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Abstract

In this paper, we tackle the modeling and numerical simulation of polydisperse sprays. Starting
from a kinetic description for point particles, we focus on an Eulerian high-order geometric method
of moment (GeoMOM) in size and consider a system of partial differential equations on a vector of
successive fractional size moments of order 0 to N/2, N > 2, over a compact size interval. These moments
correspond to physical quantities, which can be interpreted in terms of the geometry of the interface at
small scale. There exists a stumbling block for the usual approaches using high-order moment methods
resolved with high-order numerical methods: the transport algorithm does not naturally preserve the
moment space. Indeed, reconstruction of moments by polynomials inside computational cells can create
N -dimensional vectors which can fail to be moment vectors. We thus propose a new approach, as well as
an algorithm, which is arbitrarily high-order in space and time with limited numerical diffusion, including
at the boundaries of the state space, where a specific study is proposed. It allows to accurately describe
the advection process and naturally preserves the moment space, at a reasonable computational cost.
We show that such an approach is competitive compared to second order finite volume schemes, where
limiters generate numerical diffusion and clipping at extrema. An accuracy study assesses the order of
the method as well as the low level of numerical diffusion on structured meshes. We focus in this paper
on cartesian meshes and 2D test cases are presented where the accuracy and efficiency of the approach
are assessed.

1 Introduction

The present work aims at proposing and analyzing a high-order numerical scheme for a system of weakly
hyperbolic conservation laws modelling sprays of droplets. In practice, this system is constructed by first
considering a collisionless kinetic equation on a distribution function of droplet ([43, 18]), and then by ex-
tracting the first few moments with respect to the kinetic variables. The resulting system is underdetermined
and it is closed using a quadrature-based approach ([40, 36, 9]). This construction has been widely used
(see e.g. the previous work [20, 19, 14] and references therein) to model clouds of spherical droplets. More
recently, this approach has also been exploited in [34] for the modelling of multi-scale flow with non-spherical
liquid inclusion at small scale.

The considered moment system consists of a pressureless gas dynamics (PGD) system augmented with
conservation laws on geometric moments. Therefore the study of the moment system exploit the one of
the PGD: First, it is necessary to look for solutions in a weak sense ([5, 3, 6, 44, 4]) because, even with
reasonable smooth initial and boundary conditions, this problem may involve measures, so-called delta-shocks
transported with the flow (see also [52, 32, 30]). Second, the uniqueness of the weak solution is only ensured
under additional constraints ([5]). Among those constraints, two properties of the initial and boundary
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values are preserved through space and time: the density remains non-negative and the velocity satisfies a
maximum principle, which is closely related to the total variation diminishing (TVD) property. Therefore,
these two properties needs also to be preserved by numerical schemes for stability reasons. Enforcing the
positivity of the density in the PGD corresponds to enforcing that the solution remains in a convex set,
called realizability domain or moment set (as it is the set of moments of the non-negative distributions ;
[15, 47, 31, 16, 28]), for the moment model. Two types of solutions are difficult to capture by most numerical
approaches, those involving concentration of the solution in a spatial point (delta-shock solution), and those
involving void regions where the solution is zero as such a value belongs to the boundary of the realizability
domain.

At the numerical level, a first order approach for the PGD preserving positivity of the density and the
maximum principle on the velocity has been first proposed in [2] based on kinetic interpretation of the
PGD, so-called kinetic finite-volume (KFV) scheme. It has been extended to second order in [7] using linear
reconstructions with slope limiters to preserve the TVD property on the velocity, and to the considered
moment model in [20]. However its construction is restricted to linear reconstructions, therefore to second
order schemes usually involving clipping of extrema, since such a reconstruction can be interpreted as a
convex combinaison of the value at each boundary of a cell, while higher order reconstructions do not
satisfy such a property. When associated with a strong stability preserving (SSP) Runge Kutta (RK) time
discretization ([49, 50, 24]), the discontinuous Galerkin approach (DG ; [11, 12, 17]) has been shown to be a
good alternative to construct high-order discretisations for hyperbolic systems with discontinuous solutions.

The DG method produces accurate results if the solution is smooth or contains (relatively) weak disconti-
nuities, otherwise significant oscillations and nonlinear instabilities may occur. To avoid such difficulties with
numerical oscillations, the DG method needs to be accompanied by a limitation procedure such as minmod
[13], artificial viscosity [35], total variation diminishing [27], weighted essentially nonoscillatory (WENO)
[39, 45] techniques or extrema preserving limitations [58, 56]. In addition, there are other techniques for
bound-preserving limiters, such as flux corrected transport algorithms [1] and convex limiting approaches
[41, 25, 26, 33, 46]. There have been intensive studies on positivity-preserving and maximum-principle-
satisfying methods. The genuinely high-order maximum-principle-satisfying DG method has been proposed
in [58, 56] for scalar hyperbolic equations. This procedure has been rapidly developed for different problems
ever since, for the Euler equations [59, 60], Navier-Stokes equations [57], shallow water equations [54] and
fluid flow in porous media [10], among others. Exploiting a quadrature interpretation of the cell recon-
structions, a pointwise limitation has been suggested in this framework. This limitation is rather simple to
use, both in term of implementation and to obtain theoretical estimates. However, those estimates are only
obtained under the constraint that the solution remains away from the void regions, even if this specific limit
is interesting and frequently encountered in applications. Such a scheme has also been tested for the PGD
in [55] and for another moment model in [48], which does not involve void or concentrated solutions.

The present work aims at constructing, analyzing and testing some limitation strategies for high-order
RKDG discretisations applied to the considered weakly hyperbolic geometric moment system, thus combining
the difficulties of moment space preservation within the framework PGD solutions, which can be potentially
singular or involve void regions. More specifically, we study the impact of such a limitation in the vicinity of
void regions. In practice, the considered limitations can be interpreted as projections of the discrete solution
onto the set of admissibility, that is the set of vectors satisfying both the bounds on the velocity and the
realizability condition on the geometric moments, while preserving the mean value of the solution in a cell.
Two choices of projections are focused on: one consists in projecting all the solution toward the cell mean,
the other consist in enforcing first the realizability then the overall admissibility. These two projections show
different behavior in the void region in terms of accuracy and of numerical diffusion.

The paper is organized as follows. In the next section, the construction of the moment model from a
kinetic description is recalled and we present its main features in more details. In Section 3, the DG scheme
is presented and the discrete versions of the constraints are specified. Section 4 presents limitation strategies
to preserve the realizability and the velocity bounds and their behavior in the vacuum limit is tested on a
few test cases. A numerical study is provided in Section 5 to illustrate accuracy and the behavior of the
numerical scheme with delta-shocks or vacuum solutions. The last section is devoted to concluding remarks.
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2 High-order geometric moment modelling

We present here the construction of the system we aim at solving numerically in the next section, and analyze
the properties of its solution we need to preserve at the numerical level.

2.1 Construction of the moment system

The considered system is obtained by evaluating the moments with respect to velocity and size variables of
a kinetic model.

2.1.1 Kinetic description

The spray of droplets is described by a NDF f(t, x, S, v), such that f(t, x, S, v)dxdS dv represents the
probable number of droplets located in x, with size S and velocity v. The NDF satisfies a Williams-
Boltzmann equation [53], that models the transport of a spray carried by a gaseous flow

∂tf + divx(vf) = 0. (1)

This model is a simple toy problem, but we aim at modelling a more realistic physics. This can be achieved
in two manners from (1). First, we can enrich the description of the droplet, typically having a more precise
geometry of the droplets, by considering a more complex phase space than only the size variable S ∈ R+

(e.g. modelling mean curvatures, temperature or oscillation of the droplets; see e.g. [34, 20, 19]). Second,
considering other physical effects such as the drag and evaporation of the droplet (see e.g. [38, 19, 20] and
references therein) can simply be modeled through additional terms in (1), potentially depending on these
additional variables. However the present contribution in terms of numerical methods naturally extends to
these more complex models as the main difficulties arise at the numerical level from the resolution of the
transport operator.

