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Introduction

The literature on the existence of an equilibrium in game theory started since the paper by John von Neumann [START_REF] Von | On the theory of games of strategy[END_REF], who showed the existence of a mixed strategy saddle point equilibrium for a two-player zero-sum matrix game. Then in 1950, John Nash [START_REF] Jr | Equilibrium points in n-person games[END_REF] showed the existence of a mixed strategy Nash equilibrium for a finite strategic game, which brought the research on the existence of equilibria in game theory to a new stage. Since John von Neumann and John Nash, the traditional games with deterministic payoffs of the players have been widely studied. However, real world problems are significantly subject to uncertainties. Therefore, games with random payoffs are of increasing concern in game theory. Recently, Singh et al. [START_REF] Vikas | Existence of nash equilibrium for chance-constrained games[END_REF][START_REF] Vikas | Distributionally robust chanceconstrained games: existence and characterization of nash equilibrium[END_REF][START_REF] Vikas | A characterization of nash equilibrium for the games with random payoffs[END_REF][START_REF] Peng | Games with distributionally robust joint chance constraints[END_REF] initiated the studies on chance constrained games. By using chance constrained optimization models, we actually consider the random games where the players' payoffs are obtained with a certain confidence. The chance constrained payoff represents the maximal threshold such that the random return/payoff is not less than the threshold with a large probability, e.g., 95% or 90%. In a traditional chance constrained games, each player should know the exact distribution of the random return/payoff, or specify an a-priori distribution before making the decision. However, due to the imperfectness of the historical data, and incompleteness of the information collection, the estimated a-priori distribution may be biased from the true distribution.

If the player does not consider the ambiguity/impreciseness of the distribution and just use the traditional chance constraints, he might over-estimate the payoff at the equilibrium and makes an inefficient decision in the game [START_REF] James | The optimizer's curse: Skepticism and postdecision surprise in decision analysis[END_REF]. Thus, to reduce the potential loss in extreme cases, it is natural to consider the ambiguity set of the distribution in the decision-making model and use the distributionally robust optimization approach to make a decision against the worst-case distribution. The literature on distributionally robust chance constrained games (DRCCG) mainly focuses on the existence of Nash equilibrium when the information to each player is characterized by different kinds of uncertainty sets. For example, Singh et al. [START_REF] Vikas | Distributionally robust chanceconstrained games: existence and characterization of nash equilibrium[END_REF] considered DRCCG with a moment-type uncertainty set. Xu and Zhang [START_REF] Xu | Stochastic nash equilibrium problems: sample average approximation and applications[END_REF] considered the convergence of the sample average approximation in DRCCG. Peng et al. [START_REF] Peng | Games with distributionally robust joint chance constraints[END_REF] studied DRCCG under the divergence distance based uncertainty set and showed the existence of Nash equilibrium.

Wasserstain ball is also a kind of important uncertainty set widely used in distributionally robust optimization. Most of the studies conducted to date focuses on the data-driven case [START_REF] Mohajerin | Data-driven distributionally robust optimization using the wasserstein metric: performance guarantees and tractable reformulations[END_REF][START_REF] Zhao | Data-driven risk-averse stochastic optimization with wasserstein metric[END_REF][START_REF] Chen | Data-driven chance constrained programs over wasserstein balls[END_REF][START_REF] Xie | On distributionally robust chance constrained programs with wasserstein distance[END_REF][START_REF] Ji | Data-driven distributionally robust chance-constrained optimization with wasserstein metric[END_REF][START_REF] Peng | A data-driven distributionally robust game using wasserstein distance[END_REF], where the reference distribution is a discrete distribution. Xie [START_REF] Xie | On distributionally robust chance constrained programs with wasserstein distance[END_REF] gave an exact reformulation of the distributionally robust chance constraint with a data-driven reference distribution. Liu et al. [START_REF] Liu | Distributionally robust chance constrained geometric optimization[END_REF] studied distributionally robust chance constrained geometric optimization where some of the uncertainty sets are constrained by the Wasserstein distance under discrete, full, or nonnegative real-space support. The discrete distributions based data-driven reformulations were generalized by [START_REF] Blanchet | Robust wasserstein profile inference and applications to machine learning[END_REF][START_REF] Rui | Distributionally robust stochastic optimization with wasserstein distance[END_REF] to Polish spaces and continuous distributions. Shen and Jiang [START_REF] Shen | Convex chance-constrained programs with wasserstein ambiguity[END_REF] considered the distributionally robust chance constraint where the reference distribution in the Wasserstein ball is a Gaussian distribution. Peng et al. [START_REF] Peng | A data-driven distributionally robust game using wasserstein distance[END_REF] studied distributionally robust games with expected utility functions and data-driven Wasserstein ball. To the best of our knowledge, DRCCG under Wasserstein distance has not been studied in the literature.

