ∀ �i ∈ Xi.
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In Sect. 2.2.1, we first list the notation used in this model. In Sect. 2.2.2, we pre-
sent the operation of generating companies in the zonal electricity market, assum-
ing that the operating costs of the conventional units are stochastic. Section 2.2.3 
describes the model of the PX that clears the day-ahead electricity markets. Finally, 
Sect. 2.2.4 describes the solution method.

2.2.1  Notation

We introduce here all symbols of the model. They are ranked on the basis of their 
means and use.

Sets

• N: Set of zones, n = 1,… , |N|;
• I: Set of generating companies i = 1,… , |I|;
• Nc

i
 : Set of zones where company i ∈ I has conventional power units;

• Nr
i
 : Set of zones where company i ∈ I has renewable-based power plants;

• Ic
n : Set of companies which have conventional power units in zone n ∈ N;

• Ir
n : Set of companies which have renewable-based power plants in zone n ∈ N.

Parameters

• an : Intercept of consumers’ affine demand functions at zone n ∈ N (€/MWh);
• bn : Slope of consumers’ affine demand functions at zone n ∈ N (€/MWh2);
• Flown,m : Flow transfer limit from zone n ∈ N to zone m ∈ N (MW).
• Cc

i,n : Total available capacity of conventional power units owned by generator 
i ∈ I in zone n ∈ N (MW);

• Cr
i,n : Total available capacity of renewable-based power plants owned by genera-

tor i ∈ I in zone n ∈ N (MW).

Deterministic variables

• xc
i,n : Electricity produced by generator i ∈ I in zone n ∈ N using conventional 

power units (MWh);
• xr

i,n : Electricity produced by generator i ∈ I in zone n ∈ N using renewable-based 
power plants (MWh);

• dn : Electricity consumption in zone n ∈ N (MWh);
• flown,m : Power transferred from zone n ∈ N to zone m ∈ N (MW);
• Pn(dn) : Willingness to pay in zone n ∈ N (€). This term can be explicitly defined 

as follows: Pn(dn) = an − bn ⋅ dn.
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Notice that we define as xc
i
= (xc

i,n
)n∈Nc

i
∈ ℝ

|Nc
i
| and xr

i
= (xr

i,n
)n∈Nr

i
∈ ℝ

|Nr
i
| the vector 

of the amount of electricity generated by company i ∈ I using conventional and 
renewable power plants, respectively.

We denote as xi = (xc
i
, xr

i
) ∈ ℝ

|Nc
i
|+|Nr

i
| the vector of the total amount of electricity 

generated by company i ∈ I . Moreover, we define as x̃c
n
= (xc

i,n
)i∈Ic

n
∈ ℝ

|Ic
n
| and 

x̃r
n
= (xr

i,n
)i∈Ir

n
∈ ℝ

|Ir
n
| the vectors of the total amount of electricity produced in zone 

n ∈ N using conventional and renewable power plants, respectively. We denote as 
x̃n = (x̃c

n
, x̃r

n
) ∈ ℝ

|Ic
n
|+|Ir

n
| the vector of the total amount of power generated in zone 

n ∈ N.

2.2.2  Generating company i’s CCG model: stochastic production costs 
of conventional power units

Let us consider the following random variables:

Random variables

• cc
i,n
(�) : random cost variable, where cc

i,n
∶ Ω → ℜ and (Ω,F,P) is a probability 

space.

Considering our assumption on competition among generating companies, we define 
the zonal electricity prices pn as follows:

 The electricity price pn(x̃n) is a function of quantities produced in the zone n and 
the net flow between zones represented by the difference (flowm,n − flown,m) . We 
denote with Ri(x) the generating company i’s revenues. These are defined as follows:

Then, for � ∈ Ω the realization of the profit ri(x,�) of generating company i ∈ I is 
given by:

where x = (x1, x2, ..., x�I�) ∈ ℝ

∑
i∈I �Nc

i
�+�Nr

i
� corresponds to the total amount of electric-

ity produced by the generating company i and cc
i,n
(�)xc

i,n
 are the production costs of 

conventional power plants. In particular, we assume that {cc
i,n
}n∈Nc

i
 are independent 

normal random variables, where the mean and variance of cc
i,n

 are �i,n and �2
i,n

 , 
respectively. The production costs of renewable-based power plants are assumed to 

(4)pn(x̃n) = an − bn

(∑
j∈Ic

n

xc
j,n
+
∑
j∈Ir

n

xr
j,n
+

∑
m∈M,m≠n

(flowm,n − flown,m)

)
, n ∈ N.

Ri(x) =
∑
n∈Nc

i

(
xc
i,n
⋅ pn(x̃n)

)
+

∑
n∈Nr

i

(
xr
i,n
⋅ pn(x̃n)

)
.

ri(x,𝜔) =
∑
n∈Nc

i

(
xc
i,n
⋅ pn(x̃n)

)
+

∑
n∈Nr

i

(
xr
i,n
⋅ pn(x̃n)

)
−

∑
n∈Nc

i

cc
i,n
(𝜔)xc

i,n
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be equal to zero (see, e.g., Morales and Pineda (2017) and Pineda et  al. (2018)). 
Therefore, for a given output level vector x and confidence level vector � , the profit 
of generating company i ∈ I is given by:

For each i ∈ I , we have:

Therefore, for a given x and �i , the payoff of firm i is given by:

where �−1
Zi,n

(�i) is a quantile function of a standard normal random variable Zi,n.
A best response of firm i ∈ I , for a given output level of the other generating 

companies, can be obtained by solving the following optimization problem:

s.t.

where conditions (8) and (9) enforce the production capacity constraints for conven-
tional and renewable-based power plants, respectively; and (10) and (11) are the var-
iable non-negativity constraints. Dual variables are reported besides each constraint 
with which they are associated.

u
�i
i
(x) = sup{�|P({�|ri(x,�) ≥ �}) ≥ �i}.

