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Abstract

This paper considers distributionally robust chance constrained games with a Wasserstein

distance based uncertainty set. We assume that the center of the uncertainty set is

an elliptical distribution. We derive a tractable reformulation and an efficient solution

approach to Nash equilibrium of the distributionally robust chance constrained games.

Numerical results show the price and benefit of the robust model compared with the

non-robust model.

Keywords: Chance constrained games, Wasserstein ball, Elliptical distribution, Nash

equilibrium

1. Introduction

The literature on the existence of an equilibrium in game theory started since the pa-

per by John von Neumann [1], who showed the existence of a mixed strategy saddle point

equilibrium for a two-player zero-sum matrix game. Then in 1950, John Nash [2] showed

the existence of a mixed strategy Nash equilibrium for a finite strategic game, which

brought the research on the existence of equilibria in game theory to a new stage. Since

John von Neumann and John Nash, the traditional games with deterministic payoffs of

the players have been widely studied. However, real world problems are significantly sub-

ject to uncertainties. Therefore, games with random payoffs are of increasing concern in

game theory. Recently, Singh et al. [3, 4, 5, 6] initiated the studies on chance constrained

games. By using chance constrained optimization models, we actually consider the ran-

dom games where the players’ payoffs are obtained with a certain confidence. The chance
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constrained payoff represents the maximal threshold such that the random return/payoff

is not less than the threshold with a large probability, e.g., 95% or 90%. In a traditional

chance constrained games, each player should know the exact distribution of the random

return/payoff, or specify an a-priori distribution before making the decision. However,

due to the imperfectness of the historical data, and incompleteness of the information

collection, the estimated a-priori distribution may be biased from the true distribution.

If the player does not consider the ambiguity/impreciseness of the distribution and just

use the traditional chance constraints, he might over-estimate the payoff at the equilib-

rium and makes an inefficient decision in the game[7]. Thus, to reduce the potential

loss in extreme cases, it is natural to consider the ambiguity set of the distribution in the

decision-making model and use the distributionally robust optimization approach to make

a decision against the worst-case distribution. The literature on distributionally robust

chance constrained games (DRCCG) mainly focuses on the existence of Nash equilibrium

when the information to each player is characterized by different kinds of uncertainty

sets. For example, Singh et al. [4] considered DRCCG with a moment-type uncertainty

set. Xu and Zhang [8] considered the convergence of the sample average approximation in

DRCCG. Peng et al. [6] studied DRCCG under the divergence distance based uncertainty

set and showed the existence of Nash equilibrium.

Wasserstain ball is also a kind of important uncertainty set widely used in distribution-

ally robust optimization. Most of the studies conducted to date focuses on the data-driven

case [9, 10, 11, 12, 13, 14], where the reference distribution is a discrete distribution. Xie

[12] gave an exact reformulation of the distributionally robust chance constraint with a

data-driven reference distribution. Liu et al. [15] studied distributionally robust chance

constrained geometric optimization where some of the uncertainty sets are constrained

by the Wasserstein distance under discrete, full, or nonnegative real-space support. The

discrete distributions based data-driven reformulations were generalized by [16, 17] to

Polish spaces and continuous distributions. Shen and Jiang [18] considered the distribu-

tionally robust chance constraint where the reference distribution in the Wasserstein ball

is a Gaussian distribution. Peng et al. [14] studied distributionally robust games with

expected utility functions and data-driven Wasserstein ball. To the best of our knowledge,

DRCCG under Wasserstein distance has not been studied in the literature.
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In this paper, we study DRCCG under the Wasserstein ball. We consider the reference

distribution as an elliptical distribution, i.e., a distribution from a large family of continu-

ous distributions. A data driven Wasserstein ball and a continuous reference distribution

play different rules in distributionally robust optimization. The former allows to calibrate

and evaluate the size of the ambiguity set. The later can be viewed as an adjustment of

the over-optimism of the decision maker’s a-priori distribution information. The radius

of the ball reflects the strength of confidence in her/his a-priori information. In many

applications, the decision makers ignore the fact that the a-priori distributions are not

Gaussian.For instance, wind power and electric load forecasting errors are generally not

Gaussian distributed in power system scheduling problems. The stock return rates are

often regarded as high kurtosis and fat-tailed[19]. The elliptical distributions are a broad

family of probability distributions that generalize the multivariate normal distribution,

which thus play an important role in stochastic games.

