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Quantum tunneling in deep potential wells and strong magnetic field revisited

We investigate a Hamiltonian with a symmetric double well and a uniform magnetic field, where tunneling occurs in the simultaneous limit of strong magnetic field and deep potential wells with disjoint supports. We derive an accurate estimate of its magnitude, and obtain a precise leading order asymptotic expression for the effect of a strong magnetic field, improving on the upper and lower bounds established earlier by Fefferman-Shapiro-Weinstein.

Introduction

Since the works on the mathematical analysis of the semi-classical quantum tunneling by Simon [START_REF] Simon | Semiclassical analysis of low lying eigenvalues. I: Non-degenerate minima: Asymptotic expansions[END_REF] and Helffer-Sjöstrand [START_REF] Helffer | Multiple wells in the semi-classical limit I[END_REF] in the eighties, the analysis of the effect of the magnetic fields has remained a challenge. Helffer and Sjöstrand [START_REF] Helffer | Effet tunnel pour l'équation de Schrödinger avec champ magnétique[END_REF] consider symmetric double wells under the action of moderate magnetic fields, where the effects of the electric potential are dominant. Quite recently, Fefferman-Shapiro-Weinstein [START_REF] Fefferman | Lower bound on quantum tunneling for strong magnetic fields[END_REF] were able to estimate this tunneling from below and from above under the assumption that the magnetic field is constant and strong and that the potential wells are distant and defined by a radially symmetric function. In the present paper, we derive a sharp asymptotics of the magnitude of this tunneling effect giving for the first time the explicit contributions of the magnetic field, the distance between the wells, and the size of the well's support. Besides the hypothesis on the radial symmetry of the potential wells, we also assume that they have non-degenerate minima, as in the non-magnetic setting [START_REF] Helffer | Multiple wells in the semi-classical limit I[END_REF].

The double well potential

Consider v 0 ∈ C ∞ c (R 2 ) such that        v 0 (x) = v 0 (|x|) is radial & v min 0 := min r≥0 v 0 (r) < 0 , supp v 0 ⊂ D(0, a) := {x ∈ R 2 : |x| ≤ a} , U 0 := {v 0 (x) = v min 0 } = {0} & v ′′ 0 (0) > 0 .
(1.1)

We suppose that D(0, a) is the smallest disc containing supp v 0 , i.e. a = a(v 0 ) := inf{r > 0 :

v 0 | [r,+∞) = 0} . (1.2)
We introduce the double well potential (ℓ refers to 'left' and r to 'right'),

V (x) = v 0 (x -z ℓ ) + v 0 (x -z r ) where |z ℓ -z r | =: L > 2a(v 0 ) . (1.
3)

The potential wells of V associated with the energy v min 0 are the connected components of {V (x) = min V }, i.e. {z ℓ } and {z r }. Without loss of generality, we choose z ℓ and z r in the following manner

z ℓ = - L 2 , 0 , z r = L 2 , 0 . (1.4) 

The magnetic field and the Hamiltonian

Consider a vertical magnetic field bẑ where b > 0 is a constant. (1.5) Notice that b = curl (bA

)
where A is defined in polar coordinates (r, θ) as follows,

A(r, θ) = r 2 -sin θ cos θ . (1.6) 
We consider the Hamiltonian

H b,λ := (D -bA) 2 + λ 2 V , D := 1 i ∇ , (1.7) 
with a double well potential λ 2 V and a magnetic potential bA, where λ and b are the coupling parameter and the intensity of the magnetic field, respectively. In this paper, we suppose that b = λ and λ ≫ 1 is large1 , which is the setting of deep symmetric wells in a strong magnetic field, considered for instance in [START_REF] Matsumoto | Semi-classical asymptotics of eigenvalues for Schrödinger operators with magnetic fields[END_REF].

Earlier results

The regime where b does not scale like the coupling parameter λ has been inspected a long time ago. For instance, when b ≪ λ, accurate estimates of the tunnel effect where obtained in [START_REF] Helffer | Effet tunnel pour l'équation de Schrödinger avec champ magnétique[END_REF], while when b ≫ λ, the effect of the potential well becomes weak and the magnetic effect is dominant (see [START_REF] Bellissard | C * -Algebras in Solid State Physics: 2-D electrons in a uniform magnetic field[END_REF] and [START_REF] Helffer | Equation de Schrödinger avec champ magnétique et équation de Harper, Partie I Champ magnétique fort, Partie II Champ magnétique faible, l'approximation de Peierls[END_REF]).

The potential function considered in (1.7) is not analytic, thereby making our setting significantly different from the one of [START_REF] Helffer | Effet tunnel pour l'équation de Schrödinger avec champ magnétique[END_REF], where the magnetic field scales like the coupling parameter, V is analytic and some condition on the intensity of the magnetic field appears.

In the absence of potential wells, purely magnetic tunneling can be estimated in symmetric domains which was quite recently settled in [START_REF] Bonnaillie-Noël | Purely magnetic tunneling effect in two dimensions[END_REF]. A similar effect takes place in the full plane when introducing a jump discontinuity in the magnetic field [START_REF] Fournais | Tunneling effect induced by a curved magnetic edge[END_REF] or when the magnetic field is smooth, symmetric with respect to some axis, and vanishes non-degenerately along a smooth curve [START_REF] Alfa | Tunneling effect in two dimensions with vanishing magnetic fields[END_REF].

Semi-classical formulation

In order to exploit the connection with the rich literature on the tunneling effect in multiple wells (see [START_REF] Dimassi | Spectral Asymptotics in the Semi-Classical limit[END_REF][START_REF] Helffer | Semi-classical analysis for the Schrödinger operator and applications[END_REF][START_REF] Helffer | Multiple wells in the semi-classical limit I[END_REF][START_REF] Helffer | Effet tunnel pour l'équation de Schrödinger avec champ magnétique[END_REF]), it will be convenient to divide by λ 2 and mainly consider the corresponding equivalent semi-classical problem

L h := (hD -A) 2 + V , (1.8) 
where h = λ -1 ≪ 1.

Hence we have H b,λ = h -2 L h .

As we shall see, the eigenvalue estimates of L h will depend on the size of the support of the potential function (in particular through a(v 0 ) in (1.2)). Let us denote by (e v0 j (h)) j≥1 the sequence of min-max eigenvalues of L h . We would like to investigate the semi-classical asymptotics of e v0 2 (h) -e v0 1 (h) .

(1.9)

Let us recall the motivating result in [START_REF] Fefferman | Lower bound on quantum tunneling for strong magnetic fields[END_REF], which under the hypothesis

v 0 ≤ 0 and L > 4 |v min 0 | + a(v 0 ) , (1.10) 
and some less explicit condition which we will prove to hold under our condition (1.1), asserts the following estimates exp -

L 2 + 4 |v min 0 |L + γ(v 0 ) 4h ≤ e v0 2 (h) -e v0 1 (h) ≤ Ch -5/2 exp - (L -a(v 0 )) 2 -a(v 0 ) 2 4h ,
(1.11) where C and γ(v 0 ) are positive constants.

Main result

Our main result improves these estimates and establishes a sharp asymptotics of the eigenvalue splitting in (1.9), thereby responding to an open question since 1987 (see [START_REF] Helffer | Effet tunnel pour l'équation de Schrödinger avec champ magnétique[END_REF]).

Theorem 1.1 (Sharp asymptotics of the eigenvalue splitting).

Assume that v 0 satisfies the conditions in (1.1) and (1.10). If moreover v 0 < 0 in D 0, a(v 0 ) , then we have

h log e v0 2 (h) -e v0 1 (h) ∼ h→0 -S(v 0 , L) ,
where S(v 0 , L) is an explicit quantity whose computation is detailed below in (1.12) and (4.26).

The expression of S(v 0 , L), which will be explicitly given in (4.26), has the form

S(v 0 , L) = D mag (v 0 , L) + I a(v 0 ), L, v min 0 (1.12)
where we see two types of terms:

• D mag (v 0 , L) is expressed in terms of the magnetic field, the potential function v 0 , and the size of its support, a = a(v 0 ) (see (1.2)), as follows

D mag (v 0 , L) = 2 a 0 ρ 2 4 + v 0 (ρ) -v min 0 dρ + L-a a ρ 2 4 -v min 0 dρ.
It is a magnetic variant of the Agmon distance between 0 and L (see Sec. A.2.1 and Proposition 3.2).

• I a(v 0 ), L, v min 0 is a positive term defined explicitly as follows

I a(v 0 ), L, v min 0 = L L-a ρ 2 4 + |v min 0 | dρ - a 0 ρ 2 4 + |v min 0 | dρ.
We can interpret I a(v 0 ), L, v min 0 as an additional interaction term between the wells.

It would be desirable to derive S(v 0 , L) as the stationary Euclidean action of a natural Agmon distance, like the non-magnetic setting [START_REF] Helffer | Multiple wells in the semi-classical limit I[END_REF][START_REF] Simon | Semiclassical analysis of low lying eigenvalues. I: Non-degenerate minima: Asymptotic expansions[END_REF]. Unfortunately, our approach does not provide us with a such a geometric interpretation of S(v 0 , L). Remark 1.2 (Distant wells or narrow wells). If the distance L between the wells is very large, we observe that as L → +∞

S(v 0 , L)= L 2 4 + |v min 0 | log L + O(1) .
Notice that, to leading order, the previous asymptotics is consistent with (1.11).

When the support of the well, a = a(v 0 ), is very small, we find

lim a→0+ S(v 0 , L) = L 2 L 2 4 + |v min 0 | + |v min 0 | log   L 2 + L 2 4 + |v min 0 | 2 |v min 0 |   .
Remark 1.3 (Consistency with non-magnetic tunneling). By a simple change of scales, our results include the Hamiltonian

L β := ( D -βA) 2 + V , (1.13) 
where β > 0 measures the strength of the magnetic field.