(5)

u
�i
i
(x) = sup

�
��P

�
�� �

n∈Ni

cc
i,n
(�)xc

i,n
≤ −� + Ri(x)

�
≥ �i

�

= sup

⎧
⎪⎨⎪⎩
��� ≤ Ri(x) −

�
n∈Nc

i

�i,nx
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2.2.3  PX’s problem

The PX clears the day-ahead electricity market by maximizing the consumers’ will-
ingness to pay (12) taking into account the zonal energy balance (13), the transmis-
sion constraints (14) that define the flow transfer limits among connected zones, and 
the non-negativity constraints on the demand variables (15). Notice that, since the 
PX considers the decisions of power generating companies as given in accordance 
with the Nash assumption, it is sufficient to state that the PX maximizes consum-
ers’ willingness to pay instead of social welfare [see Farzad et  al. (2023), Tanaka 
(2009)].

s.t

Finally, the constraint (14) imposes that the power exchanged between zones is posi-
tive. It accounts for all power trades both in the directions (n, m) and (m, n).

2.2.4  Solution method

Taken together, the optimization problems of the generating companies i ∈ I and 
the PX lead to an equilibrium problem. Complementarity-based models offer a 
natural approach to construct equilibrium model when different market agents are 
considered (see Facchinei and Pang (2003)). Since the optimization problems of 
both generating companies i ∈ I, (7)–(11) and PX (12)–(15) are convex and Slat-
er’s conditions apply, these can be replaced by the corresponding KKT conditions. 
The resulting set of KKT conditions will define a Mixed Complementarity Problem 
(MCP) that is used to determine the solution to the equilibrium problem.

We here report the set of KKT conditions for both generating companies’ i ∈ I 
and PX’s problems. A best response of generating company i ∈ I can be obtained by 
solving the following KKT conditions:
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where Ψi(x
c
i
) =

�∑
n∈Nc

i

�2
i,n
(xc

i,n
)2
�−

1

2.
The KKT conditions associated with the PX’s problem are as follows:

By concatenating KKT conditions (16)–(21) for all i ∈ I and by adding KKT condi-
tions of the power exchange problem (22)-(25), an equilibrium of the zonal electric-
ity market can be obtained.

From conditions (22) and (24) and taking into account the zonal electricity price 
in (4), we can easily derive that 𝜆d

n
= pn(x̃n) . Moreover, if the power is exchanged 

between zones n and m, the condition (23) implies that �d
n
+ �

f
n,m − �d

m
− �

f
m,n = 0 

or equivalently that pn(x̃n) + 𝜆
f
n,m − pm(x̃m) − 𝜆

f
m,n = 0 . This means that 

pn(x̃n) = pm(x̃m) − 𝜆
f
n,m + 𝜆

f
m,n and therefore pn(x̃n) − pm(x̃m) = −𝜆

f
n,m + 𝜆

f
m,n . Notice 

that �fm,n and �fn,m are the transmission charges (or wheeling fees) for transferring 
electricity between nodes n and m. From this, one can deduce that the energy price 
difference between two zones corresponds to the difference between the wheeling 
fees at those nodes. In other words, there are no arbitrage possibilities in managing 
transmission. Power generating companies cannot manipulate transmission conges-
tion and the relative charges to modify electricity prices (see Farzad et  al. (2023) 
and Tanaka (2009) for a similar approach).

2.3  Equivalent Single Optimization Problem

Following the approach proposed by Hashimoto in Hashimoto (1985), the MCP 
presented in Subsection  2.2.4 can be reformulated as the single quadratic pro-
gramming (QP) problem (26)-(33). The objective function (26) can be assimilated 
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to the social welfare adjusted by the quadratic cost term 
∑

n∈N

bn

2
(xc

i,n
+ xr

i,n
)2 that 

is a proxy for measuring the firms’ market power. The constraints (27)-(33) 
are taken from the generating companies’ and PX’s optimization problems, 
respectively.

 s.t

Notice that this QP problem could be also implemented using a standard solver as 
CPLEX.

2.4  Model with stochasticity of conventional unit costs and renewable energy 
production

We here extend the model presented in Sect. 2.2 by considering two random vari-
ables: operating costs of conventional units and forecast of renewable energy 
production.

Random variables
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• Cr
i
(�) : forecast on renewable energy production, random variable Cr

i
∶ Ξ → ℜ 

where (Ξ,F,P) is a probability space.

In particular, the forecast of the renewable power production from wind and solar 
PV units becomes a random variable. In the new formulation, constraint (9):

is substituted with the following:

where �i ∈ [0, 1] is a given threshold. The corresponding complementarity condition 
can be written as:

Apart from this modification, the rest of the model remains as presented in Sect. 2.2. 
The reformulation in MCP model and in the equivalent single QP problem account 
for condition (35) and constraint (34), respectively.

