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Distributionally Robust Chance Constrained Games under
Wasserstein Ball

Tian Xia?, Jia Liu®, Abdel Lisser”

2School of Mathematics and Statistics, Xi’an Jiaotong University, 710049, Xi’an, P. R. China,
b CentraleSupelec, Laboratoire des Signaux et des Systemes, 91190 Gif-sur-Yuvette, France,

Abstract

This paper considers distributionally robust chance constrained games with a Wasserstein
distance based uncertainty set. We assume that the center of the uncertainty set is
an elliptical distribution. We derive a tractable reformulation and an efficient solution
approach to Nash equilibrium of the distributionally robust chance constrained games.
Numerical results show the price and benefit of the robust model compared with the
non-robust model.

Keywords: Chance constrained games, Wasserstein ball, Elliptical distribution, Nash

equilibrium

1. Introduction

The literature on the existence of an equilibrium in game theory started since the pa-
per by John von Neumann [1], who showed the existence of a mixed strategy saddle point
equilibrium for a two-player zero-sum matrix game. Then in 1950, John Nash [2] showed
the existence of a mixed strategy Nash equilibrium for a finite strategic game, which
brought the research on the existence of equilibria in game theory to a new stage. Since
John von Neumann and John Nash, the traditional games with deterministic payoffs of
the players have been widely studied. However, real world problems are significantly sub-
ject to uncertainties. Therefore, games with random payoffs are of increasing concern in
game theory. Recently, Singh et al. [3, 4, 5, 6] initiated the studies on chance constrained
games. By using chance constrained optimization models, we actually consider the ran-

dom games where the players’ payoffs are obtained with a certain confidence. The chance
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constrained payoff represents the maximal threshold such that the random return/payoff
is not less than the threshold with a large probability, e.g., 95% or 90%. In a traditional
chance constrained games, each player should know the exact distribution of the random
return/payoff, or specify an a-priori distribution before making the decision. However,
due to the imperfectness of the historical data, and incompleteness of the information
collection, the estimated a-priori distribution may be biased from the true distribution.
If the player does not consider the ambiguity/impreciseness of the distribution and just
use the traditional chance constraints, he might over-estimate the payoff at the equilib-
rium and makes an inefficient decision in the game[7]. Thus, to reduce the potential
loss in extreme cases, it is natural to consider the ambiguity set of the distribution in the
decision-making model and use the distributionally robust optimization approach to make
a decision against the worst-case distribution. The literature on distributionally robust
chance constrained games (DRCCG) mainly focuses on the existence of Nash equilibrium
when the information to each player is characterized by different kinds of uncertainty
sets. For example, Singh et al. [4] considered DRCCG with a moment-type uncertainty
set. Xu and Zhang [8] considered the convergence of the sample average approximation in
DRCCG. Peng et al. [6] studied DRCCG under the divergence distance based uncertainty
set and showed the existence of Nash equilibrium.

Wasserstain ball is also a kind of important uncertainty set widely used in distribution-
ally robust optimization. Most of the studies conducted to date focuses on the data-driven
case [9, 10, 11, 12, 13, 14], where the reference distribution is a discrete distribution. Xie
[12] gave an exact reformulation of the distributionally robust chance constraint with a
data-driven reference distribution. Liu et al. [15] studied distributionally robust chance
constrained geometric optimization where some of the uncertainty sets are constrained
by the Wasserstein distance under discrete, full, or nonnegative real-space support. The
discrete distributions based data-driven reformulations were generalized by [16, 17] to
Polish spaces and continuous distributions. Shen and Jiang [18] considered the distribu-
tionally robust chance constraint where the reference distribution in the Wasserstein ball
is a Gaussian distribution. Peng et al. [14] studied distributionally robust games with
expected utility functions and data-driven Wasserstein ball. To the best of our knowledge,

DRCCG under Wasserstein distance has not been studied in the literature.