If we denote by e j ( , β) j≥1 the sequence of min-max eigenvalues of L β and introduce the effective semi-classical parameter h = β -1 , we reduce the analysis to the Hamiltonian in (1.8), thanks to the relation

L β := β 2 (hD -A) 2 + β -2 V .
This yields

e 2 ( , β) -e 1 ( , β) = β 2 e β -2 v0 2 (h) -e β -2 v0 1 (h) .
As a consequence of Theorem 1.1, we get log e 2 ( , β) -e 1 ( , β)

∼ →0 -βS(β -2 v 0 , L)
and by a straightforward computation, we obtain from (1.12) that

βS(β -2 v 0 , L) ∼ β→0 2 L/2 0 v 0 (ρ) -v min 0 dρ ,
which is the term obtained in the non-magnetic setting [START_REF] Helffer | Multiple wells in the semi-classical limit I[END_REF][START_REF] Simon | Semiclassical analysis of low lying eigenvalues. I: Non-degenerate minima: Asymptotic expansions[END_REF]. Note that we have used the following formula (and that v 0 (ρ) = 0 for ρ ≥ a)

2 L/2 a v 0 (ρ) -v min 0 dρ = (L -2a) |v min 0 |.

The hopping coefficient

The proof of Theorem 1.1 relies on estimating the hopping coefficient that we introduce below. Consider the single well operator L sw h = (hD -A) 2 + v 0 and denote its ground state energy by e sw (h) (here the well is 0). Let u h be a normalized ground state of L sw h and consider the two functions (these are obtained from u h by magnetic translations)

u ℓ h (x) = u h (x -z ℓ )e -i Lx 2 2h and u r h (x) = u h (x -z r )e i Lx 2 2h .
We introduce the following constant

c h (v 0 , L) = w ℓ,r := (L h -e sw )u ℓ h , u r h ,
called in Solid State Physics the hopping coefficient. It accounts to the interaction between the wells z ℓ and z r (hence the notation w ℓ,r ). In the case without a magnetic field, in particular in the framework of [START_REF] Helffer | Multiple wells in the semi-classical limit I[END_REF] (see also [START_REF] Helffer | Semi-classical analysis for the Schrödinger operator and applications[END_REF]), w ℓ,r is real and can be derived through a reduction to the restriction of L h to a two dimensional space, yielding an interaction matrix.

The hopping coefficient can be expressed as follows

w ℓ,r = D(0,a) v 0 (x)u h (x + z)u h (x) e i Lx 2 2h dx , (1.14) 
where z = (L, 0). Assuming that the single well ground state e sw (h) is simple and with a radially symmetric ground state, it is proved in [START_REF] Fefferman | Lower bound on quantum tunneling for strong magnetic fields[END_REF]Eqs. (1.10) & (1.12)] that if (1.10) holds, then

e v0 2 (h) -e v0 1 (h) ∼ h→0 2|w ℓ,r | . (1.15) 
Consequently, accurately estimating w ℓ,r yields, by (1.15), an estimate of the eigenvalue splitting e v0 2 (h) -e v0 1 (h). In this paper, we prove the following accurate estimate.

Theorem 1.4 (Sharp asymptotics of the hopping coefficient). Assume that v 0 satisfies the conditions in (1.1) and that L > 2a. If moreover v 0 < 0 in D 0, a(v 0 ) , then the hopping coefficient c h (v 0 , L) = w ℓ,r satisfies

h log |c h (v 0 , L)| ∼ h→0 -S(v 0 , L) ,
where S(v 0 , L) is the positive constant in (1.12).

Combining (1.15) and Theorem 1.4, we obtain Theorem 1.1. The rest of the paper is devoted to the detailed proof of Theorem 1.4 (and the necessary condition needed to vindicate (1.15)).

Organization and outline of the proofs

In Section 2, we investigate the single well Hamiltonian (see Theorem 2.1) by revisiting the harmonic approximation in the presence of a magnetic field and the WKB approximation in the setting of a radially symmetric potential and a ground state. The outcome is the proof that the assumptions made in [START_REF] Fefferman | Lower bound on quantum tunneling for strong magnetic fields[END_REF] on the existence of a radial ground state of the single well Hamiltonian are satisfied, and consequently, we are certain that (1.15) holds.

In Section 3, we give in Theorem 3.1 new estimates on the hopping coefficient in (1.14), which greatly improve (1.11). The proof of Theorem 3.1 relies on the WKB expansions revisited in Section 2 matched with a representation formula established in [START_REF] Fefferman | Lower bound on quantum tunneling for strong magnetic fields[END_REF] (see Proposition 3.9). Of particular importance here is our new lower bound on the hopping coefficient, which will allow us to control the errors resulting from inserting the WKB approximation of the single well ground state into the hopping coefficient.

Besides its role in capturing the tunneling asymptotics, precise estimates of the hopping coefficient are key ingredients in the understanding of tight binding reductions as usually done through heuristic arguments in Solid State Physics (see [START_REF] Kittel | Quantum theory of Solids[END_REF]Chapter 9] on the physical side, and [START_REF] Shapiro | Tight-binding reduction and topological equivalence in strong magnetic fields[END_REF] and earlier references [START_REF] Daumer | Équations de Hartree-Fock dans l'approximation du tightbinding[END_REF][START_REF] Outassourt | Comportement semi-classique pour l'opérateur de Schrödinger à potentiel périodique[END_REF] on the mathematical side). In the tight binding framework one needs to calculate the probability for an electron transiting from one site to its neighbors, which is precisely measured by the hopping coefficient (see [START_REF] Fefferman | Lower bound on quantum tunneling for strong magnetic fields[END_REF]Thm. 1.11]). Hence our new estimates of the hopping coefficient are of independent interest and have potential applications, to be discussed elsewhere.

Finally, Section 4 is devoted to the proof of Theorem 1.1. As already mentioned, the new estimates obtained in Section 3 and Theorem 3.1 are key ingredients of the proof that allows us to fully describe the hopping coefficient and drop the unpleasant terms encountered in the approximations. The outcome is an integral involving a phase function which we approximate by Laplace's method. Of particular interest is the delicate minimization of the function occurring in the phase term (see Proposition 4.5). In contrast to the non-magnetic case, the magnetic field produces additional terms in the phase function thereby complicating the search of its critical points.

We conclude this section by mentioning two open problems.

• Theorem 1.1 only yields the decay rate of the tunneling. Capturing the leading term of the pre-exponential seems challenging by our approach (see in Remark 4.9).

• Theorem 1.1 holds under the"radial" hypothesis on the potential function v 0 . It would be desirable to establish that tunneling can be estimated when v 0 is compactly supported with a unique non-degenerate minimum, without imposing that it is radially symmetric.

The single well Hamiltonian

A key ingredient in our investigation relies on expanding the ground state e sw (h) of the single well Hamiltonian

L sw h := (hD -A) 2 + v 0 . (2.1)
Theorem 2.1 (Existence of radial ground states and precise expansions).

Assume that v 0 satisfies the conditions in (1.1). Then, there exists h 0 > 0 such that, for all h ∈ (0, h 0 ], the following holds:

1. The ground state energy, e sw (h), of L sw h , is a simple eigenvalue and

e sw (h) = v min 0 + h 1 + 2v ′′ 0 (0) + O(h 3/2 ) . ( 2 

.2)

2. There exists a unique positive ground state, u h , of L sw h , with the properties

• u h (x) = u h (|x|) is a radial function ; • u h is normalized, i.e. R 2 |u h (x)| 2 dx = 1 .
3. There exists a positive radial function a 0 on R 2 satisfying

a 0 (0) = 1 2 1 + 2v ′′ 0 (0) π , (2.3) 
such that, for any R > 0, the ground state u h satisfies, uniformly in the disc

D(0, R) ⊂ R 2 , e d(x)/h u h (x) -h -1/2 a 0 (x) = O(h 1/2 ) , (2.4) 
where

d(x) = d(|x|) := |x| 0 ρ 2 4 + v 0 (ρ) -v min 0 dρ . (2.5)
This in particular clarifies the hypotheses imposed in [START_REF] Fefferman | Lower bound on quantum tunneling for strong magnetic fields[END_REF]. In fact, applying Theorem 1.5 in [START_REF] Fefferman | Lower bound on quantum tunneling for strong magnetic fields[END_REF], we get that (1.11) holds provided that we have the additional hypothesis in (1.10).

That the single well ground state energy is simple and satisfies (2.2) was already proven by Matsumoto [START_REF] Matsumoto | Semi-classical asymptotics of eigenvalues for Schrödinger operators with magnetic fields[END_REF]. These properties yield that the single well ground states are approximated by a radial function, thereby leading to the conclusion that there is a radially symmetric ground state.

That the ground state satisfies (2.4) is the consequence of known WKB expansions for the non-magnetic operator. Thanks to the radial symmetry of the potential and the ground state, we can transplant the WKB constructions to our magnetic setting.

For the sake of clarity and for the convenience of the reader, we a selfcontained proof Theorem 2.1 is given in Appendix A.

3 Bounds on the hopping coefficient

Main results

Using the improved expansion of the ground state u h in Theorem 2.1 above, we improve the bounds on the hopping coefficient provided the potential v 0 satisfies the conditions in (1.1).

The main result of this section is a first step towards the optimal result stated in Theorem 1.4, and reads as follows.

