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Abstract

In this paper, we tackle the modeling and numerical simulation of polydisperse sprays. Starting
from a kinetic description for point particles, we focus on an Eulerian high-order geometric method of
moment (GeoMOM) in size and consider a system of partial differential equations on a vector of successive
fractional size moments of order 0 toN/2, N > 2, over a compact size interval. These moments correspond
to physical quantities, which can be interpreted in terms of the geometry of the interface at small scale.
There exists a stumbling block for the usual approaches using high-order moment methods resolved with
high-order numerical methods: the transport algorithm does not naturally preserve the moment space.
Indeed, reconstruction of moments by polynomials inside computational cells can create N -dimensional
vectors which can fail to be moment vectors. We thus propose a new approach, as well as an algorithm,
which is high-order in space with limited numerical diffusion, including at the boundaries of the state
space, where a specific study is proposed. The main contribution of this work is the design and analysis
of a high-order scheme preserving the bounds on the velocity, the moment space and capturing void
and δ-shocks solutions. We show that such an approach is competitive compared to second order finite
volume schemes, where limiters generate numerical diffusion and clipping at extrema. An accuracy study
assesses the order of the method as well as the low level of numerical diffusion on structured meshes. We
focus in this paper on cartesian meshes and 2D test cases are presented where the accuracy and efficiency
of the approach are assessed.

Introduction

The present work aims at proposing and analyzing a high-order numerical scheme for a system of weakly
hyperbolic conservation laws modelling sprays of droplets. In practice, this system is constructed by first
considering a collisionless kinetic equation on a distribution function of droplet ([49, 21]), and then by ex-
tracting the first few moments with respect to the kinetic variables. The resulting system is underdetermined
and it is closed using a quadrature-based approach ([46, 42, 12]). This construction has been widely used
(see e.g. the previous work [23, 22, 17] and references therein) to model clouds of spherical droplets. More
recently, this approach has also been exploited in [40] for the modelling of multi-scale flow with non-spherical
liquid inclusion at small scale.

The considered moment system consists of a pressureless gas dynamics (PGD) system augmented with
conservation laws on geometric moments. Therefore the study of the moment system exploit the one of
the PGD: First, it is necessary to look for solutions in a weak sense ([6, 4, 7, 50, 5]) because, even with
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reasonable smooth initial and boundary conditions, this problem may involve measures, so-called delta-shocks
transported with the flow (see also [57, 37, 35]). Second, the uniqueness of the weak solution is only ensured
under additional constraints ([6]). Among those constraints, two properties of the initial and boundary
values are preserved through space and time: the density remains non-negative and the velocity satisfies a
maximum principle, which is closely related to the total variation diminishing (TVD) property. Therefore,
these two properties needs also to be preserved by numerical schemes for stability reasons. Enforcing the
positivity of the density in the PGD corresponds to enforcing that the solution remains in a convex set,
called realizability domain or moment set (as it is the set of moments of the non-negative distributions ;
[18, 54, 36, 19, 32]), for the moment model. Two types of solutions are difficult to capture by most numerical
approaches, those involving concentration of the solution in a spatial point (delta-shock solution), and those
involving void regions where the solution is zero as such a value belongs to the boundary of the realizability
domain.

At the numerical level, a first order approach for the PGD preserving positivity of the density and the
maximum principle on the velocity has been first proposed in [3] based on kinetic interpretation of the
PGD, so-called kinetic finite-volume (KFV) scheme. It has been extended to second order in [8] using linear
reconstructions with slope limiters to preserve the TVD property on the velocity, and to the considered
moment model in [23]. However its construction is restricted to linear reconstructions, therefore to second
order schemes usually involving clipping of extrema, since such a reconstruction can be interpreted as a
convex combinaison of the value at each boundary of a cell, while higher order reconstructions do not
satisfy such a property. When associated with a strong stability preserving (SSP) Runge Kutta (RK) time
discretization ([28, 56]), the discontinuous Galerkin approach (DG ; [14, 15, 20]) has been shown to be a
good alternative to construct high-order discretisations for hyperbolic systems with discontinuous solutions.

The DG method produces accurate results if the solution is smooth or contains (relatively) weak disconti-
nuities, otherwise significant oscillations and nonlinear instabilities may occur. To avoid such difficulties with
numerical oscillations, the DG method needs to be accompanied by a limitation procedure such as minmod
[16], artificial viscosity [41], total variation diminishing [31], weighted essentially nonoscillatory (WENO)
[45, 52] techniques or extrema preserving limitations [63, 61]. In addition, there are other techniques for
bound-preserving limiters, such as flux corrected transport algorithms [2, 47, 29, 38] and monolithic convex
limiting approaches [30, 53]. There have been intensive studies on positivity-preserving and maximum-
principle-satisfying methods. The genuinely high-order maximum-principle-satisfying DG method has been
proposed in [63, 61] for scalar hyperbolic equations. This procedure has been rapidly developed for different
problems ever since, for the Euler equations [64, 65], Navier-Stokes equations [62], shallow water equations
[59] and fluid flow in porous media [13], among others. Exploiting a quadrature interpretation of the cell
reconstructions, a pointwise limitation has been suggested in this framework. This limitation is rather simple
to use, both in term of implementation and to obtain theoretical estimates. However, those estimates are
only obtained under the constraint that the solution remains away from the void regions, even if this specific
limit is interesting and frequently encountered in applications. Such a scheme has also been tested for the
PGD in [60] and for another moment model in [55], which does not involve void or concentrated solutions.

The present work aims at constructing, analyzing and testing some limitation strategies for high-order
RKDG discretisations applied to the considered weakly hyperbolic geometric moment system, thus combining
the difficulties of moment space preservation within the framework PGD solutions, which can be potentially
singular or involve void regions. More specifically, we study the impact of such a limitation in the vicinity
of void regions. In practice, the considered limitations can be interpreted as projections of the discrete
solution onto the set of admissibility, that is the set of vectors satisfying both the bounds on the velocity
and the realizability condition on the geometric moments, while preserving the mean value of the solution
in a cell. Two choices of projections towards the cell mean are focused on: one consists in enforcing first
the realizability then the overall admissibility, the other consists in projecting all the solution in a single
step. These two projections show different behavior in the void region in terms of accuracy and of numerical
diffusion.

The paper is organized as follows. In the next section, the construction of the moment model from a
kinetic description is recalled and we present its main features in more details. In Section 2, the DG scheme
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is presented and the discrete versions of the constraints are specified. Section 3 presents limitation strategies
to preserve the realizability and the velocity bounds and their behavior in the vacuum limit is tested on a
few test cases. A numerical study is provided in Section 4 to illustrate accuracy and the behavior of the
numerical scheme with delta-shocks or vacuum solutions. The last section is devoted to concluding remarks.

1 High-order geometric moment modelling

We present here the construction of the system we aim at solving numerically in the next section, and analyze
the properties of its solution we need to preserve at the numerical level.

1.1 Construction of the moment system

The considered system is obtained by evaluating the moments with respect to velocity and size variables of
a kinetic model.

1.1.1 Kinetic description

The spray of droplets is described by a Number Density Function (NDF) f , such that f(t, x, S, v) dxdS dv
represents the probable number of droplets located in x, with size S and velocity v. The NDF satisfies a
Williams-Boltzmann equation ([58]), that models the transport of a spray carried by a gaseous flow

∂tf + divx(vf) = 0. (1)

This model is a simple toy problem, but we aim at modelling a more realistic physics. This can be achieved
in two manners from (1). First, we can enrich the description of the droplet, typically having a more precise
geometry of the droplets, by considering a more complex phase space than only the size variable S ∈ R+

(e.g. modelling mean curvatures, temperature or oscillation of the droplets; see e.g. [40, 39, 23, 22]). Second,
considering other physical effects such as the drag and evaporation of the droplet (see e.g. [44, 22, 23] and
references therein) can simply be modeled through additional terms in (1), potentially depending on these
additional variables. However the present contribution in terms of numerical methods naturally extends to
these more complex models as the main difficulties arise at the numerical level from the resolution of the
transport operator.

1.1.2 Velocity moments

The kinetic phase space is composed of the size variable S and the velocity v. Concerning the velocity
variable, we characterize the velocity dependence of f by two quantities: its first two velocity moments

ρ =

∫
Rd

fdv, q =

∫
Rd

vfdv,

that correspond to a density and a momentum. Extracting those moments from (1) yields (formally) the
system

∂tρ+divxq = 0,

∂tq+divx

(∫
Rd

vvT fdv

)
= 0,

In order to close this system, and for simplicity, we make the hypothesis that all droplets at a location x are
transported at the same velocity u. This corresponds to approximating the distribution f by

f(t, x, S, v) ≈ ρ(t, x, S)δ(v − u(t, x)). (2)
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With such an approximation, we obtain a closed system

∂tρ+divx(ρu) = 0, (3a)

∂tq+divx(qu
T )= 0, (3b)

q = ρu. (3c)

This system corresponds to the pressureless gas dynamics (PGD) system, that has been widely studied in the
literature (see e.g. [3, 6, 9] and references therein), and where the variable S appears as a parameter. Remark
that the absence of pressure in our approach can be justified by the absence of collisions in the underlying
kinetic model (1), that is the infinite Knudsen limit, which is valid in many realistic configurations (see
e.g. [43]).

1.1.3 Size moments

Concerning the size variable S, we use a fractional moment method ([23]). We use the half order moments
m = (m0,m1/2,m1,m3/2)

T

mα(t, x) =

∫ 1

0

Sαρ(t, x, S)dS, (4)

where the maximum and minimum admissible sizes are chosen to be Smin = 0 and Smax = 1 for simplicity.
The reason for this choice of m is that we retreive from those moments the following geometric quantities
commonly used in the context of separated phase modeling ([21])

ΣĜ = 4πm0, ΣĤ = 2
√
πm1/2, Σ = m1, α =

1

6
√
π
m3/2, (5)

where the α is the volume fraction of liquid, Σ is the interfacial area density and Ĝ and Ĥ are respectively
the densities of Gauss and mean curvatures averaged over the surface of a droplet ([40, 39, 23, 22]).