In this paper, we study DRCCG under the Wasserstein ball. We consider the reference
distribution as an elliptical distribution, i.e., a distribution from a large family of continu-
ous distributions. A data driven Wasserstein ball and a continuous reference distribution
play different rules in distributionally robust optimization. The former allows to calibrate
and evaluate the size of the ambiguity set. The later can be viewed as an adjustment of
the over-optimism of the decision maker’s a-priori distribution information. The radius
of the ball reflects the strength of confidence in her/his a-priori information. In many
applications, the decision makers ignore the fact that the a-priori distributions are not
Gaussian.For instance, wind power and electric load forecasting errors are generally not
Gaussian distributed in power system scheduling problems. The stock return rates are
often regarded as high kurtosis and fat-tailed[19]. The elliptical distributions are a broad
family of probability distributions that generalize the multivariate normal distribution,
which thus play an important role in stochastic games.

As far as we know, this paper provides the first contribution which considers an el-
liptical reference distribution in a Wasserstein ball-based distributionally robust game.
We propose a new approach which leads to the condition of the convexity of the chance
constrained payoff with the Wasserstein ball and derive an efficient solution method to
the equilibrium problem of this kind of games.

The paper is organized as follows. We derive the reformulation of the distributionally
robust chance constrained payoff function in Section 3.2 and show the existence of a Nash
equilibrium for DRCCG in Section 3.3. We propose an optimization approach to find
Nash equilibrium of DRCCG in Section 3.4. We carry out numerical tests under some

popular distributions from the elliptical distribution family in Section 4.

2. DRCCG under Wasserstein ball

2.1. Introduction to chance constrained games

We consider a n-player strategic game. Let I = {1,2,...n} denotes the set of players.
For each i € I, A; represents a finite action set of player 7 and its generic element is denoted
by a;. The vector a = (ay, as, ...a,) denotes the action profile of the game. The set of all
action profiles is denoted by the product set A = X _; A;. We denote A_; = X'_, ., 4;,
and a_; = (a1, a9, .., @i_1, 11, .., ay) € A_;. Let X; be the set of mixed strategies of player



7 which is a subset of all probability distributions over the action set A;. A mixed strategy
7; € X; is represented by 7; = (7;(a;))a,en,, where 7;(a;) = 0 is the probability with which
player ¢ chooses an action a; and Zaie A 7;(a;) = 1. The set of all mixed strategy profiles
is denoted by X = X, X; and a mixed strategy profile 7 = (7;);es is a generic element of
X. Denote X _; = X?:l;j;éi X, and 7_; € X_; is a vector of mixed strategies 7;,j # i. We
define (7;,7_;) to be a strategy profile where player i uses the strategy 7; and each other
player j, j # i uses strategy 7;. Denote [;(a) € R the payoff of player i for an action profile
a, and r; € Rl the payoff vector of the game where |A| is the cardinality of set A. For
such mixed strategies games, Nash[2] showed that there always exists a Nash equilibrium.

In some practical applications, the players’ payoffs are random due to several uncer-
tainty sources. Thus, it is natural to study stochastic games by using stochastic opti-
mization approach. Let (2, F, P) be a probability space where [; : 2 — R for each i € I.
We can view the random payoff vector r; as a measurable function r;(w) = ([;(a,w))gea :
Q) — R4 whose distribution is F. Then for a given strategy 7 € X and a scenario w € €,

the random payoff R; of player 7 is

Ri(r,w) = > (li(a,w) ]‘[Tj(aj)> : (1)

acEA jel

We denote vector ™ = (n7(a))aea for short, where n™(a) = []7i(a;). Then R; = (r;)Tn".
1€l

Considering the randomness of the payoff R;, Singh et al. [3] study the following

chance constrained payoft:
u' (1) = sup {v;|Pp((ri) 0" = vi) = ai}, (2)

which is the highest level of the player’s payoff that he/she can attain with at least a
specified level of confidence a; € (0, 1). The confidence level is given in advance and known
to all players. That is, the game we study is non-cooperative with complete information.

When the distribution of r; is known and follows a multivariate normal distribution
with a mean vector p; and a positive definite covariance matrix 3J;, the chance constrained
payoff equals

u(r) = ) (m(a) HTj(%)) S g (1 ),

agA Jel



where ¢~ (+) is the quantile function of a standard normal distribution N (0, 1) ([3], formula

(3.1)).