In this paper, we study DRCCG under the Wasserstein ball. We consider the reference distribution as an elliptical distribution, i.e., a distribution from a large family of continuous distributions. A data driven Wasserstein ball and a continuous reference distribution play different rules in distributionally robust optimization. The former allows to calibrate and evaluate the size of the ambiguity set. The later can be viewed as an adjustment of the over-optimism of the decision maker's a-priori distribution information. The radius of the ball reflects the strength of confidence in her/his a-priori information. In many applications, the decision makers ignore the fact that the a-priori distributions are not Gaussian.For instance, wind power and electric load forecasting errors are generally not Gaussian distributed in power system scheduling problems. The stock return rates are often regarded as high kurtosis and fat-tailed [START_REF] Frank J Fabozzi | Fat-tailed and skewed asset return distributions: implications for risk management, portfolio selection, and option pricing[END_REF]. The elliptical distributions are a broad family of probability distributions that generalize the multivariate normal distribution, which thus play an important role in stochastic games.

As far as we know, this paper provides the first contribution which considers an elliptical reference distribution in a Wasserstein ball-based distributionally robust game.

We propose a new approach which leads to the condition of the convexity of the chance constrained payoff with the Wasserstein ball and derive an efficient solution method to the equilibrium problem of this kind of games.

The paper is organized as follows. We derive the reformulation of the distributionally robust chance constrained payoff function in Section 3.2 and show the existence of a Nash equilibrium for DRCCG in Section 3.3. We propose an optimization approach to find Nash equilibrium of DRCCG in Section 3.4. We carry out numerical tests under some popular distributions from the elliptical distribution family in Section 4.

DRCCG under Wasserstein ball

Introduction to chance constrained games

We consider a n-player strategic game. Let I t1, 2, ...nu denotes the set of players. For each i I, A i represents a finite action set of player i and its generic element is denoted by a i . The vector a pa 1 , a 2 , ...a n q denotes the action profile of the game. The set of all action profiles is denoted by the product set A n i1 A i . We denote A ¡i n j1;j$i A j , and a ¡i pa 1 , a 2 , .., a i¡1 , a i 1 , .., a n q A ¡i . Let X i be the set of mixed strategies of player i which is a subset of all probability distributions over the action set A i . A mixed strategy τ i X i is represented by τ i pτ i pa i qq a i A i , where τ i pa i q ¥ 0 is the probability with which player i chooses an action a i and °ai A i τ i pa i q 1. The set of all mixed strategy profiles is denoted by X n i1 X i and a mixed strategy profile τ pτ i q iI is a generic element of X. Denote X ¡i n j1;j$i X j and τ ¡i X ¡i is a vector of mixed strategies τ j , j $ i. We define pτ i , τ ¡i q to be a strategy profile where player i uses the strategy τi and each other player j, j $ i uses strategy τ j . Denote l i paq R the payoff of player i for an action profile a, and r i R |A| the payoff vector of the game where |A| is the cardinality of set A. For such mixed strategies games, Nash [START_REF] Jr | Equilibrium points in n-person games[END_REF] showed that there always exists a Nash equilibrium.

In some practical applications, the players' payoffs are random due to several uncertainty sources. Thus, it is natural to study stochastic games by using stochastic optimization approach. Let pΩ, F, P q be a probability space where l i : Ω Ñ R for each i I. We can view the random payoff vector r i as a measurable function r i pωq pl i pa, ωqq aA : Ω Ñ R |A| , whose distribution is F. Then for a given strategy τ X and a scenario ω Ω, the random payoff R i of player i is

R i pτ, ωq aA £ l i pa, ωq ¹ jI τ j pa j q . ( 1 
)
We denote vector η τ pη τ paqq aA for short, where η τ paq ± iI τ i pa i q. Then R i pr i q t η τ .

