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Exploration de la faisabilité des méthodes formelles en apprentissage automatique et intelligence artificielle

Cette étude examine l'application des méthodes formelles pour garantir l'exactitude et la fiabilité des systèmes d'apprentissage automatique. Les approches formelles traditionnelles se sont avérées efficaces pour garantir la correction des systèmes matériels et logiciels. Dans ce travail, nous nous concentrons spécifiquement sur la vérification et la validation des systèmes d'apprentissage automatique à l'aide des méthodes formelles de pointe. Pour commencer, nous fournissons un aperçu concis des approches formelles existantes, en mettant en évidence leur importance et leurs avantages. Ensuite, nous nous penchons sur les méthodes formelles spécifiques qui ont été développées pour valider les étapes cruciales de la préparation des données et de l'entraînement dans les systèmes d'apprentissage automatique. Ces méthodes visent à garantir que les données d'entrée sont traitées de manière appropriée et que le processus d'entraînement produit des modèles précis et fiables. Ensuite, nous explorons les méthodes formelles utilisées pour la vérification complète des systèmes d'apprentissage automatique. Cela implique de prendre en compte des techniques partielles et exhaustives pour évaluer de manière approfondie le comportement et les performances du système. De plus, nous examinons en détail les travaux de recherche consacrés à la vérification des machines à vecteurs de support et des ensembles d'arbres de décision, car ce sont des algorithmes d'apprentissage automatique courants avec des applications répandues. En conclusion, sur la base de nos résultats, nous proposons plusieurs orientations futures potentielles pour la vérification formelle des systèmes d'apprentissage automatique. Ces orientations englobent des domaines tels que le développement de méthodes formelles améliorées adaptées à des types spécifiques de modèles d'apprentissage automatique, l'intégration de techniques formelles dans les frameworks d'apprentissage automatique existants et l'exploration de techniques pour gérer l'incertitude et la complexité inhérentes aux systèmes d'apprentissage automatique. En poursuivant ces voies, nous visons à faire progresser le domaine de la vérification formelle et à contribuer au déploiement fiable des technologies d'apprentissage automatique.

Exploration de la faisabilité des méthodes formelles en apprentissage automatique et intelligence artificielle

1. SMT = Satisfiability Modulo Theory. 2. MILP = Mixed Integer Linear Programming.

Introduction

Le développement de logiciels joue un rôle crucial dans les sociétés contemporaines et devrait gagner en importance dans les années à venir. Les applications logicielles sont devenues indispensables dans divers aspects de notre vie, notamment la gestion des transactions financières, la surveillance de la production et de la distribution d'énergie, la facilitation des transports, l'organisation de contenus multimédias et la mise en place de réseaux de communication.

Le génie logiciel implique la création manuelle d'un ensemble d'instructions que les ordinateurs peuvent exécuter. Cependant, l'apprentissage automatique va plus loin en automatisant la génération de règles ou d'instructions. Contrairement au développement logiciel traditionnel, où l'intelligence humaine est utilisée pour concevoir et mettre en oeuvre une solution en écrivant des instructions précises, les scientifiques des données qui travaillent avec les systèmes d'apprentissage automatique adoptent une approche différente (53; 54; 56; 120; 15; 1). Au lieu de programmer explicitement une solution, ils collectent des données d'entrée et des valeurs de sortie souhaitées et demandent à l'ordinateur de trouver un programme capable de générer les sorties correspondantes pour les entrées données. La figure 1 fournit une représentation visuelle de la distinction entre ces deux concepts.

En génie logiciel, les développeurs utilisent leur expertise pour concevoir et construire des programmes qui englobent un ensemble prédéfini de règles et de logique. En revanche, en apprentissage automatique, l'accent est mis sur la capacité des ordinateurs à apprendre des schémas et à faire des prédictions en fonction des données disponibles, sans prescrire explicitement les règles sous-jacentes. Ce passage de l'écriture manuelle de règles à l'utilisation d'algorithmes d'apprentissage automatisé a ouvert de nouvelles possibilités pour résoudre des problèmes complexes et traiter de grands ensembles de données.