2.2. Distributionally robust chance constrained games

In many practical situations, the probability distribution of r; is not completely known
to the players. Instead, the players know uncertainty sets D;,¢ € I, where D; is the set
of all possible distributions of r;. We assume that the uncertainty set of each player is
known to all players in the game, and the players consider the worst case of their payofs.

Thus, player 7 holds distributionally robust chance constrained payoff function:
u;* (1) = sup {vl| inf Pr((r)'n" = v;) = ai} , (3)
FGDi

The game is called a distributionally robust chance constrained game (DRCCG) and was
studied in [4, 6]. The set of best response strategies of player i,i € I against a given

strategy profile 7_; is
BR{" (7)) = {1 € X; | Uza? (75, 74) = U?Z (75, 7-4), V1 € Xy}

Definition 1. A strategy profile 7% € X is said to be a Nash equilibrium of a DRCCG for
a given «, if for all i € I, the following inequality holds,

U () 2 (1, 7)Y € X (4)

2.3. Wasserstein distance based uncertainty set

Since the true probability distribution of r;,7 € I is unknown, we replace the true
distribution with a reference one which we might derive from some empirical data.
Thus, we consider the uncertainty set D;,7 € I as the neighbourhood of the reference
distribution E
D; = {F : d,(F, F}) <4},

where 0; > 0 is a pre-specified radius of the uncertainty set D;. d,(-,-) is the Wasserstein

distance and the set D; is known as a Wasserstein ball.



Definition 2. The Wasserstein distance d., is defined by

d(r By =it [ 16~ lrldes deo |

where 11 is the space of all joint distributions of & and & with marginals F and F,
respectively, | - | is the norm defined as || - || := HE:%<)H2 where 3; s a positive definite
covariance matriz of the reference distribution F;. We denote |- |, the dual norm of |||,
e, |- Iw = S ()2 for each i.

3. Reformulation of DRCCG under elliptical reference distributions

3.1. Reformulation of DRCCG

In this section, we concentrate on the reformulation of the payoff function ;" (7),i € I
for given 7 and «, when the uncertainty set D; is a Wasserstein ball centered at an elliptical
distribution.

We introduce the definitions of Value-at-Risk (VaR) and Conditional Value-at-Risk
(CVaR) of a random variable,

VaR, p(X) :=inf {2 : Pp|X < 2] > o},

1
CVaR,, p(X) := min {7 +1

(X )71}
¥ -«

It is well known that both VaR and CVaR are translation invariant, monotone and
positive homogeneous. Additionally, CVaR is subadditive, which is a coherent risk mea-
sure.

Next, we focus on the reformulation of u{"(7) in (3).

Proposition 1. For each player i € I, 6; > 0 and «; € (0,1), suppose that the reference
distribution F; is continuous, then the distributional robust optimal (DRO) payoff (3) is

equal to the optimal value of the following optimization problem:

Sk o0)

st 0+ (1—a)CVaR,, p(—fi(r,rs) < sup {(1 — &)CVaR,, 4 (—fi(r, ri))} (5b)
o 64€[0,1] o

0> VaR&iE(—fi(T, i) (5¢)



—v;+(r; T,7
where fi(T,7;) = —ﬁnt(ﬁ)&?zf

A

E;.

, and X; 1s the covariance matrix of the reference distribution

Proof. By Corollary 1 of [18], the distributionally robust chance constraint Ping Pr((ri)™n™ =
eD;

v;) = o is equivalent to the following group of inequalities,

2+ CVaR,, 5 (= fi(7, 1) < 2B, [(—filr, 1) 7], (Ga)

0= VaR,, p(=fi(7,7:)). (6b)

where f;(7,7;) = _”i+(fi)T"T = utr) T , Y; is the covariance matrix of the reference
I [l \/(r]T)TEmT

distribution F;. Therefore the payoff (3) is equal to the maximal v; subjecting to (6a)
and (6b). Meanwhile,
(6a) & 25+ CVaR, ;. (=fi(r,1:) < 2B [ fulr, i) - H{=filr,13) = 0}],