2.1.2 Velocity moments

The kinetic phase space is composed of the size variable S and the velocity v. Concerning the velocity, for
simplicity, we make the hypothesis that all droplets at a location x are transported at the same velocity u.
This corresponds to approximating the distribution f by

f(t, x, S, v) ≈ ρ(t, x, S)δ(v − u(t, x)). (2)

With such an approximation, extracting the first two moments of (1) with respect to v, that is integrating (1)
against 1 and v yields

∂tρ+divx(ρu) = 0, (3a)

∂tq+divx(qu
T )= 0, (3b)

such that q = ρu. This system corresponds to the pressureless gas dynamics (PGD) system, that has been
widely studied in the literature (see e.g. [2, 5, 8] and references therein), and where the variable S appears
as a parameter. Remark that the absence of pressure in our approach can be justified by the absence of
collisions in the underlying kinetic model (1), that is the infinite Knudsen limit, which is valid in a lot a
realistic configurations (see e.g. [37]).

2.1.3 Size moments

Concerning the size variable S, we use a fractional moment method ([20]). We use the half order moments
m = (m0,m1/2,m1,m3/2)

T

mα(t, x) =

∫ 1

0

Sαρ(t, x, S)dS, (4)
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where the maximum and minimum admissible sizes are chosen to be 0 and 1 for simplicity. The reason for
this choice of m is that we retreive from those moments the following geometric quantities commonly used
in the context of separated phase modeling ([18])

ΣĜ = 4πm0, ΣĤ = 2
√
πm1/2, Σ = m1, α =

1

6
√
π
m3/2, (5)

where the α is the volume fraction of liquid, Σ is the interfacial area density and Ĝ and Ĥ are respectively
the densities of Gauss and mean curvatures averaged over the surface of a droplet ([34, 20, 19]).

Eventually, we extract the moments with respect to b(S) := (S0, S1/2, S1, S3/2)T from (3a) and the
moment with respect to S only from (3b) to obtain

∂tU + divx(Uu
T ) = 0, m1u = q, (6)

where U = (mT , qT )T with the moment vectorm = (m0,m1/2,m1,m3/2)
T . The surface area density Σ = m1

acts like a density in this model, and the moment against S of (3b) was used to construct q. Following [20],
this choice is more relevant when considering drag or evaporation effects.

2.2 Properties of the moment system

The considered properties are presented for a 1D version of (6) as such a system can be decomposed into two
subsystems widely studied in the literature. The analysis of those 1D subsystems provides some constraints
on the solution, our numerical scheme has to satisfy. Eventually, we extend those constraints in a multi-D
framework.

2.2.1 Bounds on u

The first subsystem rewritten in 1D is the PGD system on m1 and q = (m1u) which simply consists in a 1D
version of (6) where the vector m is replaced by m1, or of (3) replacing ρ by m1 independent of S.

This system has been analyzed in [2, 7, 5] and we recall a few results here. One specificity of the PGD (3)
is the possible appearance of so-called δ-shocks in the solution. It consists of a Dirac measure of mass m1

transported at velocity u. For this purpose, one needs to focus on solutions the following weak sense (see [2]).

Definition 2.1. A couple (m1, q) ∈ C (]0, T [;Mloc (R))2 is a duality solution to the 1D equation (3) if

• The mass m1 ≥ 0 is non-negative.

• There exists u ∈ L∞(]0, T [×R) and α ∈ L1
loc(]0, T [) such that

– One-sided-Lipschitz condition: ∂xu ≤ α.

– Weak solution: For all ϕ, ψ ∈ C∞
c (]0, T [×R), then∫

m1(∂tϕ+ u∂xϕ) = 0,

∫
q(∂tψ + u∂xψ) = 0.

– Representation of u: m1u = q a.e. with respect to the measure m1.

Remark 1. In this definition, the velocity u corresponds to the Radon-Nikodym derivative of q ≡ (m1u)
with respect to m1. It is therefore L∞(dm1). It is defined only on Supp(m1), but this function extends in
the complement R\Supp(m1) into some L∞(]0, T [×R) function (see the notion of universal representative
in [2, 5, 3]).

Remark also that the requirements on u allow to define a unique characteristic curve X in the sense of
Filippov ([44, 23]), i.e. absolutely continuous such that X(t, x, t0) =

∫ t

t0
u(X(τ, x, t0))dτ and X(t0, x, t0) = x.

For the numerical application in the next section, we exploit the following property.
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Proposition 1 ([3]). Consider a duality solution to the 1D equation (3) with initial data m0
1 and (m1u)

0.
Let us denote the essential infimum and supremum of a function f with respect to the measure µ on the

interval I by infµI f and supµI f , and define uinf := inf
m0

1

R u, usup := sup
m0

1

R u. Then for all t > 0, globally in
x ∈ R,

uinf ≤ inf
m1(t,·)

R u(t, ·), sup
m1(t,·)
R u(t, ·) ≤ usup, (7)

or for all 0 < τ < t, locally around x ∈ (a, b) with a < b,

inf
m1(t−τ,·)

I(t−τ) u(t− τ, ·) ≤ inf
m1(t,·)

It u(t, ·),

sup
m1(t,·)

It u(t, ·) ≤ sup
m1(t−τ,·)

I(t−τ) u(t− τ, ·),
(8)

where the intervals yield Iτ = (a− usup(t− τ), b− uinf(t− τ)).

These constraints are closely related to the total variation diminishing property (TVD; [27]) on velocity,
which is also proved to be satisfied by u in [2]. Numerical schemes violating the discrete equivalent of this
property can trigger oscillations or overshoots around discontinuities.

2.2.2 Preservation of initial data set

A second subsystem rewritten in 1D yields

∂tm+ ∂x(mu) = 0, (9)

where m = (m0,m1/2,m1,m3/2)
T is the vector of moments of n with respect to the basis functions b(S) =

(1, S1/2, S, S3/2)T and the velocity u is the one found in the previous paragraph from the PGD. We consider
again weak solutions in the sense:

Definition 2.2. Duality solutions to (9) are m ∈ C(]0, T [;M(R))4 satisfying for all ϕ ∈ C∞
c (]0, T [×R)∫

mα(∂tϕ+ u∂xϕ) = 0, α = 0, 1/2, 1, 3/2.

The considered solution preserve the initial states:

Proposition 2. Suppose that m0
α are dominated by m0

1 and that u is obtained from a duality solution to the
1D equation (3). Then the duality solutions to (9) satisfy for all borel set B and t > 0,

m(t, B) ∈ Cone
(
{m0(y), y ∈ R}

)
,

where Cone(·) is the convex cone pointed at the origin generated by all initial m0.

Proof. This results from the method of characteristics in the sense of Filippov ([23, 44]). Remark that
all the components mα follow the same characteristic curve which provides the result. The requirement
that m0

α is dominated by m0
1 simply provides that Supp(m0

α) ⊂ Supp(m0
1) and therefore following the

characteristics provides Supp(mα(t, ·)) ⊂ Supp(m1(t, ·)) and assures the uniqueness of the velocity where
mα is non-zero.

2.2.3 Moment set and Hankel determinants

This initial set is encompassed into a larger set, that is the set of moments of n with respect to b(S), also
called the realizability domain. This set of moments is often studied when constructing moment models
because an important part of the physics is put into the nonlinear source terms, which are only defined
and numerically evaluated under realizability constraints. This constraint extends the constraint m1 ≥ 0 in
Definition 2.1.
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Definition 2.3. The set of moments or realizability domain yields

R =

{∫ 1

0

b(S)dµ(S), µ ∈ M([0, 1])

}
.