3  Case study

The proposed CCG models are tested on the Italian day-ahead electricity market 
using 2019 data. The considered network is depicted in Fig.  1 and accounts for 
twelve zones ( n = 1,… , 12 ) that are connected with lines characterized by limited 
transfer capacity. These twelve zones are further classified into two main groups:

• Geographical zones in which Italy is subdivided and are identified by North (N), 
Center-North (CN), Center-South (CS), South (S), Sardinia (SARD) and Sicily 
(SIC). These are represented in light blue in Fig. 1.

• Foreign countries represented by France (FR), Switzerland (CH), Austria (AU), 
Slovenia (SL), Greece (GR) and Malta (MA) with which Italy is connected and 
exchange electricity. Each foreign country is represented by one zone. These are 
represented in grey in Fig. 1.

We assume that in each of the twelve zones considered, both those related to the 
Italian electricity market and those associated with the foreign countries, there is 
electricity demand and production. Even though we are aware of the fact that in 
Italy and in the inter-connected foreign countries electricity is produced using sev-
eral conventional and renewable-based technologies, in our analysis we focus our 
attention only on three types of power stations in all zones: gas-fired units, wind and 
solar PV power plants. Among the conventional units, we select the gas-fired power 
plants for two main reasons: they are the most used in Italy (ARERA 2020) and 
they are characterized by a relatively low carbon emission factor. The stochasticity 
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of renewable power production is well represented by the wind and solar PV plants, 
and therefore we do not account for hydro technologies. The assumption of account-
ing for a restricted portfolio of power production plants in all zones has an impact 
on the parameters used to estimate the inverse demand function and transmission 
line capacity that are calibrated on the basis of the considered installed production 
capacity as explained in the following.

We model electricity demand by using an affine inverse demand function depend-
ing on zones. More precisely, the slope parameter bn is computed by using the defi-
nition of demand elasticity which, in addition to demand elasticity, involves the 
zonal reference demand and the zonal reference electricity price. The intercept an is 
then determined by using the equation of the inverse demand function and consider-
ing, as given, the just-computed parameter bn , the reference demand, and the refer-
ence price as an input. The reference electricity price and demand data are taken 
from the Italian Power Exchange website2 and from the Transparency Platform of 
the ENTSO-E for the Italian geographical zones and for foreign countries, respec-
tively. We set the price elasticity equal to −0.1 to indicate an inelastic demand in line 

Fig. 1  Italian zonal electricity network

2 See Gestore Mercato Elettrico (GME) website at https:// www. merca toele ttrico. org/ it/.

https://www.mercatoelettrico.org/it/
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with the literature.3 Notice that the zonal reference demand used in these computa-
tions corresponds to the residual consumption related to gas-fired, wind and solar 
PV plants. In other words, zonal reference demand is netted out by the power pro-
duction of all those technologies available in the zones but not included in our anal-
ysis. Similarly, the transfer capacity limits of the power flows exchanged between 
zones are re-calibrated starting from those provided by Terna.4 This means that, tak-
ing as reference the real data provided by Terna, the network transfer limits between 
zones are reduced in such a way to be proportional to the balance between demand 
and power that can be generated with the available capacity in a zone. Notice that, 
according to Terna, these transfer limits depends on the exchange directions.

As for electricity generating companies, we consider the four main power pro-
ducers operating in Italy in addition to six representative firms, one per each of the 
foreign countries analyzed. The selection of the four Italian electricity companies 
has been done considering their market shares, starting from the one with the high-
est value, as indicated by ARERA (2020). The representative producers taken for 
the foreign areas, instead, collect all electricity generators in those countries. As 
already explained, we assume that these power producers run only gas-fired, wind 
and solar PV units. We discard the capacity of all the other power plants that they 
own. For the sake of data tractability, we suppose that each power producer operates 
at country level and no producers have plants in foreign countries. Moreover, for 
each of the four Italian power producers considered, we account for the geographical 
distribution of their respective plants in the different zones of the Italian power sys-
tem as depicted in Fig. 1. Tables 1, 2, 3 report the installed capacities of gas, wind 
and solar PV power plants per generating company and zone, respectively. Capacity 
data for the power plants located in the Italian geographical zones are taken from 

Table 1  Installed gas-based capacity per zone and generator (MW)

CN CS N SARD SIC S AU FR GR MA SL CH

Gen1IT – 838 4032 – – 415 – – – – – –
Gen2IT 409 9 2171 – – 2029 – – – – – –
Gen3IT 756 934 866 177 1,345 – – – – – – –
Gen4IT – – 1689 – – 1179 – – – – – –
GenAU – – – – – – 4058 – – – – –
GenFR – – – – – – – 6541 – – – –
GenGR – – – – – – – – 4,899 – – –
GenMA – – – – – – – – – 538 – –
GenSL – – – – – – – – – – 696 –
GenCH – – – – – – – – – – – –

4 See Terna website at https:// www. terna. it/ it/ siste ma- elett rico/ merca to- elett rico/ zome- merca to/ proce 
dura- valut azione- limiti- trans ito- rete- integ ra.