Les systèmes d'apprentissage automatique se sont révélés extrêmement efficaces dans divers domaines, notamment la reconnaissance d'images, le traitement du langage naturel, les systèmes de recommandation et l'analyse prédictive. En exploitant la puissance de l'apprentissage automatique, les scientifiques des données peuvent développer des modèles qui apprennent de manière autonome à partir des données, s'adaptent aux environnements changeants et améliorent leurs performances au fil du temps.

Les méthodes formelles (114; 36; 62; 48; 35; 63; 55; 57) englobent des approches mathématiques qui jouent un rôle crucial dans la spécification, la construction et la vérification des systèmes logiciels et matériels. Les méthodes formelles reposent sur l'utilisation de représentations mathématiques, appelées langages de spécification formelle, pour décrire précisément les propriétés des systèmes.

Sur la Figure 2, nous pouvons observer l'application des méthodes formelles, où à la fois le système examiné et les exigences souhaitées sont traduits dans les langages de spécification formelle appropriés. Ces langages fournissent une représentation structurée et non ambiguë du système et de ses propriétés. Ensuite, des techniques formelles sont utilisées pour analyser rigoureusement et vérifier si la représentation mathématique du système est conforme aux propriétés spécifiées.

L'application des méthodes formelles est bénéfique tout au long des différentes étapes du processus de développement pour un large éventail de systèmes [START_REF]Critical Systems : Formal Methods and Automated Verification -Joint 22nd International Workshop on Formal Methods for Industrial Critical Systems -and -17[END_REF]. Ces En tirant parti des méthodes formelles, les développeurs et ingénieurs peuvent bénéficier de la capacité à raisonner mathématiquement sur le comportement du système, à identifier les éventuelles failles ou erreurs dès la phase de conception et à établir des garanties formelles sur la correction du système. Cela conduit finalement à la production de logiciels et de systèmes matériels plus robustes et fiables.

Cette étude vise à explorer l'application des méthodes formelles spécifiquement dans le contexte des systèmes d'apprentissage automatique [START_REF] Krichen | Are formal methods applicable to machine learning and artificial intelligence ?[END_REF]. Notre objectif est de fournir Exploration de la faisabilité des méthodes formelles en apprentissage automatique et intelligence artificielle une revue concise mais complète qui résume et analyse les techniques clés, les résultats, les défis et les orientations futures potentielles rapportés dans les recherches existantes dédiées à ce sujet. Pour les lecteurs recherchant des informations plus approfondies sur ce sujet, nous recommandons de se référer à [START_REF] Urban | A review of formal methods applied to machine learning[END_REF].

Les premières contributions dans la littérature abordant ce sujet ont été présentées dans [START_REF] Kurd | Establishing safety criteria for artificial neural networks[END_REF]. Par la suite, la majorité des efforts de recherche dans ce domaine se sont principalement concentrés sur la vérification formelle des réseaux neuronaux [START_REF] Gurney | An introduction to neural networks[END_REF] (3). Fait intéressant, on a pu constater une rareté remarquable de recherches consacrées à l'application des méthodes formelles aux modèles d'apprentissage automatique traditionnels tels que les arbres de décision (3), les forêts aléatoires [START_REF] Breiman | Random forests[END_REF] et les machines à vecteurs de support [START_REF] Steinwart | Support vector machines[END_REF].

De plus, lorsqu'on considère le cycle classique de l'apprentissage automatique représenté à la Figure 3, il est important de noter que l'attention des experts en méthodes formelles s'est principalement portée sur la vérification des modèles d'apprentissage automatique qui ont déjà été entraînés. Comparativement, moins d'attention a été accordée aux étapes précédentes du cycle, qui comprennent la collecte des données, la préparation des données, le nettoyage des données, l'analyse des données et l'entraînement du modèle.