This set is characterized by numerical constraints following Hausdorff problem.

Proposition 3. The vector m = (m0,m1/2,m1,m3/2)
T ∈ R4 is realizable if the following matrices are

symmetric non-negative

H1 =

(
m1/2 m1

m1 m3/2

)
, H2 =

(
m0 −m1/2 m1/2 −m1

m1/2 −m1 m1 −m3/2

)
, (10a)

and all their components are non-negative. This is equivalent to requiring their trace and determinants are
non-negative, which reformulates hi(U) ≥ 0 with

h1(U) = m1/2 +m3/2, h2(U) = m0 −m1/2 +m1 −m3/2, (10b)

h3(U) = m1/2m3/2 −m2
1, h4(U) = (m0 −m1/2)(m1 −m3/2)− (m1/2 −m1)

2.

Proof. The fractional realizability condition simply follows from the solution of Hausdorff moment problem
([15, 31, 47, 16, 28, 42]) after using a change of variable S = r2 in the integration.

Eventually, integrating the solution U to (6) provides a local admissible set defined (by abuse of notations)(∫ b

a

dU(t, y)

)
∈ Aτ

t,[a,b] :=
{
(m̃T , q̃)T s.t. m̃ ∈ R, q̃ ∈

[
m̃1u

τ
inf(t), m̃1u

τ
sup(t)

]}
, (11a)

uτinf(t) = inf
m1(t−τ,·)
I(t−τ) u(t− τ, ·), uτsup(t) = sup

m1(t−τ,·)
I(t−τ) u(t− τ, ·), (11b)

as in (8) and where u satisfies m1u = q.

2.2.4 Extension to multi-D problems

We extend the framework for muldi-D problems, but the analysis is left for future work. When considering
a problem of spatial dimension d > 1, we consider duality solutions under the following sense.

Definition 2.4. A couple U = (mT , qT )T ∈ C(]0, T [;Mloc(Rd))4+d is a duality solutions of (6) if:

• Every component mi ≪ m1 is absolutely continuous w.r.t. m1.

• The vector m ∈ R is realizable m1-a.e.

• There exists u ∈ L∞(]0, T [×Rd)d such that

– Weak solution: For all component Ui and ∀ϕ ∈ C∞
c (]0, T [×Rd), then∫

Ui

(
∂tϕ+ uT∇xϕ

)
= 0.

– Representation of u: m1u = q is satisfied m1-a.e.

Remark that an entropy condition à la Oleinik has been present in Definition 2.1 in the 1D case. It is
missing in the present extension, and we do not perform a proper analysis of the multi-D model. A first
result in this direction has been proposed in [6] for the transport equation and extension of this work to (6)
is left for future work.

Assuming that there still exists a unique Filippov characteristics passing at every (t, x) ∈]0, T [×Rd, then
the admissible set extends in multi-D in the following way:
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• The bound (8) on the velocity applies in every direction: for all n ∈ Sd, at a global level for all t > 0,

(uTn)inf ≤ inf
m1(t,·)
Rd u(t, ·)Tn, sup

m1(t,·)
Rd u(t, ·)Tn ≤ (uTn)sup,

or at a local level, for all 0 < τ < t and ai < bi,

inf
m1(t−τ,·)
C(t−τ) u(t− τ, ·)Tn ≤ inf

m1(t,·)
C(t) u(t, ·)Tn,

sup
m1(t,·)
C(t) u(t, ·)Tn ≤ sup

m1(t−τ,·)
C(t−τ) u(t− τ, ·)Tn,

where (uTn)inf = inf
m0

1

Rd (u
Tn) and (uTn)sup = sup

m0
1

Rd (u
Tn), and we define the cell Cτ =

∏
i(ai −

(uT ei)sup(t− τ), bi − (uT ei)inf(t− τ)) that encompasses all possible feet of characteristics at time t− τ
starting in C0 at time t.

• The realizability m ∈ R naturally extends if this vector is transported along characteristic curves.

This yields an admissible set:

Aτ
t,C :=

{
(m̃T , q̃T )T s.t. m̃ ∈ R, q̃i ∈ [m̃1(u

T ei)
τ
inf(t), m̃1(u

T ei)
τ
sup(t)]

}
, (12)

(uTn)τinf(t) = inf
m1(t−τ,·)
C(t−τ) u(t− τ, ·), (uTn)τsup(t) = sup

m1(t−τ,·)
C(t−τ) u(t− τ, ·).

2.2.5 Discussion on numerical difficulties

Two types of difficulties are focused on in the numerical section below:

• The appearance of void: at certain location, the moment solution can become zero. Such a value turns
one of the inequality in (10) into an equality, and therefore the moment m = (m0,m1/2,m1,m3/2)

t ∈
∂R belongs to the boundary of its admissible set. Furthermore, the velocity u is ill-defined in this
limit because it only appears multiplied by m1 in (6). Such an issue has been illustrated in Bouchut [2]
through a 1D test case for the PGD, that we extend in the present framework into

m0
α(x) =

∫ 1

0

SαdS = (1 + α)−1, q0(x) = m0
1(x)×

{
0.5 x > 0,
−0.5 x < 0.

(13)

This m0
α is in the interior of R and generates a void region in finite time.

• The appearance of δ-shocks: the solution may contain Dirac measures that are propagated with the
flow. Again such a solution has been exhibited in Bouchut through a test case rewritten into

m0
α(x) = (1 + α)−1, q0(x) = m0

1(x)×
{

−0.5 x > 0,
0.5 x < 0.

(14)

The following section presents a high-order scheme preserving the bounds on the velocity, the moment space
and capturing void and δ-shocks solutions.

3 RKDG scheme preserving admissibility

The aim is to construct high-order schemes to solve (6). In practice, those numerical schemes need to
preserve discrete versions of the conditions (8) and (10). Among the most common approaches to solve
hyperbolic PDE, we can list the finite volume schemes and the discontinuous Galerkin schemes as they are
able to capture solutions with weak regularity. A version of the first has been proposed in [2] exploiting
the underlying kinetic equation. However, the high-order extensions require to impose the conditions (8)
and (10) everywhere to the polynomial reconstruction. This turns difficult at second order and prohibitive
at third [7]. Here, we focus on the other approach, namely the discontinuous Galerkin schemes, for which
admissibility need only to be imposed at finite locations.
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3.1 DG space discretization

In order to construct the space discretization of (6), we first remark that the moment method of Section 2
is nothing but a Galerkin approximation of (1) with respect to the kinetic variables (S, v) using b for
the test functions and (2) for approximation function. We extend the Galerkin approximation with space
discretization.

For simplicity, we use a Cartesian grid D =
⋃

e Ωe where Ωe is a product of intervals of the form
[xj− 1

2
, xj+ 1

2
]. Define polynomial test functions g ∈ Pr(Ωe) of degree r with respect to the space variable x

and compute the integral

0 =

∫
Rd

∫ 1

0

∫
Ωe

g(x)b(S, v)(∂tf + divx(vf))(t, x, v, S) dxdS dv

=
d

dt

∫
Rd

∫ 1

0

∫
Ωe

g(x)b(S, v)f(t, x, v, S) dxdS dv (15)

−
∫
Rd

∫ 1

0

∫
Ωe

(∇xg(x)
T v)b(S, v)f(t, x, v, S) dx dS dv

+

∫
Rd

∫ 1

0

∫
∂Ωe

g(x)(vTn(x))b(S, v)f(t, x, v, S) dxdS dv,

where n denotes the outgoing normal to the boundary ∂Ωe. In the spirit of [2, 7], following the characteristic
curves suggests to decompose f in the last integral into two parts coming from both side of the interface.
Considering x ∈ Γee′ = Ωe ∩ Ωe′ on the interface between Ωe and Ωe′ and denoting n the normal directed
toward Ωe′ , this corresponds to writing