Eventually, we extract the moments with respect to b(S) := (S0, S1/2, S1, S3/2)T from (3a) and the
moment with respect to S only from (3b) to obtain

∂tU + divx(Uu
T ) = 0, m1u = q, (6)

where U = (mT , qT )T with the moment vectorm = (m0,m1/2,m1,m3/2)
T . The surface area density Σ = m1

acts like a density in this model, and the moment against S of (3b) was used to construct q. Following [23],
this choice is more relevant when considering drag or evaporation effects, that are not considered in the
present work but are part of future projects.

1.2 Properties of the moment system

The considered properties are presented for a 1D version of (6) as such a system can be decomposed into two
subsystems widely studied in the literature. The analysis of those 1D subsystems provides some constraints
on the solution, our numerical scheme has to satisfy. Eventually, we extend those constraints in a multi-D
framework.

1.2.1 Bounds on u

The first subsystem rewritten in 1D is the PGD system on m1 and q = (m1u) which simply consists in a 1D
version of (6) where the vector m is replaced by m1, or of (3) replacing ρ by m1 independent of S.

This system has been analyzed in [3, 8, 6] and we recall a few results here. One specificity of the PGD (3)
is the possible appearance of so-called δ-shocks in the solution. It consists of a Dirac measure of mass m1

transported at velocity u. For this purpose, one needs to focus on solutions in the following weak sense
(see [3]).
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Definition 1. A couple (m1, q) ∈ C (]0, T [;Mloc (R))2 is a duality solution to the 1D equation (3) if

• The momentum q ≪ m1 is absolutely continuous with respect to the mass.

• The mass m1 ≥ 0 is non-negative.

• There exists a velocity u ∈ L∞(]0, T [×R) and a function a ∈ L1
loc(]0, T [) such that

– One-sided-Lipschitz condition: ∂xu ≤ a.

– Weak solution: For all ϕ, ψ ∈ C∞
c (]0, T [×R), then∫

m1(∂tϕ+ u∂xϕ) = 0,∫
q(∂tψ + u∂xψ) = 0.

– Representation of u: m1u = q a.e. with respect to the measure m1.

Remark 1. • In this definition, the velocity u ≡ dq
dm1

corresponds to the Radon-Nikodym derivative of
q ≡ (m1u) with respect to m1 on its support Supp(m1). It is therefore u(t, ·) ∈ L∞(dm1(t, ·)) for all
t > 0. Only its definition on Supp(m1) matters, but this function can be extended in the complement
R\Supp(m1) into some L∞(]0, T [×R) function (see the notion of universal representative in [3, 6, 4]).

• The requirements on u allow to define a unique characteristic curve X in the sense of Filippov ([50, 26]),
i.e. an absolutely continuous function X(x, t0) ∈W 1,∞(R+) of t satisfying

X(t;x, t0) =

∫ t

t0

u(X(τ ;x, t0))dτ, X(t0;x, t0) = x.

For the numerical application in the next section, we exploit the following property.

Property 1 ([4]). Consider a duality solution (m1, q) to the 1D equation (3) with initial data m0
1 and q0 and

denote u = dq
dm1

and u0 = dq0

dm0
1
. Denote the essential infimum and supremum of a function f with respect to

the measure µ on the interval I by inf µ
I f and sup µ

I f . Define

uinf := inf
m0

1

R u0, usup := sup
m0

1

R u0.

• Global bound on u: For all t > 0, the velocity u satisfies

uinf ≤ inf
m1(t,·)
R u(t, ·),

sup
m1(t,·)
R u(t, ·) ≤ usup,

(7)

• Local bound on u: For all 0 < τ < t, and all non-empty interval x ∈ I0 = (c, d) with c < d, define
the interval

Iτ = (c− usupτ, d− uinfτ) .

Then the velocity u satisfies

inf
m1(t−τ,·)
I(t−τ) u(t− τ, ·) ≤ inf

m1(t,·)
I0 u(t, ·),

sup
m1(t,·)
I0 u(t, ·) ≤ sup

m1(t−τ,·)
I(t−τ) u(t− τ, ·).

(8)

These constraints are closely related to the total variation diminishing property (TVD; [31]) on velocity,
which is also proved to be satisfied by u in [3]. Numerical schemes violating the discrete equivalent of
this property can trigger oscillations or overshoots around discontinuities. For this purpose, we rewrite the
previous condition.
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Property 2. These constraints can be rewritten in terms of the solution (m1, q) by:

• Global bound on u: For all t > 0, and all non-empty intervals (c, d) with c > d, the solution (m1, q)
satisfies

uinf

∫ d

c

dm1(t, ·) ≤
∫ d

c

dq(t, ·) ≤ usup

∫ d

c

dm1(t, ·). (9)

• Local bound on u: For all 0 < τ < t, and all non-empty intervals x ∈ I0 = (c, d) with c < d, the
solution (m1, q) satisfies(

inf
m1(t−τ,·)
I(t−τ) u(t− τ, ·)

)∫ d

c

dm1(t, ·) ≤
∫ d

c

dq(t, ·) ≤
(
sup

m1(t−τ,·)
I(t−τ) u(t− τ, ·)

)∫ d

c

dm1(t, ·). (10)

Especially, one observes that the integral of the solution
(∫ d

c
dm1(t, ·),

∫ d

c
dq(t, ·)

)
over an interval (c, d)

always belongs to a closed convex cone defined as the intersection of three half spaces: m1 ≥ 0 and the two
ones defined either globally with uinf and usup in (9) or locally in (10).

Also, the velocity u can not create new local extrema in x and the local minima, resp. maxima, increase,
resp. decrease. Following the definition of [31], the velocity is therefore monotonicity preserving and TVD.

1.2.2 Preservation of initial data set

A second subsystem rewritten in 1D yields

∂tm+ ∂x(mu) = 0, (11)

where m = (m0,m1/2,m1,m3/2)
T is the vector of moments of n with respect to the basis functions b(S) =

(1, S1/2, S, S3/2)T and the velocity u is the one found in the previous paragraph from the PGD. We consider
again weak solutions in the sense:

Definition 2. A set of functions m ∈ C(]0, T [;M(R))4 is a duality solution to (11) if every of its components
mα, for α = 0, 1/2, 1, 3/2, satisfies for all ϕ ∈ C∞

c (]0, T [×R)∫
mα(∂tϕ+ u∂xϕ) = 0.

The considered solutions preserve the initial states:

Proposition 1. Suppose thatm0
α ≪ m0

1 are absolutely continuous with respect tom0
1 for all α = 0, 1/2, 1, 3/2

and that u(t, ·) ∈ L∞(dm1(t, ·)) is obtained from a duality solution to the 1D equation (3). Then the duality
solutions to (11) satisfy for all borel set B and t > 0,

m(t, B) ∈ Cone
(
{m0(y), y ∈ R}

)
,

where Cone(·) is the convex cone pointed at the origin generated by all initial m0.

Proof. This results from the method of characteristics in the sense of Filippov ([26, 50]). Remark that
all the components mα follow the same characteristic curve which provides the result. The requirement
that m0

α is dominated by m0
1 simply provides that Supp(m0

α) ⊂ Supp(m0
1) and therefore following the

characteristics provides Supp(mα(t, ·)) ⊂ Supp(m1(t, ·)) and ensures the uniqueness of the velocity in the
support Supp(mα(t, ·)).
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1.2.3 Moment set and Hankel determinants

This initial set is encompassed into a larger set, that is the set of moments of n with respect to b(S), also
called the realizability domain. This set of moments is often studied when constructing moment models
because an important part of the physics is put into the nonlinear source terms, which are only defined
and numerically evaluated under realizability constraints. This constraint extends the constraint m1 ≥ 0 in
Definition 1.

Definition 3. The set of all realizable moment vectors or realizability domain yields

R =

{∫ 1

0

b(S)dµ(S), µ ∈ M([0, 1])

}
.

Property 3 ([1, 18, 48]). This set is a closed convex cone characterized by its extremal points

R = Cone({b(S), S ∈ [0, 1]}).

This set is characterized by numerical constraints following Hausdorff problem.

Proposition 2. The vector m = (m0,m1/2,m1,m3/2)
T ∈ R4 is realizable if the following matrices are

symmetric non-negative

H1 =

(
m1/2 m1

m1 m3/2

)
, H2 =

(
m0 −m1/2 m1/2 −m1

m1/2 −m1 m1 −m3/2

)
, (12a)

and all their components are non-negative. This is equivalent to requiring their trace and determinants are
non-negative, which reformulates hi(U) ≥ 0 with

h1(U) = m1/2 +m3/2, h2(U) = m0 −m1/2 +m1 −m3/2, (12b)

h3(U) = m1/2m3/2 −m2
1, h4(U) = (m0 −m1/2)(m1 −m3/2)− (m1/2 −m1)

2.

Proof. The fractional realizability condition simply follows from the solution of Hausdorff moment problem
([18, 36, 54, 19, 32, 48]) after using a change of variable S = r2 in the integration.

1.2.4 Admissible set

Eventually, we call globally, resp. locally, admissible the set of function that satisfy both the global, resp.
local, bounds on u of Section 1.2.1 and the realizability of Section 1.2.3.