As far as we know, this paper provides the first contribution which considers an el-

liptical reference distribution in a Wasserstein ball-based distributionally robust game.

We propose a new approach which leads to the condition of the convexity of the chance

constrained payoff with the Wasserstein ball and derive an efficient solution method to

the equilibrium problem of this kind of games.

The paper is organized as follows. We derive the reformulation of the distributionally

robust chance constrained payoff function in Section 3.2 and show the existence of a Nash

equilibrium for DRCCG in Section 3.3. We propose an optimization approach to find

Nash equilibrium of DRCCG in Section 3.4. We carry out numerical tests under some

popular distributions from the elliptical distribution family in Section 4.

2. DRCCG under Wasserstein ball

2.1. Introduction to chance constrained games

We consider a n-player strategic game. Let I � t1, 2, ...nu denotes the set of players.

For each i P I, Ai represents a finite action set of player i and its generic element is denoted

by ai. The vector a � pa1, a2, ...anq denotes the action profile of the game. The set of all

action profiles is denoted by the product set A ����n
i�1Ai. We denote A�i �

���n
j�1;j�iAj,

and a�i � pa1, a2, .., ai�1, ai�1, .., anq P A�i. Let Xi be the set of mixed strategies of player
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i which is a subset of all probability distributions over the action set Ai. A mixed strategy

τi P Xi is represented by τi � pτipaiqqaiPAi
, where τipaiq ¥ 0 is the probability with which

player i chooses an action ai and
°

aiPAi
τipaiq � 1. The set of all mixed strategy profiles

is denoted by X ����n
i�1Xi and a mixed strategy profile τ � pτiqiPI is a generic element of

X. Denote X�i �
���n

j�1;j�iXj and τ�i P X�i is a vector of mixed strategies τj, j � i. We

define pτ̂i, τ�iq to be a strategy profile where player i uses the strategy τ̂i and each other

player j, j � i uses strategy τj. Denote lipaq P R the payoff of player i for an action profile

a, and ri P R|A| the payoff vector of the game where |A| is the cardinality of set A. For

such mixed strategies games, Nash[2] showed that there always exists a Nash equilibrium.

In some practical applications, the players’ payoffs are random due to several uncer-

tainty sources. Thus, it is natural to study stochastic games by using stochastic opti-

mization approach. Let pΩ,F , P q be a probability space where li : Ω Ñ R for each i P I.
We can view the random payoff vector ri as a measurable function ripωq � plipa, ωqqaPA :

ΩÑ R|A|, whose distribution is F. Then for a given strategy τ P X and a scenario ω P Ω,

the random payoff Ri of player i is

Ripτ, ωq �
¸
aPA

�
lipa, ωq

¹
jPI

τjpajq
�
. (1)

We denote vector ητ � pητ paqqaPA for short, where ητ paq �±
iPI
τipaiq. Then Ri � priqJητ .

Considering the randomness of the payoff Ri, Singh et al. [3] study the following

chance constrained payoff:

uαi
i pτq � sup

 
vi|PF ppriqJητ ¥ viq ¥ αi

(
, (2)

which is the highest level of the player’s payoff that he/she can attain with at least a

specified level of confidence αi P p0, 1q. The confidence level is given in advance and known

to all players. That is, the game we study is non-cooperative with complete information.

When the distribution of ri is known and follows a multivariate normal distribution

with a mean vector µi and a positive definite covariance matrix Σi, the chance constrained

payoff equals

uαi
i pτq �

¸
aPA

�
µipaq

¹
jPI

τjpajq
�
� }Σ

1
2
i η

τ}2ϕ�1p1� αiq,
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where ϕ�1p�q is the quantile function of a standard normal distributionNp0, 1q ([3], formula

(3.1)).