(vTn(x))f(t, x, v, S) = lim
y→x

y∈Ωe

(vTn(y))+f(t, y, v, S) + lim
y→x

y∈Ωe′

(vTn(y))−f(t, y, v, S), (16)

where a± = (a ± |a|)/2 designate the positive or negative part of a. Now, following (2), we approximate f
by fh defined as

fh(t, x, v, S) = ρh(t, x, S)
∏
j

δuj,h(t,x)(vj) =
∑
e

ρe(t, x, S)
∏
j

δue
j (t,x)

(vj)1Ωe
(x), (17)

where the subscript h refers to the functions defined by parts and the superscript e refers to the functions in
the cell Ωe. The functions u

e and ρe are chosen such that the moments x 7→ Ue(t, x) = ((me)T , (qe)T (t, x)T ∈
Pr(Ωe)

4+d

Ue(t, x) =

∫ 1

0

∫
Rd

b(S, v)ρe(t, x, S)
∏
j

δue
j (t,x)

(vj)dS =

∫ 1

0

b(S, ue(t, x))ρe(t, x, S)dS (18)

are polynomials of degree r over the spatial cell Ωe. Eventually, only the moment equation is solved, and
the fact that Ue is polynomial is sufficient for the construction1.

Now we choose the gj such that it forms a basis of polynomials, which is orthogonal with respect to the
L2 scalar product on Ωe. Denote xk some quadrature points. In practice, we simply choose in 1D the Gauss-
Lobatto points such that they include the boundary of each interval, and they maximize the accuracy in the
sense that the space integrals are exact up to degree 2r − 1. Finally, denote lk the Lagrange polynomials
associated to these quadrature points. This structure (quadrature points and Lagrange polynomials) is
simply tensorized in multi-D (see [56, 59] and references therein). Reinjecting it in (15) provides

0 =M
d

dt
U − F (U) + E(U), (19a)

1Such an approximation can clearly be achieved in several ways, as such underlying ρe and ue exists. For instance ρe(t, x, S) =∑4
i=1 αi(t, x)δSi

(S), ue
j(t, x) = pj(t, x)/(

∑4
i=1 αi(t, x)Si), with x 7→ αi(t, x), pj(t, x) ∈ Pr(Ωe) and some distinct fixed Si ∈

(0, 1) provides such Ue. Other choices are possible and this formula does not impact our construction.
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where the unknown (Uj,k)j=1,...,4+d = ((mk)
T , (qk)

T )T in this equation approximates U(xk) = ((me)T , (qe)T )(xk)
T

at the quadrature points xk and(
M
dU

dt

)
i,j

=
∑
k

(∫
Ωe

gi(x)lk(x)dx

)
dUj,k

dt
, (19b)

F (U)i,j =
∑
k

(∫
Ωe

gi(x)∇xlk(x)
Tdx

)
ukUj,k, (19c)

where the velocity uk satisfies m1,kuk = qk ≈ q(xk) = m1(xk)u(xk). It is a scalar in 1D, or a vector in
multi-D of the same size as ∇xlk(x). The case m1,k = 0, which corresponds to the zero mass m1 = 0 case,
will be treated in the next section.

For the exchange term E, the boundary ∂Ωe = ∪e′Γee′ of the cell is splitted into the interfaces Γee′ =
Ωe ∩Ωe′ and one remarks that the quadrature points xk along Γee′ in Ωe are identical to those on the other
side, along Γee′ in Ωe′ . Therefore, reinjecting (16) in the last integral of (15) and using the approximation (17)
leads to (see also [2, 7])

E(U)i,j =
∑

e′ s.t.
Γee′ ̸=∅

∑
k s.t.

xk∈Γee′

(∫
Γee′

gi(x)lk(x)dx

)[(
uTk n(xk)

)
+
Uj,k +

(
uTk′n(xk)

)
− Uj,k′

]
, (19d)

where the index k refers to the quadrature points along the edge Γee′ in Ωe and the index k′ ̸= k corresponds
to the quadrature point in Ωe′ at the same location xk′ = xk ∈ Γee′ . In 1D, this exchange terms reduces to
Bouchut fluxes [2].

3.2 Numerical admissibility constraint

The conditions (10) and (8) satisfied by the duality solution at the continuous level need to be transposed
at the discrete level.

Realizability For the realizability condition (10), despite providing a discretized version of the underlying
kinetic model, the transposition of this condition at the discrete level is essentially driven by the applications
we have in mind. Indeed, violating a discrete version of the pointwise realizability criteria (10) would not
affect the precision nor the stability of the scheme, as a non-realizable vector would simply be transported
at velocity u. The main motivation for imposing this constraint arise from the additional physical effects
discussed in Section 2.1.1 that would require a strong imposition of this property.

Velocity bounds The preservation of monotonicity in the solution, and therefore the bounds on velocity,
is closely related to the total variation diminishing property (TVD; [27]). In 1D, the velocity u has been
shown to be total variation diminishing (TVD) in [2] at the continuous level and preserving the bounds on
the total variation at the numerical level is essential for stability. These bounds are applied at the cell level
Ωe to the cell mean values.

Formulation of the requirement at the cell level First, denote Ūe the integral of the approximation
Ue in the cell Ωe. Using the appropriate Gauss-Lobatto quadrature weigts ωk > 0

Ūe =

∫
Ωe

Ue(x)dx =
∑

k s.t.
xk∈Ωe

ωkUk ≈
∫
Ωe

∫ 1

0

∫
Rd

b(v, S)f(x, v, S)dvdSdx,

which approximates the moments of f in the spatial cell Ωe. Assuming that U(tn, ·) is of the form (18)
at time tn with positive ρ(tn, ·), then we expect the integral of exact solution to satisfy Ūn+1

e ∈ A∆t
tn,Ωe

as

9



defined in (12) for all cell Ωe. This rewrites:

m̄n+1
e ∈ R, q̄n+1

j,e ∈
[
m̄n+1

1,e (uT ej)
n
min,e, m̄

n+1
1,e (uT ej)

n
max,e

]
,

(uTn)nmin,e = min
e′ s.t.

Ωe∩Ωe′ ̸=∅

(ūne′)
Tn, (uTn)nmax,e = max

e′ s.t.
Ωe∩Ωe′ ̸=∅

(ūne′)
Tn,

where ūne satisfies m̄n
1,eū

n
e = q̄ne . Assuming that the time step satisfies a condition of the form ∆t ≤

maxe ū
n
eR(Ωe) where the radius R(Ωe) is the maximum distance between two points of Ωe, this corresponds

to imposing (10) and (8) to the approximate solution fh averaged in a cell Ωe at time tn+1.

Formulation of the requirement at the node level Exploiting the positivity of the quadrature weigts
of Gauss-Lobatto and the convexity of the admissible set, Ūn+1

e ∈ A∆t
tn,Ωe

holds if Un+1
k ∈ A∆t

tn,Ωe
holds for

every quadrature point xk ∈ Ωe, or equivalently

mn+1
k ∈ R, qn+1

j,k ∈
[
mn+1

1,k (uT ej)
n
min,e, m

n+1
1,k (uT ej)

n
max,e

]
, (21)

implies (20). For the applications below, we impose (21) and we rewrite the discrete admissible set as

An
e :=

{
U s.t. m ∈ R, qj ∈

[
m1(u

T ej)
n
min,e, m1(u

T ej)
n
max,e

]}
, An :=

∏
e

An
e , (22)

using velocities (uT ej)
n
min,e and (uT ej)

n
max,e given at a time step tn in the cell Ωe.

Imposition of the requirement A numerical scheme preserves admissibility if

Un ∈ An−1 ⇒ Un+1 ∈ An.