1—ay 1—ay

A 15—% + CVaR,, 5 (—fi(1,m:)) < 1_;% ?ug Eg [=fi(r,ri) - W= fi(m, 1) = ti}],
i€

< 0+ (1 —a;)CVaR,, g (—fi(1,m:)) < sup Ep [—fi(r,ri) - H{=fi(r,7m5) = t:}],

t;€

& 6+ (1= a)CVaR,, j, (—fi(r, 7)) < sup{ (1 = g:(1))CVaR,,  j, (~ (7. r) },

teR

S 0+ (1= a)COVaR, 4 (~fi(r.ry)) < sup {(1—@)CVaRy, s (~filr,r) }

&;€[0,1]
where g;(t) = 1 — P [~ fi(7,7:) = t].

The first equivalence is by the definition of [-]*. The second equivalence comes from
the fact that ¢; reaches its optimal value at 0. The third equivalence is by multiplying
(1 — a;) to both sides of the inequality. The forth equivalence is a reformulation by the
definition of CVaR. The last equivalence is due to the replacement of variable ¢ by its
quantile &; = ¢;(t), which works for the assumption that F} is continuous such that g;(t)

is a continuous function.

O

3.2. Reformulation of DRCCG under elliptical reference distributions
In this section, each player ¢ uses an elliptical reference distribution and considers a

worst-case payoff over a Wasserstein ball centered at an elliptical distribution.

7



Definition 3 ([20]). A d-dimensional vector X € R® follows an elliptical distribution
Ea(p, 3, 1) if the probability density function (PDF) is f(z) = |S|"2g((z—p) TS (z—p)),
where € R is the location parameter, ¥ € R4 is the dispersion matrix, 1 is the
characteristic generator and g : R, — 0 s the density generator such that the Fourier

transform of g(|x|?), as a generalized function, is equal to ¥(|€]?).

By [20], for any matrix A € R¥*? and any vector b € RY, we have AX +b ~ Ex(Ap +
b, ATSIA, ).

Lemma 1 ([21, Theorem 1]). For an elliptical distributed vector { ~ Eq(u, 3,1), a real

vector w € RY, and o € (0,1),

CVaR, (w'¢) = w'pu + VwTSwT,, (7)
where i
2 ® o\ d=1 —w' p+ VaR,(w'()
a = —— — 2 du, qo = :
QQF(d;I) Lg (u Q()c) g(u’) u, g wTEw

and T,, denotes the value of CVaR,(wT () when ¢ ~ E4(0,%,4) and w™Sw = 1.

Remark 1. There ezists a slight difference between (7) and the definition in [21] because

here CVaR is defined with respect to the loss function rather than the reward function in

[21].

Assumption 1. For each playeri € I, the confidence level a; € (0,1) and the uncertainty
set D; 1s a Wasserstein ball centered at an elliptical distribution E|A|(,ui,2i,¢i) with a

radius 6; > 0.

Theorem 1. Given Assumption 1, the DRO payoff function (3) is equal to the following

reformulation.:
ugt () = (7)) i + B/ (") TSy, 8)
where
B sup ———[(1— @) T, — (1 — @) T, — 5], (9)



Proof. By Proposition 1, we know that the DRO payoff function (3) is equal to the optimal
value of the optimization problem (5a)-(5¢). We consider the reformulation of (5b).
In (5b), the CVaR value is evaluated under the reference distribution E; of r;. By the

translation invariance property of CVaR and Lemma 1, we have

CVaR,, ( fi(r,r)) = CVaR, g (—M>

T TE@' T
(™) T %in (10)
_ VAR, — (s /le) i /i ", i Ul
’ () T Zm” \/ ST \/ S
where % follows a uni-variate elliptical distribution E4(0, 1, ).
nr

Taking (10) into (5b), we have
(5b) <
sup { (@ — @) 0" + /07 TS [(1 = 60)Ta, = (1= )T, = 61] — (@ — aw)uif > 0.