2.2. Distributionally robust chance constrained games

In many practical situations, the probability distribution of ri is not completely known

to the players. Instead, the players know uncertainty sets Di, i P I, where Di is the set

of all possible distributions of ri. We assume that the uncertainty set of each player is

known to all players in the game, and the players consider the worst case of their payoffs.

Thus, player i holds distributionally robust chance constrained payoff function:

uαi
i pτq � sup

"
vi| inf

FPDi

PF ppriqJητ ¥ viq ¥ αi

*
, (3)

The game is called a distributionally robust chance constrained game (DRCCG) and was

studied in [4, 6]. The set of best response strategies of player i, i P I against a given

strategy profile τ�i is

BRαi
i pτ�iq � tτ�i P Xi | uαi

i pτ�i , τ�iq ¥ uαi
i pτi, τ�iq, @τi P Xiu .

Definition 1. A strategy profile τ� P X is said to be a Nash equilibrium of a DRCCG for

a given α, if for all i P I, the following inequality holds,

uαi
i pτ�i , τ��iq ¥ uαi

i pτi, τ��iq, @τi P Xi. (4)

2.3. Wasserstein distance based uncertainty set

Since the true probability distribution of ri, i P I is unknown, we replace the true

distribution with a reference one which we might derive from some empirical data.

Thus, we consider the uncertainty set Di, i P I as the neighbourhood of the reference

distribution F̂i:

Di � tF : dwpF, F̂iq ¤ δiu,
where δi ¡ 0 is a pre-specified radius of the uncertainty set Di. dwp�, �q is the Wasserstein

distance and the set Di is known as a Wasserstein ball.
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Definition 2. The Wasserstein distance dw is defined by

dwpF, F̂iq � inf
πPΠ

"»
Ω�Ω

}ξ1 � ξ2}πpdξ1, dξ2q
*
,

where Π is the space of all joint distributions of ξ1 and ξ2 with marginals F and F̂i

respectively, } � } is the norm defined as } � } :� }Σ� 1
2

i p�q}2 where Σi is a positive definite

covariance matrix of the reference distribution F̂i. We denote } � }� the dual norm of } � },
i.e., } � }� � }Σ

1
2
i p�q}2 for each i.

3. Reformulation of DRCCG under elliptical reference distributions

3.1. Reformulation of DRCCG

In this section, we concentrate on the reformulation of the payoff function uαi
i pτq, i P I

for given τ and α, when the uncertainty setDi is a Wasserstein ball centered at an elliptical

distribution.

We introduce the definitions of Value-at-Risk (VaR) and Conditional Value-at-Risk

(CVaR) of a random variable,

VaRα,F pXq :� inf tx : PF rX ¤ xs ¥ αu ,

CVaRα,F pXq :� min
γ

"
γ � 1

1� α
EF rpX � γq�s

*
.

It is well known that both VaR and CVaR are translation invariant, monotone and

positive homogeneous. Additionally, CVaR is subadditive, which is a coherent risk mea-

sure.

Next, we focus on the reformulation of uαi
i pτq in (3).

Proposition 1. For each player i P I, δi ¡ 0 and αi P p0, 1q, suppose that the reference

distribution F̂i is continuous, then the distributional robust optimal (DRO) payoff (3) is

equal to the optimal value of the following optimization problem:

max
α̂i,viPR

vi (5a)

s.t. δi � p1� αiqCVaRαi,F̂i
p�fipτ, riqq ¤ sup

α̂iPr0,1s

!
p1� α̂iqCVaRα̂i,F̂i

p�fipτ, riqq
)
,(5b)

0 ¥ VaRαi,F̂i
p�fipτ, riqq (5c)
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where fipτ, riq � �vi�priqJητ?
pητ qJΣiητ

, and Σi is the covariance matrix of the reference distribution

F̂i.