3 For an analysis of price elasticity of electricity demand see, e.g., Burke and Abayasekara (2018); Lanot 
and Vesterberg (2021).

https://www.terna.it/it/sistema-elettrico/mercato-elettrico/zome-mercato/procedura-valutazione-limiti-transito-rete-integra
https://www.terna.it/it/sistema-elettrico/mercato-elettrico/zome-mercato/procedura-valutazione-limiti-transito-rete-integra
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Terna, the Italian Transmission System Operator,5 and from the annual reports of 
the considered Italian power companies. For the zones corresponding to the foreign 
countries, capacity data are provided by the Transparency Platform of ENTSO-E.6 
No gas-based technology has been found for Switzerland.

Notice that, in the simulations, we account for the available capacity computed by 
multiplying the installed capacity reported in Tables 1, 2, 3 by capacity factor equal 
to 0.8 for gas-fired plants and to 0.25 for wind and solar units, respectively.

Considering the assumptions of our CCG models, the gas-fired plants have sto-
chastic production costs cc

i,n
(�) that depend on natural gas prices. These values are 

computed based on the historical time series of natural gas prices available in the 
Eurostat dataset. We took as reference the biannual gas prices for non-household 
consumers of the period from 2012 to 2019, belonging to the consumption band 

Table 2  Installed wind capacity per zone and generator (MW)

CN CS N SARD SIC S AU FR GR MA SL CH

Gen1IT – – – – – – – – – – – –
Gen2IT 5 258 – – 30 248 – – – – – –
Gen3IT – 40 – 173 157 274 – – – – – –
Gen4IT – – – – – – – – – – – –
GenAU – – – – – – 3045 – – – – –
GenFR – – – – – – – 15108 – – – –
GenGR – – – – – – – – 2844 – – –
GenMA – – – – – – – – – – – –
GenSL – – – – – – – – – – 5 –
GenCH – – – – – – – – – – – 75

Table 3  Installed solar capacity per zone and generator (MW)

CN CS N SARD SIC S AU FR GR MA SL CH

Gen1IT 22 12 19 6 3 33 – – – – – –
Gen2IT – 2 6 – – 4 – – – – – –
Gen3IT – 1 1 – – – – – – – – –
Gen4IT – – – – – – – – – – – –
GenAU – – – – – – 1433 – – – – –
GenFR – – – – – – – 8527 – – – –
GenGR – – – – – – – – 2652 – – –
GenMA – – – – – – – – – – – –
GenSL – – – – – – – – – – 256 –
GenCH – – – – – – – – – – – 2200

5 See Terna website at https:// www. terna. it/ it/ siste ma- elett rico/ trans paren cy- report
6 See ENTSO-E website at https:// trans paren cy. entsoe. eu/.

https://www.terna.it/it/sistema-elettrico/transparency-report
https://transparency.entsoe.eu/
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denoted as I4 with 100, 000 GJ < I4 < 1, 000, 000 GJ.7 Since data on gas prices are 
only provided at country level, we assume that there is a unique stochastic cost of 
gas for Italy, identical in all geographical zones and for all the four generating com-
panies considered. However, this differs from those applied to the other zones cor-
responding to the foreign countries.

Taking as reference this data availability and our assumptions on installed capac-
ity, the stochastic costs of gas are constructed imposing that the zonal mean and var-
iance values are defined as �i,n = �n and �2

i,n
= �2

n
 , respectively and assuming that 

Φ−1
cc
i,n
(�)
(�) is a quantile function of a standard normal random variable. The values of 

�n and �2
n
 are reported in Table 4. Moreover, we consider different confidence levels 

�i as indicated in Sect. 4. As already explained, the operating costs of wind and solar 
PV units are assumed to be equal to 0 €/MWh.

The data used to compute the stochastic forecast of wind and solar PV production 
are taken from the Transparency Platform of the ENTSO-E. We consider as confi-
dence levels �i=1% and �i=5%.

4  Results

This section is devoted to the presentation of our results obtained by considering dif-
ferent hypotheses on the stochastic parameters and confidence levels. In particular, 
Sects.  4.1 and 4.2 provide the results of the application of the CCG zonal model 
with the stochasticity of the operating costs of the gas-fired power plants and the 
Power Exchange’s problem (see Sects. 2.2.2 and 2.2.3).

Table 4  Values of �n and �2

n
 

for all n 
�n �2

n

CN 49.776 61.604
CS 49.776 61.604
N 49.776 61.604
SARD 49.776 61.604
SIC 49.776 61.604
S 49.776 61.604
AU 45.860 46.464
FR 48.615 50.053
GR 56.266 294.406
MA 56.266 294.406
CH 48.462 62.769
SL 51.888 135.705

7 See Eurostat dataset at https:// ec. europa. eu/ euros tat/ data/ datab ase.

https://ec.europa.eu/eurostat/data/database
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Section 4.3 investigates the effects of the combined stochasticity of the cost of 
gas-fueled power stations and the forecast of renewable energy production by con-
sidering the models presented in Sects. 2.2.3 and 2.4.

All cases have been solved using PATH 4.7.01 under GAMS 23.0.2 on a Mac-
Book Pro 2.7 GHz Intel Core i7 quad-core processor with 16 GB RAM. The pro-
cessing time of all runs is of the order of 1-2  s, showing the effectiveness of the 
approach proposed as identified by RQ1.