Z (11)

Also we have &; = «; by (5¢), because otherwise
(I —)CVaR,, g (—fi(r,1:)) = (1 — &;)CVaR, g (—fi(7, 7))

Thus combined with (5¢), we have

(5b) — (5c) = v; < pi 0" + /(") TSm” sup

Qizay

{[(1 — &;)Ts, - (1 — )T, — & } . (12)

that is, (5b) — (5¢) = (8).

By Lemma 1 and the translation invariance of VaR, we have

(ri — pi) ™" — i — i
VaR A(1,71)) = VaR,_p i A e L A
o b (= Ji(T573)) B ( T %Tz - = (a, %Tz -

and
(5c) e v < pin” — /(") TEin" ga,, (13)

where by Lemma 1, g,, here is just the quantile at «a; of the elliptical distribution.



Table 1: The value T,,,, —q,, of different elliptical distributions

Distribution T,, — o,
standard Gaussian % —0 M)
standard Laplace \%(1 —In(2 —.204,-)) \/LE In (2 —2a)
standard Logistic \/7?: In 0”1__—;171 —\/7?: In (%)

)T

Suppose that (8) holds. Let Y = =207 Then by the definition of CVaR, we

()T
have

i

(Lﬂmcwmmﬁoq—u—@xwm%MJY):EﬁPﬁ1@/ewﬁgﬂﬁyywmmﬁaﬂﬂ

VaRdi 7 (Y) R &
:f mm@:fwmpwmwﬂm—@wwuﬂn.
VaR, 7 (Y) ; o o

Q

~

The last equality is obtained by the change of variable s = F;(y), which induces ; < —¢a,.
Hence (8) = (13), and (8) = (5¢). With the combination of (11), we have (8) = (5b).
Thus we get (8) = (5b), (5¢) which completes the proof.

O

From Theorem 1 we know that given a confidence level a; for each player ¢ € I, and
any random variable r; elliptically distributed, we can solve the DRO payoff function ;"
analytically according to (8).

For some specific distributions in the elliptical distribution family, we have particular
values of the coefficient 5; defined in Theorem 1. By [22], for each player i, we have Table
1 as for the value T,, and —q,, of three widely used elliptical distributions, where ®(-) is
the cdf of the standard Gaussian distribution.

3.8. FEuxistence of the Nash equilibrium

Assumption 2. For each player i € I, we assume that the radius of the uncertainty set

D; satisfies 0; = Ir%ax )[(1 — &;)Ta, — (1 — a;)Ty,] such that the parameter 3; in Theorem
5&1‘6 ag,l

1 meets the condition 3; < 0.

10



Remark 2. For eachi€ I, as &; € (a;, 1) in B;, the condition §; > max [(1 — &;)Ts, —

die(ai,l)
(1 — )Ty, in Assumption 2 is necessary and sufficient for 5; < 0.
Theorem 2. Given Assumptions 1,2, the DRO payoff function u*(-,7_;) is a concave

function of T; for every t_; € X_;.

Proof. From the definition of 1", we have

N =(n"(a))pea = (HU(%‘)) = (Ti(avz)HTj(ay‘)> :

Jel j#i
For a given 7_; € X_; and for each a € A, each element of 1" is the form expressed as
7;(a;) Ky, where K, = | [ 75(a;) € R is a known coefficient. Therefore, every element of 1™
is both convex and corj;é;ve of 7; for every 7_; € X_;.

Moreover, we know that \/W is convex of each element of 7™, and each element
of n™ is convex of 7; for every 7 ; € X ;. Then, \/W is convex of each element of
7”. By Assumption 2, §; < 0, and thus Bi\/(T]T)T—EmT is concave of each element of 77.

Based on the above results, (n7) T+ ﬁz\/(nT)TTmT is concave of 7; for every 7_; € X _;.

Therefore, the payoff function ;" (-, 7_;) is a concave function of 7; for every 7 ; € X ;. O

Lemma 2 ([4, Theorem 1]). For a given confidence level vector a € [0,1]", assume that
for each i€ 1,

1. the payoff function of player i, u;* : X; x X_; — R defined by (3) is a continuous
function.

2. the payoff function ui" (-, 7_;) is a concave function of T; for every T_; € X ;.