Pour garantir la fiabilité, la robustesse et l'équité des systèmes d'apprentissage automatique, il est essentiel de prendre en compte toutes les étapes du cycle d'apprentissage automatique en utilisant des méthodes formelles. En incorporant des techniques formelles aux étapes précoces, telles que la collecte et la préparation des données, il devient possible d'identifier et de réduire les biais potentiels, les incohérences et les erreurs dans les données d'entrée. De plus, l'application des méthodes formelles à l'entraînement du modèle peut améliorer la compréhension du processus d'apprentissage, identifier les problèmes de surajustement ou de sous-ajustement et améliorer les capacités de généralisation.

En étendant l'application des méthodes formelles à l'ensemble du cycle d'apprentissage automatique, nous pouvons établir un cadre plus complet pour le développement et la vérification des systèmes d'apprentissage automatique. Cette approche holistique contribuera à l'avancement des technologies d'apprentissage automatique fiables et explicables, avec des implications plus larges pour différents domaines et applications.

Le reste de ce document est organisé comme suit :

-Dans la Section 2, nous proposons un bref aperçu des différentes méthodes formelles existantes dans la littérature appliquées à différents domaines. -Dans la Section 3, nous passons en revue les principales contributions de recherche concernant la vérification formelle des phases de préparation des données et d'entraînement du modèle (Figure 3). -Dans la Section 4, nous présentons les principaux résultats liés à la vérification formelle des modèles d'apprentissage automatique entraînés présentés sous forme de réseaux neuronaux. -Dans la Section 5, nous nous concentrons sur la vérification des ensembles d'arbres de décision et des machines à vecteurs de support.

Fig. 3 -Cycle de l'apprentissage automatique.

-Dans la Section 6, nous concluons l'article et listons quelques extensions possibles pour des travaux futurs.

Méthodes Formelles

Dans cette section, nous présentons un aperçu concis des principaux types de méthodes formelles (114; 36) que l'on peut trouver dans la littérature, comme illustré à la Figure 4 : -Interprétation Abstraite [START_REF] Cousot | Abstract interpretation based formal methods and future challenges[END_REF] 

Méthodes Formelles pour la Préparation des Données et l'Entraînement des Modèles

De toute évidence, les premières étapes du processus d'apprentissage automatique (y compris la préparation des données) peuvent être considérées comme les étapes les plus fragiles de l'ensemble de la procédure de calcul. Cela est tout à fait logique car les résultats finaux dépendent étroitement de ces premières étapes. En revanche, ces étapes initiales sont généralement négligées en termes de vérification, de test et de validation, ce qui peut entraîner des erreurs et des problèmes critiques.

Dans notre étude, nous avons constaté que les efforts de vérification formelle concernant ce problème sont très limités. En effet, à notre connaissance, seul le travail présenté dans (112) s'est concentré sur cet aspect en proposant une technique d'interprétation M. Krichen abstraite et un analyseur statique permettant de détecter les données d'entrée inutilisées.

La phase d'entraînement du modèle a également souffert d'un manque d'attention de la part des experts en méthodes formelles. Les quelques travaux qui se sont concentrés sur cette étape se sont principalement intéressés à ce qu'on appelle l'entraînement robuste (31; 84). Cela correspond au fait de produire des modèles d'apprentissage automatique suffisamment robustes contre les attaques adverses.

Les méthodes d'entraînement adversarial réduisent la perte dans le pire des cas à un minimum. Elles reposent sur des techniques rapides pour produire des données d'entrée adverses dans un modèle de menace et les utilisent pour enrichir les données d'entraînement [START_REF] Moosavi-Dezfooli | Deepfool : A simple and accurate method to fool deep neural networks[END_REF]. Dans la plupart des cas, cette stratégie s'est avérée expérimentalement efficace contre les adversaires les plus connus. L'étude (82) représente une réalisation significative contre l'attaque adversaire puissante ( 14) pour les réseaux neuronaux. D'autres méthodologies dédiées aux ensembles d'arbres de décision incluent les contributions de (44; 13). Ces méthodologies, bien qu'intéressantes, ne garantissent pas que les modèles sont entraînés pour être résistants à toute forme de perturbation adversaire autour d'une entrée par rapport au modèle de menace pris en compte. Pour pallier le manque de garanties, les méthodologies d'entraînement certifiées visent à réduire la perte dans le pire des cas tout en garantissant la robustesse pour l'ensemble des données d'entraînement (41; 40).