Definition 4. Suppose that the solution U to (6) for all time 0 < τ < t. The set of globally admissible
vectors is

Aglob,τ
t,[a,b] :=

{
(mT , q)T such that m ∈ R, m1uinf ≤ q ≤ m1usup

}
,

and the set of locally admissible vectors

Aτ
t,[a,b] :=

{
(mT , q)T such that m ∈ R, m1u

τ
inf ≤ q ≤ m1u

τ
sup

}
, (13a)

uτinf(t) = inf
m1(t−τ,·)
I(t−τ) u(t− τ, ·), uτsup(t) = sup

m1(t−τ,·)
I(t−τ) u(t− τ, ·), (13b)

Again, these sets are defined as intersection of closed convex cones and are therefore closed convex cones.
These sets are defined such that the vectors obtained by integrating the solution U(t, ·) to (6) over any

interval I belong to this set, i.e. (∫ d

c

dU(t, ·)

)
∈ Aτ

t,[a,b] ⊂ Aglob,τ
t,[a,b]

and where the velocity u in the Definitions 4 is the one resulting from the solution U over 0 < τ < t.
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1.2.5 Extension to multi-D problems

We extend the framework for muldi-D problems, but the analysis is left for future work. When considering
a problem of spatial dimension d > 1, we consider duality solutions under the following sense.

Definition 5. A couple U = (mT , qT )T ∈ C(]0, T [;Mloc(Rd))4+d is a duality solutions of (6) if:

• Every component qi,mα ≪ m1 for all i = 1, . . . , d and α = 0, 1/2, 1, 3/2, is absolutely continuous
w.r.t. m1.

• The vector m ∈ R is realizable m1-a.e.

• There exists u ∈ L∞(]0, T [×Rd)d such that

– Weak solution: For all component Ui and ∀ϕ ∈ C∞
c (]0, T [×Rd), then∫

Ui

(
∂tϕ+ uT∇xϕ

)
= 0.

– Representation of u: m1u = q is satisfied m1-a.e.

Remark that an entropy condition à la Oleinik has been present in Definition 1 in the 1D case. It is
missing in the present extension, and we do not perform a proper analysis of the multi-D model. A first
result in this direction has been proposed in [7] for the transport equation and extension of this work to (6)
is left for future work.

Assuming that there still exists a unique Filippov characteristics passing at every (t, x) ∈]0, T [×Rd, then
we extend in multi-D:

• Globally directional velocity bound: The bound (9) on the velocity applies in every direction, i.e.
for all n ∈ Sd, all non-empty set C ⊂ Rd, for all t > 0,

(uTn)inf

∫
C

dm1(t, ·) ≤
∫
C

d(nT q)(t, ·) ≤ (uTn)sup

∫
C

dm1(t, ·),

where (uTn)inf = inf
m0

1

Rd (u
Tn) and (uTn)sup = sup

m0
1

Rd (u
Tn).

• Locally directional velocity bound: The bound (10) extends for all n ∈ Sd, all non-empty set
C0 ⊂ Rd, for all t > 0,(

inf
m1(t−τ,·)
C(t−τ) u(t− τ, ·)

)∫
C

dm1(t, ·) ≤
∫
C

dq(t, ·) ≤
(
sup

m1(t−τ,·)
C(t−τ) u(t− τ, ·)

)∫
C

dm1(t, ·),

where
Cτ :=

{
x− u, x ∈ C, (uTn) ∈

[
τ(uTn)sup, τ(u

Tn)inf
]}
.

• The realizability property m ∈ R naturally extends if this vector is transported along characteristic
curves.

Eventually the admissible set (13) extends into

Aτ
t,C :=

{
(mT , q)T such that m ∈ R, m1(u

Tn)τinf ≤ qTn ≤ m1(u
Tn)τsup

}
, (14a)

(uTn)τinf(t) = inf
m1(t−τ,·)
C(t−τ) u(t− τ, ·), (uTn)τsup(t) = sup

m1(t−τ,·)
I(t−τ) u(t− τ, ·). (14b)
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1.2.6 Discussion on numerical difficulties

Two types of difficulties are focused on in the numerical section below:

• The appearance of void: at certain locations, the moment solution can become zero. In this limit,
one of the inequality in (12) becomes an equality, and therefore the momentm = (m0,m1/2,m1,m3/2)

T ∈ ∂R
belongs to the boundary of its admissible set. Furthermore, the velocity u is ill-defined in this limit
because it only appears multiplied by m1 in (6). Such an issue has been illustrated in [3] through a
1D test case for the PGD, that we extend in the present framework into

m0
α(x) =

∫ 1

0

SαdS = (1 + α)−1, q0(x) = m0
1(x)×

{
0.5 for x > 0,
−0.5 for x < 0.

(15)

This m0
α is in the interior of R and generates a void region in finite time as the solution simply yields

mα(t, x) = (1 + α)−1 × (1− 1[−0.5t,0.5t](x)), q(t, x) = 0.5×
{

0.5 for x > 0.5t,
−0.5 for x < −0.5t.

• The appearance of δ-shocks: the solution may contain Dirac measures that are propagated with
the flow. Again such a solution has been exhibited in [3] through a test case rewritten into

m0
α(x) = (1 + α)−1, q0(x) = m0

1(x)×
{

−0.5 x > 0,
0.5 x < 0.

(16)

It generates a δ-shock as the solution yields

mα(t, x) = (1 + α)−1(1 + 2tδ0(x)), q(t, x) = q0(x).

The following section presents a high-order scheme preserving the bounds on the velocity, the moment space
and capturing void and δ-shocks solutions.

2 RKDG scheme preserving admissibility

Following the derivation of the model (6) from the kinetic model (1), seen as a Galerkin approximation with
respect to the kinetic variable, we extend here this construction with a strong stability preserving (SSP)
Runge-Kutta discontinuous Galerkin (RKDG) scheme. A special focus is given to the imposition of the
admissibility enforcement on the numerical solution.

2.1 Discontinuous Galerkin (DG) space discretization

In order to construct the space discretization of (6), remark first that the moment method of Section 1 is
already a Galerkin approximation of (1) with respect to the kinetic variables (S, v) using b for the test func-
tions and (2) for approximation function. We extend the Galerkin approximation with space discretization.

For simplicity, we use a Cartesian grid D =
⋃

e Ωe where Ωe is a product of intervals of the form
[xj− 1

2
, xj+ 1

2
]. Define polynomial test functions g ∈ Pr(Ωe) of degree r with respect to the space variable x

and compute the integral

0 =

∫
Rd

∫ 1

0

∫
Ωe

g(x)b(S, v)(∂tf + divx(vf))(t, x, v, S) dxdS dv

=
d

dt

∫
Rd

∫ 1

0

∫
Ωe

g(x)b(S, v)f(t, x, v, S) dxdS dv (17)

−
∫
Rd

∫ 1

0

∫
Ωe

(∇xg(x)
T v)b(S, v)f(t, x, v, S) dx dS dv

+

∫
Rd

∫ 1

0

∫
∂Ωe

g(x)(vTn(x))b(S, v)f(t, x, v, S) dxdS dv,

9



where n denotes the outgoing normal to the boundary ∂Ωe. In the spirit of [3, 8], following the characteristic
curves suggests to decompose f in the last integral into two parts coming from both side of the interface.
Considering x ∈ Γee′ = Ωe ∩ Ωe′ on the interface between Ωe and Ωe′ and denoting n the normal directed
toward Ωe′ , this corresponds to writing

(vTn(x))f(t, x, v, S) = lim
y→x

y∈Ωe

(vTn(y))+f(t, y, v, S) + lim
y→x

y∈Ωe′

(vTn(y))−f(t, y, v, S), (18)

where a± = (a ± |a|)/2 designate the positive or negative part of a. Now, following (2), we approximate f
by fh defined as

fh(t, x, v, S) = ρh(t, x, S)
∏
j

δuj,h(t,x)(vj) =
∑
e

ρe(t, x, S)
∏
j

δue
j (t,x)

(vj)1Ωe(x), (19)

where the subscript h refers to the functions defined by parts and the superscript e refers to the functions in
the cell Ωe. The functions ue and ρe are chosen such that x 7→ Ue(t, x) = ((me)T , (qe)T )(t, x)T ∈ Pr(Ωe)

4+d

are polynomial function of space in every cell Ωe, where

Ue(t, x) =

∫ 1

0

∫
Rd

b(S, v)ρe(t, x, S)
∏
j

δue
j (t,x)

(vj)dS =

∫ 1

0

b(S, ue(t, x))ρe(t, x, S)dS (20)

are polynomials of degree r over the spatial cell Ωe. Eventually, only the moment equation is solved, and
the fact that Ue(x) is polynomial is sufficient for the construction1.

Now, we choose the gj such that it forms a basis of polynomials, which is orthogonal with respect to the
L2 scalar product on Ωe. Denote xk some quadrature points. In practice, we simply choose in 1D the Gauss-
Lobatto points such that they include the boundary of each interval, and they maximize the accuracy in the
sense that the space integrals are exact up to degree 2r − 1. Finally, denote lk the Lagrange polynomials
associated to these quadrature points. This structure (quadrature points and Lagrange polynomials) is
simply tensorized in multi-D (see [61, 64] and references therein). Reinjecting it in (17) provides

0 =M
d

dt
U − F (U) + E(U), (21a)

where the unknown (Uj,k)j=1,...,4+d = ((mk)
T , (qk)

T )T approximates U(xk) = ((me)T , (qe)T )(xk)
T at the

quadrature points xk and (
M
dU

dt

)
i,j

=
∑
k

(∫
Ωe

gi(x)lk(x)dx

)
dUj,k

dt
, (21b)

F (U)i,j =
∑
k

(∫
Ωe

gi(x)∇xlk(x)
Tdx

)
ukUj,k, (21c)

where the velocity uk satisfies m1,kuk = qk ≈ q(xk) = m1(xk)u(xk). It is a scalar in 1D, or a vector in
multi-D of the same size as ∇xlk(x). The case m1,k = 0, which corresponds to the zero mass m1 = 0 case,
will be treated in the next section.