Proof. By Corollary 1 of [18], the distributionally robust chance constraint inf
FPDi

PF ppriqJητ ¥
viq ¥ αi is equivalent to the following group of inequalities,

δi
1�αi

� CVaRαi,F̂i
p�fipτ, riqq ¤ 1

1�αi
EF̂i

rp�fipτ, riqq�s , (6a)

0 ¥ VaRαi,F̂i
p�fipτ, riqq. (6b)

where fipτ, riq � �vi�priqJητ
}ητ }� � �vi�priqJητ?

pητ qJΣiητ
, Σi is the covariance matrix of the reference

distribution F̂i. Therefore the payoff (3) is equal to the maximal vi subjecting to (6a)

and (6b). Meanwhile,

(6a) ô δi
1�αi

� CVaRαi,F̂i
p�fipτ, riqq ¤ 1

1�αi
EF̂i

r�fipτ, riq � 1t�fipτ, riq ¥ 0us,

ô δi
1�αi

� CVaRαi,F̂i
p�fipτ, riqq ¤ 1

1�αi
sup
tiPR

EF̂i
r�fipτ, riq � 1t�fipτ, riq ¥ tius,

ô δi � p1� αiqCVaRαi,F̂i
p�fipτ, riqq ¤ sup

tiPR
EF̂i

r�fipτ, riq � 1t�fipτ, riq ¥ tius,

ô δi � p1� αiqCVaRαi,F̂i
p�fipτ, riqq ¤ sup

tPR

!
p1� giptqqCVaRgiptq,F̂i

p�fipτ, riqq
)
,

,

ô δi � p1� αiqCVaRαi,F̂i
p�fipτ, riqq ¤ sup

α̂iPr0,1s

!
p1� α̂iqCVaRα̂i,F̂i

p�fipτ, riqq
)
,

where giptq � 1� PF̂i
r�fipτ, riq ¥ ts.

The first equivalence is by the definition of r�s�. The second equivalence comes from

the fact that ti reaches its optimal value at 0. The third equivalence is by multiplying

p1 � αiq to both sides of the inequality. The forth equivalence is a reformulation by the

definition of CVaR. The last equivalence is due to the replacement of variable t by its

quantile α̂i � giptq, which works for the assumption that F̂i is continuous such that giptq
is a continuous function.

3.2. Reformulation of DRCCG under elliptical reference distributions

In this section, each player i uses an elliptical reference distribution and considers a

worst-case payoff over a Wasserstein ball centered at an elliptical distribution.
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Definition 3 ([20]). A d-dimensional vector X P Rd follows an elliptical distribution

Edpµ,Σ, ψq if the probability density function (PDF) is fpxq � |Σ|� 1
2 gppx�µqJΣ�1px�µqq,

where µ P Rd is the location parameter, Σ P Rd�d is the dispersion matrix, ψ is the

characteristic generator and g : R� Ñ 0 is the density generator such that the Fourier

transform of gp|x|2q, as a generalized function, is equal to ψp|ξ|2q.

By [20], for any matrix A P RN�d and any vector b P RN , we have AX � b � ENpAµ�
b, AJΣA,ψq.

Lemma 1 ([21, Theorem 1]). For an elliptical distributed vector ζ � Edpµ,Σ, ψq, a real

vector w P Rd, and α P p0, 1q,

CVaRαpwJζq � wJµ�
?
wJΣwTα, (7)

where

Tα � π
d�1
2

2αΓpd�1
2
q
» 8

q2α

pu� q2αq
d�1
2 gpuqdu, qα � �wJµ� VaRαpwJζq?

wJΣw
,

and Tα denotes the value of CVaRαpwJζ̃q when ζ̃ � Edp0,Σ, ψq and wJΣw � 1.

Remark 1. There exists a slight difference between (7) and the definition in [21] because

here CVaR is defined with respect to the loss function rather than the reward function in

[21].