If admissibility is lost at some time step and at some quadrature point during the simulation, we correct
this numerical solution in the following way: for U /∈ An, we define a corrected value (PnU) as a projection
onto An and it needs to satisfy

• (PnU) ∈ An is admissible,

• for all Ωe, ∑
k s.t.
xk∈Ωe

ωkUk = Ūe =
∑

k s.t.
xk∈Ωe

ωk(PnU)k. (23)

The second criteria aims at imposing conservativity of the scheme. Indeed, the numerical scheme satisfied
by the cell-averaged quantities Ūn+1

e with the time discretizations of the next subsection can be rewritten in
a conservative (finite volume) manner. Correcting the numerical solution at every time step such that (23)
holds, this numerical scheme can still be written in a conservative way, but with modified fluxes.

In practice, we also expect the correction ∥U−PnU∥ to be as small as possible in order not to deteriorate
the accuracy of the scheme. Especially, the restriction Pn|An to the admissible set must be the identity.
This additional error is studied in the next two sections.

Following the work of [56, 58, 59, 60], we consider corrections of the form:

(PnU)i,k = Ui,k + θni,e
(
Ūi,e − Ui,k

)
, (24)

where the convex combination parameters θni,e are such that (PnU) ∈ An. They can be different for the

different components i of the vector U = (mT , qT )T , for different cells Ωe and for different time tn. But they
must be the same for every quadrature points xk ∈ Ωe among the same cell to satisfy (23).
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3.3 SSP Runge-Kutta time discretization

Concerning the time discretization, we exploit the strong stability preserving (SSP) Runge-Kutta (RK)
framework ([49, 50, 24]). Such schemes have been originally designed to preserve the TVD property while
going higher order.

Rewriting the DG semi-discretization (19a) of the last subsection under the form

dU

dt
= G(U)k =M−1(F − E)(U)k, (25)

then the corrected explicit Euler scheme yields

Un+1 = Pn (Un +∆tG(Un)) . (26)

By construction, Ūn+1
e = Ūn

e +∆tG(Un)e ∈ An
e are admissible without correction and Euler scheme satisfies

(Ūn+1
e − Ūn

e )/∆t = O(∆t). The considered corrected m-stage SSPRK scheme take the form
U (0) = Un,

U (k) =
k−1∑
i=0

αi,kPn
(
U (k) +∆tβi,kG(U (k))

)
for k = 1, . . . ,m,

Un+1 = U (m),

(27)

where αi,k, βi,k ≥ 0 and
k−1∑
i=0

αi,k = 1. This scheme preserves admissibility since it is define as a convex

combination of admissible values. The coefficients αi,k, βi,k are choosen such that if no correction is needed,
that is if Pn = Id for all k in (27), then (Ūn+1

e − Ūn
e )/∆t = O(∆tp) at a certain order p. However, this order

of accuracy is a priori not preserved. In this work, we use a SSPRK method of the same order as the one in
space ([49, 50, 24, 51]).

4 Projection methods

The projections are defined locally as functions P depending on U ∈ R4+d and Ū ∈ An
e , corresponding

respectively to the quadrature value Un
k and the cell value Ūn

e . Following (24), it takes the form

P(Ui, U i) = θiUi + (1− θi)U i, (28)

where the coefficients θi are defined below.

4.1 Componentwise combinations

We define values of θi to enforce the admissibility requirement. This condition rewrites hi(U) ≥ 0 for
i = 1, . . . , 4 + 2d, the first four correspond to realizability, the last to the TVD of u. In practice, we impose
hi(U) ≥ ε > 0 with a small value of ε in order to avoid admissibility loss due to round-off error. This
parameter is fixed to 10−12 such that the admissibility domain is not too reduced, this was found sufficient
for our applications.

4.1.1 Realizability projection

For m and m such that hi(U) > ε and hi(U) < ε for some i = 1, . . . , 4, we seek a convex combination
parameter θi ∈ [0, 1] such that the projected values

PrealU = θiU + (1− θi)U,
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satisfies hi(PU) = ε. It yields respectively

θ1 =
ε− h1(U)

h1(U − U)
, θ2 =

ε− h2(U)

h2(U − U)
, (29a)

θ3 =
−b+

√
b2 − 4ac

2a
, θ4 =

−b̃+
√
b̃2 − 4ãc̃

2ã
(29b)

with

{
a = h3(U − U), c = h3(U)− ε,
b = m1/2(m3/2 −m3/2) + (m1/2 −m1/2)m3/2 − 2m1(m1 −m1),
ã = h4(U − U), c̃ = h4(U)− ε,

b̃ = (m0 −m1/2)(m1 −m1 −m3/2 +m3/2)
+(m1 −m3/2)(m0 −m0 −m1/2 +m1/2)
−2(m1/2 −m1)(m1/2 −m1/2 −m1 +m1).

One verifies that each θi ∈ [0, 1] is well-defined as long as hi(U) < ε and hi(U) > ε.

4.1.2 TVD projection

Similarly, the constraints (22) on q rewrites hi(U) ≥ 0 for i = 5, . . . , 4 + 2d with:

h4+2j−1(U) = qj −m1(u
T ej)min, h4+2j(U) = m1(u

T ej)max − qj . (30)

For U and Û such that hj(U) > ε and hj(Û) < ε for j = 5, . . . , 4 + 2d, we define again a projection of the
form

PTV DÛ = θÛ + (1− θj)U,

where θj ∈ [0, 1] is such that hj(PÛ) = ε. This yields

θj =
ε− hj(U)

hj(Û − U)
. (31)

4.2 Assembling the projections

We need to have m1 ≥ 0 for the intervals [m1(u
T ej)min,m1(u

T ej)max] not to be empty in (22). In practice,
the first projection performed always ensures m ∈ R, which implies m1 ≥ 0.

4.2.1 Minimal projection

It yields the closest admissible vector to a non-admissible one U /∈ An
e (red curve on Fig. 1):

Pmin(U,U) = argmin
V ∈An

e

||U − V || (32)

This projection Pmin does not take the form (28) and does not depend on U . Hence, this projection does
not preserve the conservative character of the DG scheme. Therefore, it is not used afterward for the DG
limitation, but only for accuracy comparisons because, assuming that U /∈ An

e approximates Uex ∈ An
e with

a certain precision, then

∥Pmin(U,U)− Uex∥ ≤ ∥Pmin(U,U)− U∥+ ∥U − Uex∥ ≤ 2∥U − Uex∥. (33)
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4.2.2 Step-by-step Projection

Inspired of [59, 56], the projection is performed in two step. For this purpose, we exploit the convex cone
properties of An

e :

hi(V ) ≥ 0 ⇒ hi(αV ) ≥ 0 ∀α ≥ 0,

hi(V ), hi(W ) ≥ 0 ⇒ hi(θV + (1− θ)W ) ≥ 0 ∀θ ∈ [0, 1].

This property directly follows from the fact that An
e is a set of moments of positive distributions, that is a

convex cone. This allows to first project m onto m̂ ∈ R, then to project Û = (m̂T , qT )T onto An
e : We first

define (blue curve in Fig. 1)

P1(m,m) = θ1m+ (1− θ1)m, where θ1 = min
i=1,...,4

θi, (34)

where θi = 1 if hi(U) ≥ ε or equals (29) otherwise, such that P1(m,m) satisfies (10). Remark that P1

matches the components of Preal.
Then we project U onto An

e using the functions hi for i = 5, . . . , 4 + 2d:

PSbS

(
U,U

)
= θ2Û + (1− θ2)U where m̂ = P1(m,m), q̂ = q, θ2 = min

i=5,...,4+2d
θi, (35)

where θi = 1 if hi(Û) ≥ ε or equals (31) otherwise, such that PSbS

(
U,U

)
satisfies (21). This second

projection does not alter the realizability of m due to the convex cone property. Equivalently, this projection
corresponds to fixing in (28) θi = θ2 onto the component q (i.e. i ≥ 5) and θi = θ1θ2 (i.e. i ≤ 4) onto
the components m. This projection has the form (28) and preserves the conservative character of the DG
scheme. The accuracy is debated in Section 4.3.