4.1  Uncertainty in gas cost under equal risk aversion levels for generators

We first analyze the situation where the unique source of uncertainty is represented 
by gas cost. In this first analysis, we assume that all generating companies, in Italy 
and abroad, have the same confidence level �i . The aim of this study is to analyze 
the impact of gas cost variability on electricity production (with RES and gas-based 
power plants), prices, and generators’ profits. To this aim, we conduct a sensitivity 
analysis to evaluate the different impacts on these variables. Notice that, �i can be 
interpreted as a measure of risk aversion of the different generators. This case allows 
us to answer RQ2. The �i values tested are reported in Table 5.

Figure 2 shows the total hourly production of electricity. Wind and solar power 
plants are almost used at full capacity by all generators independently of the confi-
dence levels, while gas-based electricity production is more variable since it depends 
on the stochasticity of natural gas prices that affect the operating costs of the gas-
fired plants. Recall that this stochasticity varies according to the confidence level 
considered. In particular, the value of the operating costs of gas-fired plants progres-
sively decreases along with the confidence level, meaning that the operating cost of 
a gas power unit with a confidence level of 99% is higher than the one applied when 
the confidence level is 80%. This is equivalent to say that a more risk-averse opera-
tor ( �i = 0.99 ) estimates that the increase in the gas cost in the worst-case scenario 
is much higher than an operator with a medium risk aversion (i.e. �i = 0.8 ). Fig-
ure 3 illustrates the hourly gas-based electricity production per generating company. 
We can observe that Gen1IT, which has the largest share of gas-based units among 
the four Italian generators analyzed, increases its gas-based electricity production 
as far as the �i value decreases from 99% to 80%. This also happens in Austria and 
in Malta, and it can be easily explained by the cheapest operating costs of the gas 
units with the confidence interval of 80%. However, this is not the case for the other 

Table 5  Sensitivity analysis on �i
�i values for all generators

Operating in the different zones

�i = 80%

�i = 85%

�i = 90%

�i = 95%

�i = 99%
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Italian generators (Gen2IT, Gen3IT, and Gen4IT) and for Greece, which reach their 
largest gas power output when the confidence level is set equal to 85%. Moreover, 
France and Slovenia register their maximum gas-based electricity production with a 
confidence level of 95%.

Fig. 2  Total electricity production for different �i (MWh)

Fig. 3  Gas-based electricity production per generating company for different �i (MWh)



1 3

Complementarity formulation of games with random payoffs  Page 21 of 32 35

Recall that these results are obtained from the implementation of the MCP com-
posed of conditions (16)–(21) and (22)–(25) regarding the power generating compa-
nies’ and the PX’s problems, respectively. Looking only at conditions (16)–(21) and 
knowing that the power production costs of gas-fired plants reduce when increasing 
the confidence level �i , one can expect to see a generalized increment of the amount 
of electricity produced with these units as far as the level of risk aversion decreases. 
However, this does not happen in all zones and for all generators because the uti-
lization of the gas-fired units not only depends on their operating costs, but it is 
also influenced by their zonal locations and by the transmission capacity that regu-
lates flow exchanges among zones. This derives from the fact that the final power 
output of the power units is affected by their production capacity (see conditions 
(20)–(21)), the zonal energy balances and the network transmission constraints, i.e. 
conditions (24)–(25).

For instance, our results point out that the Northern zone of Italy “N” always 
imports electricity from the four foreign countries to which it is connected. More 
specifically, the lines linking the North of Italy with France, Switzerland and Slove-
nia are always congested independently of the investigated confidence levels �i . In 
addition to these, also the links between the Center-North and the Center-South of 
Italy and between the Southern zone and Greece are always congested. In contrast, 
the lines between the South and the Center-South zones and between the Center-
North and the North zones are congested only when the confidence level is equal 
to 90% and 85%. In addition, the confidence levels of 99%, 95%, and 80% cause the 
congestion of the line between the Southern zone of Italy and Sicily.

Notice that, for values of �i = 90% and �i = 85% , we also register a different allo-
cation of power production from gas-fired power plants compared to that observed 
when the other confidence levels apply. In particular, considering the plant capacity, 
the production costs of gas-fired units, and the network transmission limits, under 
the assumptions of �i = 90% and �i = 85% , generating companies find it more con-
venient to increase their gas-based power production in the Center-South and to 
reduce it in the Center-North compared to the other analyzed risk aversion cases. 
This implies larger power exports from the North to the Center-North and from 
the Center-South to the South, making the respective transmission lines congested. 
Recall that, electricity prices are affected by the congestion costs.

This has an impact on electricity prices, which incorporate congestion costs and 
reflect their trend (see Fig.  4). Electricity prices are aligned for �i equal to 99%, 
95% and 80% but differ from those obtained by applying the confidence levels of 
90% and 85% that are similar. In particular, the peak prices registered in the Center-
South zone when �i are set at 90% and 85% depend on the over-utilization of the 
South and Center-South line. Similarly, the very high prices observed in Slovenia 
and in Switzerland for the confidence levels of 99% and 95% indicate that the con-
gestion charges for these two �i values are higher than in the other �i cases. Notice 
that in all cases, the electricity prices are defined by the gas-based units that are the 
peak technologies. As explained above, the operating costs of these plants decrease 
when the confidence level goes from 99% to 80%. This justifies the fact that the 
prices obtained for the 80% confidence levels are lower than those with �i = 99% 
and �i = 95%.
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Electricity prices, operating costs and electricity produced are key elements to 
determine generating companies’ profits. Total profits increase when generators 
become less risk averse, namely with the progressive shift of the confidence level 
from �i = 99% to �i = 85% (see Table 6). Notice that in the case �i = 80% the total 
profits are slightly lower than with �i = 85% , but this results from the different val-
ues of the electricity prices as explained above. The Power Exchange’s benefit fol-
lows a similar trend and, in particular, its value in the case �i = 80% is higher than 
with �i = 85% in such a way that it overcomes the slight reduction in the generating 
companies’ profits, leading to a higher welfare.