Theorem 3.1 (New bounds on the hopping coefficient). Assume that v 0 satisfies the conditions in (1.1) and that v 0 ≤ 0. Let a = a(v 0 ) and assume furthermore that L > 2a. Then, there exist positive constants h 0 , C 1 , C 2 such that for all h ∈ (0, h 0 ), we have

C 1 h exp - S 0 h ≤ |w ℓ,r | ≤ C 2 h -1 exp - S a h (3.1)
where w ℓ,r is introduced in (1.14), and

S a = L-a 0 ρ 2 4 + v 0 (ρ) -v min 0 dρ + a 0 ρ 2 4 + v 0 (ρ) -v min 0 dρ, (3.2) 
S 0 = L 0 ρ 2 4 + v 0 (ρ) -v min 0 dρ . (3.3)
Furthermore, if v 0 < 0 in D(0, a), then we have the improved lower bound

lim inf h→0 h log |w ℓ,r | ≥ -Ŝ , (3.4) 
where Ŝ < S 0 is defined as follows

Ŝ = inf 0<r<a Lr 2 + L-r 0 ρ 2 4 + v 0 (ρ) -v min 0 dρ + r ρ 2 4 + v 0 (ρ) -v min 0 dρ . (3.5) 
Let us mention a few comments on the statements in Theorem 3.1.

i) The estimate (3.4) is a new improvement of the lower bound in (3.1) since we will prove in Proposition 3.3, that S a < Ŝ < S 0 .

ii) (Asymmetry of S a )

A key step in the estimation of |w ℓ,r | (see (1.14)) is to replace the single well ground state by its WKB expansion (see (3.32) below). The term S a is then observed naturally as the minimum of the sum of two Agmon distances (see Proposition 3.2), and the asymmetry in the expression of S a is due to magnetic effects.

iii) (Bounds on the eigenvalue splitting) In light of (1.15), if we assume (1.10) then we get from Theorem 3.1 new bounds on e v0 2 (h) -e v0 1 (h), that do improve the ones in (1.11). To see this, notice that, whenever L > 2a and v 0 ≤ 0, we have,

ρ 2 ≤ ρ 2 4 + v 0 (ρ) -v min 0 ≤ ρ 2 4 -v min 0 ≤ ρ 2 + |v min 0 | , (3.6) 
from which we deduce (with a = a(v 0 )) the following estimates

(L -a) 2 -a 2 4 < S a and S 0 < L 2 + 4 |v min 0 |L 4 . (3.7)

About the measure of the tunneling

Let us inspect more closely the constants S 0 and S a appearing in (3.1). Recall that

S 0 = L 0 ρ 2 4 + v 0 (ρ) -v min 0 dρ . (3.8) 
Since v 0 (x) = v 0 (|x|) vanishes outside D(0, a), we can rewrite the expression of S a in (3.2) as follows

S a := 2 a 0 ρ 2 4 + v 0 (ρ) -v min 0 dρ + L-a a ρ 2 4 -v min 0 dρ . (3.9) 
We now prove a variational characterization of S 0 and S a involving the function d introduced in (A.8b).

Proposition 3.2. We have

S 0 = inf 0<u<a (d(u) + d(L + u)) (3.10) and if v 0 < L(L-2a) 4 , S a = inf 0<u<a (d(u) + d(L -u)) . (3.11) 
Proof.

Proof of (3.10). The function

(0, a) ∋ u → ψ * (u) = u 0 ρ 2 4 + v 0 (ρ) -v min 0 dρ+ L+u 0 ρ 2 4 + v 0 (ρ) -v min 0 dρ satisfies (for 0 < u < a), ψ ′ * (u) = u 2 4 + v 0 (u) -v min 0 + (L + u) 2 4 -v min 0 > 0 .
Hence, it is monotone increasing and

min 0<u<a ψ * (u) = ψ * (0) = S 0
where S 0 is introduced in (3.8).

Proof of (3.11).

Consider the function

(0, a) ∋ u → ϕ * (u) = u 0 ρ 2 4 + v 0 (ρ) -v min 0 dρ+ L-u 0 ρ 2 4 + v 0 (ρ) -v min 0 dρ .
(3.12) 10 Notice that, for u ∈ (0, a) and a < L 2 , we have a < L -a < L -u and

ϕ ′ * (u) = u 2 4 + v 0 (u) -v min 0 - (L -u) 2 4 -v min 0 , with ϕ ′ * (0) < 0 , ϕ ′ * (a) < 0 , and 
ϕ ′ * (u) = 0 iff v 0 (u) = L(L -2u) 4 ≥ L(L -2a) 4 > 0 .
Consequently, ϕ ′ * (u) can not vanish on (0, a) if we know that v 0 (u) < L(L-2a) Proposition 3.3. We have

S a < Ŝ < min S 0 , S a + La 2 , (3.13 
)

and if g 0 (r 0 ) = Ŝ, then 0 < r 0 < a. Moreover, if v ′ 0 ≥ -L 4 , then r 0 is unique. Proof. We have, for 0 ≤ r ≤ a, g ′ 0 (r) = L 2 - (L -r) 2 4 -v min 0 + r 2 4 + v 0 (r) -v min 0 .
We observe that

g ′ 0 (0) = L 2 - L 2 4 -v min 0 < 0 , g ′ 0 (a) = L 2 - L(L -2a) 4 + a 2 4 -v min 0 + a 2 4 -v min 0 ≥ L 2 - L(L -2a) 4 > 0 .
So g 0 has a minimum r 0 and r 0 ∈ (0, a). Consequently,

Ŝ = g 0 (r 0 ) < g 0 (0) = S 0 , Ŝ < g 0 (a) = S a + La 2 ,
and, by (3.11),

Ŝ = g 0 (r 0 ) ≥ S a + Lr 0 2 > S a .
Finally, we observe that

g ′′ 0 (r) = 1 2 L-r 2 (L-r) 2 4 -v min 0 + 1 2 r 2 + 2v ′ 0 (r) r 2 4 + v 0 (r) -v min 0 ,
and if furthermore g ′ 0 (r) = 0, we have

g ′′ 0 (r) = L 2 + 2v ′ 0 (r) r 2 4 + v 0 (r) -v min 0 + Lr 4 2 L 2 + r 2 4 + v 0 (r) -v min 0 r 2 4 + v 0 (r) -v min 0 , which is positive if L 2 + 2v ′ 0 (r) ≥ 0 .
For technical reasons (see Proposition 3.9), we need to minimize, with respect to r ∈ [0, a], the following function S(ε) and there exists ε 0 ∈ (0, 1) such that, for all ε ∈ (0, ε 0 ),

g(r, ε) = (1 -ε)Lr 2 + d( (L -r) 2 + 2εLr ) + d(r) , (3.14 
S(ε) = g(r ε , ε) with 0 < r ε < a . Furthermore, if v ′ 0 ≥ -L 4 , r ε is unique and satisfies lim ε→0 r ε = r 0 , where r 0 is introduced in Proposition 3.3 Proof. Notice that ∂g ∂ε (r, ε) = - Lr 2 + Lr (L -r) 2 + 2εLr (L -r) 2 + 2εLr 4 -v min 0 ≥ - Lr 2 + Lr (L -r) 2 + 2εLr (L -r) 2 + 2εLr 4 = 0 . So inf 0<ε≤1 g(r, ε) = g(r, 0) = Lr 2 + d(L -r) + d(r) . Consequently Ŝ = inf r∈[0,a] g(r, 0) = inf r∈[0,a] inf ε∈(0,1] g(r, ε) = inf ε∈(0,1] S(ε) . (3.15)
We have seen in the proof of Proposition 3.3 that ∂g ∂r (0, 0) < 0 and ∂g ∂r (a, 0) > 0 .

By continuity of ∂g ∂r (r, ε) w.r.t. ε, we know that, for ε sufficiently small ∂g ∂r (0, ε) < 0 and ∂g ∂r (a, ε) > 0 .

This yields that every minimum r ε of g(r, ε) is in (0, a).

To study the behavior of r ε as ε → 0, we start by noticing that

lim ε→0 S(ε) = Ŝ . (3.16) 
In fact, by (3.15), for every δ > 0, there exists ε δ such that

Ŝ ≤ S(ε δ ) ≤ Ŝ + δ
and by the monotnicity of g(r, •) we get

∀ ε ∈ (0, ε δ ), Ŝ ≤ S(ε) ≤ S(ε 0 ) ≤ Ŝ + δ which proves (3.16). Now, consider a sequence (ε n ) n≥1 ⊂ R + that converges to 0 such that lim n→+∞ r εn = r 0 ∈ [0, a]. Then S(ε n ) = g εn (r εn , ε n ) → g(r 0 , 0)
thereby, in light of (3.16), g(r 0 , 0) = Ŝ. Thus, by Proposition 3.3, we have 0 < r 0 < a. If moreover v ′ 0 ≥ -L 4 , then r 0 is the unique minimum of g 0 (•) := g(•, 0), hence lim ε→0 r ε = r 0 . By a continuity argument, for ε small enough, ∂ 2 g ∂r 2 (r ε , ε) > 0, hence the uniqueness of the minimum of g(•, ε).

The hopping coefficient

As pointed out in [START_REF] Fefferman | Lower bound on quantum tunneling for strong magnetic fields[END_REF], the oscillatory complex phase in the expression of w ℓ,r (see (1.14)) is behind the difficulties in dealing with this term. Fortunately, as observed in [START_REF] Fefferman | Lower bound on quantum tunneling for strong magnetic fields[END_REF], it is possible to rule out the integral with an oscillatory complex phase by using special functions. Recall that the ground state u h (x) = u h (|x|) is a radial function and a = a(v 0 ) is introduced in (1.2).

Proposition 3.5 (Bounds on w ℓ,r ). For all h ∈ (0, 1], we have

|w ℓ,r | ≤ a 0 |v 0 (r)|u h (L -r)u h (r)rdr .
Furthermore, if v 0 ≤ 0, then for all ε ∈ (0, 1], there exists c ε > 0 such that, for all h ∈ (0, 1], we have

|w ℓ,r | ≥ c ε a 0 e -(1-ε)Lr 2h |v 0 (r)|u h (L -r) 2 + 2εLr u h (r)rdr.
The proof of Proposition 3.5 relies on the tricky representation, in Lemma 3.6 below, of the function u h , defining the radial ground state u h . It already plays an important role in [START_REF] Fefferman | Lower bound on quantum tunneling for strong magnetic fields[END_REF], but with the expansion of u h given in Theorem 2.1, we can describe the coefficients in a sharper manner than in [START_REF] Fefferman | Lower bound on quantum tunneling for strong magnetic fields[END_REF].