Then, there always exists a mized strateqy Nash equilibrium of a DRCCG at a confi-

dence level .

Theorem 3. Consider an n-player finite strategic game where the payoff vector r; =
(ri(a)),es of each player i,i € I is a random vector, given Assumptions 1,2, then there

always exists a mixed strateqy Nash equilibrium.

Proof. Given Assumptions 1,2, by Theorem 2, w;*(-,7;),i € I is a concave function of
7; for every 7, € X_;. From (8), u"(-,7_;),7 € I is a continuous function of 7. That

is, both conditions of Lemma 2 are satisfied. Thus, there exists a mixed strategy Nash

equilibrium. O

11



3.4. Mathematical programming formulation to compute the Nash equilibrium

To compute the Nash equilibrium of a DRCCG, we solve the following convex program,

whose global maximizer is the Nash equilibrium of the DRCCG.

Remark 3. Consider the DRCCG whose reference distribution is defined in Theorem 1,
for each player i € I, and any action profile a; € A;,. The expected payoff ui® for a fized

strateqy T_; can be reformulated by the following optimization program

min  —Bin/(n7) TS — pl " (14a)
s.t. Z 7i(a;) = 1, (14b)
aiEAi
7;(a;) = 0. (14c)
The dual problem of (14) is
max \; (15a)

Aiyvi
s.t. >\z < Z 1_[ Tj(aj) I:—ﬁz (Ui)TEZ‘Ui - ,uz-(ai,a_i)] s (15b)
a_;€A_; jel;j+#i
il < 1. (15¢)

As (14) is an SOCP problem, strong duality holds if (14) has a finite optimal value,
i.e., the optimal value of (14) is equal to the optimal value of (15). Thus, the optimal

policy 7;* of the i-th player can be found by solving the following set of equations

{ =B/ () T8 — i 0™ = N, (16a) (16)

(14b) — (14c), (15b) — (15¢). (16b)
Alternatively, we can solve an optimization problem instead of solving the equilibrium
equations by penalizing the violation in the objective function ,i.e.,

max 3 [N+ B/ ) TS+ il | (17a)

AiyViyTiy i=1,..m  ~
i€l

s.t. (14b) — (14c¢), (15b) — (15¢), i =1,...,n. (17b)

12



4. Numerical experiments

In this section, we carry out a series of numerical tests under three different kinds of
reference distributions. We compute the Nash equilibrium and the corresponding payoff
of DRCCG by solving the mathematical program (17). Through 100 randomly generated
groups of Gaussian distributions, we compare the performances of the Nash equilibrium
of different radius d; and observe the robustness of our model.

We consider a two-players DRCCG example introduced in [4], where [ = {1,2}, A, =
{1,2,3}, Ay = {1, 2, 3}. The mean vectors for both players are y; = (10,9,11,8,12,10,7,8,13)7, yy =
(9,7,8,9,10,10,10,9,8)T and the covariance matrices for both players are

6 4 3 3 2 3 4 2 4 /633332432
46 3433323 36 33 22334
33842 33 24 3363 33434
3446 2333 2 33363 2233
X1=123 226 2 43 3|, Y=[32336422 3],
333326 3 34 223246 3 34
4 33 3 43843 4 3 42 236 3 2
22233 3 46 4 33332336 3
4 3 4 2 3 4 3 4 8 244334236

which are both positive definite. We consider three kinds of reference distributions in
elliptical distributions family as the center of the Wasserstein ball in DRCCG, namely
Gaussian, Logistic and Laplace distributions respectively. We find the coefficient 5;,i € 1
by solving the optimization problem (9) with the function “globalsearch” in MATLAB
when the radius §; = 0.5,1071,107°,0. When 6; = 0, the robust model is reduced to the
non-robust one, and §; = —q,, according to the results in Section 3.2 of [3]. We find
the Nash equilibrium by solving the optimization problem (17) with BARON solver in
YALMIP tool box of MATLAB.