Assumption 1. For each player i P I, the confidence level αi P p0, 1q and the uncertainty

set Di is a Wasserstein ball centered at an elliptical distribution E|A|pµi,Σi, ψiq with a

radius δi ¡ 0.

Theorem 1. Given Assumption 1, the DRO payoff function (3) is equal to the following

reformulation:

uαi
i pτq � pητ qJµi � βi

a
pητ qJΣiητ , (8)

where

βi � sup
α̂iPpαi,1q

1

pα̂i � αiq rp1� α̂iqTα̂i
� p1� αiqTαi

� δis . (9)
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Proof. By Proposition 1, we know that the DRO payoff function (3) is equal to the optimal

value of the optimization problem (5a)-(5c). We consider the reformulation of (5b).

In (5b), the CVaR value is evaluated under the reference distribution F̂i of ri. By the

translation invariance property of CVaR and Lemma 1, we have

CVaRαi,F̂i
p�fipτ, riqq � CVaRαi,F̂i

�
��vi � priqJητapητ qJΣiητ

�

� CVaRαi,F̂i

�
�pri � µiqJητapητ qJΣiητ

�
� vi � µJi η

τapητ qJΣiητ
� Tαi

� vi � µJi η
τapητ qJΣiητ

(10)

where �pri�µiqJητ?
pητ qJΣiητ

follows a uni-variate elliptical distribution E1p0, 1, ψiq.
Taking (10) into (5b), we have

(5b)ô
sup
α̂i

!
pα̂i � αiqµJi ητ �

apητ qJΣiητ rp1� α̂iqTα̂i
� p1� αiqTαi

� δis � pα̂i � αiqvi
)
¥ 0.

(11)

Also we have α̂i ¥ αi by (5c), because otherwise

p1� αiqCVaRαi,F̂i
p�fipτ, riqq ¥ p1� α̂iqCVaRα̂i,F̂i

p�fipτ, riqq.

Thus combined with (5c), we have

(5b)� (5c)ñ vi ¤ µJi η
τ �

a
pητ qJΣiητ sup

α̂i¥αi

"rp1� α̂iqTα̂i
� p1� αiqTαi

� δis
α̂i � αi

*
, (12)

that is, (5b)� (5c)ñ (8).

By Lemma 1 and the translation invariance of VaR, we have

VaRαi,F̂i
p�fipτ, riqq � VaRαi,F̂i

�
�pri � µiqJητapητ qJΣiητ

�
� vi � µJi η

τapητ qJΣiητ
� qαi

� vi � µJi η
τapητ qJΣiητ
,

and

(5c)ô vi ¤ µJi η
τ �

a
pητ qJΣiητqαi

, (13)

where by Lemma 1, qαi
here is just the quantile at αi of the elliptical distribution.
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Table 1: The value Tαi
,�qαi

of different elliptical distributions

Distribution Tαi
�qαi

standard Gaussian e�
q21�αi

2

p1�αiq
?
2π

�Φ�1pαiq
standard Laplace 1?

2
p1� ln p2� 2αiqq 1?

2
ln p2� 2αiq

standard Logistic
?
3
π
ln αi

�
αi

1�αi

1�αi
�
?
3
π
ln p αi

1�αi
q

Suppose that (8) holds. Let Y � �pri�µiqJητ?
pητ qJΣiητ

. Then, by the definition of CVaR, we

have

p1�αiqCVaRαi,F̂i
pY q�p1�α̂iqCVaRα̂i,F̂i

pY q � EF̂i

�
Y � 1tY P rVaRα̂i,F̂i

pY q,VaRαi,F̂i
pY qsu

�

�
» VaRα̂i,F̂i

pY q

VaRαi,F̂i
pY q

ydF̂ipyq �
» α̂i

αi

VaRs,F̂i
pY qds ¥ pαi � α̂iqVaRαi,F̂i

pY q.

The last equality is obtained by the change of variable s � F̂ipyq, which induces βi ¤ �qαi
.