Méthodes Formelles pour les Réseaux Neuronaux

La majorité des approches de vérification formelle rapportées dans la littérature ont été appliquées uniquement aux modèles d'apprentissage automatique déjà entraînés.

Méthodes Formelles Partielles

Les techniques de vérification formelle partielle (28) sont des techniques de vérification qui sont sonores mais pas complètes. Cela signifie que lorsqu'une erreur est détectée, elle correspond réellement à une faute dans le système. Cependant, certaines fautes dans le système peuvent rester indétectées. Ces techniques conviennent aux grands réseaux neuronaux. Par exemple, pour les réseaux neuronaux avec des centaines de neurones, elles prennent généralement seulement quelques minutes. Ensuite, nous donnons quelques exemples d'outils et de travaux développés dans ce contexte :

- 

Méthodes Formelles Totales

Les méthodes formelles totales sont à la fois complètes et sonores. Cependant, elles sont assez lourdes et nécessitent généralement des périodes d'exécution longues, même pour des réseaux neuronaux de taille moyenne [START_REF] Davis | Study on the barriers to the industrial adoption of formal methods[END_REF]. Différents types de vérification formelle totale existent, à savoir : les méthodes basées sur SMT 1 (4; 85), les méthodes basées sur MILP 2 (113; 75), les méthodes basées sur l'optimisation, etc.

- 

Méthodes Asymptotiquement Totales

Méthodes Formelles pour les Ensembles d'Arbres de Décision et les Machines à Vecteurs de Support

Les arbres de décision (DT) peuvent être utilisés à la fois pour la régression et la classification (10; 9). Ensuite, nous donnons un bref aperçu de quelques travaux de recherche qui se sont concentrés sur la vérification des arbres de décision :

- 

Conclusion

Malgré les progrès réalisés, l'état actuel de l'art indique que la communauté de recherche a encore beaucoup de travail à faire pour valider l'ensemble du cycle d'apprentissage automatique et garantir la sécurité et la fiabilité de ces techniques dans les applications critiques contemporaines. À l'avenir, nous identifions plusieurs direc-M. Krichen tions de recherche prometteuses qui peuvent rapprocher les chercheurs en apprentissage automatique de la réalisation de cet objectif :

-Développement de techniques de vérification capables de retracer l'origine des données et de détecter les duplications de données. [START_REF] Jmal | A model based approach to combine load and functional tests for service oriented architectures[END_REF] lors de l'exécution des outils d'apprentissage automatique. Cela implique l'intégration de mécanismes de vérification au sein de l'environnement d'exécution du système d'apprentissage automatique, permettant une validation continue et garantissant la conformité du système aux protocoles de sécurité et aux exigences de répartition de charge. En poursuivant ces axes de recherche, la communauté de l'apprentissage automatique peut faire des avancées significatives pour promouvoir la validation et l'assurance de sécurité des systèmes d'apprentissage automatique, ce qui permettra leur déploiement fiable dans des applications critiques.