In Table 2, We list our computational results of the Nash equilibrium 7; and the cor-
responding payoffs ug* for three different elliptical distributions under different radius J;
and confidence probability coefficients «; respectively. From Table 2, we observe that the
value of f3; converges to —q,, when the radius goes to zero, which means the distribu-

tionally robust model gradually recovers the non robust one. Correspondingly, the payoff

13



ui!, uy? both increase as 9; converges to 0. In fact, when the radius of Wasserstein ball
increases, the model covers more possible situations and thereby presents more robust

results. The reduction of the payoffs can be seen as the trade off for the robustness.

Table 2: Nash equilibrium solution and payoff under different radius and tolerance proba-
bility

s odped : o o
Distribution (0, ag) 0; B; T Ty uf?! usy”®

0.5 |-12.0627 | (2L 6166 " 104y ) (5943 2049 "3108.) | 19 4130 | -12.8836

10000 10000’ 10000 10000 100007 10000

Robust-Gaussian (0957095) 10—1 ~4.0627 ( 3922 5257 821 ) ( 4178 2252 3570 ) 2.2079 1.5976

10000 10000’ 10000 10000 10000’ 10000

107° | -1.6588 (1,0,0) (15,0, 295) | 6.5906 | 5.0894

Non robust-Gaussian | (0.95,0.95) | 0 | -1.6449 (1,0,0) (12220, 285 6.6184 | 5.1198

10000’

05 | -4-8894 | (555 tooon To0on) | (foooo* Tonoo* tooop) | 0-7406 | 0.1460

Robust-Laplace (0.85,0.85) | 10~' | -2.1050 (1,0,0) (SE2.0, 2288 5.6730 | 4.1194
105 | -0.8611 (1,0,0) (26T 38y | 79579 | 6.8917

Non robust-Laplace | (0.85,0.85) | 0 | -0.8513 (1,0,0) (08,0, 1200) | 7.9685 | 6.9153

7456 2058 486 5776 669 3556
0.5 -2.7774 (100000’ 1000007 10000) (10000’ 10000’ 10000) 4.3319 3.3341

Robust-Logistic (0.7,0.7) | 107! | -1.2856 (1,0,0) (fom%,0, &0%) | 7.3088 | 5.9140

107° | -0.4744 (0,1,0) (0, st oo06) | 10.0532 | 8.9392

Non robust-Logistic | (0.7,0.7) | 0 | -0.4671 (0,1,0) (0, 2BL -86%) | 10.0720 | 8.9555

For the radius 6; = 0.5,0.1 and 0, we choose the results of Nash equilibrium 7, 75 and
the corresponding payoffs u{", u5? under the standard Gaussian distribution when «a; =
0.95. We randomly generate 100 groups of Gaussian distributions and take 7, 7o, ui™*, uy?
for which we compute the satisfaction probability Py, ((r;)™n™ = uf?), where K; is the
random Gaussian distribution. Figure 1 shows the values of the satisfaction probabil-
ity Py, under 100 randomly generated Gaussian distributions for player 1 when §; =
0.5,0.1, and 0. The results of the players 1 and 2 are similar, thus we present only the
player 1 results. From Figure 1, when §; = 0.5,0.1, we see that Py, for all 100 distribu-
tions are beyond 0.95. When §; = 0, i.e., the distributionally robust model is reduced
to the non robust model, there are only 3 random distributions’ satisfaction probabilities
beyond 0.95. Through comparing the satisfaction probabilities of these three radii, we see

the performance of robustness for the solution of Nash equilibrium u{*. Therefore, it is

14



clear that the robustness of the non robust model is by far less than the distributionally

robust one.

0.95

Satisfaction N \

probability NN

0.9

0.85
05 0.1 0

Radius

Figure 1: Values of Satisfaction probability Pk, under 100 randomly generated Gaussian distributions

Conclusion

In this paper, we study DRCCG under the Wasserstein ball, where the reference dis-
tribution is an elliptical distribution. We prove the existence of a Nash equilibrium of DR-
CCG and propose an optimization approach to compute the Nash equilibrium. Through
generating random distributions, we compare the robustness of our distributionally robust
model with the non robust one. Considering skewed and non-linearly dependent reference

distribution is a promising topic for further research.
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