4.2  Uncertainty in gas cost under different risk aversion levels for generators

In this section, we still investigate the impacts of stochastic gas costs, but we assume 
different risk aversion profiles for power generating companies. The risk aversion is 
still measured by the confidence level �i . This enables us to answer RQ3. In particu-
lar, we conduct two sensitivity analyses:

Fig. 4  Electricity prices for different �i (€/MWh)

Table 6  PX’s benefit, 
generators’ profits and welfare 
for different �i (K€)

PX’s benefit Generators’ 
profits

Welfare

�i = 99% 10,318 4538 14,856
�i = 95% 10,360 4598 14,959
�i = 90% 10,361 4662 15,023
�i = 85% 10,377 4684 15,061
�i = 80% 10,407 4667 15,074
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• Case 1: All the four generators operating in Italy have the same confidence level 
that differs from that applied to the power producers operating in the foreign 
countries. More precisely, Table 7 summarizes the analyzed four sub-cases.

• Case 2: The confidence level assigned to the four generating companies oper-
ating in Italy are different, while the power producers operating in the foreign 
countries have the same confidence level. In particular, we analyze the four 
sub-cases reported in Table 8.

Table 7  Sub-cases of Case 1 
�i values for generators in �i values 

for gen-
erators in

Italy (%) AU, FR, 
GR, MA, 
SL, CH 
(%)

Case 1.1 80 99
Case 1.2 85 95
Case 1.3 95 85
Case 1.4 99 80

Table 8  Sub-cases of Case 2 
�i values for generators in �i values 

for gen-
erators in

Italy (%) AU, FR, 
GR, MA, 
SL, CH 
(%)

Case 2.1 Gen1IT 85 90
Gen2IT 85
Gen3IT 95
Gen4IT 95

Case 2.2 Gen1IT 95 90
Gen2IT 95
Gen3IT 85
Gen4IT 85

Case 2.3 Gen1IT 95 90
Gen2IT 90
Gen3IT 85
Gen4IT 80

Case 2.4 Gen1IT 80 90
Gen2IT 85
Gen3IT 90
Gen4IT 95
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The impacts of the application of Case 1 and Case 2 on gas-based electricity pro-
duction can be summarized as follows.

Case 1 assumes that foreign generators and Italian power producers have different 
levels of risk aversion (the confidence interval is no longer the same). The results 
show that foreign generators increase their gas-production output when passing 
from Case 1.1 to Case 1.4; the reverse happens for the Italian power producers (see 
Fig. 5). This is in line with the assumptions used for the construction of Case 1 and 
confirms what observed in the first sensitivity analysis with equal risk aversion lev-
els for generators (Sect. 4.1), namely that gas-based electricity production increases 
when the level of risk aversion reduces and generating companies have a more risk 
neutral attitude.

Case 2 gives similar results and provides further interesting insights. In particu-
lar, the comparison between Cases 2.4 and Cases 2.1, 2.2, and 2.3 highlights that the 
gas-based power production can be affected not only by the confidence level but also 
by the size of the company (Fig. 6). The largest gas-based power output of Gen1IT, 
Gen2IT and Gen3IT is obtained in Case 2.4 when the confidence level assigned to 
these generators are 80%, 85% and 90%, respectively. The utilization of gas-fired 
units of Gen4IT is particular relevant in Case 2.1 and Case 2.4 when the confidence 
level attributed to this producer is equal to 95% (in both cases). This implies that 
when the power company’s market share and the gas-based capacity availability are 
low, as it happens for Gen4IT, the generator has its highest gas-power output under a 
risk averse assumption. On the contrary, when a generator has a larger market share, 
it increases its gas-based electricity production under more risk neutral assumptions, 
as it happens for Gen1IT, Gen2IT and Gen3IT. In other words, the market size of the 
company influences its attitude to be more risk neutral and consequently its power 
output.

Fig. 5  Gas-based electricity production per generating company in Case 1 (MWh)



1 3

Complementarity formulation of games with random payoffs  Page 25 of 32 35

4.3  Uncertainty in gas cost and RES production under equal risk aversion levels 
for generators

In order to answer RQ4, we consider both the stochasticity of the operating costs 
of the gas-fired units and the uncertainty of renewable power production. To this 
scope, we assume that all generating companies, in Italy and abroad, have the 
same confidence levels �i and �i . Table 9 reports the values tested.

The results obtained are in line with those described in Sects. 4.1 and 4.2. Fig-
ure 7 compares the total hourly production of electricity per technology between 
the cases described in Table  9 and the corresponding sub-cases presented in 
Table  7. In other words, we compare the situation where the stochasticity only 
regards the production costs of gas-fired power plants with the scenario where 
both these costs and the RES production are stochastic.