For the exchange term E, the boundary ∂Ωe = ∪e′Γee′ of the cell is splitted into the interfaces Γee′ =
Ωe ∩Ωe′ and one remarks that the quadrature points xk along Γee′ in Ωe are identical to those on the other
side, along Γee′ in Ωe′ . Therefore, reinjecting (18) in the last integral of (17) and using the approximation (19)
leads to (see also [3, 8])

E(U)i,j =
∑

e′ s.t.
Γee′ ̸=∅

∑
k s.t.

xk∈Γee′

(∫
Γee′

gi(x)lk(x)dx

)
×
((
uTk n(xk)

)
+
Uj,k +

(
uTk′n(xk)

)
− Uj,k′

)
, (21d)

1Such an approximation can be achieved in several ways, as such underlying ρe and ue exist. For instance, ρe(t, x, S) =∑4
i=1 αi(t, x)δSi

(S), ue
j(t, x) = pj(t, x)/(

∑4
i=1 αi(t, x)Si), with x 7→ αi(t, x), pj(t, x) ∈ Pr(Ωe) and some distinct fixed Si ∈

(0, 1) provides such Ue. Other choices are possible and this formula does not impact our construction.

10



where the index k refers to the quadrature points along the edge Γee′ in Ωe and the index k′ ̸= k corresponds
to the quadrature point in Ωe′ at the same location xk′ = xk ∈ Γee′ . In 1D, this exchange terms reduces to
the kinetic fluxes [3].

2.2 Numerical admissibility constraint

The conditions (12) and (8) satisfied by the duality solution at the continuous level need to be transposed
at the discrete level.

Realizability: For the realizability condition (12), despite providing a discretized version of the un-
derlying kinetic model, the transposition of this condition at the discrete level is essentially driven by the
applications we have in mind. Indeed, violating a discrete version of the pointwise realizability criteria (12)
would not affect the precision nor the stability of the scheme, as a non-realizable vector would simply be
transported at velocity u. The main motivation for imposing this constraint arise from the additional physical
effects discussed in Section 1.1.1 that would require a strong imposition of this property.

Velocity bounds: The preservation of monotonicity in the solution, and therefore the bounds on velocity,
is closely related to the total variation diminishing property (TVD; [31]). In 1D, the velocity u has been
shown to be total variation diminishing (TVD) in [3] at the continuous level and preserving the bounds on
the total variation at the numerical level is essential for stability. These bounds are applied at the cell level
Ωe to the cell mean values.

Formulation of the requirement at the cell level: First, denote Ūe the integral of the approximation
Ue in the cell Ωe. Using the appropriate Gauss-Lobatto quadrature weigts ωk > 0

Ūe =
1

|Ωe|

∫
Ωe

Ue(x)dx =
∑

k s.t.
xk∈Ωe

ωkUk ≈ 1

|Ωe|

∫
Ωe

∫ 1

0

∫
Rd

b(v, S)f(x, v, S)dvdSdx,

which approximates the moments of f in the spatial cell Ωe with |Ωe|, the element size. Assuming that
U(tn, ·) is of the form (20) at time tn with positive ρ(tn, ·), then we expect the integral of exact solution to
satisfy Ūn+1

e ∈ A∆t
tn,Ωe

as defined in (14) for all cell Ωe. This rewrites:

m̄n+1
e ∈ R, q̄n+1

j,e ∈
[
m̄n+1

1,e (uT ej)
n
min,e, m̄

n+1
1,e (uT ej)

n
max,e

]
,

(uTn)nmin,e = min
e′ s.t.

Ωe∩Ωe′ ̸=∅

(ūne′)
Tn, (uTn)nmax,e = max

e′ s.t.
Ωe∩Ωe′ ̸=∅

(ūne′)
Tn,

where ūne satisfies m̄n
1,eū

n
e = q̄ne . Assuming that the time step satisfies a condition of the form ∆t ≤

maxe ū
n
eR(Ωe) where the radius R(Ωe) is the maximum distance between two points of Ωe, this corresponds

to imposing (12) and (8) to the approximate solution fh averaged in a cell Ωe at time tn+1.
Formulation of the requirement at the node level: Exploiting the positivity of the quadrature

weigts of Gauss-Lobatto and the convexity of the admissible set, Ūn+1
e ∈ A∆t

tn,Ωe
holds if Un+1

k ∈ A∆t
tn,Ωe

holds for every quadrature point xk ∈ Ωe, or equivalently

mn+1
k ∈ R, qn+1

j,k ∈
[
mn+1

1,k (uT ej)
n
min,e, m

n+1
1,k (uT ej)

n
max,e

]
, (23)

implies (22). For the applications below, we impose (23) and we rewrite the discrete admissible set as

An
e :=

{
U such that m ∈ R, m1(u

T ej)
n
min,e ≤ qj ≤ m1(u

T ej)
n
max,e

}
, An :=

∏
e

An
e , (24)

using velocities (uT ej)
n
min,e and (uT ej)

n
max,e given at a time step tn in the cell Ωe. Especially, at every time

step, the discrete admissible set is a closed convex cone defined using the solution Un−1 at the previous time
step.

Imposition of the requirement: A numerical scheme preserves admissibility if

Un ∈ An−1 ⇒ Un+1 ∈ An.
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At each time step, we enforce realizability (12b) of the moments vector (it boils down to the positivity
of the density for the PGD system [3]) and local maximum principle for the velocity (8). Global bound
preserving limiter can limit the approximation order reached by the numerical scheme (see [66]). These
constraints (13) holds true at the continuous level and we seek to satisfy them at the discrete level (23). If
admissibility is lost at some time step and at some quadrature point during the simulation, we correct this
numerical solution in the following way.

For U /∈ An, we define a corrected value (PnU) as a projection onto An and it needs to satisfy:

• (PnU) ∈ An is admissible,

• For all Ωe, ∑
k s.t.
xk∈Ωe

ωkUk = Ūe =
∑

k s.t.
xk∈Ωe

ωk(PnU)k. (25)

The second criteria aims at imposing conservativity of the scheme. Indeed, the numerical scheme satisfied
by the cell-averaged quantities Ūn+1

e with the time discretizations of the next subsection can be rewritten in
a conservative (finite volume) manner. Correcting the numerical solution at every time step such that (25)
holds, this numerical scheme can still be written in a conservative way, but with modified fluxes.

In practice, we also expect the correction ∥U−PnU∥ to be as small as possible in order not to deteriorate
the accuracy of the scheme. Especially, the restriction Pn|An to the admissible set must be the identity.
This additional error is studied in the next two sections.

Following the work of [61, 63, 64, 65], we consider corrections of the form:

(PnU)i,k = θni,eUi,k + (1− θni,e)Ūi,e for all k such that xk ∈ Ωe, (26)

where the convex combination parameters θni,e ∈ [0, 1] are such that (PnU) ∈ An. They can be different

for the different components i of the vector U = (mT , qT )T , for different cells Ωe and for different time tn.
But they are the same for every quadrature points xk ∈ Ωe among the same cell in order to satisfy the
conservativity property (25).

Property 4. Corrections of the form (26) preserve the conservativity property (25) of the scheme (21).

Proof. Let (PnU)i,e be the modified polynomial after corrections in cell Ωe, for the different components i,
such that

(PnU)i,e(xk) = (PnU)i,k, xk ∈ Ωe.

Then, the cell average (PnU)i,e satisfies:

(PnU)i,e =
∑

k s.t.
xk∈Ωe

ωk(PnU)i,k =
∑

k s.t.
xk∈Ωe

ωk

(
θni,eUi,k + (1− θni,e)Ūi,e

)

= θni,e

 ∑
k s.t.
xk∈Ωe

ωkUi,k

+ (1− θni,e)Ūi,e

 ∑
k s.t.
xk∈Ωe

ωk

 = Ūi,e,

since θni,e does not depend on the quadrature point xk and the quadrature weights verifies
∑

k s.t.
xk∈Ωe

ωk = 1.

2.3 SSP Runge-Kutta time discretization

Concerning the time discretization, we exploit the strong stability preserving (SSP) Runge-Kutta (RK)
framework ([28, 56]). Such schemes have been originally designed to preserve the TVD property while going
higher order.
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2.3.1 Admissibility of the explicit Euler-finite volume scheme

Rewriting the DG semi-discretization (21a) of the last subsection under the form

dU

dt
= G(U) =M−1(F − E)(U), (27)

then the explicit Euler iteration reads

Ũn+1 = Un +∆tG(Un), (28)

that can be corrected if Ũn+1 /∈ An. The explicit Euler time discretizations combined with first order kinetic
finite volume spatial discretization reads (28) where G is defined in (27) withM , F and E defined in (21) and
using only one quadrature point per cell and therefore only one function l1(x) = 1 = g1(x) per cell (such that
∇xl1 = 0). This yields especially Uk = Ue for the unique xk ∈ Ωe. Then decomposing the term U

n

e = Un
k

over the dual mesh (in Cartesian geometry) as in discrete duality finite volume (DDFV ; see e.g. [10, 11]),
the scheme (28) reduces to (for k such that xk ∈ Ωe)

Un+1
k = Un

k −∆t
∑

xk′∈Ωe′

s.t. Γee′ ̸=∅

(
(unk )

Tnkk′
)
+
Un
k +

(
(unk′)Tnkk′

)
− U

n
k′

∆xkk′

= Un
k −∆t

∑
xk′∈Ωe′

s.t. Γee′ ̸=∅

Fn
kk′ −Fn

k′k

∆xkk′
, Fn

kk′ =
(
(unk )

Tnkk′
)
+
Un
k , (29)

and, remarking that a+ = −(−a)−, we used unk ≡ qnk /(m1)
n
k and

∆xkk′ = ∆xk′k = ∥xk − xk′∥, nkk′ = −nk′k =
xk − x′k
∆xkk′

,

First, we rewrite the result (similar to those in [3, 8]) in the simple first order framework:

Proposition 3 (Admissibility preservation of explicit Euler-kinetic finite volume scheme). Suppose that
Un ∈ An−1 and that

∆t max
k

∥unk∥

min
(xk,xk′ )∈Ωe×Ωe′

s.t. Γee′ ̸=∅

∆xk′k
≤ 1. (30)

Then the update Un+1 ∈ An computed with (29) on a Cartesian grid is admissible.