Considering the randomness of the payoff R i , Singh et al. [START_REF] Vikas | Existence of nash equilibrium for chance-constrained games[END_REF] study the following chance constrained payoff:

u α i i pτq sup 2 v i |P F ppr i q t η τ ¥ v i q ¥ α i @ , (2) 
which is the highest level of the player's payoff that he/she can attain with at least a specified level of confidence α i p0, 1q. The confidence level is given in advance and known to all players. That is, the game we study is non-cooperative with complete information.

When the distribution of r i is known and follows a multivariate normal distribution with a mean vector µ i and a positive definite covariance matrix Σ i , the chance constrained payoff equals

u α i i pτq aA £ µ i paq ¹ jI τ j pa j q }Σ 1 2 i η τ } 2 ϕ ¡1 p1 ¡ α i q,
where ϕ ¡1 p¤q is the quantile function of a standard normal distribution N p0, 1q ([3], formula (3.1)).

Distributionally robust chance constrained games

In many practical situations, the probability distribution of r i is not completely known to the players. Instead, the players know uncertainty sets D i , i I, where D i is the set of all possible distributions of r i . We assume that the uncertainty set of each player is known to all players in the game, and the players consider the worst case of their payoffs.

Thus, player i holds distributionally robust chance constrained payoff function:

u α i i pτq sup 4 v i | inf F D i P F ppr i q t η τ ¥ v i q ¥ α i B , (3) 
The game is called a distributionally robust chance constrained game (DRCCG) and was studied in [START_REF] Vikas | Distributionally robust chanceconstrained games: existence and characterization of nash equilibrium[END_REF][START_REF] Peng | Games with distributionally robust joint chance constraints[END_REF]. The set of best response strategies of player i, i I against a given strategy profile τ ¡i is

BR α i i pτ ¡i q tτ ¦ i X i | u α i i pτ ¦ i , τ ¡i q ¥ u α i i pτ i , τ ¡i q, dτ i X i u . Definition 1.
A strategy profile τ ¦ X is said to be a Nash equilibrium of a DRCCG for a given α, if for all i I, the following inequality holds,

u α i i pτ ¦ i , τ ¦ ¡i q ¥ u α i i pτ i , τ ¦ ¡i q, dτ i X i . (4) 

Wasserstein distance based uncertainty set

Since the true probability distribution of r i , i I is unknown, we replace the true distribution with a reference one which we might derive from some empirical data.

Thus, we consider the uncertainty set D i , i I as the neighbourhood of the reference distribution Fi :

D i tF : d w pF, Fi q ¤ δ i u
, where δ i ¡ 0 is a pre-specified radius of the uncertainty set D i . d w p¤, ¤q is the Wasserstein distance and the set D i is known as a Wasserstein ball. Definition 2. The Wasserstein distance d w is defined by

d w pF, Fi q inf πΠ 4» Ω¢Ω }ξ 1 ¡ ξ 2 }πpdξ 1 , dξ 2 q B
, where Π is the space of all joint distributions of ξ 1 and ξ 2 with marginals F and Fi respectively, } ¤ } is the norm defined as } ¤ } : }Σ ¡ 1 2 i p¤q} 2 where Σ i is a positive definite covariance matrix of the reference distribution Fi . We denote } ¤ } ¦ the dual norm of } ¤ }, i.e., } ¤ } ¦ }Σ 1 2 i p¤q} 2 for each i.

Reformulation of DRCCG under elliptical reference distributions

Reformulation of DRCCG

In this section, we concentrate on the reformulation of the payoff function u α i i pτq, i I for given τ and α, when the uncertainty set D i is a Wasserstein ball centered at an elliptical distribution.

We introduce the definitions of Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) of a random variable, VaR α,F pXq : inf tx :

P F rX ¤ xs ¥ αu , CVaR α,F pXq : min γ 4 γ 1 1 ¡ α E F rpX ¡ γq s B .
It is well known that both VaR and CVaR are translation invariant, monotone and positive homogeneous. Additionally, CVaR is subadditive, which is a coherent risk measure.