From this comparison, we first observe that the total power production 
obtained under the assumptions �i = 99% & �i = 1% and �i = 95% & �i = 5% is 
lower than in �i = 95% and �i = 99% cases, respectively. This is due to the fact 

Fig. 6  Gas-based electricity production per generating company in Case 2 (MWh)

Table 9  Sensitivity analysis on �i and �i
�i and �i values for all generators

Operating in the different zones

�i = 95% & �i = 5%

�i = 99% & �i = 1%
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that the application of the stochasticity in the wind and solar PV electricity pro-
duction leads to a reduction of the power output of these technologies that it is 
only partially compensated by a higher utilization of the gas-fired units. Second, 
in �i = 99% & �i = 1% , and �i = 95% & �i = 5% cases, power generators maintain 
the same attitude towards risk observed in Sect. 4.1 and 4.2, meaning that they 
produce less electricity when the confidence levels are set at �i = 99% & �i = 1%.

This trend is also reflected in the agents’ benefit analysis. Tables 10 and 11 report 
the PX’s benefit, the generators’ profits and the welfare in the �i = 99% & �i = 1% 
and �i = 95% & �i = 5% cases, respectively, assuming different availability levels 
for gas-fired capacity. More precisely, starting from the reference gas capacity val-
ues, as described in Sect. 3 and used for analyzing the cases described in Sects. 4.1 
and 4.2, we first decrease and then increase them by 25% and 50%, respectively, 
leading to the cases “50%”, “75%”, “100%” (i.e. the reference values for this capac-
ity), “125%”, and “150%”. The comparison between Tables 10 and 11 shows that 

Fig. 7  Comparison of the total electricity production under different stochasticity assumptions (MWh)

Table 10  PX’s benefit, 
generators’ profits and welfare 
for �i = 99% & �i = 1% and 
different capacity levels for gas-
fired plants (K€)

Gas capacity 
(%)

PX’s benefit Generators’ 
profits

Welfare

50 9115 4790 13,904
75 9824 4747 14,570
100 10,172 4570 14,743
125 10,314 4385 14,699
150 10,394 4270 14,663
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when the levels of risk aversion decrease passing from �i = 99% & �i = 1% to 
�i = 95% & �i = 5% , agents’ benefits and welfare increase independently of the 
availability of the gas-fired plant capacity. The effects of the sensitivity analysis on 
the capacity of gas-fired units can be summarized as follows: the generators’ profits 
decrease as far as the available gas-based capacity increase; the opposite happens 
for the PX’s benefit. Mixed impacts can be observed on the welfare. These can be 
explained as follows: the utilization of wind and solar PV plants is not significantly 
affected by the different capacity availability levels of gas-fired units, since they are 
almost fully used independently of the assumptions considered. The reduction of 
gas-based power in the “50%" and in “75%" is reflected in higher electricity prices 
that, in turn, mirror a scarcity of this resource. Therefore, even though the amount 
of electricity globally produced is lower compared with the cases with a larger avail-
ability of gas-based capacity, generators’ profits under the “50%" and “75%" capac-
ity assumptions are higher than in the “100%", “125%", and “150%" cases, where 
electricity becomes cheaper because of the larger amount of gas-capacity available 
in the market. This trend in electricity prices implies an opposite impact on PX’s 
benefit that progressively increases as far as the gas-based power production grows. 
This happens both with �i = 99% & �i = 1% and �i = 95% & �i = 5% assump-
tions (see Tables 10 and 11). However, the implications on the welfare depend on 
the confidence levels adopted. With �i = 99% & �i = 1% , the highest and the low-
est values for the welfare are reached in the “100%" and “50%" cases, respectively 
(see Table 10). In the other words, the welfare has an increasing trend when passing 
from the “50%" to the “100%" gas-capacity scenarios, but it progressively decreases 
when moving to the “125%" case and then to “150%" assumption. This means that 
when the gas capacity is scarce, as under the “50%" and “75%" capacity cases, the 
increase in the generators’ profits does not compensate the cut in the PX’s benefit 
and, therefore, the welfare remains lower than under the “100%" capacity assump-
tion. Even though in the “125%" and “150%" capacity scenarios, the PX’s bene-
fits are higher than under the other assumptions, these are not sufficient to cover 
the cut in the generators’ profits. Therefore, the welfare values in the “125%" and 
“150%" cases remain lower than in the “100%" scenarios, even though they are 
higher than in the “50%" and “75%" scenarios. In the less conservative scenario of 
�i = 95% & �i = 5% , this phenomenon persists, but in a more limited way. In fact, 
the welfare increases from “50%" the “125%" cases. Under the “150%" assumption, 
a slight cut is registered compared to the “125%" case. Again the increase in the 
PX’s benefit does not over-compensate the cut in generators’ profits.

Table 11  PX’s benefit, 
generators’ profits and welfare 
for �i = 95% & �i = 5% and 
different capacity levels for gas-
fired plants (K€)

Gas capacity 
(%)

PX’s benefit Generators’ 
profits

Welfare

50 9067 4943 14,011
75 9897 4823 14,721
100 10,214 4586 14,799
125 10,361 4450 14,811
150 10,451 4333 14,784
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5  Test on the robustness of the CCG model

In order to test the robustness of the stochastic model presented in the previous sec-
tions and to answer RQ1, two robustness analyzes have been carried out. The first 
analysis relies on a sensitivity on the random production cost variable for conven-
tional units mainly related to the behavior of the natural gas price. The natural gas 
price has an important influence on the total profits of the companies operating in 
the market. Geopolitical tensions of recent periods, and the underlying uncertainty 
around the European security of gas supply, reinforced the price volatility on the 
European gas markets (see Commission (2022)). The model used for this robustness 
check is the one introduced in Section 4.2.

