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Abstract :

Estuaries are highly important nursery habitats for a range of fish species because they provide refuge
and food, especially for juveniles. However, the importance of specific salinity zones and adjacent shallow
marine habitats (subtidal and surf zones) for fish feeding is not well understood, particularly in small
macrotidal estuaries. Using the example of the Canche estuary, which is considered a reference for small
macrotidal estuaries in France, we investigated the structure and seasonal variability in fish food webs
based on stable carbon and nitrogen isotope analysis. Our results provide a new vision of the Canche
estuary, which has been considered a major feeding ground for all marine fish that spend time there.
Based on C results, our results revealed that organic matter of terrestrial origin has little influence on
functioning of the Canche food web, except for flounders in the upstream area of the estuary. Conversely,
microphytobenthos and marine particulate organic matter contribute most to the food web of fish in the
estuary. Our study also revealed that some fish species visit the estuary for reasons other than feeding,
such as to avoid predation or because they are carried by the tide. This work confirmed the suitability of
using stable isotopes to trace fish fidelity to feeding grounds less than 10 km apart.
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1. Introduction

Using shallow marine coastal zones and estuaries as nursery areas is an important phase in the
life history of many marine organisms, including commercially valuable species (Amara,
2003; Vasconcelos et al., 2007). In temperate ecosystems, juvenile fish concentrate in nursery
grounds from late spring to early fall, which is the peak of macrobenthic prey biomass
(Amara and Paul, 2003; Pasquaud et al., 2010; Selleslagh et al., 2015). Refuge and feeding
areas for young fish in estuaries are considered important for fish survival and replenishing
coastal fish stocks (McLusky and Elliott, 2004). However, many authors have shown that
estuaries are only one component of broader nursery-use patterns and that shallow marine
coastal areas and estuaries may provide a mosaic of vital nursery habitat types for juvenile
marine fish (Beck et al., 2001). Although opportunism is widely reported for estuary-
associated fish, as well as for fish in general (Amara et al., 2001; Elliott et al., 2007; Elliott
and Hemingway, 2002), the importance of these different habitats (specific salinity zones
inside estuaries and adjacent marine subtidal and surf zones) for fish feeding is not well
understood (Selleslagh et al., 2015; Vinagre et al., 2008). In addition, there is still a lack of
information and confusing conclusions about the main origin of the organic matter that
sustains juvenile fish food webs in nursery grounds (Le Pape et al., 2013). For estuaries, some
studies (Darnaude et al., 2004; Leakey et al., 2008; Vinagre et al., 2008) indicated that
allochthonous organic matter of terrestrial origin predominated, while other studies suggested
that marine organic matter predominated (Pasquaud et al., 2008; Selleslagh et al., 2015). Most
of these studies were conducted in large estuaries (e.g. Tagus, Gironde, Thames, Rhone,
Vilaine). However, in small estuaries with little freshwater influence, in sifu primary
production can override other food sources and contribute significantly to juvenile food webs
(Kostecki et al., 2012). Understanding the main ecological processes in ecosystems (e.g. food
sources, trophic transfer through the food web) and identifying juvenile fish feeding areas and
their spatial use of shallow nursery habitats are fundamental issues for effective conservation
and management of these essential fish habitats (Hobson et al., 1999).

Reconstructing marine food webs is largely limited by methodological difficulties. A
traditional approach to describe fish feeding ecology and determine their feeding niche has
been stomach content analysis (Amara et al., 2001; Besyst et al., 1999). Although it may
provide high taxonomic resolution, this method can be biased due to the difficulty in
determining the origin of partially digested food items. Previous studies of estuarine fish food
webs highlighted that stable isotope analysis (SIA), based on nitrogen (8'°N) and carbon

(8"3C) signatures of various food-web compartments, can be a powerful tool. This technique,
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which identifies trophic pathways and energy sources in a variety of ecosystems (Fry, 2006;
Peterson and Fry, 1987), is particularly successful in coastal and estuarine systems, in which
the fate of different sources of both freshwater and marine particulate organic matter (POM)
can be distinguished (Fry, 1999; Riera et al., 1999; Yokoyama et al., 2008).

813C and 615N are typically increased from prey to consumers by 3%o0—4%o for 615N and 1%o
for 613C (De Niro and Epstein, 1981; Minagawa and Wada, 1984; Cabana and Rasmussen,
1994). Thus, 615N can indicate the trophic position of an organism within the food web and
d13C values of the food sources (primary producers as phytoplankton or microphytobenthos)
are also responsible for differences in the isotopic compositions of their consumers (Riera et
al. 1999), allowing distinctions to be made between pelagic and benthic food webs (Hobson et
al. 2002) or fresh vs marine waters (Fry, 2006). Consequently, 613C can be used as a tracer of
organic trophic sources for benthic consumers (Peterson, 1999).