Hence (8) ñ (13), and (8) ñ (5c). With the combination of (11), we have (8) ñ (5b).

Thus we get (8)ñ (5b), (5c) which completes the proof.

From Theorem 1 we know that given a confidence level αi for each player i P I, and
any random variable ri elliptically distributed, we can solve the DRO payoff function uαi

i

analytically according to (8).

For some specific distributions in the elliptical distribution family, we have particular

values of the coefficient βi defined in Theorem 1. By [22], for each player i, we have Table

1 as for the value Tαi
and �qαi

of three widely used elliptical distributions, where Φp�q is
the cdf of the standard Gaussian distribution.

3.3. Existence of the Nash equilibrium

Assumption 2. For each player i P I, we assume that the radius of the uncertainty set

Di satisfies δi ¥ max
α̂iPpαi,1q

rp1� α̂iqTα̂i
� p1� αiqTαi

s such that the parameter βi in Theorem

1 meets the condition βi ¤ 0.
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Remark 2. For each i P I, as α̂i P pαi, 1q in βi, the condition δi ¥ max
α̂iPpαi,1q

rp1� α̂iqTα̂i
�

p1� αiqTαi
s in Assumption 2 is necessary and sufficient for βi ¤ 0.

Theorem 2. Given Assumptions 1,2, the DRO payoff function uαi
i p�, τ�iq is a concave

function of τi for every τ�i P X�i.

Proof. From the definition of ητ , we have

ητ � pητ paqqaPA �
�¹

jPI
τjpajq

�
aPA

�
�
τipaiq

¹
j�i

τjpajq
�

aPA
.

For a given τ�i P X�i and for each a P A, each element of ητ is the form expressed as

τipaiqKa, where Ka �
±
j�i

τjpajq P R is a known coefficient. Therefore, every element of ητ

is both convex and concave of τi for every τ�i P X�i.

Moreover, we know that
apητ qJΣiητ is convex of each element of ητ , and each element

of ητ is convex of τi for every τ�i P X�i. Then,
apητ qJΣiητ is convex of each element of

ητ . By Assumption 2, βi ¤ 0, and thus βi
apητ qJΣiητ is concave of each element of ητ .

Based on the above results, pητ qJµ�βi
apητ qJΣiητ is concave of τi for every τ�i P X�i.

Therefore, the payoff function uαi
i p�, τ�iq is a concave function of τi for every τ�i P X�i.

Lemma 2 ([4, Theorem 1]). For a given confidence level vector α P r0, 1sn, assume that

for each i P I,
1. the payoff function of player i, uαi

i : Xi � X�i Ñ R defined by (3) is a continuous

function.

2. the payoff function uαi
i p�, τ�iq is a concave function of τi for every τ�i P X�i.

Then, there always exists a mixed strategy Nash equilibrium of a DRCCG at a confi-

dence level α.

Theorem 3. Consider an n-player finite strategic game where the payoff vector ri �
pripaqqaPA of each player i, i P I is a random vector, given Assumptions 1,2, then there

always exists a mixed strategy Nash equilibrium.

Proof. Given Assumptions 1,2, by Theorem 2, uαi
i p�, τ�iq, i P I is a concave function of

τi for every τ�i P X�i. From (8), uαi
i p�, τ�iq, i P I is a continuous function of τ . That

is, both conditions of Lemma 2 are satisfied. Thus, there exists a mixed strategy Nash

equilibrium.

11



3.4. Mathematical programming formulation to compute the Nash equilibrium

To compute the Nash equilibrium of a DRCCG, we solve the following convex program,

whose global maximizer is the Nash equilibrium of the DRCCG.