Proof. From (29), the scheme rewrites (for k such that xk ∈ Ωe)

Un+1
k =

1−∆t
∑

xk′∈Ωe′

s.t. Γee′ ̸=∅

(
(unk )

Tnkk′
)
+

∆xkk′

Un
k +∆t

∑
xk′∈Ωe′

s.t. Γee′ ̸=∅

(
(unk′)Tnk′k

)
+

∆xk′k
Un
k′ ,

and, under the CFL condition (30) and since the mesh is Cartesian, it is a convex combination of the previous
values Un

k . Therefore, it preserves any convex set, and especially it preserves the admissibility property.

Remark 2. This construction extends out of the Cartesian framework under a modified CFL condition.
Cartesian grids were found sufficient for the present applications.
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2.3.2 Admissibility of the cell-averaged value of the Euler-DG scheme

A first step toward the high-order RKDG scheme is the explicit Euler-DG scheme, namely high order in space
and first order in time. It is given in (28). When using a higher order DG spatial discretization, i.e. with a
large set of polynomials (li)i and (gi)i, then the scheme a priori does not preserve admissibility. However,
for the admissibility of the full SSPRK-DG scheme in the next paragraph, we only need the admissibility of

its cell-averaged value, i.e. if U
n

e ∈ An−1
e for all e, then we need U

n+1

e ∈ An
e for all e, where

U
n+1

e =
∑

xk∈Ωe

wkŨ
n+1
k , (31)

and Ũn+1
k is given in (28).

Proposition 4 (Admissibility preservation of the scheme on the cell-averaged of the SSPRK-DG scheme).
Suppose that U

n ∈ An−1 and that

∆t max
k

∥unk∥ min
(xk,xk′ )∈Ωe×Ωe′

s.t. Γee′ ̸=∅

∆xk′k

×min
k
wk

≤ 1. (32)

Then the updated value U
n+1 ∈ An of the cell-averaged Un+1 computed with (31) on a Cartesian grid is

admissible.

Proof. We simply reformulate proofs from the literature (e.g. in Theorem 2.1 [64], Theorem 4.1 [60], Theorem
12.33 [33]) to the present framework. The scheme (31) can be written as a combination of Euler-KFV steps

U
n+1

=
∑

xk∈Ωe

wk

Un
k − ∆t

wk

∑
xk′∈Ω̃e′

s.t. Γ̃ee′ ̸=∅

(
(unk )

Tnkk′
)
+
Un
k +

(
(unk′)Tnk′

)
− U

n
k′

∆xkk′

 , (33)

by redecomposing the mesh into another one with cells Ω̃e and edges Γ̃ee′ constructed such that there is only
one quadrature point xk per cell at its center. This scheme was shown to preserve the admissibility from
one step to another in Proposition 3 under the considered CFL condition, by dilatating ∆t by a coefficient
1/wk.

This implies that the cell-averaged values of the numerical solution remain admissible at every iteration,
but the value at each quadrature point might leave the admissible set anyway. This is circumvented by the
projection in the next section.

2.3.3 Admissibility of the limited SSPRK-DG scheme

When using a higher order DG spatial discretization, i.e. with a large set of polynomials (li)i and (gi)i, then
the scheme a priori does not preserve admissibility. For this reason, the scheme is corrected into

Un+1 = PnŨn+1, (34)

where the projections PnŨn+1 ≡ Pn(Ũn+1, U
n+1

) toward the cell-averaged values U
n+1

are defined in the

next section. For this projection to exists this cell averaged value needs to be admissible U
n+1 ∈ A, and the

scheme satisfied by these values needs to preserve admissibility, as described in the last paragraph.
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Eventually, we construct a corrected m-stage SSPRK-DG scheme under the form
U (0) = Un,

U (j) =
j−1∑
i=0

αj,iPn
(
U (i) +∆t

βj,i

αj,i
G(U (i)), U (i) +∆t

βj,i

αj,i
G(U (i))

)
for j = 1, . . . ,m,

Un+1 = U (m),

(35)

where the coefficients αj,i, βj,i are chosen such that the RK scheme is strong stability preserving (SSP ; [28]),
i.e. they satisfy

αj,i, βj,i ≥ 0,

j−1∑
i=0

αj,i = 1. (36)

The cell averaged scheme U (i) +∆t
βj,i

αj,i
G(U (i)) in (35) corresponds exactly to (33) by replacing ∆t by ∆t

βj,i

αj,i
.

In this work, the RK method is always chosen of the same order as the one in space. These schemes
are chosen to be SSP in order to preserve admissibility (see Proposition 5 below), and up to fourth order to
use only standart explicit SSPRK methods. Higher order discretizations would require further development
beyond the present objectives. The parameters α and β used in Section 4 below are given in Propositions
3.1, 3.2 and 3.3 in [27] for the second, third and fourth order SSPRK schemes. These coefficients are choosen
such that if no correction is needed, that is if Pn = Id for all j in (35), then (Ūn+1

e − Ūn
e )/∆t = O(∆tp) at

a certain order p.

Proposition 5 (Admissibility preservation of the SSPRK-DG scheme). Suppose that Un ∈ An−1 and that

∆t max
i,j

|βj,i|
αj,i

×max
k

∥unk∥ min
(xk,xk′ )∈Ωe×Ωe′

s.t. Γee′ ̸=∅

∆xk′k

×min
k
wk

≤ 1. (37)

Then the update Un+1 ∈ An computed with (35), with parameters α, β satisfying (36), with a projection Pn

onto the admissible set An, on a Cartesian grid, is admissible.

Proof. This scheme is again constructed as a convex combination of admissible values Pn
(
U, U

)
∈ An,

well-defined under the given CFL condition according to Proposition 4.

3 Projection methods

Two projections of the form (26) are constructed and studied in this section in order to enforce admissibility.
They are defined locally as functions P depending on U ∈ R4+d and Ū ∈ An

e , corresponding respectively to
the quadrature value Un

k and the cell value Ūn
e . Rewrite (26) generically

P(U,U)i = θiUi + (1− θi)U i, (38)

where the coefficients θi are defined below.

3.1 Projections enforcing realizability and TVD of the velocity

We define values of θi to enforce the admissibility requirement. This condition rewrites hi(U) ≥ 0 for
i = 1, . . . , 4 + 2d, the first four correspond to realizability, the last to the TVD of u. In practice, we impose
hi(U) ≥ ε > 0 with a small value of ε in order to avoid admissibility loss due to round-off error. This
parameter is fixed to 10−12 such that the admissibility domain is not too reduced, this was found sufficient
for our applications.
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3.1.1 Realizability projection

First, we define the projection to enforce realizability:

Definition 6 (Realizability projection). For m and m such that hi(U) > ε and hi(U) < ε for some
i = 1, . . . , 4 (defined in (12b)), the realizability projection is defined by

Preal(U,U) = θiU + (1− θi)U,

such that θi ∈ [0, 1] satisfy hi(PU) = ε and thus are given by:

θ1 =
ε− h1(U)

h1(U − U)
, θ2 =

ε− h2(U)

h2(U − U)
, (39a)

θ3 =
−b+

√
b2 − 4ac

2a
, θ4 =

−b̃+
√
b̃2 − 4ãc̃

2ã
(39b)

with

{
a = h3(U − U), c = h3(U)− ε,
b = m1/2(m3/2 −m3/2) + (m1/2 −m1/2)m3/2 − 2m1(m1 −m1),
ã = h4(U − U), c̃ = h4(U)− ε,

b̃ = (m0 −m1/2)(m1 −m1 −m3/2 +m3/2)
+(m1 −m3/2)(m0 −m0 −m1/2 +m1/2)
−2(m1/2 −m1)(m1/2 −m1/2 −m1 +m1).

One verifies that each θi ∈ [0, 1] is well-defined as long as hi(U) < ε and hi(U) > ε.

3.1.2 TVD projection

Similarly, the constraints (24) on q for the TVD property on u rewrites hi(U) ≥ 0 for i = 5, . . . , 4+ 2d with:

h4+2j−1(U) = qj −m1(u
T ej)min, h4+2j(U) = m1(u

T ej)max − qj . (40)

Definition 7 (TVD projection). For U and Û such that hi(U), hi(Û) > ε for i = 1, . . . , 4 and hj(U) > ε

and hj(Û) < ε for j = 5, . . . , 4 + 2d, we define the TVD projection of the form

PTV D(Û , U) = θjÛ + (1− θj)U,

where θj ∈ [0, 1] is such that hj(PÛ) = ε. This yields

θj =
ε− hj(U)

hj(Û − U)
. (41)

Remark that this definition requires m̂ ∈ R to be realizable for the coefficients θj ∈ [0, 1]. Therefore,
in order to construct projections over the admissibility domain, we need to combine these two projections
Preal and PTV D, and the realizability one needs always to be imposed first. Two combinations of those
projections are considered in the next paragraph.

3.2 Assembling the projections

3.2.1 Minimal projection

We first introduce a projection Pmin that is only used for accuracy study.

Definition 8 (Minimal projection). The closest admissible vector to a non-admissible one U /∈ An
e (red

curve on Fig. 1):
Pmin(U,U) = argmin

V ∈An
e

∥U − V ∥ (42)
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The projection Pmin does not depend on U . Especially, it can a priori not be written in the form (38)
in order to preserve the conservativity Property 4. For this reason, it is only exploited below for accuracy
studies, but it is not used for the limitation in the DG scheme.