Given the diversity of juvenile nursery habitats, an isotopic approach to tracing fish
movement is particularly appealing as it increases the likelihood of finding habitat-specific
isotopic signatures (Herzka, 2005). Several authors have successfully used stable isotopes to
study, for example, the connectivity of habitats (Fry et al., 2003; Selleslagh et al., 2015;
Vinagre et al., 2008).

In the present study, we analysed for the first time the fish food web in a small macrotidal
estuary on the French coast of the Eastern English Channel (EEC) — the Canche estuary —
based on stable carbon and nitrogen isotopes analysis. The Canche estuary is considered a
reference for small macrotidal estuaries because it is subject to low human disturbance and is
an important fish nursery ground (Selleslagh et al., 2009; Selleslagh and Amara, 2015) that
supports species with high commercial and recreational value during their juvenile stage. The
role and importance of small macrotidal estuaries as feeding grounds for marine juvenile fish
is not well understood. Along the French coast of the EEC, juvenile marine fish are known to
use both estuaries and shallow marine coastal waters, but the exact areas where they feed
remain unknown (Amara and Paul, 2003; Selleslagh and Amara, 2015).

The main objectives of the present study were to i) distinguish the origin of sources in the
marine juvenile fish food web, ii) investigate seasonal variations in fish food-web structure
and iii) assess the feeding-ground fidelity of marine juvenile fish that inhabit the Canche

estuary and adjacent coastal nursery grounds.
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2. Materials and Methods
2.1 Study area

The Canche estuary (50°50'-50°56' N, 1°57'-1°67" E) is located in northern France along the
coast of the Eastern English Channel (EEC). The Canche estuary is 12 km long and has a
maximum width of 1 km at its mouth. The estuary has a semi-diurnal tide, with an average
tidal range of ca. 1 m at neap tides and 6 m at spring tides, and is considered a macro/hyper-
tidal estuary according to the McLusky and Elliott (2004) classification. Water circulation
depends mainly on the tide and small freshwater inputs, with a mean annual rate of ca. 13
m>.s”!. The Canche estuary is little impacted by human disturbances (Amara et al., 2007), it
belongs to the special conservation zone “Bay of Canche and corridor of the 3 estuaries” and
is classified as a “Natura 2000 site because it accounts as a major area of hosting juvenile

fish in the Eastern English Channel.

2.2 Sampling strategy

Samples of particular organic matter (POM), sediment organic matter (SOM),
microphytobenthos (MPB) as well as fish and their main potential prey (i.e. benthic
organisms, shrimp and crabs) were collected in the fall (October-November 2017) and spring
(May-June 2018) at three sites inside the Canche estuary along a salinity gradient (upstream,
middle and downstream).

To better understand the estuary’s feeding role and connectivity with adjacent marine habitats,
three additional sites were sampled outside the Canche estuary: two in the surf zone on both
sides of the mouth of the estuary (Sainte Cécile beach and Le Touquet beach, respectively)
and one in the subtidal zone in the plume of the estuary (Figure 1). For technical reasons,
these sites were sampled only in spring (May-June 2018). We also described benthic
communities and their biomass at all six sites only in spring (May-June 2018).

The sampling sites consist of a variety of habitats. The middle part of the Canche estuary is a
muddy-sand shore that contains polychaetes and bivalves (EUNIS classification A2.24; Rolet
et al., 2015). The downstream part is characterized by a medium fine-sand benthic community
(EUNIS classification A2.223) and is dominated by amphipods and Scolelepis spp. (Rolet et
al, 2015) such as the surf zone (Sainte Cécile and Le Touquet beaches). The subtidal site is
muddy fine sand and contains polychaetes (Magelona jonhsoni, Nephtys spp.) and bivalves
(Donax vittatus) (Desroy et al., 2003).
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2.3 Particulate organic matter and sediment organic matter sampling

The POM was sampled at the surface at high tide using sterile pots and then was conserved in
a cool box. In the laboratory, the water was filtered through pre-combusted Whatman GF/F
filters (0.45 pm pore size, 47 mm diameter), with 3 replicates per site. The SOM was sampled
at low tide by scraping the top first cm of sediment. Three replicates were performed at each
site. The POM and SOM samples were conserved at -20 °C in the laboratory until transfer for

SIA.