With a = a(v 0 ) in (1.2), d(•) in (2.5) and a 0 (•) in (2.4), we introduce the two constants

F (v 0 ) = a 2 a 2 4 + |v min 0 | + |v min 0 | 2 log a 2 + a 2 4 + |v min 0 | 2 |v min 0 | -d(a) = a 0 ρ 2 4 + |v min 0 | dρ -d(a) , m(v 0 ) = a 0 (0) 2a|v min 0 | π a 2 + 4|v min 0 | 1/4 a 2 + 4|v min 0 | + a . (3.17) 
Lemma 3.6. The function u h , defining the ground state u h in Theorem 2.1, has the following representation, valid for ρ ≥ a,

u h (ρ) = C h exp - ρ 2 4h +∞ 0 exp - ρ 2 t 2h t α-1 (1 + t) -α dt , (3.18) 
where

α = 1 2h |v min 0 | - 1 2 1 + 2v ′′ 0 (0) -1 + O(h 1/2 ) ∼ h→0 1 2h |v min 0 | , (3.19) 
and 

C h ∼ h→0 C asy h := m(v 0 )h -1 exp F (v 0 ) h . ( 3 
u h (a) ∼ h→0 a 0 (0)h -1/2 e -d(a) h ,
where a 0 (0) is given in (2.3).

On the other hand, by the method of Laplace approximation [8, Eq. (2.12)], the representation in (3.18) yields

u h (a) ∼ h→0 C h 2πh |v min 0 |(1 + 2t * (a)) (1 + t * (a))e -η(a) h , t * (a) = 1 2 1 + 4 a 2 |v min 0 | -1 and 
η(a) = 1 4 (1 + 2t * (a))a 2 + |v min 0 | 2 log 1 + 1 t * (a)
.

Consequently, we have

C h ∼ h→0 a 0 (0) |v min 0 |(1 + 2t * (a)) √ 2π(1 + t * (a)) h -1 e -d(a)-η(a)
h which eventually yields (3.20).

Proof of Proposition 3.5. We start by expressing the integral (1.14) in polar coordinates

w ℓ,r = a 0 r v 0 (r)u h (r) 2π 0 K h (r, θ)dθ dr , (3.22) 
where K h (r, θ) = u h r 2 + L 2 + 2Lr cos θ e iLr sin θ 2h

.

Coming back to (3.22), the integral of K h with respect to θ is computed in [8, Prop. 5.1] by using (3.18) as follows

2π 0 K h (r, θ)dθ = C h exp - r 2 + L 2 4h +∞ 0 G h (r, t)dt , (3.23) 
where

G h (r, t) = exp - (r 2 + L 2 )t 2h t α-1 (1 + t) -α I 0 Lr t(t + 1) h (3.24)
and z → I 0 (z) is the so called modified Bessel's function of order 0, which can be defined (see [START_REF] Abramowitz | Handbook of mathematical functions[END_REF], p. 376) by

I 0 (z) = 1 π π 0 e z cos θ dθ . (3.25)
The advantage of the formula in (3.23) is the absence of the oscillatory complex term and moreover, since I 0 is clearly real and strictly positive on R + , the integrand G h is a positive function .

Using the Laplace method in (3.25), the function I 0 (z) has the following asymptotic2 for large z (see also [23, Eq. (9.3.14)]),

I 0 (z) ∼ z→+∞ e z √ 2πz . (3.26) 
In addition we deduce from (3.25) the universal upper bound

I 0 (z) ≤ e z (z ∈ R + ) . (3.27)
We introduce

F (r) = +∞ 0 exp - (r 2 + L 2 )t 2h t α-1 (1 + t) -α exp Lr t(t + 1) h dt = +∞ 0 exp - (L -r) 2 t 2h t α-1 (1 + t) -α exp Lr h √ t √ t + √ t + 1 dt .
Note that, for all t > 0, we have

0 ≤ √ t √ t + √ t + 1 ≤ 1 2 hence F (r) ≤ F 2 (r) (3.28) 
where

F 2 (r) = e Lr 2h +∞ 0 exp - (L -r) 2 t 2h t α-1 (1 + t) -α dt .
Collecting (3.23), (3.27) and (3.28), we get by (3.18)

2π 0 K h (r, θ)dθ ≤ u h (L -r) . (3.29) 
Let us now bound 2π 0 K h (r, θ)dθ from below. Given an arbitrary ε ∈ (0, 1], it results from (3.25) that there exists a constant c ε > 0 such that 3

I 0 (z) ≥ c ε e (1-ε)z (z ∈ R + ) .
(3.30)

We now introduce, Note that, for all t > 0, we have

F ε (r) = +∞ 0 exp - (r 2 + L 2 )t 2h t α-1 (1 + t) -α exp (1 -ε)Lr t(t + 1) h dt = +∞ 0 exp - (L -r) 2 t 2h t α-1 (1 + t) -α exp Lr h (1 -ε) t(t + 1) -t dt .
(1 -ε) t(t + 1) -t ≥ (1 -ε)t -t = -εt hence F ε (r) ≥ F ε 1 (r) (3.31)
where

F ε 1 (r) = +∞ 0 exp - (L -r) 2 + 2εLr t 2h t α-1 (1 + t) -α dt .
Collecting (3.23), (3.30) and (3.31), we get by (3.18)

2π 0 K h (r, θ)dθ ≥ c ε e -(1-ε)Lr 2h u h (L -r) 2 + 2εLr .
Recalling that 0 < r < a, we get in particular

2π 0 K h (r, θ)dθ ≥ c ε e -(1-ε)La 2h u h (L -r) 2 + 2εLr .

WKB approximation

Using (2.4) and Proposition 3.5 (with ε = 1), we get,

c 1 w 0,- ℓ,r + O(M - h ) ≤ |w ℓ,r | ≤ c 2 w 0,+ ℓ,r + O(M + h ) , (3.32) 
where

w 0,+ ℓ,r = h -1 a 0 |v 0 (r)|a 0 (L -r)a 0 (r) exp - d(r) + d(L -r) h r dr , w 0,- ℓ,r = h -1 a 0 |v 0 (r)|a 0 (L + r)a 0 (r) exp - d(r) + d(L + r) h r dr .
and

M + h = a 0 |v 0 (r)| exp - d(r) + d(L -r) h r dr , M - h = a 0 |v 0 (r)| exp - d(r) + d(L + r) h r dr .
(3.33)

The remainder terms M ± h are easily controlled as follows.

Proposition 3.7. We have We move now to the control of the leading terms, w 0,± ℓ,r , in (3.32).

M + h = O(e -Sa/h ) and M - h = O(e -S0/h ) .
Proposition 3.8. There exist constants h 0 , C > 0 such that, for all h ∈ (0, h 0 ], we have w 0,+ ℓ,r ≤ Ch -1 e -Sa/h and w 0,- ℓ,r ≥ h C e -S0/h .

Proof. The bound on w 0,+ ℓ,r follows in a straightforward manner, as for the bound on M + h in Proposition 3.7. Concerning w 0,- ℓ,r , the function ψ * (r) = d(r)+d(L+r) is monotone increasing and

S 0 = ψ * (0) = min 0≤r≤η ψ * (r), ψ ′ * (0) = L 2 4 -v min 0 > 0 .
By Laplace's approximation,

w 0,- ℓ,r ∼ h→0 e -S0/h a 0 |v 0 (0)|a 0 (L)a 0 (0) exp   - L 2 4 -v min 0 r h   r dr = h 2 L 2 4 -v min 0 e -S0/h .
Collecting (3.32), Propositions 3.7 and 3.8, we infer from (1.15) the estimates in (3.1). To achieve the proof of Theorem 3.1, we still have to prove (3.4) which follows from the following proposition. Proposition 3.9. If v 0 < 0 on D(0, a), then

lim inf h→0 h log |w ℓ,r | ≥ -Ŝ , (3.34) 
where Ŝ is introduced in (3.5).

Proof. We use Proposition 3.5 with 0 < ε < 1 and we replace u h by its WKB approximation using (2.4). Eventually we get

|w ℓ,r | ≥ c ε w ε ℓ,r -C ε M ε h , (3.35) 
where c ε , C ε > 0 are independent of h,

w ε ℓ,r = h -1 a 0 |v 0 (r)|a 0 (L -r) 2 + 2εLr a 0 (r) exp - g(r, ε) h r dr , M ε h = a 0 |v 0 (r)| exp - g(r, ε) h r dr
and g(r, ε) is introduced in (3.14). We can rewrite (3.35) as follows

h|w ℓ,r | ≥ c ε a 0 |v 0 (r)| a 0 (L -r) 2 + 2εLr a 0 (r)-C * ε h exp - g(r, ε) h r dr
(3.36) where C * ε = C ε /c ε . Now we assume that 0 < ε < ε 0 , where ε 0 is the constant in Proposition 3.4. Pick r ε ∈ (0, a) such that S(ε) := inf 0<r<a g(r, ε) = g(r ε , ε) .

We choose η 0 ∈ (0, a) sufficiently small such that, for all η ∈ (0, η 0 ) and r ∈ I η := (-η + r ε , r ε + η) ⊂ (0, a), we have

g(r, ε) ≤ S(ε) + m ε η
where m ε is independent of η. By the same considerations, we have (after choosing η 0 , h 0 small and taking η ∈ (0, η 0 ) and h ∈ (0, h 0 ))

a 0 (L -r) 2 + 2εLr a 0 (r) -C * ε h > m * ε > 0
where m ε is independent of h and η. Now we write,

|h w ε ℓ,r | ≥ K ε (η) exp - S(ε) + m ε η h , where K ε (η) = c ε m * ε Iη |v 0 (r)| r dr .
The hypothesis v 0 < 0 in D(0, a) ensures that K ε (η) > 0. Consequently

lim inf h→0 h log |hw ℓ,r | ≥ -S(ε) + m ε η
Sending η to 0 then ε to 0, we get lim inf

h→0 h log |h w ℓ,r | ≥ -Ŝ ,
where we used that Ŝ = S(0) by Proposition 3.3.