Next, we focus on the reformulation of u α i i pτq in (3). Proposition 1. For each player i I, δ i ¡ 0 and α i p0, 1q, suppose that the reference distribution Fi is continuous, then the distributional robust optimal (DRO) payoff (3) is equal to the optimal value of the following optimization problem:

max αi ,v i R v i (5a) s.t. δ i p1 ¡ α i qCVaR α i , Fi p¡f i pτ, r i qq ¤ sup αi r0,1s 3 p1 ¡ αi qCVaR αi , Fi p¡f i pτ, r i qq A ,(5b) 0 ¥ VaR α i , Fi p¡f i pτ, r i qq (5c)
where f i pτ, r i q ¡v i pr i q t η τ c pη τ qtΣ i η τ , and Σ i is the covariance matrix of the reference distribution Fi .

Proof. By Corollary 1 of [START_REF] Shen | Convex chance-constrained programs with wasserstein ambiguity[END_REF], the distributionally robust chance constraint inf

F D i P F ppr i q t η τ ¥ v i q ¥ α i is equivalent to the following group of inequalities, δ i 1¡α i CVaR α i , Fi p¡f i pτ, r i qq ¤ 1 1¡α i E Fi rp¡f i pτ, r i qq s , (6a) 0 ¥ VaR α i , Fi p¡f i pτ, r i qq. ( 6b 
)
where f i pτ, r i q ¡v i pr i q t η τ }η τ }¦ ¡v i pr i q t η τ c pη τ qtΣ i η τ , Σ i is the covariance matrix of the reference distribution Fi . Therefore the payoff (3) is equal to the maximal v i subjecting to (6a) and (6b). Meanwhile,

(6a) ô δ i 1¡α i CVaR α i , Fi p¡f i pτ, r i qq ¤ 1 1¡α i E Fi r¡f i pτ, r i q ¤ 1t¡f i pτ, r i q ¥ 0us, ô δ i 1¡α i CVaR α i , Fi p¡f i pτ, r i qq ¤ 1 1¡α i sup t i R E Fi r¡f i pτ, r i q ¤ 1t¡f i pτ, r i q ¥ t i us, ô δ i p1 ¡ α i qCVaR α i , Fi p¡f i pτ, r i qq ¤ sup t i R E Fi r¡f i pτ, r i q ¤ 1t¡f i pτ, r i q ¥ t i us, ô δ i p1 ¡ α i qCVaR α i , Fi p¡f i pτ, r i qq ¤ sup tR 3 p1 ¡ g i ptqqCVaR g i ptq, Fi p¡f i pτ, r i qq A , , ô δ i p1 ¡ α i qCVaR α i , Fi p¡f i pτ, r i qq ¤ sup αi r0,1s
3 p1 ¡ αi qCVaR αi , Fi p¡f i pτ, r i qq A

, where g i ptq 1 ¡ P Fi r¡f i pτ, r i q ¥ ts. The first equivalence is by the definition of r¤s . The second equivalence comes from the fact that t i reaches its optimal value at 0. The third equivalence is by multiplying p1 ¡ α i q to both sides of the inequality. The forth equivalence is a reformulation by the definition of CVaR. The last equivalence is due to the replacement of variable t by its quantile αi g i ptq, which works for the assumption that Fi is continuous such that g i ptq is a continuous function.

Reformulation of DRCCG under elliptical reference distributions

In this section, each player i uses an elliptical reference distribution and considers a worst-case payoff over a Wasserstein ball centered at an elliptical distribution.

Definition 3 ([20]

). A d-dimensional vector X R d follows an elliptical distribution E d pµ, Σ, ψq if the probability density function (PDF) is f pxq |Σ| ¡ 1 2 gppx¡µq t Σ ¡1 px¡µqq, where µ R d is the location parameter, Σ R d¢d is the dispersion matrix, ψ is the characteristic generator and g : R Ñ 0 is the density generator such that the Fourier transform of gp|x| 2 q, as a generalized function, is equal to ψp|ξ| 2 q.