4.2.3 Straight Projection

In a simpler manner, we can use the same parameter θ for every component (see green curve in Figure 1).
This simply consists in

PStr(U,U) = θ3Û + (1− θ3)U, Û = θ1U + (1− θ1)U, (36)

where θ1 is defined in (34) and θ3 is such that PStr(Û , U) satisfies (21). It yields θ3 = min
i=5,...,4+2d

θi with

either θi = 1 if hi(Û) ≥ 0 or it equals (31) otherwise. This projection PStr shares the same properties as
PSbS according to the conservativity and accuracy. One remarks that PSbS(U,U) = PStr(U,U) if m ∈ R.

4.3 Behavior near the vacuum regime

This configuration corresponds to having m1 > 0 close to 0. We study the properties of PSbS(U,U) and
PStr(U,U) when m1 → 0+. For simplicity, we conduct this study in 1D in the (m1, q) plane where the
admissibility property simplifies into:

ε ≤ m1, m1umin + ε ≤ q ≤ m1umax − ε. (37)

4.3.1 The minimal projection

The projection Pmin can be derived analytically depending on the position of the non realizable point U in
the set of non admissible states:
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Figure 1: Cut in the (m1, q) plane of the admissible set and the minimal, step-by-step and straight projections
of a non-admissible vector straight with ε = 10−12.

• When U satisfies m1umax − q ≤ 0 and m1 + qumax ≥ ε(1 + u2max) in yellow in Fig. 2, then Pmin(U,U)
is the orthogonal projection onto the axis q = m1umax

Pmin(U,U) =
(
mmin

1 ,mmin
1 umax

)T
, mmin

1 =
m1 + qumax

1 + umax
.

• When U satisfiesm1+qumax ≤ ε(1+u2max) and q ≥ umaxε in red in Fig. 2, then Pmin(U,U) = (ϵ, ϵumax).

• When U satisfies 0 ≤ q ≤ umaxε in blue in Fig. 2, then Pmin(U,U) = (ε, q).

The ones for negative q can be deduced by symmetry.

4.3.2 Qualitative comments for PSbS and PStr

Concerning the two projections PSbS and PStr, compared to Pmin, we can remark:

• When m1 ≥ ε, then PSbS(U,U) = PStr(U,U).

• When 0 ≤ q ≤ εumax (blue region), then PSbS(U,U) = Pmin(U,U), while the value of PStr(U,U)
depend ons the location of U /∈ An

e and of U ∈ An
e .

• When q ≥ εumax and m1 ≤ ε, we have a priori PSbS(U,U) ̸= PStr(U,U).

4.3.3 Quantitative estimations for PSbS and PStr

Following the computations in [59, 56], if U /∈ An
e is supposed to approximate Uex ∈ An

e with a certain
accuracy (typically O(∆xp) in the DG framework), then

∥P(U,U)− Uex∥ ≤ ∥(P − Pmin)(U,U)∥+ ∥Pmin(U,U)− U∥+ ∥U − Uex∥
≤ ∥(P − Pmin)(U,U)∥+ 2∥U − Uex∥.

In [59, 56], the authors propose an estimation of this error under the condition that U is far from the
boundary ∂An

e . On the contrary, we study ∥(P −Pmin)(U,U)∥ for the two projections PSbS and PStr when
U → (ε, εu) with u ∈ [umin, umax].
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Figure 2: Projection Pmin applied to (m1, q)

Concerning PSbS , one computes

P1(m1,m1) = ϵ, PSbS

(
Û , U

)
= θqÛ + (1− θq)U, θq =

m1umax − q

q − q − umax(ϵ−m1)
.

• Suppose that m1 + qumax ≤ ε(1 + u2max) and q ≥ umaxε (red in Fig. 1) such that Pmin(U,U) =
(ε, εumax). This provides the estimation

∥ (PSbS − Pmin) (U,U)∥ ≤ ∥(1, umax)∥ |1− θq| (m1 − ε),

which tends to zero when U → (ε, εu) with u ∈ [umin, umax].

• Suppose that m1 + qumax ≥ ε(1 + u2max) and m1 ≤ ε (yellow in Fig. 1). Then

∥ (PSbS − Pmin) (U,U)∥ ≤ ∥(1, umax)∥
∣∣θqm1 +m1(1− θq)−mmin

1

∣∣ ,
which tends to ∥(1, umax)∥|mmin

1 − ε| when U → (ε, εu) and which is non-zero. In this region, one
needs further assumptions on U to control this error. This is typically done in the DG framework by
exploiting the value of an exact solution Uex assumed to be close to U .

Concerning PStr, one computes

PStr

(
U,U

)
= θU + (1− θ)U, θ = min (θm1 , θq) , (38)

θm1
=

ϵ−m1

m1 −m1
, θq =

m1umax − q

q − q − umax(ϵ−m1)
.

We distinguish the two cases θ = θm1 and θ = θq (see Fig. 3) depending on the location of U and U .

• Suppose that m1 + qumax ≤ ε(1 + u2max) and q ≥ umaxε (red in Fig. 1) and θ = θm1 , then∥∥(PStr − Pmin) (U,U)
∥∥ = ε|u− umax|, u =

θq + (1− θ)q

θm1 + (1− θ)m1
,

which is always considered negligible.
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Figure 3: Projection PStr depending on the location of U

• Suppose that m1 + qumax ≤ ε(1 + u2max) and q ≥ umaxε (red in Fig. 1) and θ = θq, then∥∥(PStr − Pmin) (U,U)
∥∥ ≤ ∥(1, umax)∥

∣∣mStr
1 − ε

∣∣ , mStr
1 = θm1 + (1− θ)m1.

Since ϵ ≤ mStr
1 ≤ m1, then this tends to zero when m1 → ε.

• Suppose that m1 + qumax ≥ ε(1 + u2max) and m1 ≤ ε (yellow in Fig. 1) and θ = θm1
, then∥∥(PStr − Pmin) (U,U)

∥∥ ≤ ε|u− umax|+ umax|ε−mmin
1 |.

The first term ε|u − umax| is negligible, but the second term |ε −mmin
1 | is a priori not controled and

one needs again further assumptions on Pmin(U,U).

• Suppose that m1 + qumax ≥ ε(1 + u2max) and m1 ≤ ε (yellow in Fig. 1) and θ = θq, then∥∥(PStr − Pmin) (U,U)
∥∥ ≤ ∥(1, umax)∥|mStr

1 −mmin
1 |

• Suppose that 0 ≤ q ≤ εumax and θ = θm1
, then PStr(U,U) = Pmin(U,U).

• Suppose that 0 ≤ q ≤ εumax and θ = θq, then∥∥(Pmin − PStr)(U,U)
∥∥ ≤ ε|u− umax|+ umax|mStr

1 − ε|,

The first term ε|u− umax| is negligible and, since ε ≤ mStr
1 ≤ m1, the second term |ε−mStr

1 | → 0 in
the limit m1 → ε.

4.3.4 Comparison of m1 for both projections in the vacuum limit

Suppose now that ε ≤ m1 ≤ ε(1 + δ) for some small δ > 0 and that q ≥ ε(1 + δ)umax. Then, one easily
verifies that

mStr
1 ≤ mSbS

1 .

This comparison is observed in the numerical examples below and may result in larger numerical diffusion
effects on m1 with PSbS than with PStr.
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5 Numerical validation, accuracy and performance assessment

The strength of the present approach is the availability to reach high-order accuracy (restricted to second
order in [29, 22, 21]) while remaining robust with void regime and singularities. This is illustrated in this
section through three representative test-cases, with increasing difficulties. The first is a smooth 1D case to
study the accuracy of the method. The second and third cases test the robustness of the method respectively
when void or δ-shocks appear. The last test cases extend the void and δ-shock studies in a 2D framework.