Remark 3.10. The upper bound in Proposition 3.8 continues to hold if we relax the assumption on the sign of v 0 and assume instead that

v 0 (r) < L(L -2a) 4 ,
which ensures the validity of (3.11).

Remark 3.11 (Reduction to an interaction matrix). In [START_REF] Fefferman | Lower bound on quantum tunneling for strong magnetic fields[END_REF], the asymptotics (1.15) holds for v 0 ≤ 0 and L > 4(a + |v min 0 |). We can derive (1.15) by using the approach of reduction to an interaction matrix like in [START_REF] Helffer | Multiple wells in the semi-classical limit I[END_REF] (see [START_REF] Helffer | Semi-classical analysis for the Schrödinger operator and applications[END_REF] or [START_REF] Dimassi | Spectral Asymptotics in the Semi-Classical limit[END_REF]). That is the subject of the work [START_REF] Helffer | Flux and symmetry effects on quantum tunneling[END_REF] (see also [START_REF] Fournais | Purely magnetic tunneling between radial magnetic wells[END_REF]) which yields

e v0 2 (h) -e v0 1 (h) = 2|w ℓ,r | + O(e -S/h ) , (3.37) 
where S is a constant satisfying S > Ŝ and Ŝ is introduced in (3.5).

4 The tunneling asymptotics 4.1 Towards the proof of the main theorem.

Recall the constant a = a(v 0 ) in (1.2) and let us assume that v 0 < 0 in D(0, a) (i.e. v 0 (r) < 0 for 0 ≤ r < a). With Proposition 3.9 in hand, we can compute the leading term in the hopping coefficient w ℓ,r introduced in (1.14). This will follow through a sequence of reductions justified in the following lemmas. We will make use of the following consequence of Proposition 3.9. Recall the constant Ŝ in (3.5). Then, by Proposition 3.9, we have

∀ p ∈ R, ∀ A > Ŝ, h p e -A/h = h→0 o(|w ℓ,r |) . (4.1)
Moreover, for all η ∈ (0, a), let us introduce

W 1 (η) := C h a η r|v 0 (r)|u h (r) exp - r 2 + L 2 4h +∞ η G h (r, t) dt dr ,
where C h is introduced in Lemma 3.6 and G h is introduced in (3.24). The next lemma establishes that |w ℓ,r | can be approximated by W 1 (η) uniformly with respect to η ∈ (0, η 0 ], where η 0 is a sufficiently small constant.

Lemma 4.1. There exist constants η 0 ∈ (0, a), A > Ŝ and h 0 > 0 such that, for all η ∈ (0, η 0 ] and h ∈ (0, h 0 ], we have

|w ℓ,r | -W 1 (η) ≤ e -A/h .
In particular, for all η ∈ (0, η 0 ],

|w ℓ,r | ∼ h→0 W 1 (η) .
Proof. Consider η ∈ (0, η 0 ) where 0 < η 0 < a. By (3.22) and (3.23) we write

|w ℓ,r | = W 1 (η) + R 1 (η) + R 2 (η)
where

R 1 (η) = η 0 r|v 0 (r)|u h (r) 2π 0 K h (r, θ) dθ dr , (4.2) R 2 (η) = C h a η r|v 0 (r)|u h (r) exp - r 2 + L 2 4h η 0 G h (r, t) dt dr . (4.3) Using (3.29), we have 0 ≤ R 1 (η) ≤ R 1 (η 0 ) ≤ c 2 η0 0 r|v 0 (r)|u h (r)u h (L -r) dr .
Arguing as in Proposition 3.8, and using the monotonicity of the function ϕ * in (3.12), we have

η0 0 r|v 0 (r)|u h (r)u h (L -r) dr = O(h -1 e -Sη 0 /h )
where S η0 = ϕ * (η 0 ) and depends continuously on η 0 so that lim η0→0 S η0 = S 0 . Here S 0 is introduced in (3.8). By Proposition 3.3, we choose η 0 sufficiently small such that S η0 > Ŝ. By (4.1), we get

R 1 (η 0 ) = O(h -1 e -Sη 0 /h ) = h→0 o(|w ℓ,r |).
Now we estimate R 2 (η). For 0 < t < η < η 0 < a, (3.24) and (3.27) yield,

G h (r, t) = O e c0 √ η/h C h exp - (r 2 + L 2 )t 2h t α-1 (1 + t) -α
where c 0 = √ a + 1. Inserting this into the expression of R 2 (η), we get by (3.18),

R 2 (η) = O e c0 √ η/h a η r|v 0 (r)|u h (r)u h ( L 2 + r 2 )dr .
Arguing as in Proposition 3.8 and observing that min

η<r<a d(r) + d( L 2 + r 2 ) = d(η) + d( L 2 + η 2 ) > S 0 we get R 2 (η) = O h -1 e c0 √ η/h e -S0/h .
Finally, by Proposition 3.3, we choose η 0 sufficiently small so that, S 0 -c 0 √ η 0 > Ŝ and we conclude by Proposition 3.8 that R 2 (η) = h→0 o(|w ℓ,r |), for all η ∈ (0, η 0 ).

Looking closely at the foregoing bounds on R 1 (η) and R 2 (η), we have in fact proved the following. If we select A such that

Ŝ < A < min(S η0 , S 0 -c 0 √ η 0 )
then there exists h 0 > 0 such that, for all η ∈ (0, η 0 ],

0 ≤ R 1 (η) + R 2 (η) ≤ e -A/h .
For all η ∈ (0, a), we introduce

W 2 (η) := C asy h a η r|v 0 (r)|a 0 (r) exp - d(r) h - r 2 + L 2 4h +∞ η G h (r, t) dt dr ,
where

C asy h is introduced in (3.20), G h is introduced in (3.24
) and a 0 is introduced in Proposition A.4. We will prove that W 1 (η) in Lemma 4.1 can be approximated by h -1/2 W 2 (η), uniformly with respect to η ∈ (0, η 0 ]. Lemma 4.2. Let η 0 be as introduced in Lemma 4.1. There exist constants h 0 , M > 0 such that, for all η ∈ (0, η 0 ] and h ∈ (0, h 0 ], we have

W 1 (η) -h -1/2 W 2 (η) ≤ M h 1/2 W 2 (η) + 1 - C asy h C h W 1 (η)
where W 1 (η) is as in Lemma 4.1.

Proof. By Lemma 4.1, it suffices to prove that W 1 (η) ∼ h→0 h -1 W 2 (η) (and estimate the remainder terms). We write

g η (r) = +∞ η G h (r, t)dt , δ h (r) = e d(r)/h u h (r) -h -1/2 a 0 (r) and W 1 (η) = h -1/2 W 2 (η) + R 1 (η) + R 2 (η)
where

R 1 (η) = C h -C asy h a η r|v 0 (r)|u h (r)g η (r) exp - r 2 + L 2 4h dr , R 2 (η) = C asy h a η r|v 0 (r)|δ h (r)g η (r) exp - d(r) h - r 2 + L 2 4h dr .
Notice that

W 1 (η) = C h a η r|v 0 (r)|u h (r)g η (r) exp - r 2 + L 2 4h dr . Consequently R 1 (η) = 1 - C asy h C h W 1 (η) = h→0 o W 1 (η) .
As for R 2 (η), by (2.4),

|δ h | = O(h 1/2
), and since a 0 (•) > 0, we have

W 2 (η) ≥ W 0 2 (η) := m 0 C asy h a η r|v 0 (r)|g η (r) exp - d(r) h - r 2 + L 2 4h dr where m 0 = min 0≤r≤a a 0 (r) > 0 .
Consequently,

|R 2 (η)| = O h 1/2 W 0 2 (η) = O h 1/2 W 2 (η) .
We give a finer approximation of the hopping coefficient |w ℓ,r | in (1.14), by replacing G h in the definition of W 2 (η) (see Lemma 4.2) by an explicit approximation. At this level, unlike Lemmas 4.1 and 4.2, our estimates are no more uniform with respect to η ∈ (0, η 0 ]. Lemma 4.3. Let η ∈ (0, η 0 ], where η 0 is introduced in Lemma 4.1. Consider

W 3 (η) := C asy h a η r|v 0 (r)|a 0 (r) exp - d(r) h - r 2 + L 2 4h +∞ η G asy h (r, t) dt dr ,
where

C asy h is introduced in (3.20), G asy h (r, t) = √ h exp -(r 2 +L 2 )t 2h + Lr √ t(t+1) h -α log 1 + 1 t (2πLr) 1/2 t 5/4 (t + 1) 1/4
and α is introduced in (3.19). Then, we have

|w ℓ,r | ∼ h→0 h -1/2 W 3 (η) .
Proof. By Lemmas 4.1 and 4.2, it suffices to prove that W 2 (η) ∼ h→0 W 3 (η). By (3.24), we observe that

G h (r, t) = 1 t I 0 Lr t(t + 1) h exp - (r 2 + L 2 )t 2h -α log 1 + 1 t .
By (3.26), there exist C 0 , z 0 > 0 such that

∀ z ≥ z 0 , I 0 (z) - e z √ 2πz ≤ C 0 e z z .
In particular, there exist C0 , h 0 > 0 such that,

∀ r, t ≥ η, ∀ h ∈ (0, h 0 ], |G h (r, t) -G asy h (r, t)| ≤ C0 √ h G asy h (r, t) . Writing W 2 (η) = W 3 (η) + R(η) , we get, |R(η)| = h→0 o W 3 (η) .
In our next step we get a new asymptotics from Lemma 4.3 by replacing α by its approximation in (3.19). Recall that by (3.19)

α = α 0 h , α 0 = α main 0 + O(h 3/2 ) , α main 0 = |v min 0 | 2 - h 2 1 + 2v ′′ 0 (0) -1 . (4.4) 
Inserting this into G asy h (r, t) in Lemma 4.3, we get

G main h (r, t) = h 2πLr g 0 (t) exp - (r 2 + L 2 )t 2h + Lr t(t + 1) h - |v min 0 | log 1 + 1 t 2h g 0 (t) = 1 t 5/4 (t + 1) 1/4 1 + 1 t 1 2 ( √ 1+2v ′′ 0 (0)-1)
.