By [START_REF] Alexander | Quantitative risk management: concepts, techniques and tools-revised edition[END_REF], for any matrix A R N ¢d and any vector b R N , we have AX b E N pAµ b, A t ΣA, ψq.

Lemma 1 ([21, Theorem 1]). For an elliptical distributed vector ζ E d pµ, Σ, ψq, a real vector w R d , and α p0, 1q, CVaR α pw t ζq w t µ c

w t ΣwT α , (7) 
where

T α π d¡1 2 2αΓp d 1 2 q » V q 2 α pu ¡ q 2 α q d¡1 2 gpuqdu, q α ¡w t µ VaR α pw t ζq c w t Σw ,
and T α denotes the value of CVaR α pw t ζq when ζ E d p0, Σ, ψq and w t Σw 1.

Remark 1. There exists a slight difference between [START_REF] James | The optimizer's curse: Skepticism and postdecision surprise in decision analysis[END_REF] and the definition in [START_REF] Dobrev | Accurate evaluation of expected shortfall for linear portfolios with elliptically distributed risk factors[END_REF] because here CVaR is defined with respect to the loss function rather than the reward function in [START_REF] Dobrev | Accurate evaluation of expected shortfall for linear portfolios with elliptically distributed risk factors[END_REF].

Assumption 1. For each player i I, the confidence level α i p0, 1q and the uncertainty set D i is a Wasserstein ball centered at an elliptical distribution E |A| pµ i , Σ i , ψ i q with a radius δ i ¡ 0.

Theorem 1. Given Assumption 1, the DRO payoff function (3) is equal to the following reformulation:

u α i i pτq pη τ q t µ i β i pη τ q t Σ i η τ , (8) 
where

β i sup αi pα i ,1q 1 
pα i ¡ α i q rp1 ¡ αi qT αi ¡ p1 ¡ α i qT α i ¡ δ i s . (9) 
Proof. By Proposition 1, we know that the DRO payoff function ( 3) is equal to the optimal value of the optimization problem (5a)-(5c). We consider the reformulation of (5b).

In (5b), the CVaR value is evaluated under the reference distribution Fi of r i . By the translation invariance property of CVaR and Lemma 1, we have

CVaR α i , Fi p¡f i pτ, r i qq CVaR α i , Fi £ ¡ ¡v i pr i q t η τ pη τ q t Σ i η τ CVaR α i , Fi £ ¡pr i ¡ µ i q t η τ pη τ q t Σ i η τ v i ¡ µ t i η τ pη τ q t Σ i η τ T α i v i ¡ µ t i η τ pη τ q t Σ i η τ (10)
where ¡pr i ¡µ i q t η τ c pη τ q t Σ i η τ follows a uni-variate elliptical distribution E 1 p0, 1, ψ i q.

Taking ( 10) into (5b), we have

(5b) ô sup αi 3 pα i ¡ α i qµ t i η τ pη τ q t Σ i η τ rp1 ¡ αi qT αi ¡ p1 ¡ α i qT α i ¡ δ i s ¡ pα i ¡ α i qv i A ¥ 0. (11) 
Also we have αi ¥ α i by (5c), because otherwise p1 ¡ α i qCVaR α i , Fi p¡f i pτ, r i qq ¥ p1 ¡ αi qCVaR αi , Fi p¡f i pτ, r i qq.

Thus combined with (5c), we have

(5b) ¡ (5c) ñ v i ¤ µ t i η τ pη τ q t Σ i η τ sup αi ¥α i 4 rp1 ¡ αi qT αi ¡ p1 ¡ α i qT α i ¡ δ i s αi ¡ α i B , (12) 
that is, (5b) ¡ (5c) ñ [START_REF] Xu | Stochastic nash equilibrium problems: sample average approximation and applications[END_REF].