By definition, this projection Pmin(U,U) ∈ An
e is the admissible vector the closest to U /∈ An

e . Especially,
for the accuracy study below, we exploit the estimation between the projection Pmin(U,U) and the exact
solution Uex

∥Pmin(U,U)− Uex∥ ≤ ∥Pmin(U,U)− U∥+ ∥U − Uex∥ ≤ 2∥U − Uex∥. (43)
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Figure 1: Cut in the (m1, q) plane of the admissible set and the minimal, step-by-step and straight projections
of a non-admissible vector with ε = 10−12.

3.2.2 Step-by-Step projection

Definition 9 (Step-by-step projection). Inspired of [61, 64, 65, 63, 66, 62, 59], the projection is performed
in two steps. We first project m onto m̂ ∈ R, then project Û = (m̂T , qT )T onto An

e .

• Define first Û = P1(U,U) such that (blue curve in Fig. 1)

Û = P1(U,U) =
(
θ1mT + (1− θ1)mT , qT

)T
, where θ1 = min

i=1,...,4
θi, (44a)

where θi = 1 if hi(U) ≥ ε or equals (39) otherwise, such that P1(U,U) satisfies (12). Remark that P1

has its first components m equal to those of Preal, but has different q.

• Then, project Û = P1(U,U) onto An
e using the functions hi for i = 5, . . . , 4 + 2d:

PSbS

(
U,U

)
= θ2Û + (1− θ2)U where θ2 = min

i=5,...,4+2d
θi, (44b)

where θi = 1 if hi(Û) ≥ ε or equals (41) otherwise, such that PSbS

(
U,U

)
satisfies (23).

Property 5. The second projection (44b) does not alter the realizability property, and the step-by-step
projection is a projection onto the admissible set, i.e. if U ∈ An

e , then PSbS(U,U) ∈ An
e for all U .
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Proof. First, one remarks that An
e is a convex cone, since it is the set of moments of positive distributions.

This implies that for all i

hi(V ) ≥ 0 ⇒ hi(αV ) ≥ 0 ∀α ≥ 0,

hi(V ), hi(W ) ≥ 0 ⇒ hi(θV + (1− θ)W ) ≥ 0 ∀θ ∈ [0, 1].

Especially, since both hi(Û) ≥ ε and hi(U) ≥ ε for i = 1, . . . , 4, then the second projection (44b) does not
alter the realizability of m.

Equivalently, the projection PSbS corresponds to fixing θi = θ2 onto the component q (i.e. i ≥ 5) and
θi = θ1θ2 (i.e. i ≤ 4) onto the components m in (38).

3.2.3 Straight projection

Definition 10 (Straight projection). This projection consists in using the same parameter θ for every
component (see green curve in Figure 1)

PStr(U,U) = θ3Û + (1− θ3)U, Û = θ1U + (1− θ1)U, (45)

where θ1 is defined in (44a) and θ3 is such that PStr(Û , U) satisfies (23). It yields θ3 = min
i=5,...,4+2d

θi with

either θi = 1 if hi(Û) ≥ 0 or it equals (41) otherwise.
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Figure 2: Projection Pmin applied to (m1, q)

Property 6. These projections are comparable in several regimes:

• When m1 ≥ ε, then PSbS(U,U) = PStr(U,U).

• When 0 ≤ q ≤ εumax (in blue on Fig. 2), then PSbS(U,U) = Pmin(U,U).

• When q ≥ εumax and m1 ≤ ε, then PSbS(U,U) ̸= PStr(U,U) a priori.

Eventually, both PSbS and PStr take the form (38) and can therefore be used in a conservative manner
in the DG scheme, while Pmin can not. Their accuracy are studied in Section 3.3.
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3.3 Behavior near the vacuum regime

Following the work of [61, 64, 65, 63, 66, 62, 59], one easily derives error estimations with the different
limitations under the condition that U is far from the boundary ∂An

e . However, as illustrated in Section 1.2.6,
the near vacuum regime m1 → 0+, that corresponds to a case along the boundary ∂An

e can be trigger by
relatively common configurations and is therefore relevant in many applications. For this reason, we study
the properties of PSbS(U,U) and PStr(U,U) in the limit m1 → 0+. For simplicity, we conduct this study in
1D in the (m1, q) plane where the admissibility property simplifies into:

ε ≤ m1, m1umin + ε ≤ q ≤ m1umax − ε, (46)

but this extends to the case where the condition m1 ≥ ε is replaced by m ∈ R.

3.3.1 Mass comparison

First, one observes that the mass is higher with Step-by-Step projection in this limit.

Proposition 6. Consider U = (m1, q)
T /∈ An

e and U = (m1, q)
T ∈ An

e such that

q < εumax − (ε−m1)
q − εumax

m1 − ε
or q ≥ q.

Then, writing PSbS(U,U) = (mSbS
1 , qSbS)T and PStr(U,U) = (mStr

1 , qStr)T

mStr
1 ≤ mSbS

1 .

Proof. Suppose that m1 ≥ ε, then mSbS
1 = mStr

1 .
Suppose that m1 < ε. One verifies that the first case q < εumax − (ε − m1)

q−εumax

m1−ε also provides

mSbS
1 = ε = mStr

1 .
Finally, for the case q ≥ q, comparing the values (44a) and (45) provides the inequality.

Remark 3. The vacuum limit corresponds to having q ∈ [m1umin,m1umax] in the limit m1 → 0+. Near
this limit, and assuming that the numerical error of the DG scheme is much bigger than ε, the case q < q
is less probable. Indeed, the size of the interval [m1umin,m1umax] in which falls q is much smaller than the
DG error.

This comparison is supported by some numerical examples below and may result in larger numerical
diffusion effects on m1 with PSbS than with PStr.

3.3.2 Error comparisons

For a quantitative study of the error, we obtain the following estimations:

Lemma 1. Consider vectors U /∈ An
e , U

ex, U ∈ An
e , and a projection P(U,U) ∈ An

e onto the admissibility
domain, using the average value U . Then

∥P(U,U)− Uex∥ ≤ ∥(P − Pmin)(U,U)∥+ 2∥U − Uex∥. (47)

Proof. Following the computations of [61, 64, 65, 63, 66, 62, 59],

∥P(U,U)− Uex∥ ≤ ∥(P − Pmin)(U,U)∥+ ∥Pmin(U,U)− Uex∥,

and using (43) provides the result.

The discrete solution U /∈ An
e is supposed to approximate the exact one Uex ∈ An

e with a certain
accuracy (typically O(∆xp) in the DG framework). Then, we need to study the distance (P −Pmin) for the
two projections PSbS and PStr when U → (ε, εu) with u ∈ [umin, umax].

Concerning Pmin, straghtforward computations provide:
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Lemma 2 (Values of Pmin). • Suppose that (in yellow on Fig. 2)

m1umax − q ≤ 0 and m1 + qumax ≥ ε(1 + u2max),

then Pmin(U,U) is the orthogonal projection onto the axis q = m1umax, i.e.

Pmin(U,U) =
(
mmin

1 ,mmin
1 umax

)T
, mmin

1 =
m1 + qumax

1 + umax
.

• Suppose that (in red on Fig. 2)

m1 + qumax ≤ ε(1 + u2max) and q ≥ umaxε,

then
Pmin(U,U) = (ϵ, ϵumax) .

• Suppose that (in blue on Fig. 2)
0 ≤ q ≤ umaxε,

then Pmin(U,U) = (ε, q).
The ones for negative q can be deduced by symmetry.

Eventually, straightforward computations yield the distance ∥(P − Pmin)(U,U)∥ in (47) in the different
cases:

Proposition 7 (Error estimation with PSbS). Assuming that (46) holds, then we have Û = (ε, q)T as defined
in (44a) and

PSbS

(
Û , U

)
= θqÛ + (1− θq)U, θq =

m1umax − q

q − q − umax(ϵ−m1)
.

Then, suppose additionnally that

• Either (red on Fig. 1)
m1 + qumax ≤ ε(1 + u2max), and q ≥ umaxε,

then
∥ (PSbS − Pmin) (U,U)∥ ≤ ∥(1, umax)∥ |1− θq| (m1 − ε).

Especially, lim
U→(ε,εu)

∥ (PSbS − Pmin) (U,U)∥ = 0.

• Or (yellow in Fig. 1)
m1 + qumax ≥ ε(1 + u2max) and m1 ≤ ε,

then
∥ (PSbS − Pmin) (U,U)∥ ≤ ∥(1, umax)∥

∣∣θqm1 +m1(1− θq)−mmin
1

∣∣ .
Especially, lim

U→(ε,εu)
∥ (PSbS − Pmin) (U,U)∥ = ∥(1, umax)∥|mmin

1 − ε| ≠ 0.

In the last case (yellow in Fig. 1), one needs further assumptions on U to control this error. This is
typically done in the DG framework by exploiting the value of an exact solution Uex assumed to be close to
U .

Proposition 8 (Error estimation with PStr). Assuming that (46) holds, then

PStr

(
U,U

)
= θU + (1− θ)U, θ = min (θm1

, θq) , θm1
=

ϵ−m1

m1 −m1
, θq =

m1umax − q

q − q − umax(ϵ−m1)
. (48)

We distinguish the two cases θ = θm1
and θ = θq (see Fig. 3) depending on the location of U and U . Suppose

additionnally that
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Figure 3: Projection PStr depending on the location of U

• Case 1: θ = θm1
and (red in Fig. 1)

m1 + qumax ≤ ε(1 + u2max), and q ≥ umaxε,

then ∥∥(PStr − Pmin) (U,U)
∥∥ = ε|u− umax|, u =

θq + (1− θ)q

θm1 + (1− θ)m1
.

Especially,
∥∥(PStr − Pmin) (U,U)

∥∥ is always considered negligible.