Lemma 4.4. Let η ∈ (0, η 0 ], where η 0 is introduced in Lemma 4.1. Consider

W 4 (η) := C asy h a η r|v 0 (r)|a 0 (r) exp - d(r) h - r 2 + L 2 4h +∞ η G main h (r, t) dt dr ,
where

C asy h is introduced in (3.20), G main h in (4.5) and α main 0 in (4.4). Then, we have |w ℓ,r | ∼ h→0 h -1/2 W 4 (η) .
Proof. By Lemma 4.3, it suffices to prove that W 3 (η) ∼ h→0 W 4 (η). Notice that

G asy h (r, t) = G main h (r, t) exp α main 0 -α 0 h log 1 + 1 t
and there exist h 0 = h 0 (η) > 0 and C 0 > 0 such that,

∀ h ∈ (0, h 0 ], ∀ t ≥ η, 0 ≤ α main 0 -α 0 h log 1 + 1 t ≤ C 0 h 1/2 log 1 + 1 η .
This proves that G asy h (r, t) ∼ h→0 G main h (r, t) uniformly with respect to (r, t) ∈

[η, a] × [η, +∞). This yields

W 3 (η) -W 4 (η) = h→0 o W 4 (η) .

A real phase and its minimum

Using the expression of C asy h in (3.20), we get by Lemma 4.4

W 4 (η) = m(v 0 ) √ 2πh a η √ r |v 0 (r)|a 0 (r) +∞ η g 0 (t) exp - Ψ(r, t) -F (v 0 ) h dtdr (4.6) 
where m(v 0 ), F (v 0 ) are introduced in (3.17), g 0 (t) is introduced in (4.5) and

Ψ(r, t) := d(r) + r 2 + L 2 4 (2t + 1) + |v min 0 | 2 log 1 + 1 t -Lr t(t + 1) . (4.7)
The Laplace like integral on the right hand side of (4.6) can be more precisely estimated in the limit h → 0 once we know the infimum of Ψ over (η, , a] × (η, +∞) of Ψ(r, t), which is the aim of the following proposition.

Proposition 4.5. If L > 2a, then

Ψ min := inf (r,t)∈[0,a]×R+ Ψ(r, t) < inf t∈R+ Ψ(0, t).
Furthermore, if v 0 < 0 on [0, a), then Ψ has a unique minimum, (a, t a ), on (0, a] × R + , and

Ψ min = d(L).
The proof of Proposition 4.5 relies on the following two lemmas.

Lemma 4.6. Assume that L > 2a. Let (r 0 , t 0 ) ∈ (0, L) × R + . Then (r 0 , t 0 ) is a critical point of Ψ if, and only if, the following two conditions hold:

1. Lemma 4.7. Let r 0 ∈ (0, L). Then, r 0 is a solution of (4.10) if, and only if, v 0 (r 0 ) = 0.

t 0 = t(r 0 , L, v min 0 ) := 1 4 + s(r 0 , L, v min 0 ) - 1 2 (4.8) with s(r 0 , L, v min 0 ) := 2|v min 0 |(L 2 + r 2 0 ) + L 2 r 2 0 2(L 2 -r 2 0 ) 2 + 1 L 2 -r 2 0 (2|v min 0 |(L 2 + r 2 0 ) + L 2 r 2 0 ) 2 4(L 2 -r 2 0 ) 2 -|v min 0 | 2 .
Proof of Proposition 4.5.

Step 1. The function Ψ(r, t) depends continuously on (r, t) ∈ [0, a] × R + and, using the inequality t(t + 1) ≤ t + 1 2 , we have for all (r, t)

∈ [0, a] × R + , Ψ(r, t) ≥ |v min 0 | log 1 + 1 t + (L -a) 2 4 , and 
Ψ(r, t) ≥ L(L -2a) 2 t + L(L -2a) 4 . .
Hence, Ψ min > 0 and there exist τ, T > 0 such that, for all r ∈ [0, a] and t ∈ (0, τ ] ∪ [T, +∞), we have Ψ(r, t) > Ψ min . Thus, the minimum of Ψ is attained in [0, a] × (τ, T ). Moreover, the minimum of Ψ can not be attained at (0, t 0 ) with t 0 ∈ (τ, T ) since ∂ r Ψ(0, t 0 ) = -L t 0 (t 0 + 1) < 0 .

Step 2. Pick (r 0 , t 0 ) ∈ (0, a] × R + such that Ψ(r 0 , t 0 ) = Ψ min . If r 0 < a then (4.10) holds, and by Lemma 4.7, we get that v 0 (r 0 ) = 0. This is impossible if we impose the hypothesis v 0 < 0 on [0, a), hence we have r 0 = a and t 0 = t(a, L, v min 0 ), where t(a, L, v min 0 ) is introduced in (4.8). Step 3. Collecting Lemmas 4.6 and 4.7, we see that the critical points of Ψ on (a, L)× R + constitute the set

C = {(r, t) : a < r < L, t = t(r, L, v min 0 )}.
Moreover, for all r ∈ (a, L), we have by Lemma 4.6,

d dr Ψ r, t(r, L, v min 0 ) = ∂ r Ψ r, t(r, L, v min 0 ) =0 + ∂ r t(r, L, v min 0 ) ∂ t Ψ r, t(r, L, v min 0 ) =0 = 0 hence Ψ r, t(r, L, v min 0 ) = Ψ a, t(a, L, v min 0 ) = Ψ min (a < r < L).
In particular, we have that

Ψ min = lim r→L- Ψ r, t(r, L, v min 0 ) = d(L).
We provide details on the foregoing expression of Ψ min . With t(r) = t(r, L, v min 0 ) and s(r) = s(r, L, v min 0 ) as in (4.8) and (4.9), we have lim r→L-

(L -r) 4 s(r) = 0, lim r→L- s(r) = +∞, and 
t(r) = r→L- s(r) - 1 2 + O 1 s(r)
Inserting the foregoing expressions into Ψ(r, t) in (4.7), and using that s(r) = t(r) 2 + t(r), we get Ψ r, t(r) = r→L-

d(L) + (L -r) 2 2 s(r) + O 1 s(r) + o(1) = d(L) + o(1).
Proof of Lemma 4.6.

Step 1. Let (r 0 , t 0 ) ∈ (0, L) × R + . We will prove that

∂ t Ψ(r 0 t 0 ) = 0 ⇐⇒ t 0 = t(r 0 , L, v min 0 ) (4.11)
where t 0 (r 0 , v min 0 ) is introduced in (4.8). Starting with

∂ t Ψ(r 0 , t) := r 2 0 + L 2 2 - |v min 0 | 2t(t + 1)
-Lr 0 (2t + 1) 2 t(t + 1) (4.12)

we get

∂ t Ψ(r 0 , t) = 1 2s g(s) ,
where s = t 2 + t > 0 and

g(s) = (L 2 + r 2 0 )s -|v min 0 | -Lr 0 √ s √ 4s + 1 .
The equation g(s) = 0 reads

(L 2 + r 2 0 )s -|v min 0 | = Lr 0 s(4s + 1) . (4.13)
This implies that a zero ŝ of g necessarily satisfies

(L 2 + r 2 0 )ŝ -|v min 0 | > 0 . (4.14)
This also implies by taking the square on both sides of (4.13),

(L 2 -r 2 0 ) 2 ŝ2 -2(L 2 + r 2 0 )|v min 0 | + L 2 r 2 0 ŝ + |v min 0 | 2 = 0 , (4.15) 
which has two positive solutions

s ± = 2|v min 0 |(L 2 + r 2 0 ) + L 2 r 2 0 2(L 2 -r 2 0 ) 2 ± 1 L 2 -r 2 0 (2|v min 0 |(L 2 + r 2 0 ) + L 2 r 2 0 ) 2 4(L 2 -r 2 0 ) 2 -|v min 0 | 2 .
Notice that, if g(ŝ) = 0, then

g ′ (ŝ) = (L 2 -r 2 0 ) 2 (L 2 + r 2 0 )ŝ -|v min 0 | ŝ - 2(L 2 + r 2 0 )|v min 0 | + L 2 r 2 0 2(L 2 -r 2 0 ) 2 .
Assuming that s ± are zeros of g, we get

g ′ (s ± ) = ± L 2 -r 2 0 (L 2 + r 2 0 )s ± -|v min 0 | (2|v min 0 |(L 2 + r 2 0 ) + L 2 r 2 0 ) 2 4(L 2 -r 2 0 ) 2 -|v min 0 | 2 . ( 4 
.16) At this stage we know, since g(0) < 0 and lim s→+∞ g(s) = +∞, that g has at least one zero and at most two zeroes which belong to {s -, s + }. Suppose that s -is a zero of g, then we obtain by (4.14) and (4.16) that g ′ (s -) < 0. This leads to a contradiction (or g should have another zero < s -). Hence the unique zero of g is s + . This yields, by (4.12), that ∂ t Ψ(r 0 , t) = 0 if, and only if, t satisfies

t 2 + t = s + (r 0 , L, v min 0 ) := 2|v min 0 |(L 2 + r 2 0 ) + L 2 r 2 0 2(L 2 -r 2 0 ) 2 + 1 L 2 -r 2 0 (2|v min 0 |(L 2 + r 2 0 ) + L 2 r 2 0 ) 2 4(L 2 -r 2 0 ) 2 -|v min 0 | 2 . ( 4 
.17) Solving the previous equation, we end up with a unique positive solution

t 0 := t + (r 0 , L, v min 0 ) = - 1 2 + 1 4 + s + (L, r 0 , v min 0 ) .
This proves (4.11).