Remark 3. Consider the DRCCG whose reference distribution is defined in Theorem 1,

for each player i P I, and any action profile ai P Ai,. The expected payoff uαi
i for a fixed

strategy τ�i can be reformulated by the following optimization program

min
τi

�βi
a
pητ qJΣiητ � µJi η

τ (14a)

s.t.
¸

aiPAi

τipaiq � 1, (14b)

τipaiq ¥ 0. (14c)

The dual problem of (14) is

max
λi,vi

λi (15a)

s.t. λi ¤
¸

a�iPA�i

¹
jPI;j�i

τjpajq
�
�βi

a
pviqJΣivi � µipai, a�iq

�
, (15b)

}vi} ¤ 1. (15c)

As (14) is an SOCP problem, strong duality holds if (14) has a finite optimal value,

i.e., the optimal value of (14) is equal to the optimal value of (15). Thus, the optimal

policy τ�i of the i-th player can be found by solving the following set of equations#
�βi

apητ qJΣiητ � µJi η
τ � λi, p16aq

(14b)� (14c), (15b)� (15c). p16bq (16)

Alternatively, we can solve an optimization problem instead of solving the equilibrium

equations by penalizing the violation in the objective function ,i.e.,

max
λi,vi,τi, i�1,...,n

¸
iPI

�
λi � βi

a
pητ qJΣiητ � µJi η

τ
�

(17a)

s.t. (14b)� (14c), (15b)� (15c), i � 1, . . . , n. (17b)
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4. Numerical experiments

In this section, we carry out a series of numerical tests under three different kinds of

reference distributions. We compute the Nash equilibrium and the corresponding payoff

of DRCCG by solving the mathematical program (17). Through 100 randomly generated

groups of Gaussian distributions, we compare the performances of the Nash equilibrium

of different radius δi and observe the robustness of our model.

We consider a two-players DRCCG example introduced in [4], where I � t1, 2u, A1 �
t1, 2, 3u, A2 � t1, 2, 3u. The mean vectors for both players are µ1 � p10, 9, 11, 8, 12, 10, 7, 8, 13qJ, µ2 �
p9, 7, 8, 9, 10, 10, 10, 9, 8qJ and the covariance matrices for both players are

Σ1 �

�
�����������������

6 4 3 3 2 3 4 2 4

4 6 3 4 3 3 3 2 3

3 3 8 4 2 3 3 2 4

3 4 4 6 2 3 3 3 2

2 3 2 2 6 2 4 3 3

3 3 3 3 2 6 3 3 4

4 3 3 3 4 3 8 4 3

2 2 2 3 3 3 4 6 4

4 3 4 2 3 4 3 4 8

�
����������������


, Σ2 �

�
�����������������

6 3 3 3 3 2 4 3 2

3 6 3 3 2 2 3 3 4

3 3 6 3 3 3 4 3 4

3 3 3 6 3 2 2 3 3

3 2 3 3 6 4 2 2 3

2 2 3 2 4 6 3 3 4

4 3 4 2 2 3 6 3 2

3 3 3 3 2 3 3 6 3

2 4 4 3 3 4 2 3 6

�
����������������


,

which are both positive definite. We consider three kinds of reference distributions in

elliptical distributions family as the center of the Wasserstein ball in DRCCG, namely

Gaussian, Logistic and Laplace distributions respectively. We find the coefficient βi, i P I
by solving the optimization problem (9) with the function “globalsearch” in MATLAB

when the radius δi � 0.5, 10�1, 10�5, 0. When δi � 0, the robust model is reduced to the

non-robust one, and βi � �qαi
according to the results in Section 3.2 of [3]. We find

the Nash equilibrium by solving the optimization problem (17) with BARON solver in

YALMIP tool box of MATLAB.

In Table 2, We list our computational results of the Nash equilibrium τi and the cor-

responding payoffs uαi
i for three different elliptical distributions under different radius δi

and confidence probability coefficients αi respectively. From Table 2, we observe that the

value of βi converges to �qαi
when the radius goes to zero, which means the distribu-

tionally robust model gradually recovers the non robust one. Correspondingly, the payoff
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uα1
1 , u

α2
2 both increase as δi converges to 0. In fact, when the radius of Wasserstein ball

increases, the model covers more possible situations and thereby presents more robust

results. The reduction of the payoffs can be seen as the trade off for the robustness.