• Case 2: θ = θq and (red in Fig. 1)

m1 + qumax ≤ ε(1 + u2max) and q ≥ umaxε,

then ∥∥(PStr − Pmin) (U,U)
∥∥ ≤ ∥(1, umax)∥

∣∣mStr
1 − ε

∣∣ , mStr
1 = θm1 + (1− θ)m1.

Especially, using ϵ ≤ mStr
1 ≤ m1, then lim

m1→ε

∥∥(PStr − Pmin) (U,U)
∥∥ = 0.

• Case 3: θ = θm1
and (yellow in Fig. 1)

m1 + qumax ≥ ε(1 + u2max) and m1 ≤ ε,

then ∥∥(PStr − Pmin) (U,U)
∥∥ ≤ ε|u− umax|+ umax|ε−mmin

1 |.

Especially, the first term ε|u − umax| is negligible, but the second term |ε − mmin
1 | is a priori not

controled and one needs again further assumptions on Pmin(U,U).

• Case 4: θ = θq and (yellow in Fig. 1)

m1 + qumax ≥ ε(1 + u2max) and m1 ≤ ε,

then ∥∥(PStr − Pmin) (U,U)
∥∥ ≤ ∥(1, umax)∥|mStr

1 −mmin
1 |.
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• Case 5: θ = θm1 and (yellow in Fig. 1) 0 ≤ q ≤ εumax. Then PStr(U,U) = Pmin(U,U).

• Case 6: θ = θq and (yellow in Fig. 1) 0 ≤ q ≤ εumax. Then∥∥(Pmin − PStr)(U,U)
∥∥ ≤ ε|u− umax|+ umax|mStr

1 − ε|.

Especially, the first term ε|u− umax| is negligible and, since ε ≤ mStr
1 ≤ m1, the second term satisfies

lim
m1→ε

|ε−mStr
1 | = 0.

4 Numerical experiments

The present approach is constructed to reach high-order accuracy (restricted to second order in [8, 34, 25, 24])
while remaining robust with void regime and singularities. This is illustrated in this section through five
representative test-cases, with increasing difficulties. The first is a smooth 1D case to study the accuracy
of the method. The second and third cases test the robustness of the method respectively when void or
δ-shocks appear. The last test cases extend the void and δ-shock studies in a 2D framework. Our numerical
results are compared with a kinetic finite volume scheme (KFV; [8, 34, 25, 24]). It is a finite volume scheme
using the kinetic fluxes (21d) at the interfaces, together with a MUSCL linear reconstruction in each cell.
A minmod limiter based on u and the so-called canonical moments formulation is used. It consists in a
non-linear transformation of the realizability domain R onto [0, 1]4. However, this strategy is limited to
second order. The time step satisfies the following CFL condition for the second order kinetic finite volume
scheme:

∆t

∆x
= CFLmax

e

(
|ue|+ |Due|

∆x

2

)
, (49)

where CFL ≤ 1 is defined by the user. The quantity ue is different from the cell average quantity ue and is
determined depending on the slope Due and conservation properties. The slope Due is calculated in order
to satisfy realizability and maximum principle conditions. The expressions of ue and Due are given in the
appendix D of [24]. The time step for the RKDG schemes satisfies the CFL condition (37) where the first

Gauss-Lobatto weight ω1 is 1 for the second order RKDG scheme,
1

2
for the third order scheme and

5

9
for

the fourth order scheme.

4.1 Accuracy study for a 1D spray

The first initial condition yields

mα(x, 0) =

∫ 1

0

SαG(x, 1/2)dS = (α+ 1)−1G(x, 1/2), q(x, 0) = −m1(x, 0), (50)

for α = 0, 1/2, 1, 3/2, where G(x, xc) = exp
(
−(x− xc)

2/σ2
)
with σ = 0.1. Periodic conditions are used at

the boundary of the [0, 1]-domain. With such a field, all the moments are transported at velocity u = −1.
Fig. 4 (left) shows the numerical solution m0 (the other moments show identical features) with 100 cells at
time t = 2, i.e. after two periods. Fig. 4 (right) shows the relative l1-distance of the numerical solutions mN

0

obtained with the different schemes to the exact solution at final time tN = 2 as a function of ∆x

ε(∆x) =

∑
e

∑
q
ωq

∣∣mN
0,q −m0(xq, t = 2)

∣∣∑
e

∑
q
ωqm0(xq, t = 2)

.

Both limitations of Section 3 have no impact for this simulation and give identical result. Therefore, only one
is shown and the RKDG schemes yield the desired order. The KFV scheme [34] with the minmod limitation
yields a slightly slower convergence than the theoretical second order, and the maximum is clipped. Without
limitation, the RKDG and the KFV schemes yield a similar underlying spatial reconstruction. The difference
in the behavior is due to the considered limitation and the minmod limitation on the canonical moments
affects more the local extrema of the solution.
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Figure 4: Moment m0 (left) obtained with the 2nd and 3rd order RKDG schemes and the 2nd order KFV
scheme [34] at tN = 2 with the initial condition (50). Relative l1 distances (right) between the numerical
solutions mN

0 at tN = 2 and the exact solution.

4.2 Vacuum test case

We extend a test case from [8] in the present moment framework (see (15)). We use the initial condition
derived in (15):

mα(x, 0) = (α+ 1)−1, q(x, 0) = m1(x, 0)×

 −0.4 if x < 0.5 or x > 1.8,
0.4 if 0.5 < x < 1,
1.4− x if 1 < x < 1.8.

(51)

The first gap in the initial velocity is meant to trigger the low density region and periodic boundary conditions
are used.

Fig. 5 displays the numerical solutions m0 (left) and q (right) at tN = 0.5 with 100 cells. Vacuum is
created at the location of the velocity discontinuity in the initial condition. The KFV scheme is more diffu-
sive in this region. As in the previous test case, the profile in the higher density region is sharper with the
third order scheme and more diffused with the KFV scheme. However, the RKDG schemes present larger
overshoots on the sides of this profile and in the middle of this region. This was already observed in [8].
This effect reduces when raising the order of accuracy. Other slope limiters allow to damp these oscillations
near shocks like WENO-based limiters [67]. This limitation procedure is achieved by using a troubled-cell
indicator [51] to identify the cells that require reconstruction. Then a polynomial reconstruction is made
with a WENO-inspired approach (see [67]). In our work, we seek to ensure realizability and local maximum
principle and we identify the cells violating these two constraints to correct them with the slope limiters (26).

A further study is carried out with Fig. 6 and Table 1. Here, we seek to compare the behavior near
vacuum of the RKDG scheme when the step-by-step (44a)-(44b) or the straight projection (45) is applied in
the limitation. Fig. 6 show zooms on this void region with the second and fourth order RKDG schemes where
the two projections are compared. Table 1 presents the minimal value of m1 obtained with the second, third
and fourth order RKDG schemes where the two projections are also compared. The safety parameter used in
the limitations (39) and (41) is set to ε = 10−12. At second order with coarse mesh size, the two projections
show identical minimal value of m1, this corresponds to the case where only one constraint is violated i.e.
the realizability and positivity of m1. In all the other simulations, the straight limitation PStr (45) shows
lower values of m1 compared to the step-by-step one PSbS (44b), as observed in Subsection 3.3.1. The
even orders, i.e. odd order polynomial reconstructions, show lower values of m1 in the void region with the
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Figure 5: Moments m0 (left) and q (middle) obtained with the RKDG schemes and the KFV scheme at
t = 0.4 with the initial conditions (51).

Mesh size RKDG Order 2 RKDG Order 3
PSbS PStr PSbS PStr

N = 25 8.015× 10−3 8.015× 10−3 1.225× 10−2 1.225× 10−2

N = 50 6.497× 10−5 6.497× 10−5 6.297× 10−5 6.510× 10−5

N = 100 4.221× 10−9 4.221× 10−9 2.813× 10−6 8.459× 10−6

N = 200 1.775×10−12 1.403×10−12 6.881× 10−7 5.688× 10−8

Mesh size RKDG Order 4 KFV Order2
PSbS PStr

N = 25 3.188× 10−3 5.096× 10−7 5.859× 10−3

N = 50 2.281× 10−3 1.448× 10−5 6.103× 10−5

N = 100 2.460× 10−7 10−12 = ε 5.587× 10−9

N = 200 2.060×10−12 10−12 = ε 10−12 = ε

Table 1: Minimal value of m1 with the different schemes and limitations in the vacuum test case.

straight projection than with the step-by-step one. As a summary, the present high-order scheme remains
robust when considering solutions with very low m1.

4.3 1D δ-shock test case

We extend another test case from [8] using:

mα(x, 0) =

∫ 1

0

Sα

(
G(x, x1) +

4

3
G(x, x2)1[0.5,1](S)

)
dS

= (α+ 1)−1

(
G(x, x1) +

4

3
(1− 0.5α+1)G(x, x2)

)
, (52a)

q(x, 0) = m1(x, 0) (1R−(x− 0.5)− x) , (52b)

where the Gaussians’ parameters are σ = 0.075, x1 = 0.15 and x2 = 0.85. This initial condition is plotted
in Fig. 7. All the simulations are made with a mesh of 100 cells and periodic boundary conditions are used.
The coefficient 4/3 is chosen such that m1 is symmetric in the domain, and since u is antisymmetric, such
a configuration triggers a stationnary δ-shock. Remark that the monokinetic assumption (2) is not valid at
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Figure 6: Zoom of the m0-plot in the vacuum region x ∈ [0.3, 0.7].

this location, and the kinetic solution to (1) is composed of the sum of the two distributions defined in (52a)
crossing each others at the velocity given (52b). On the contrary for the moment solution to (6), the two
masses do not cross each others, but enter into a stationnary δ-shock located in x = 0.5. This δ-shock is the
sum of the masses coming from both sides of the shock which are symmetric for m1 but not for m0, m1/2 and
m3/2. Fig. 8 shows m0 and m1 with the different schemes at tN = 0.4. The limitations mainly activate in the
region where the two masses enter in the δ-shock. In this region, the moments m are far from the boundary
∂R. Therefore, the two limitations gives again identical values and only one (those with PStr) is shown in
Fig. 8. Due to the shape of the initial velocity (see Fig. 7, right), it is crucial to impose velocity bounds
that are computed locally (as in (8)) rather than globally (as in (7)) in order to filter spurious oscillations.
One observes furthermore in Fig. 8 (right) that the velocity profile with the RKDG schemes is less diffused
compared to the one with the KFV scheme.