Step 2.

Assume now that t 0 = t + (r 0 , L, v min 0 ) and let us now prove that, ∂ r Ψ(r 0 , t 0 ) = 0 ⇐⇒ r 0 satisfies (4.10).

(4.18)

If the partial derivative

∂ r Ψ(r, t) = d ′ (r) + r 2 (2t + 1) -L t(t + 1) (4.19)
vanishes, then

t = t± := - L 2 -r 2 -2rd ′ (r) 2(L 2 -r 2 ) ± L 2 -r 2 -2rd ′ (r) 2(L 2 -r 2 ) 2 + (d ′ (r) + r 2 ) 2 L 2 -r 2 .
Observing that t-t+ = -(d ′ (r) + r 2 ) 2 L 2 -r 2 < 0 for 0 < r < L, we ignore the negative solution and consider

t+ (r, L, v 0 ) := - L 2 -r 2 -2rd ′ (r) 2(L 2 -r 2 ) + L 2 -r 2 -2rd ′ (r) 2(L 2 -r 2 ) 2 + (d ′ (r) + r 2 ) 2 L 2 -r 2 .
(4.20) Moreover, fixing r ∈ (0, L), f (t) := d ′ (r) + r 2 (2t + 1) -L t(t + 1) is > 0 for t = 0 and its limit is equal to -∞ as t → -∞, so it must vanish at some t > 0. Therefore, we conclude that ∂ r Ψ(r, t) vanishes on (0, L) × R + if, and only if t = t+ (r, L, v min 0 ). By (4.11), (r 0 , t 0 ) is a critical point of Ψ(r, t) if, and only if, 

t 0 = t+ (r 0 , L, v 0 ) = t + (r 0 , L, v min 0 ) . ( 4 
) = t + (r 0 , L, v min 0 ) is the same as r 0 d ′ (r 0 ) + (L 2 -r 2 0 ) L 2 -r 2 0 -2r 0 d ′ (r 0 ) 2(L 2 -r 2 0 ) 2 + (d ′ (r 0 ) + r0 2 ) 2 L 2 -r 2 0 = (L 2 -r 2 0 ) 1 4 + s(r 0 , L, v min 0 ), ( 4 
(L 2 -r 2 0 ) L 2 -r 2 0 -2r 0 d ′ (r 0 ) 2(L 2 -r 2 0 ) 2 + (d ′ (r 0 ) + r0 2 ) 2 L 2 -r 2 0 = (L 2 -r 2 0 ) 1 4 + s(r 0 , L, v min 0 ) -r 0 d ′ (r 0 ),
and after taking the squares we obtain

d ′ (r 0 ) + r 0 1 4 + s(r 0 , L, v min 0 ) 2 -L 2 s(r 0 , L, v min 0 ) = 0,
which eventually yields the relation in (4.10). Conversely, if (4.8) and (4.10) hold, it is straightforward to check that, for 0 < r 0 < L, we have

(L 2 -r 2 0 ) s(r 0 , L, v min 0 ) + 1 4 -r 0 d ′ (r 0 ) > L(L -r 0 ) s(r 0 , L, v min 0 ) > 0,
and consequently (4.22) holds.

Let η ∈ (0, η 0 ), where η 0 ∈ (0, a) is introduced in Lemma 4.1. So, by Lemma 4.4, it suffices to prove that,

h log W 4 (η) ∼ h→0 -S(v 0 , L) . ( 4 

.28)

The function v 0 vanishes to infinite order at r = a. By Proposition 4.5, we get To prove a lower bound on W 4 (η), pick an arbitrary δ ∈ (0, 1) and consider the set

W 4 (η) = h→0 O e -S(v 0 ,L) h , ( 4 
I δ = {(r, t) ∈ [0, a] × [0, +∞) : Ψ(r, t) ≤ F (v 0 ) + S(v 0 , L) + δ} .
By Proposition 4.5, there exists δ 0 ∈ (0, 1) such that, if δ < δ 0 , then I δ ⊂ [η, a] × [η, +∞). Since the integrand in the expression of W 4 (η) is positive, we have the lower bound For each Landau level Λ n , we introduce the set

W 4 (η) ≥ m(v 0 ) √ 2πh I δ √ r |v 0 (r)|a 0 (r)g 0 (t)
J n = {m ∈ Z : Λ n ∈ σ(H m,0 )} .
For a given m ∈ J n , Λ n is a simple eigenvalue of H m,0 . However, since Λ n is an eigenvalue of L with infinite multiplicity, we deduce that J n is infinite. Note that 0 ∈ J 1 and by the min-max principle, J 1 ⊂ [0, +∞).

A.1.2 The magnetic harmonic oscillator

Consider the case where v 0 (x) = µ|x| 2 , where µ is a positive constant. The single well operator in (2.1) becomes

L sw h = (hD -A) 2 + µ|x| 2 .
After rescaling 5 We have the following standard application of Proposition A.2 on the decay of ground states of the operator L sw h . Proposition A.3. For all δ ∈ (0, 1), there exist a(δ), C δ , h 0 > 0 such that lim δ→0+ a(δ) = 0 and, if u h is a ground state of L sw h and h ∈ (0, h 0 ), then we have,

∇ e (1-δ)d(x)/h u h 2 + e (1-δ)d(x)/h u h 2 ≤ C δ e a(δ)/h u h 2 ,
where d is the Agmon distance introduced in (A.8a).

The estimate in (A.3) is not optimal since we work under the assumption in (1.1). In fact, we can write estimates with δ = 0 as we shall see in Proposition A.6 later on. where R S is the unique solution of d(R) = S. Clearly, R S is monotone increasing with respect to S. We can then perform the WKB construction outlined in the following proposition.

A.4 WKB approximation

Proposition A.4 (cf. Prop. 4.4.3 in [12]). There exist N 0 ≥ 1 and two sequences (E k ) k≥0 ⊂ R and (a k ) k≥0 ⊂ C ∞ (R 2 ) such that, for all N ≥ 1 and S > 0,

e d(x)/h L sw h -E N (h) ϑ N = O(h N -N0 ) on B d (S)
, where

E N (h) = N k=0 E k h k , E 0 = v min 0 , E 1 = 1 + 2v ′′ 0 (0) ϑ N (x) = h -1/2 N k=0
a k (x)h k e -d(x)/h , a 0 (0) = 1 2

1 + 2v ′′ 0 (0) π .

Moreover a 0 (x) > 0 and for every k, the function a k is radial. ). There exists N 0 ≥ 1, and for all h ∈ (0, 1], there exists a ground state u h of L sw h such that

u h L 2 (R 2 ) = 1 ,
and if Ω is an open bounded set in R 2 , then for any N the following holds

e d(x)/h (u h -ϑ N ) H 2 (Ω)
= O(h N -N0 ) .

Proof of Theorem 2.1. The first item in Theorem 2.1 follows from Proposition A.1. Consider the normalized ground state u h of L sw h in Proposition A.6. By Proposition A.1, u h is radial. By the Sobolev embedding Theorem and Propositions A.6 and A.4, we have for Ω = D(0, R) and R > 0,

e d(x)/h (u h -h -1/2 a 0 ) L ∞ (Ω)
= O(h 1/2 ) thereby proving that u h is positive, since a 0 is. This proves the second and third items in Theorem 2.1.

4 .

 4 Under this assumption, we have ϕ ′ * < 0 on (0, a) , and ϕ * (a) < ϕ * (u) < ϕ * (0) , thereby proving (3.11). We now consider the constant Ŝ introduced in (3.5). Recall that, by (3.5), Ŝ = min r∈[0,a] g 0 (r) , where g 0 (r) = Lr 2 + d(L -r) + d(r) , and d(r) is introduced in (A.8b).

  ) where ε ∈ (0, 1] is fixed and d(•) is introduced in (A.8b). For all ε ∈ [0, 1], we set S(ε) := inf 0<r<a g(r, ε) , and notice that Ŝ = S(0) (see Proposition 3.3). Proposition 3.4 (Optimizing w.r.t. ε). We have Ŝ = inf ε∈(0,1]

2 and actually a complete expansion in powers of z - 1 / 2 ! 3

 123 Notice that I 0 (z) ≥ 1 π η 0 e z cos θ dθ ≥ η π exp(z cos η) ≥ η π exp((1 -η 2

Proof. By ( 3 .

 3 11) and (3.10), min 0≤r≤a d(r) + d(L -r) = S a and min 0≤r≤a d(r) + d(L + r) = S 0 where S a and S 0 are introduced in (3.2) and (3.8) respectively. Hence M + h ≤ e -Sa/h

2 .

 2 r 0 is a solution of d ′ (r 0 ) + r 0 s(r 0 , L, v min 0

h

  log W 4 (η) ≤ -S(v 0 , L) . (4.30)

Remark 4 . 9 .r 2 r 2 m - r 2 2 2 |u| 2

 49222 dtdr e -S(v 0 ,L)+δ h from which we infer the lower bound lim inf h→0 h log W 4 (η) ≥ -S(v 0 , L) -δ .After sending δ to 0 we eventually get lim sup h→0 h log W 4 (η) ≥ -S(v 0 , L) .(4.31)Collecting (4.30) and (4.31), we finish the proof of (4.28). Our proof of Theorem 3.1 above only yields an asymptotics for the phase of the hopping coefficient,log |w ℓ,r | ∼ h→0 -S(v 0 , L) . (4.32)Unfortunately, with our method we could not obtain a detailed asymptotics4 .In fact,L 2 (R 2 ; dx) = m∈Z Π m L 2 (R 2 ; dx) ≃ m∈Z L 2 (R + , rdr) , -mis the self-adjoint operator in L 2 (R + , rdr) associated with the quadratic formq m,0 (u) = R+ |u ′ (r)| 2 + 1 rdr .Then we get σ(L) = m∈Z σ(H m,0 ) .