Fig. 1 -Fig. 2 -

 12 Fig. 1 -La différence entre la Programmation Classique et l'Apprentissage Automatique.

Fig. 4 -

 4 Fig. 4 -Différents types de Méthodes Formelles.

:

  Dans ce travail, les auteurs ont considéré des FFNN entièrement connectés. Les FFNN considérés étaient encodés sous forme de combinaisons booléennes de contraintes linéaires. -(93) : Différents solveurs SMT ont été utilisés dans cette étude afin de traiter les réseaux neuronaux de plus grande taille. Le solveur SMT "Yices" (24) était le meilleur choix parmi les solveurs considérés. M. Krichen -(97) : Dans ce travail, les auteurs ont proposé une méthodologie similaire au travail précédent. Ils ont adopté la vérification par modèle borné à des fins de vérification. -(29) : Cette étude était basée sur l'utilisation de solveurs SMT et d'approximations efficaces pour réduire la taille de l'espace de recherche. -(45) (Reluplex) : Cet outil était basé sur des techniques SMT et sur l'algorithme Simplex bien connu (88) afin de vérifier les propriétés de sécurité pour les FFNN entièrement connectés. -(46) (Marabou) : Cet outil est similaire au précédent. Cependant, il repose sur la division de l'espace de recherche et un mode d'exécution parallèle. -(5) : Les auteurs de cet article ont présenté une méthode pour localiser l'instance d'attaque la plus proche, c'est-à-dire l'entrée qui conduit à un résultat incorrect, en utilisant la programmation linéaire. -(43) : Dans ce travail, les auteurs ont développé une méthode alternative pour établir la robustesse locale aux perturbations adverses en démontrant qu'il n'existe aucune instance d'attaque à proximité des entrées considérées. -(89) : Les auteurs de ce travail se sont concentrés sur les réseaux neuronaux binarisés (BNN) (16), qui sont considérés comme un choix bien meilleur que les réseaux FFNN classiques en termes d'efficacité mémoire. -(17) : La technique présentée dans cette étude était principalement basée sur l'utilisation d'outils de résolution SAT et d'une logique combinatoire matérielle spécifique. Les réseaux BNN étaient également au centre de ce projet. -(18) : Ce travail était basé sur les techniques MILP. Les auteurs se sont concentrés sur le développement de cas d'attaque et l'identification des entrées du réseau neuronal qui renforcent l'activation de certains neurones cachés. -(25) (Sherlock) : Cet outil de vérification était également basé sur les techniques MILP et était dédié aux réseaux FFNN. -(26) (MIPVerify) : Cet outil de vérification basé sur MILP se concentre sur l'identification de l'instance d'attaque la plus proche par rapport à desmétriques de distance spéciales. -(96) (DeepGo) : Cet outil est dédié aux réseaux neuronaux continus de Lipschitz (76) et repose sur l'optimisation globale.

  Vérification de Modèles (87) : La vérification de modèles consiste à vérifier des spécifications sur des modèles graphiques représentant différents types de systèmes. Cette technique utilise une exploration exhaustive du modèle pour vérifier les propriétés et détecter d'éventuelles erreurs ou violations. -Assistants de Preuve (34) : Les assistants de preuve sont des outils interactifs utilisés pour construire et vérifier des preuves formelles de théorèmes. Ils sont utilisés en mathématiques et en informatique pour garantir la correction des spécifications formelles et des processus de raisonnement. -Vérification Déductive (91) : La vérification déductive consiste à fournir un programme et une spécification formelle. La spécification est ensuite propagée Exploration de la faisabilité des méthodes formelles en apprentissage automatique et intelligence artificielle

: L'interprétation abstraite vise à vérifier un système à un niveau élevé d'abstraction en négligeant les détails non pertinents. Cette approche formalise l'idée qu'une surestimation du comportement du système peut fournir des informations précieuses sur ses propriétés.

-Analyse Sémantique Statique

[START_REF] Gosain | Static analysis : A survey of techniques and tools[END_REF] 

: L'analyse sémantique statique consiste à effectuer une analyse complète et automatique du code source d'un programme sans l'exécuter. En examinant la structure et la sémantique du code, les analyseurs de programmes statiques peuvent identifier des erreurs ou des vulnérabilités potentielles. -