Finally, we compare in Table 2 the value of the moment vector inside the δ-shocks with the exact solution.
Straightforward computations leads to an exact value

mδ
α = (α+ 1)−1

(∫ 1/2

1/6

G(x, x1)dx+
4

3
(1− 0.5α+1)

∫ 5/6

1/2

G(x, x2)dx

)
.

The exact solution is compared to the approximate solutions given by the second and third order RKDG
schemes and the second order KFV scheme. The value of the momentsm0,m1/2,m1,m3/2 andm1u inside the
δ-shocks are presented in Table 2. The limitation strategy in the RKDG schemes uses the straight projection
(45) and the KFV scheme, a minmod limiter. All the schemes overestimate the value of the moment vector
inside the δ-shocks. The third order RKDG scheme gives the most accurate approximation of the exact
solution compared to the two other schemes for the moments m0,m1/2,m1 and m3/2. Comparing the two
second order schemes, the KFV scheme outperforms the RKDG one. As a summary, the present high-order
schemes remain robust when tackling one of the singularities of the moments model based on monokinetic
assumption, the δ-shocks.

4.4 2D δ-shock test case

This case corresponds to (6) with U = (mT , qT )T where q = (q1, q2)
T and x = (x1, x2)

T are two-dimensional.
The initial condition are:

mα(x, 0) = (α+ 1)−1, q(x, 0) = −0.25×m1(x, 0)× (sign(x1), sign(x2))
T
. (53)

25



0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0
M

om
en

ts
M0 init
M1/2 init
M1 init
M3/2 init

0.0 0.2 0.4 0.6 0.8 1.0
x

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

U

U init

Figure 7: Initial conditions (52) on mα (left) for α = 0, 1/2, 1, 3/2 and on u ≡ q/m1 (right).
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Figure 8: Moments m0 (left) and m1 (middle) and velocity profile u = q/m1 obtained with the RKDG
schemes and the KFV scheme at t = 0.4 with the initial conditions (52).

m0 m1/2 m1 m3/2 q
Exact 0.083 0.062 0.05 0.042 0

RKDG Order 2 0.1112 0.0828 0.0667 0.056 0.0105
RKDG Order 3 0.0988 0.0722 0.0575 0.0479 0.0071
KFV Order 2 0.101 0.0740 0.0591 0.0493 0.0062

Table 2: Moment vector inside the δ-shock with the different schemes.

The computational domain [−1, 1]2 is meshed with 1002 uniform cells with ∆x = ∆y = 1/50. Homogeneous
Dirichlet boundary conditions are imposed. The final time is tN = 0.5. The initial configuration has a
uniform mass m1 over the domain, and the initial velocity profile (53) is such that δ-shocks form along
the axis x = 0 and y = 0. This symmetric setup also leads to a mass concentration at the origin. Fig. 9
shows the numerical solution m1 obtained with second order RKDG scheme with the straight projection
limitation (45). The result is similar to the 1D case in Subsection 4.3. As expected, the mass accumulates
along the axes and at the origin. The robustness and stability of the RKDG scheme with the limitation
procedure are preserved in 2D even in presence of δ-shock singularities.

This case is modified in Section A.1 and A.2 of Appendix A with asymmetric δ-shocks or δ-shocks not
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Figure 9: Moment m1 (left) and velocity field (right) at tN = 0.5 with the initial condition (53).

aligned with the mesh.

4.5 2D δ-vacuum test case

Eventually, we consider the initial condition:

mα(x, 0) = (α+ 1)−1, q(x, 0) = 0.4×m1(x, 0)× (sign(x1), sign(x2))
T
. (54)

The numerical parameters are identical to the previous case. The initial mass m1 is uniform. The initial
velocity is directed outwards the axes x = 0, y = 0 such that it generates vacuum region mα ≈ 0 around
these two axes. Fig. 10 m0 with the second order RKDG scheme with the straight limitation (45). The
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Figure 10: Moment m0 (left) and velocity field (right) at tN = 0.5 with the initial condition (54).

numerical results agree qualitatively with the expected solution. This case is modified to generate a vaccuum
not aligned with mesh in Section A.3 of Appendix A.

5 Conclusion

The purpose of this contribution has been to construct high-order RKDG schemes able to cope efficiently
with the peculiarities of a weakly hyperbolic system of moments equations, which is frequently encountered
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in fluid mechanics and combustion applications, where a spray of polydisperse droplets is to be found either
coupled to a gaseous flow field or as a small scale modeling in two-scale gas-liquid flows. The key feature
of the proposed method has been to maintain high-order for smooth solutions but also to cope efficiently
with convex admissibility set preservation, be it the moment space or the maximum principle on velocity, in
the presence of singularities and void. A specific limitation procedure has been introduced in order to limit
numerical diffusion when vacuum is created and to handle properly singularities. The proposed strategy has
been shown to be competitive in terms of accuracy and of robustness compared to a reference kinetic finite
volume scheme [8, 34, 24] at second order but also has the ability to reach third and fourth order within the
same paradigm. Such a feature is essential for applications where spray dynamics experience preferential
concentration and where vacuum is always present, thus influencing the local mixture fraction and the
evaporation rate for combustion applications in particular but it has a much broader range of applications.
The present piece of work is also the building block for the construction of a numerical strategy for more
complex multi-variate cases such as in [40] for oscillating droplets flows. The aim is to simulate a cloud of
non spherical oscillating droplets by taking into account the geometrical dynamics described by the phase
variables. This is work in progress.

A Additional numerical results

Here we include some additional 2D numerical results in order to illustrate the behavior of the second
order RKDG scheme associated to the straight projection (45). In all the numerical experiments below, the
computational domain [−1, 1]2 is divided into 100× 100 uniform cells with ∆x = ∆y = 1/50. Homogeneous
Dirichlet boundary conditions are imposed and the computations are performed until the final time tN . In all
the cases, we solve a Riemann problem where the initial data in each quadrant are constants. The quadrants
are indexed conventionally: from the first to the fourth in a counterclockwise direction, starting from the
right upper one.

A.1 Asymmetric δ-shock case

The initial condition is:

mα(x, 0) = (α+ 1)−1

(
1(R+)2 + 1(R−)2 +

4

3
(1− 0.5α+1)(1R+×R− + 1R−×R+)

)
(x),

q(x, 0) = −0.1×m1(x, 0)× (sign(x1), sign(x2)) .
(55)

We start from the configuration where the mass m1 is equally distributed over the domain, but not the other
moments. The initial velocity profile (55) is chosen to generate stationnary δ-shocks along the axes x = 0
and y = 0. Fig. 11 shows the moments m0 and m1 at final time tN = 0.25. The moments m0, m1/2 and
m3/2 are different in the quadrants next to each others. The velocity profile at the end of the simulation is
the same as the one observed in the 2D δ-shock test case with equally distributed mass (53).

A.2 Diagonal δ-shock case

We use the initial condition:

mα(Rx, 0) = (α+ 1)−1,
q(Rx, 0) = −0.1×m1(x, 0)× (sign(x1), sign(x2)) .

(56)

with Rx = (cos(π/3)x1 + sin(π/3)x2, − sin(π/3)x1 + cos(π/3)x2). The initial massm1 is equally distributed
over the domain and the initial velocity (56) is chosen to generate δ-shocks along the diagonals y = x

√
3 and

y = x/
√
3. The velocity is heading towards the two diagonals and the solution of the moment system (6)

yields δ-singularities located at the origin and the two axes. This is illustrated on Fig. 12 which shows m1

and u ≡ q/m at final time tN = 0.25. The numerical solution exhibits the expected behavior, i.e. stationary
δ-shocks along the two diagonals y = x

√
3 and y = x/

√
3 (see Fig. 12 (left) for moment m1). The result
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Figure 11: Moments m0 (left) and m1 (right) at tN = 0.25 with the initial condition (55).
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Figure 12: Moment m1 (left) and velocity (right) at tN = 0.25 with the initial condition (56).

is similar to the 2D case (53) after applying a rotation of angle π/3. The robustness and stability of the
RKDG scheme and its limitation procedure are preserved even in the case of δ-shock singularities that are
not aligned with the mesh.

A.3 Diagonal vacuum case

Eventually, we consider the initial condition:

mα(Rx, 0) = (α+ 1)−1, q(Rx, 0) = 0.4×m1(x, 0)× (sign(x1), sign(x2)) . (57)

The initial mass m1 is equally distributed over the domain and the initial velocity (57) generates vacuum
mα ≈ 0 along the diagonals y = x

√
3 and y = x/

√
3. Indeed, the velocity is heading outwards these axes.

Fig. 13 shows the moment m1 and the velocity u ≡ q/m1 at final time tN = 0.5. Again, the behavior of the
numerical method agree qualitatively with the structure of the expected solution. Indeed, we can observe
that the numerical solution approximates well the vacuum that are not aligned with the mesh. Because
of the presence of vacuum, the limitation procedure is activated in order to avoid non-realizable vector of
moments as in the 2D case of (54) after applying a rotation of angle π/3.
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Figure 13: Moment m0 (left) and velocity (right) at tN = 0.5 with the initial condition (57).
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