2 .

 2 we get σ(L sw h ) = hσ(L mag µ ) whereL mag µ = (D -A) 2 + µ|x| 2 . For all R > 0, let D R = {x ∈ R 2 : |x| < R}. If φ ∈ C 0 (D R ; R) and u ∈ C 2 (D R ; R)are radial functions such that φ is Lipschitz and u = 0 on ∂D R , then the following identity holds DR h 2 |∇(e φ/h u)| 2 + (w -|∇φ| 2 ) |e φ/h u| 2 dx = DR e 2φ/h u L sw h u dx .

For

  all S > 0, we introduce the setB d (S) = {x ∈ R 2 : d(x) < S} , (A.11)where d is the Agmon distance to 0 introduced in (A.8a). Since d is monotone increasing with respect to |x|, we haveB d (S) = D(0, R S ) := {x ∈ R 2 : |x| < R S } (A.12) 

Remark A. 5 . 4 +.

 54 The function a 0 satisfies the transport equation2∇d • ∇a 0 + (∆d -E 1 )a 0 = 0 .Since d and a 0 are radial, we get a 0 (x) = a 0 (|x|) v 0 (ρ) -v min 0 Proposition A.6 (cf. Theorem 4.4.4 in[START_REF] Helffer | Semi-classical analysis for the Schrödinger operator and applications[END_REF]

  .20) 

	Proof. The representation in (3.18) is obtained in [8, Eq. (2.9)], with	
	α =	1 2	-	1 2h	e sw (h) .	(3.21)
	The asymptotics in (3.19) now follows from (2.2) in Theorem 2.1. So we still
	have to determine the the asymptotics of the constant C h , by matching (3.18)
	with the expansion of u h (ρ) in Theorem 2.1. In fact, by (2.4) and (2.5), we have

  .21) We will prove that (4.21) holds if, and only if (4.8) and (4.10) hold. Firstly, notice that t 0 = t + (r 0 , L, v min 0 ) is just (4.8) and t+ (r 0 , L, v 0

Writing λ ≫ 1 means that we consider the regime where λ → +∞. In the same vein, writing α ≪ λ (resp. α ≫ λ), we mean that α/λ → 0 (resp. α/λ → +∞).

)z) with η = √ 2ε.

A complete asymptotics of the hopping coefficient was indicated to us by S. Fournais, L. Morin, and N. Raymond (personal communication, August 2023).|w ℓ,r | ∼ h→0 Υ(v 0 )h -p(v 0 ) e -S(v 0 ,L)/h ,for some constants Υ(v 0 ) > 0 and p(v 0 ) ∈ R.

We do the change of variable y = h -1/2 x.
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Proof of Lemma 4.7.

Let r be a solution of (4.10) and s = s(r, L, v min 0 ). Notice that, with µ = |v min 0 |, (4.9) reads as follows

We write (4.10) in the following form

then we take the square and get v 0 (r) + µ = (L 2 + r 2 )s -2Lr s s + 1 4 .

After a rearrangement we have

Taking the square, we obtain the following equation, (v 0 (r) + µ) 2 + (L 2 + r 2 ) 2 s 2 -2(v 0 (r) + µ)(L 2 + r 2 )s = 4L 2 r 2 s 2 + L 2 r 2 s.

Rearranging the terms, we write the previous equation in the form

So, using (4.23), the above equation yields,

Inserting this into (4.24), we obtain

which is impossible since v 0 ≤ 0 and the term on the right hand side above is positive, since we have by (4.23),

Remark 4.8 (Global minimum of Ψ). The proof of Proposition 4.5 yields that, for all L ′ ∈ (a, L),

Ψ r, t(r, L, v min 0 ) .

In particular, we have that min

Proof of the main theorem

We give here the proof of Theorem 1.4. We set

where a = a(v 0 ), F (v 0 ) is introduced in (3.17) and the function Ψ is introduced in (4.7). By Proposition 4.5 we observe that

where S a is introduced in (3.2), and 

A Single well ground states are radial A.1 Magnetic harmonic approximation

In the presence of a magnetic field and a unique non-degenerate well, the method of harmonic approximation was treated in [15, Sec. 2], but we revisit it here in the setting of a radial potential, which allows us to derive more precise results on the ground states. The main result in this section is Proposition A.1, which proves the first and second items in Theorem 2.1. We can also refer to Matsumoto [START_REF] Matsumoto | Semi-classical asymptotics of eigenvalues for Schrödinger operators with magnetic fields[END_REF] and Matsumoto-Ueki [START_REF] Matsumoto | Spectral analysis of Schrödinger operators with magnetic fields[END_REF] for an independent discussion in the general case.

A.1.1 The Landau Hamiltonian

In the absence of an electric field, v 0 = 0, the operator in (2.1) reduces (after rescaling) to the Landau Hamiltonian

whose spectrum consists of the Landau levels, i.e.

where each Λ n is an eigenvalue of infinite multiplicity. Moreover, L has a normalized radial ground state given by

We can decompose L via the orthogonal projections on the Fourier modes,

The min-max principle yields

(A.3) Moreover, the rescaling r → (1 + 4µ) 1/4 r yields the reduction to the unitary equivalent Hamiltonian,

(A.4) Consequently, we infer from (A.3) and (A.2)

is a simple eigenvalue and that its (normalized) associated eigenfunction is radial:

A.1.3 Eigenvalue asymptotics and radial ground states

Assuming that the potential function v 0 satisfies (1.1), we have an accurate description of the spectrum of the operator L sw h introduced in (2.1), which will provide an example where the hypotheses imposed by Fefferman-Shapiro-Weinstein in [START_REF] Fefferman | Lower bound on quantum tunneling for strong magnetic fields[END_REF] hold (see their Assumption 1.4).

In the sequel we use the notation λ j (P) j∈N for the sequence of min-max eigenvalues of a given self-adjoint operator P.

Proposition A.1. For every fixed j ∈ N, the j'th eigenvalue of L sw h satisfies,

where

2 . Moreover, the lowest eigenvalue of L sw h is simple with a radial ground state. As a consequence of Proposition A.1 and the construction of accurate quasimodes, the lowest eigenvalue λ 1 (L sw h ) can be expanded to any order in powers of h (see Proposition A.4 below).

Proof of Proposition A.1. Except the last statement, the proof is standard (see [START_REF] Helffer | Effet tunnel pour l'équation de Schrödinger avec champ magnétique[END_REF] for the magnetic case) and corresponds to the so-called Harmonic approximation in the case of a non degenerate well (see [START_REF] Cycon | Schrödinger operators, with application to quantum mechanics and global geometry[END_REF][START_REF] Simon | Semiclassical analysis of low lying eigenvalues. I: Non-degenerate minima: Asymptotic expansions[END_REF] and [START_REF] Fournais | Spectral methods in surface superconductivity[END_REF]Ch. 7]). We write

where

For any C > 0, the spectrum below v min 0 +Ch of L sw h is effectively given (modulo

so we are reduced to the operator analyzed in Sec. A.1.2, thereby getting the asymptotics displayed in Proposition A.1.

To prove the last statement, we consider a normalized ground state ψ h of L sw h . After rescaling, we obtain from ψ h the following normalized function

Moreover, the operator L sw h can be fibered as

, where

For h sufficiently small, the ground state energy of L sw h is simple, so there exists a unique m * ∈ Z such that u h = Π m * u h , where Π m * is the projection introduced in (A.1). Note that m * could depend on h but we skip the reference to h to simplify the presentation.

The theory of harmonic approximation yields that the ground state u h is close to the normalized radial ground state φ mag µ of the operator L mag µ introduced in (A.6). In fact, we have a spectral gap

Now we write the decomposition

where we used that Π 0 φ mag µ = φ mag µ and, for m = 0, Π m φ mag µ = 0, since the function φ mag µ is radial. Consequently, as h tends to zero, we have

and

This proves that m * = 0 and that the ground state u h is radial.

A.2 Decay of ground states for the single well potential

Again, we recall standard results but just take advantage of the additional assumption that the one well potential is radial. We conclude this section by proving the the third item in Theorem 2.1, which follows from Propositions A.4 and A.6. (A.9)

A.2.1 The Agmon distance

The function d amounts to the (Agmon) distance to the well {0}, relative to the potential w.

A.3 Agmon estimates

It was observed in [START_REF] Fefferman | Lower bound on quantum tunneling for strong magnetic fields[END_REF] that restricting the action of L sw h to radial functions, we obtain a (non-magnetic) Schrödinger operator. More precisely, if f is a radial function, then L sw h f = -h 2 ∆f + wf (A.10)

and w becomes the effective potential of the magnetic operator L sw h . Hence, we can apply the semi-classical analysis relative to the Schrödinger operator without magnetic potential as considered in [START_REF] Helffer | Multiple wells in the semi-classical limit I[END_REF] or [START_REF] Simon | Semiclassical analysis of low lying eigenvalues. I: Non-degenerate minima: Asymptotic expansions[END_REF] (see [START_REF] Helffer | Semi-classical analysis for the Schrödinger operator and applications[END_REF] or [START_REF] Dimassi | Spectral Asymptotics in the Semi-Classical limit[END_REF] for a more pedagogical presentation). The identity in (A.10) and an integration by parts yield the following result [START_REF] Helffer | Semi-classical analysis for the Schrödinger operator and applications[END_REF]Thm. 3.1.1].