To check the impact of the volatility of production costs for conventional units on 
the total profits, 10000 out of sample scenarios have been considered by increasing 
the volatility of the stochastic parameter and the impact on total costs has been esti-
mated by constructing the following indicator:

Indicator (36) measures, for each out of sample scenario, the relative error on 
the production costs depending on the natural gas price. The numerator of this 
index is the difference between the total cost of a selected out of sample scenario 
( total cost(out of sample) ) and the cost estimated by using each stochastic model 
(reference case as in Section 5 by varying �i from 80% to 99%) or by using a deter-
ministic formulation where the cost of conventional units has been fixed equal to the 
expected value of the stochastic variable (Model EV), denoted with total cost(⋅) . The 
results provided by this first analysis have been collected in Table 12.

These results show that as far as the risk aversion increases (namely, �i increases) 
the CCG model is able to reduce the error in predicting the total costs. This implies 
that, using a stochastic model is preferable especially when the instability of eco-
nomic conditions occur.

A second robustness check has been conducted on the model introduced in Sec-
tion  4.3 where both the cost of conventional units and the renewable power pro-
duction are stochastic. We have compared the solutions of the deterministic model, 
where both gas price and the forecast of renewable power production are set at their 
expected value, with the chance-constrained model setting � = 5% & � = 95% and 

(36)Cost error(out of sample) =
total cost(out of sample) − total cost(⋅)

total cost(⋅)

Table 12  Stochasticity on 
conventional unit costs: Mean, 
standard error, minimum and 
maximum error on cost error 
with 10,000 out of sample 
scenarios

Stochasticity on cost Mean Std Min Max

EV 0.95 0.14 − 0.83 4.70
�i = 80% 0.64 0.13 − 0.85 3.75
�i = 85% 0.63 0.14 − 0.86 3.76
�i = 90% 0.57 0.14 − 0.87 3.59
�i = 95% 0.46 0.13 − 0.87 3.19
�i = 99% 0.33 0.13 − 0.88 2.82
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� = 1% & � = 99% . We have generated 10,000 out of sample scenarios and com-
puted the percentage of violated constraints over the total number of considered sce-
narios. The results for each model are reported in Table 13.

This second analysis confirms the results of the previous check, since the EV 
model violates constraints up to 12% points more than the CCG model when the 
risk aversion is high. The results presented in this section confirm the robustness of 
the stochastic model adopted with respect to an equivalent deterministic model, so 
answering RQ1 related to the robustness of the CCG model.

6  Conclusions

In this paper, we present a zonal electricity market model with oligopolistic compe-
tition. Companies operating in this market can have both conventional and renewa-
ble-based power plants. Two different sources of uncertainty have been considered: 
uncertainty in the payoff function of the players, mainly related to the stochasticity 
of gas prices, and uncertainty in renewable production. A CCG model is then devel-
oped and studied to perform the empirical analysis. The case study is based on the 
analysis of the Italian day-ahead electricity market, where twelve zones, connected 
with lines characterized by limited transfer capacity, are considered.

Four research questions have, then, been investigated: the first one is a theoretical 
question related to the benefit that a CCR model can provide in a stochastic GNEP 
game, with respect to a classical complementarity problem (RQ1). First of all, to our 
knowledge, we point out that this is the first attempt to use a CCG model with ran-
dom payoff functions to be used for an empirical application as in the formulation 
introduced by Singh and Lisser (2018). This formulation overcomes many computa-
tional issues related to the complexity of stochastic complementarity formulations. 
The robustness of the stochastic formulation is then proved with an out of sample 
analysis.

The other three research questions analyze how different expectations on gas 
cost and the uncertainty on RES-based power generation can impact the choices on 
electricity production and the market players’ benefits. RQ2 examines the impacts 
of increasing risk aversion, assuming identical confidence levels �i for all genera-
tors. RQ3 investigates the cases of different risk aversion profiles associated with 

Table 13  Stochasticity on RES 
only and on both costs and 
RES: Percentage of violated 
constraints with 10,000 out of 
sample scenarios

Stochasticity

RES Costs % of 
violated 
constraints

EV EV 25.26%
�i = 5% �i = 95% 19.04%
�i = 1% �i = 99% 13%
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the costs of gas-based power, depending on generators and zones. Finally, RQ4 is 
devoted to the impact on the production mix of two different sources of uncertainty: 
gas costs and RES production. The main findings of our empirical analysis show 
that both welfare and generators’ profits increase as soon as risk aversion decrease 
when this is assumed to be identical for all generators (RQ2). If the risk aversion dif-
fers among Italian producers and zones, the company’s market share influences the 
related power output (RQ3). Finally, the inclusion of the stochasticity in RES pro-
duction, assuming identical confidence levels for all generators, confirms the trend 
in generators’ profits. The impacts on welfare depend on the assumed risk aversion 
(RQ4).

Further development of these model could be explored by using different distri-
butions like any elliptical symmetric distribution, with joint or individual chance 
constraints, or distributionally robust optimization methods. In addition, we could 
modify these models in order to explicitly include the cross-border Cornout transac-
tion and the allocation of transmission capacity by the Transmission System Oper-
ator. Finally, we could also recast the problem by assuming random demand and 
introducing a convex risk premium for generators.
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