Our numerical results are compared with a kinetic finite volume scheme (KFV; [29, 22, 21]). It is a
finite volume scheme with fluxes (19d) and a MUSCL linear reconstruction. A minmod limiter based on u
and the so-called canonical moments formulation is used. It consists in a non-linear transformation of the
realizability domain R onto [0, 1]4. However, this strategy is limited to second order.

5.1 Accuracy study for a 1D spray

The first initial condition yields

mα(x, 0) =

∫ 1

0

SαG(x, 1/2)dS = (α+ 1)−1G(x, 1/2), q(x, 0) = −m1(x, 0), (39)

for α = 0, 1/2, 1, 3/2, where G(x, xc) = exp
(
−(x− xc)

2/σ2
)
with σ = 0.1. Periodic conditions are used at

the boundary of the [0, 1]-domain. With such a field, all the moments are transported at velocity u = −1.
Fig. 4 (left) shows the numerical solution m0 (the other moments show identical features) with 100 cells at
time t = 2, i.e. after two periods. Fig. 4 (right) shows the relative l1-distance of the numerical solutions mN

0

obtained with the different schemes to the exact solution at final time tN = 2 as a function of ∆x

ε(∆x) =

∑
e

∑
q
ωq

∣∣mN
0,q −m0(xq, t = 2)

∣∣∑
e

∑
q
ωqm0(xq, t = 2)

.

Both limitations of Section 4 have no impact for this simulation and give identical result. Therefore, only one
is shown and the RKDG schemes yield the desired order. The KFV scheme [29] with the minmod limitation
yields a slightly slower convergence than the theoretical second order, and the maximum is clipped. Without
limitation, the RKDG and the KFV schemes yield a similar underlying spatial reconstruction. The difference
in the behavior is due to the considered limitation and the minmod limitation on the canonical moments
affects more the local extrema of the solution.

5.2 Vacuum test case

We extend a test case from [7] in the present moment framework (see (13)). We use the initial condition:

mα(x, 0) = (α+ 1)−1, q(x, 0) = m1(x, 0)×

 −0.4 if 0.5 < x or x > 1.8,
0.4 if 0.5 < x < 1,
1.4− x if 1 < x < 1.8.

(40)

The first gap in the initial velocity is meant to trigger the low density region and periodic boundary conditions
are used.

Fig. 5 displays the numerical solutions m0 (left) and q (right) at tN = 0.5 with 100 cells. Vacuum
is created at the location of the velocity discontinuity in the initial condition. The KFV scheme is more
diffusive in this region. Fig. 6 show zooms on this void region with the different schemes and Table 1 presents
the minimal value of m1 obtained with all limitations. The safety parameter used in the limitations (29)
and (31) is set to ε = 10−12. At second order with low N , the two projections show identical minimal value of
m1, this corresponds to the case where only one limitation applies. In all the other simulations, the straight
limitation PStr (36) shows lower values of m1 compared to the step-by-step one PSbS (35), as observed in
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Figure 4: Moment m0 (left) obtained with the 2nd and 3rd order RKDG schemes and the 2nd order KFV
scheme [29] at tN = 2 with the initial condition (39). Relative l1 distances (right) between the numerical
solutions mN

0 at tN = 2 and the exact solution.

Subsection 4.3.4. The even orders, i.e. odd order polynomial reconstructions, show lower values of m1 in
the void region. As in the previous test case, the profile in the higher density region is sharper with the
third order scheme and more diffused with the KFV scheme. However, the RKDG schemes present larger
overshoots on the sides of this profile and in the middle of this region. This was already observed in [7]. This
effect reduces when raising the order of accuracy. As a summary, the present high-order scheme remains
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Figure 5: Moments m0 (left) and q (middle) obtained with the RKDG schemes and the KFV scheme at
t = 0.4 with the initial conditions (40).

robust when considering solutions with very low m1.
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Figure 6: Zoom of the m0-plot in the vacuum region x ∈ [0.3, 0.7].

Mesh size RKDG Order 2 RKDG Order 3
PSbS PStr PSbS PStr

N = 25 8.015× 10−3 8.015× 10−3 1.225× 10−2 1.225× 10−2

N = 50 6.497× 10−5 6.497× 10−5 6.297× 10−5 6.510× 10−5

N = 100 4.221× 10−9 4.221× 10−9 2.813× 10−6 8.459× 10−6

N = 200 1.775×10−12 1.403×10−12 6.881× 10−7 5.688× 10−8

Mesh size RKDG Order 4 KFV Order2
PSbS PStr

N = 25 3.188× 10−3 5.096× 10−7 5.859× 10−3

N = 50 2.281× 10−3 1.448× 10−5 6.103× 10−5

N = 100 2.460× 10−7 10−12 = ε 5.587× 10−9

N = 200 2.060×10−12 10−12 = ε 10−12 = ε

Table 1: Minimal value of m1 with the different schemes and limitations in the vacuum test case.

5.3 1D δ-shock test case

We extend another test case from [7] using:

mα(x, 0) =

∫ 1

0

Sα

(
G(x1, x) +

4

3
G(x2, x)1[0.5,1](S)

)
dS

= (α+ 1)−1

(
G(x1, x) +

4

3
(1− 0.5α+1)G(x2, x)

)
, (41a)

q(x, 0) = m1(x, 0) (1R−(x− 0.5)− x) , (41b)

where the Gaussians’ parameters are σ = 0.075, x1 = 0.15 and x2 = 0.85. This initial condition is plotted in
Fig. 7. The coefficient 4/3 is chosen such that m1 is symmetric in the domain, and since u is antisymmetric,
such a configuration triggers a stationnary δ-shock. Remark that the monokinetic assumption (2) is not
valid at this location, and the kinetic solution to (1) is composed of the sum of the two distributions defined
in (41a) crossing each others at the velocity given (41b). On the contrary for the moment solution to (6),
the two masses do not cross each others, but enter into a stationnary δ-shock located in x = 0.5. This
δ-shock is the sum of the masses coming from both sides of the shock which are symmetric for m1 but not
for m0, m1/2 and m3/2. Fig. 8 shows m0 and m1 with the different schemes at tN = 0.4. The limitations
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mainly activate in the region where the two masses enter in the δ-shock. In this region, the moments m are
far from the boundary ∂R. Therefore, the two limitations gives again identical values and only one (those
with PStr) is shown in Fig. 8. Due to the shape of the initial velocity (see Fig. 7, right), it is crucial to
impose velocity bounds that are computed locally (as in (8)) rather than globally (as in (7)) in order to filter
spurious oscillations. One observes furthermore in Fig. 8 (right) that the velocity profile with the RKDG
schemes is less diffused compared to the one with the KFV scheme. Finally, we compare in Table 2 the value
of the moment vector inside the δ-shocks with the exact solution. Straightforward computations leads to an
exact value

mδ
α = (α+ 1)−1

(∫ 1/2

1/6

G(x, x1)dx+
4

3
(1− 0.5α+1)

∫ 5/6

1/2

G(x, x2)dx

)
.
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Figure 7: Initial conditions (41) on mα (left) for α = 0 (red), 1/2 (blue), 1 (black), 3/2 (green) and on
u ≡ q/m1 (right).