By Lemma 1 and the translation invariance of VaR, we have

VaR α i , Fi p¡f i pτ, r i qq VaR α i , Fi £ ¡pr i ¡ µ i q t η τ pη τ q t Σ i η τ v i ¡ µ t i η τ pη τ q t Σ i η τ q α i v i ¡ µ t i η τ pη τ q t Σ i η τ , and (5c) ô v i ¤ µ t i η τ ¡ pη τ q t Σ i η τ q α i , (13) 
where by Lemma 1, q α i here is just the quantile at α i of the elliptical distribution. 

p1¡α i q c 2π ¡Φ ¡1 pα i q standard Laplace 1 c 2 p1 ¡ ln p2 ¡ 2α i qq 1 c 2 ln p2 ¡ 2α i q standard Logistic c 3 π ln α i ¡ α i 1¡α i 1¡α i ¡ c 3 π ln p α i 1¡α i q
Suppose that (8) holds. Let Y ¡pr i ¡µ i q t η τ c pη τ q t Σ i η τ . Then, by the definition of CVaR, we have

p1¡α i qCVaR α i , Fi pY q¡p1¡α i qCVaR αi , Fi pY q E Fi Y ¤ 1tY rVaR αi , Fi pY q, VaR α i , Fi pY qsu % » VaR αi , Fi pY q VaR α i , Fi pY q yd Fi pyq » αi α i VaR s, Fi pY qds ¥ pα i ¡ αi qVaR α i , Fi pY q.
The last equality is obtained by the change of variable s Fi pyq, which induces β i ¤ ¡q α i . Hence (8) ñ (13), and ( 8) ñ (5c). With the combination of (11), we have ( 8) ñ (5b). Thus we get (8) ñ (5b), (5c) which completes the proof.

From Theorem 1 we know that given a confidence level α i for each player i I, and any random variable r i elliptically distributed, we can solve the DRO payoff function u α i i analytically according to [START_REF] Xu | Stochastic nash equilibrium problems: sample average approximation and applications[END_REF].

For some specific distributions in the elliptical distribution family, we have particular values of the coefficient β i defined in Theorem 1. By [START_REF] Khokhlov | Conditional value-at-risk for elliptical distributions[END_REF], for each player i, we have Table 1 as for the value T α i and ¡q α i of three widely used elliptical distributions, where Φp¤q is the cdf of the standard Gaussian distribution.

Existence of the Nash equilibrium

Assumption 2. For each player i I, we assume that the radius of the uncertainty set D i satisfies δ i ¥ max αi pα i ,1q rp1 ¡ αi qT αi ¡ p1 ¡ α i qT α i s such that the parameter β i in Theorem 1 meets the condition β i ¤ 0. Remark 2. For each i I, as αi pα i , 1q in β i , the condition δ i ¥ max αi pα i ,1q rp1 ¡ αi qT αi ¡ p1 ¡ α i qT α i s in Assumption 2 is necessary and sufficient for β i ¤ 0. Theorem 2. Given Assumptions 1,2, the DRO payoff function u α i i p¤, τ ¡i q is a concave function of τ i for every τ ¡i X ¡i .

Proof. From the definition of η τ , we have

η τ pη τ paqq aA £ ¹ jI τ j pa j q aA £ τ i pa i q ¹ j$i τ j pa j q aA .
For a given τ ¡i X ¡i and for each a A, each element of η τ is the form expressed as τ i pa i qK a , where K a ± j$i τ j pa j q R is a known coefficient. Therefore, every element of η τ is both convex and concave of τ i for every τ ¡i X ¡i .

Moreover, we know that pη τ q t Σ i η τ is convex of each element of η τ , and each element of η τ is convex of τ i for every τ ¡i X ¡i . Then, pη τ q t Σ i η τ is convex of each element of η τ . By Assumption 2, β i ¤ 0, and thus β i pη τ q t Σ i η τ is concave of each element of η τ . Based on the above results, pη τ q t µ β i pη τ q t Σ i η τ is concave of τ i for every τ ¡i X ¡i .

Therefore, the payoff function u α i i p¤, τ ¡i q is a concave function of τ i for every τ ¡i X ¡i . Lemma 2 ([4, Theorem 1]). For a given confidence level vector α r0, 1s n , assume that for each i I, 1. the payoff function of player i, u α i i : X i ¢ X ¡i Ñ R defined by (3) is a continuous function.

2. the payoff function u α i i p¤, τ ¡i q is a concave function of τ i for every τ ¡i X ¡i .