Table 2: Nash equilibrium solution and payoff under different radius and tolerance proba-

bility

Distribution pα1, α2q δi βi τ1 τ2 uα1
1 uα2

2

Robust-Gaussian (0.95,0.95)

0.5 -12.0627 p 2731
10000

, 6166
10000

, 1104
10000

q p 3943
10000

, 2949
10000

, 3108
10000

q -12.4130 -12.8836

10�1 -4.0627 p 3922
10000

, 5257
10000

, 821
10000

q p 4178
10000

, 2252
10000

, 3570
10000

q 2.2079 1.5976

10�5 -1.6588 (1,0,0) p 7199
10000

, 0, 2801
10000

q 6.5906 5.0894

Non robust-Gaussian (0.95,0.95) 0 -1.6449 (1,0,0) p 7219
10000

, 0, 2781
10000

q 6.6184 5.1198

Robust-Laplace (0.85,0.85)

0.5 -4.8894 p 3428
10000

, 5759
10000

, 812
10000

q p 3987
10000

, 2522
10000

, 3491
10000

q 0.7406 0.1460

10�1 -2.1050 (1,0,0) p 6712
10000

, 0, 3288
10000

q 5.6730 4.1194

10�5 -0.8611 (1,0,0) p 9667
10000

, 0, 333
10000

q 7.9579 6.8917

Non robust-Laplace (0.85,0.85) 0 -0.8513 (1,0,0) p 9733
10000

, 0, 267
10000

q 7.9685 6.9153

Robust-Logistic (0.7,0.7)

0.5 -2.7774 p 7456
10000

, 2058
10000

, 486
10000

q p 5776
10000

, 669
10000

, 3556
10000

q 4.3319 3.3341

10�1 -1.2856 (1,0,0) p 7900
10000

, 0, 2100
10000

q 7.3088 5.9140

10�5 -0.4744 (0,1,0) p0, 5010
10000

, 4990
10000

q 10.0532 8.9392

Non robust-Logistic (0.7,0.7) 0 -0.4671 (0,1,0) p0, 5031
10000

, 4969
10000

q 10.0720 8.9555

For the radius δi � 0.5, 0.1 and 0, we choose the results of Nash equilibrium τ1, τ2 and

the corresponding payoffs uα1
1 , u

α2
2 under the standard Gaussian distribution when αi �

0.95. We randomly generate 100 groups of Gaussian distributions and take τ1, τ2, u
α1
1 , u

α2
2

for which we compute the satisfaction probability PKi
ppriqJητ ¥ uαi

i q, where Ki is the

random Gaussian distribution. Figure 1 shows the values of the satisfaction probabil-

ity PK1 under 100 randomly generated Gaussian distributions for player 1 when δ1 �
0.5, 0.1, and 0. The results of the players 1 and 2 are similar, thus we present only the

player 1 results. From Figure 1, when δ1 � 0.5, 0.1, we see that PK1 for all 100 distribu-

tions are beyond 0.95. When δ1 � 0, i.e., the distributionally robust model is reduced

to the non robust model, there are only 3 random distributions’ satisfaction probabilities

beyond 0.95. Through comparing the satisfaction probabilities of these three radii, we see

the performance of robustness for the solution of Nash equilibrium uα1
1 . Therefore, it is
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clear that the robustness of the non robust model is by far less than the distributionally

robust one.

Figure 1: Values of Satisfaction probability PK1
under 100 randomly generated Gaussian distributions

Conclusion

In this paper, we study DRCCG under the Wasserstein ball, where the reference dis-

tribution is an elliptical distribution. We prove the existence of a Nash equilibrium of DR-

CCG and propose an optimization approach to compute the Nash equilibrium. Through

generating random distributions, we compare the robustness of our distributionally robust

model with the non robust one. Considering skewed and non-linearly dependent reference

distribution is a promising topic for further research.
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