0.0 0.2 0.4 0.6 0.8 1.0
x

0

2

4

6

8

10

M
0

RKDG order 2
RKDG order 3
KFV order 2

0.0 0.2 0.4 0.6 0.8 1.0
x

0

1

2

3

4

5

6

M
1

RKDG order 2
RKDG order 3
KFV order 2

0.0 0.2 0.4 0.6 0.8 1.0
x

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

U

RKDG order 2
RKDG order 3
KFV order 2
Exact sol

Figure 8: Moments m0 (left) and m1 (middle) and velocity profile u = q/m1 obtained with the RKDG
schemes and the KFV scheme at t = 0.4 with the initial conditions (41).
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m0 m1/2 m1 m3/2 q
Exact 0.083 0.062 0.05 0.042 0

RKDG Order 2 0.1112 0.0828 0.0667 0.056 0.0105
RKDG Order 3 0.0988 0.0722 0.0575 0.0479 0.0071
KFV Order 2 0.101 0.0740 0.0591 0.0493 0.0062

Table 2: Moment vector inside the δ-shock with the different schemes.

5.4 2D δ-shock test case

This case corresponds to (6) with U = (mT , qT )T where q = (q1, q2)
T and x = (x1, x2)

T are two-dimensional.
The initial condition are:

mα(x, 0) = (α+ 1)−1, q(x, 0) = −0.25×m1(x, 0)× (sign(x1), sign(x2))
T
. (42)

The computational domain [−1, 1]2 is meshed with 1002 uniform cells with ∆x = ∆y = 1/50. Dirichlet
boundary conditions are imposed. The final time is tN = 0.5. The initial configuration has a uniform mass
m1 over the domain, and the initial velocity profile (42) is such that δ-shocks form along the axis x = 0 and
y = 0. This symmetric setup also leads to a mass concentration at the origin. Fig. 9 shows the numerical
solution m1 obtained with second order RKDG scheme with the straight projection limitation (36). The
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Figure 9: Moment m1 (left) and velocity field (right) at tN = 0.5 with the initial condition (42).

result is similar to the 1D case in Subsection 5.3. As expected, the mass accumulates along the axes and at
the origin. The robustness and stability of the RKDG scheme with the limitation procedure are preserved
in 2D even in presence of δ-shock singularities.

This case is modified in Section SM1.1 and SM1.2 of the supplementary material with asymmetric
δ-shocks or δ-shocks not aligned with the mesh.

5.5 2D δ-vacuum test case

Eventually, we consider the initial condition:

mα(x, 0) = (α+ 1)−1, q(x, 0) = 0.4×m1(x, 0)× (sign(x1), sign(x2))
T
. (43)

The numerical parameters are identical to the previous case. The initial mass m1 is uniform. The initial
velocity is directed outwards the axes x = 0, y = 0 such that it generates vacuum region mα ≈ 0 around
these two axes. Fig. 10 m0 with the second order RKDG scheme with the straight limitation (36). The
numerical results agree qualitatively with the expected solution. This case is modified to generate a vaccuum
not aligned with mesh in Section SM1.3 of the supplementary material.
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Figure 10: Moment m0 (left) and velocity field (right) at tN = 0.5 with the initial condition (43).

6 Conclusion

The purpose of this contribution has been to construct high-order RKDG schemes able to cope efficiently
with the peculiarities of a weakly hyperbolic system of moments equations, which is frequently encountered
in fluid mechanics and combustion applications, where a spray of polydisperse droplets is to be found either
coupled to a gaseous flow field or as a small scale modeling in two-scale gas-liquid flows. The key feature
of the proposed method has been to maintain high-order for smooth solutions but also to cope efficiently
with convex admissibility set preservation, be it the moment space or the maximum principle on velocity, in
the presence of singularities and void. A specific limitation procedure has been introduced in order to limit
numerical diffusion when vacuum is created and to handle properly singularities. The proposed strategy has
been shown to be competitive in terms of accuracy and of robustness compared to a reference kinetic finite
volume scheme [7, 29, 21] at second order but also has the ability to reach third and fourth order within the
same paradigm. Such a feature is essential for applications where spray dynamics experience preferential
concentration and where vacuum is always present, thus influencing the local mixture fraction and the
evaporation rate for combustion applications in particular but it has a much broader range of applications.
The present piece of work is also the building block for the construction of a numerical strategy for more
complex multi-variate cases such as in [34] for oscillating droplets flows. The aim is to simulate a cloud of
non spherical oscillating droplets by taking into account the geometrical dynamics described by the phase
variables. This is work in progress.

A Additional numerical results

Here we include some additional 2D numerical results in order to illustrate the behavior of the second
order RKDG scheme associated to the straight projection (36). In all the numerical experiments below, the
computational domain [−1, 1]2 is divided into 100 × 100 uniform cells with ∆x = ∆y = 1/50. Dirichlet
boundary conditions are imposed and the computations are performed until the final time tN . In all the
cases, we solve a Riemann problem where the initial data in each quadrant are constants. The quadrants
are indexed conventionally: from the first to the fourth in a counterclockwise direction, starting from the
right upper one.
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A.1 Asymmetric δ-shock case

The initial condition is:

mα(x, 0) = (α+ 1)−1

(
1(R+)2 + 1(R−)2 +

4

3
(1− 0.5α+1)(1R+×R− + 1R−×R+)

)
(x),

q(x, 0) = −0.1×m1(x, 0)× (sign(x1), sign(x2)) .
(44)

We start from the configuration where the mass m1 is equally distributed over the domain, but not the other
moments. The initial velocity profile (44) is chosen to generate stationnary δ-shocks along the axes x = 0
and y = 0. Fig. 11 shows the moments m0 and m1 at final time tN = 0.25. The moments m0, m1/2 and
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Figure 11: Moments m0 (left) and m1 (right) at tN = 0.25 with the initial condition (44).

m3/2 are different in the quadrants next to each others. The velocity profile at the end of the simulation is
the same as the one observed in the 2D δ-shock test case with equally distributed mass (42).

A.2 Diagonal δ-shock case

We use the initial condition:

mα(Rx, 0) = (α+ 1)−1,
q(Rx, 0) = −0.1×m1(x, 0)× (sign(x1), sign(x2)) .

(45)

with Rx = (cos(π/3)x1 + sin(π/3)x2, − sin(π/3)x1 + cos(π/3)x2). The initial massm1 is equally distributed
over the domain and the initial velocity (45) is chosen to generate δ-shocks along the diagonals y = x

√
3 and

y = x/
√
3. The velocity is heading towards the two diagonals and the solution of the moment system (6)

yields δ-singularities located at the origin and the two axes. This is illustrated on Fig. 12 which shows m1

and u ≡ q/m at final time tN = 0.25. The numerical solution exhibits the expected behavior, i.e. stationary
δ-shocks along the two diagonals y = x

√
3 and y = x/

√
3 (see Fig. 12 (left) for moment m1). The result

is similar to the 2D case (42) after applying a rotation of angle π/3. The robustness and stability of the
RKDG scheme and its limitation procedure are preserved even in the case of δ-shock singularities that are
not aligned with the mesh.

A.3 Diagonal vacuum case

Eventually, we consider the initial condition:

mα(Rx, 0) = (α+ 1)−1, q(Rx, 0) = 0.4×m1(x, 0)× (sign(x1), sign(x2)) . (46)
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Figure 12: Moment m1 (left) and velocity (right) at tN = 0.25 with the initial condition (45).

The initial mass m1 is equally distributed over the domain and the initial velocity (46) generates vacuum
mα ≈ 0 along the diagonals y = x

√
3 and y = x/

√
3. Indeed, the velocity is heading outwards these axes.

Fig. 13 shows the moment m1 and the velocity u ≡ q/m1 at final time tN = 0.5. Again, the behavior of the
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Figure 13: Moment m0 (left) and velocity (right) at t = 1 with the initial condition (46).

numerical method agree qualitatively with the structure of the expected solution. Indeed, we can observe
that the numerical solution approximates well the vacuum that are not aligned with the mesh. Because
of the presence of vacuum, the limitation procedure is activated in order to avoid non-realizable vector of
moments as in the 2D case of (43) after applying a rotation of angle π/3.
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