  Dans cette étude, les auteurs ont considéré des réseaux neuronaux à propagation avant (FFNN)[START_REF] Bebis | Feed-forward neural networks[END_REF] et ont effectué des raffinements sur les abstractions à l'aide de contre-exemples à des fins de vérification. -(118) : L'approche présentée dans cet article propose une approximation basée sur la combinaison de la programmation linéaire et des simulations. Les réseaux neuronaux considérés étaient également des FFNN à propagation avant. -(117) : Ce travail s'est concentré sur les réseaux neuronaux à couches linéaires morceau par morceau avec perturbation par rapport aux distances L p . -(27) : Ce travail a adopté des techniques d'optimisation pour vérifier les propriétés de sécurité des réseaux neuronaux à propagation avant sans aucune restriction sur le type d'activation. -(116) : Cette contribution couvrait le cas des réseaux neuronaux à la fois entièrement connectés et à propagation avant.
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	-(74) : Ce travail a tenté d'améliorer la précision de la méthodologie de vérification
	par interprétation abstraite au moyen de la propagation symbolique.
	-(110) (Libra) : C'est un framework open source qui permet de classer les données
	tabulaires pour des classes spécifiques de réseaux neuronaux et de vérifier leur
	équité.
	-(102) : Ce travail prend en compte d'autres modes d'activation et d'autres types
	plus généraux de domaines abstraits.
	-(32) : -(7) (CNN-Cert) : Cet outil a été adopté pour le cas desréseaux neuronaux convo-
	lutionnels (CNN).
	-(119) : Ce travail était dédié aux réseaux neuronaux RNN classiques. Il visait à
	vérifier les propriétés de sécurité.
	-(37) : Ce travail s'est concentré sur l'inférence des propriétés de sécurité pour le
	cas des réseaux neuronaux FFNN.
	) (AI 2 ) : Cet outil est basé sur l'interprétation abstraite. Il est dédié aux
	réseaux neuronaux et permet de vérifier la robustesse locale contre les pertur-
	bations adverses.
	-(99) (DeepZ ) : Cet outil possède des transformateurs abstraits spécifiques et il
	est plus rapide et plus précis que AI 2 .
	-(101) (DeepPoly) : La vitesse et la précision de cet outil sont supérieures à celles
	de DeepZ. Des bornes concrètes et symboliques sont associées au réseau neuronal
	considéré.
	-(98) (k-ReLU ) : Ce cadre est basé sur l'idée de produire une approximation plus
	précise des couches du réseau neuronal considéré.

-(47) (POPQORN ) : Cet outil était dédié à la vérification des réseaux neuronaux récurrents (RNN) (83) (par exemple, LTSM (42) et GRU (23)).

  Ces techniques amélioreront la transparence et la responsabilité des systèmes d'apprentissage automatique en fournissant des informations sur les sources de données et en garantissant l'intégrité des ensembles de données d'entraînement. -Conception de techniques de vérification axées spécifiquement sur la robustesse globale, plutôt que de privilégier uniquement la robustesse locale. Les considérations de robustesse globale englobent la capacité du système à résister aux attaques adverses ou aux scénarios inattendus sur différentes parties du modèle, conduisant à des systèmes d'apprentissage automatique plus robustes et fiables. -Création d'approches de vérification polyvalentes qui prennent en charge un large éventail de structures de modèles. Les techniques de vérification actuelles s'adressent souvent à des types spécifiques de modèles ou d'architectures. En développant des méthodes de vérification plus flexibles et adaptables, les chercheurs en apprentissage automatique peuvent aborder un spectre plus large de modèles et améliorer l'ensemble du processus de vérification. -Adoption de techniques efficaces de validation en temps d'exécution (72; 71; 70) qui englobent des aspects tels que la sécurité (59; 61; 60) et l'équilibrage de charge (78; 81; 80; 77; 79). Ces techniques consistent à vérifier les réseaux neuronaux pendant leur exécution, permettant une surveillance en temps réel et la détection des éventuelles vulnérabilités de sécurité ou des problèmes de performance, garantissant la robustesse et la stabilité du système. -Prise en compte des aspects de sécurité (59; 58) et d'équilibrage de charge