Then, there always exists a mixed strategy Nash equilibrium of a DRCCG at a confidence level α. Theorem 3. Consider an n-player finite strategic game where the payoff vector r i pr i paqq aA of each player i, i I is a random vector, given Assumptions 1,2, then there always exists a mixed strategy Nash equilibrium.

Proof. Given Assumptions 1,2, by Theorem 2, u α i i p¤, τ ¡i q, i I is a concave function of τ i for every τ ¡i X ¡i . From (8), u α i i p¤, τ ¡i q, i I is a continuous function of τ . That is, both conditions of Lemma 2 are satisfied. Thus, there exists a mixed strategy Nash equilibrium.

Mathematical programming formulation to compute the Nash equilibrium

To compute the Nash equilibrium of a DRCCG, we solve the following convex program, whose global maximizer is the Nash equilibrium of the DRCCG.

Remark 3. Consider the DRCCG whose reference distribution is defined in Theorem 1, for each player i I, and any action profile a i A i ,. The expected payoff u α i i for a fixed strategy τ ¡i can be reformulated by the following optimization program

min τ i ¡β i pη τ q t Σ i η τ ¡ µ t i η τ (14a) s.t. a i A i τ i pa i q 1, (14b) 
τ i pa i q ¥ 0. ( 14c 
)
The dual problem of ( 14) is

max λ i ,v i λ i (15a) s.t. λ i ¤ a¡i A ¡i ¹ jI;j$i τ j pa j q ¡β i pv i q t Σ i v i ¡ µ i pa i , a ¡i q % , (15b) 
}v i } ¤ 1. (15c) 
As ( 14) is an SOCP problem, strong duality holds if [START_REF] Peng | A data-driven distributionally robust game using wasserstein distance[END_REF] has a finite optimal value, i.e., the optimal value of ( 14) is equal to the optimal value of (15). Thus, the optimal policy τ ¦ i of the i-th player can be found by solving the following set of equations

5 ¡β i pη τ q t Σ i η τ ¡ µ t i η τ λ i , p16aq (14b) ¡ (14c), (15b) ¡ (15c). p16bq (16) 
Alternatively, we can solve an optimization problem instead of solving the equilibrium equations by penalizing the violation in the objective function ,i.e., max λ i ,v i ,τ i , i1,...,n iI

λ i β i pη τ q t Σ i η τ µ t i η τ % (17a) s.t. (14b) ¡ (14c), (15b) ¡ (15c), i 1, . . . , n. (17b) 
u α 1 1 , u α 2 2 both increase as δ i converges to 0. In fact, when the radius of Wasserstein ball increases, the model covers more possible situations and thereby presents more robust results. The reduction of the payoffs can be seen as the trade off for the robustness. For the radius δ i 0.5, 0.1 and 0, we choose the results of Nash equilibrium τ 1 , τ 2 and the corresponding payoffs u α 1 1 , u α 2 2 under the standard Gaussian distribution when α i 0.95. We randomly generate 100 groups of Gaussian distributions and take τ 1 , τ 2 , u α 1 1 , u α 2 2 for which we compute the satisfaction probability P K i ppr i q t η τ ¥ u α i i q, where K i is the random Gaussian distribution. Figure 1 shows the values of the satisfaction probability P K 1 under 100 randomly generated Gaussian distributions for player 1 when δ 1 0.5, 0.1, and 0. The results of the players 1 and 2 are similar, thus we present only the player 1 results. From Figure 1, when δ 1 0.5, 0.1, we see that P K 1 for all 100 distributions are beyond 0.95. When δ 1 0, i.e., the distributionally robust model is reduced to the non robust model, there are only 3 random distributions' satisfaction probabilities beyond 0.95. Through comparing the satisfaction probabilities of these three radii, we see the performance of robustness for the solution of Nash equilibrium u α 1 1 . Therefore, it is clear that the robustness of the non robust model is by far less than the distributionally robust one. 
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 1 Figure 1: Values of Satisfaction probability P K1 under 100 randomly generated Gaussian distributions

Table 1 :

 1 The value T α i , ¡q α i of different elliptical distributions

	Distribution	T α i	¡q α i
	standard Gaussian	e ¡	q 2 1¡α i 2

Table 2 :

 2 Nash equilibrium solution and payoff under different radius and tolerance probability

	Distribution	pα 1 , α 2 q δ i	β i	τ 1	τ 2	u α1 1	u α2 2
			0.5 -12.0627 p 2731 10000 , 6166 10000 , 1104 10000 q p 3943 10000 , 2949 10000 , 3108 10000 q -12.4130 -12.8836
	Robust-Gaussian	(0.95,0.95)	10 ¡1 -4.0627 p 3922 10000 , 5257 10000 , 821 10000 q p 4178 10000 , 2252 10000 , 3570 10000 q 2.2079 1.5976
			10 ¡5 -1.6588	(1,0,0)	p 7199 10000 , 0, 2801 10000 q 6.5906 5.0894
	Non robust-Gaussian (0.95,0.95)	0	-1.6449	(1,0,0)	p 7219 10000 , 0, 2781 10000 q 6.6184 5.1198
			0.5	-4.8894 p 3428 10000 , 5759 10000 , 812 10000 q p 3987 10000 , 2522 10000 , 3491 10000 q 0.7406 0.1460
	Robust-Laplace	(0.85,0.85)	10 ¡1 -2.1050	(1,0,0)	p 6712 10000 , 0, 3288 10000 q 5.6730 4.1194
			10 ¡5 -0.8611	(1,0,0)	p 9667 10000 , 0, 333 10000 q 7.9579 6.8917
	Non robust-Laplace (0.85,0.85)	0	-0.8513	(1,0,0)	p 9733 10000 , 0, 267 10000 q 7.9685 6.9153
			0.5	-2.7774 p 7456 10000 , 2058 10000 , 486 10000 q p 5776 10000 , 669 10000 , 3556 10000 q 4.3319 3.3341
	Robust-Logistic	(0.7,0.7)	10 ¡1 -1.2856	(1,0,0)	p 7900 10000 , 0, 2100 10000 q 7.3088 5.9140
			10 ¡5 -0.4744	(0,1,0)	p0, 5010 10000 , 4990 10000 q 10.0532 8.9392
	Non robust-Logistic	(0.7,0.7)	0	-0.4671	(0,1,0)	p0, 5031 10000 , 4969 10000 q 10.0720 8.9555

Numerical experiments

In this section, we carry out a series of numerical tests under three different kinds of reference distributions. We compute the Nash equilibrium and the corresponding payoff of DRCCG by solving the mathematical program [START_REF] Rui | Distributionally robust stochastic optimization with wasserstein distance[END_REF]. Through 100 randomly generated groups of Gaussian distributions, we compare the performances of the Nash equilibrium of different radius δ i and observe the robustness of our model.

We consider a two-players DRCCG example introduced in [START_REF] Vikas | Distributionally robust chanceconstrained games: existence and characterization of nash equilibrium[END_REF], where I t1, 2u, A 1 t1, 2, 3u, A 2 t1, 2, 3u. The mean vectors for both players are µ 1 p10, 9, 11, 8, 12, 10, 7, 8, 13q t , µ 2 p9, 7, 8, 9, 10, 10, 10, 9, 8q t and the covariance matrices for both players are , which are both positive definite. We consider three kinds of reference distributions in elliptical distributions family as the center of the Wasserstein ball in DRCCG, namely Gaussian, Logistic and Laplace distributions respectively. We find the coefficient β i , i I by solving the optimization problem (9) with the function "globalsearch" in MATLAB when the radius δ i 0.5, 10 ¡1 , 10 ¡5 , 0. When δ i 0, the robust model is reduced to the non-robust one, and β i ¡q α i according to the results in Section 3.2 of [START_REF] Vikas | Existence of nash equilibrium for chance-constrained games[END_REF]. We find the Nash equilibrium by solving the optimization problem [START_REF] Rui | Distributionally robust stochastic optimization with wasserstein distance[END_REF] with BARON solver in YALMIP tool box of MATLAB.

In Table 2, We list our computational results of the Nash equilibrium τ i and the corresponding payoffs u α i i for three different elliptical distributions under different radius δ i and confidence probability coefficients α i respectively. From Table 2, we observe that the value of β i converges to ¡q α i when the radius goes to zero, which means the distributionally robust model gradually recovers the non robust one. Correspondingly, the payoff