2.4 Microphytobenthos sampling

Benthic diatoms were collected at the sites inside the estuary and in the surf zone at low tide
by scraping the surface of the sediment and were then extracted according to the protocol of
Riera et al. (1999). In the laboratory, we allowed MPB to migrate by leaving the sediment
containing benthic diatoms in flat trays to form a layer 1 cm thick. A nylon screen (60 pm
mesh) was placed on top of the sediment and covered with a layer of combusted sand powder
(60-200 um) 5 mm thick. The trays were illuminated until the first dense brown mats
appeared on the surface. Meanwhile, the sand was kept moist by spraying filtered (GF/F)
seawater from the sampling site. The top 2 mm of sand were removed and sieved over a 60
pm mesh nylon screen to separate the diatoms from the remaining sand and nematodes or
copepods. The benthic diatoms were then collected on precombusted GF/F filters. Samples

were conserved at -20 °C until transfer for SIA.

2.5 Benthic organism sampling

In the surf zone (on both sides) and inside the estuary, macrobenthic fauna was sampled
during low tide with a hand corer (0.025 m? area, 20 cm depth, 10 replicates for density and
biomass, and as many as needed for SIA). At the subtidal site, macrobenthic organisms were
sampled using a Van Veen grab (sampling an area of 0.1 m?, 10 replicates for density and
biomass and as many as needed for SIA). Samples were washed, sieved through a 1 mm mesh
size and then washed again with milli-Q water to avoid contamination. In the laboratory,
benthic fauna was sorted and identified to the species level when is possible. Ash-free dry
weight (AFDW) of benthic invertebrates was determined using the method recommended by
the Benthos Ecology Working Group of the ICES (Hamilton and Kingston, 1985). The fauna

was dried in an oven at 60 + 1°C for at least 48 hours until a constant weight was obtained. It
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was then weighed (with 10"! mg precision) and placed in an oven at 520 + 20°C for 6 h to
calcinate the organic matter completely without altering the mineral matter, and the calcinated

fauna was weighed again. The AFDW equalled the difference between the two weights.

2.6 Fish, crab and shrimp sampling

Fish, crabs and shrimps were sampled during daylight hours using a 1.5 m beam trawl, with
one tickler chain and 5 mm mesh size in the cod end, towed by a semi-rigid boat against the
current at 2 knots for 15 min. Fish, crabs and shrimp were identified to the species level,

counted, and then measured (total length, with 1 mm precision).

2.7 Stable isotope analyses

Species selected for SIA were dominant in both abundance and biomass to obtain a synthetic
image of the trophic structure within each community. As lipids are depleted in §'3C
compared to carbohydrates and proteins (DeNiro and Epstein, 1977; Griffiths, 1991), which
indicates that fatty tissues tend to be isotopically lighter than leaner ones, trophic
interpretations based on §'3C composition may be confounded by lipid effects (Bodin et al.,
2007; Wada et al., 1993). To minimize these effects, mega- and macrofaunal (except for
polychaetes) low-lipid muscle tissue was used for SIA. Polychaetes were analysed after
removing their viscera by dissection. The valve muscle of bivalves, the abdomen muscle of
shrimp, the muscle in crab pincers and the white dorsal muscle of fish (even small ones) were
dissected and analysed for SIA. For other benthic organisms, the entire organism was
analysed after removing the digestive tract, jaws and cerci. The tissues were then washed with
milli-Q water to prevent contamination and freeze-dried before being encapsulated. For small
benthic organisms (Bathyporeia pilosa, Eurydice pulchra, Gastrosaccus spinifer, Haustorius

arenarius), each sample represented a combination of 2-4 individuals.

As fish size can influence isotope values, especially §'°N, due to ontogeny (Galvan et al.,
2010; Wilson et al., 2009), we carefully selected individuals of similar size across species in
order to be sure that we select GO juveniles. Before §'*C analyses, POM and MPB filters were
divided into two subsamples: one was exposed to HCI vapour for 4 h to remove residual
carbonates (Cresson et al., 2012) before being placed in tin cups (Lorrain et al., 2003), while
the other was not treated and was used to measure §'°N. Sediment samples were dried at 60°C

for 24 h. They were divided into two subsamples: one was treated with HCI, to remove
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carbonate, then rinsed three times with distilled water, and freeze-dried for 48 hours before

encapsulation, while the other was encapsulated immediately after drying.

313C and 8N were measured using an elemental analyser Flash EA 2000 (Thermo
Scientific), connected to an Isotope Ratio Mass Spectrometer (Delta V+) with a ConFlo IV
interface (Thermo Scientific) at the Péle Spectrométrie Océan in Plouzané, France. Replicate
analyses of international IAEA and laboratory USGS standards provided analytical errors
<0.20%o for both 8'3C and 8'5N. Stable isotope ratios were expressed as parts per mil (%o) in
the & notation relative to the Pee Dee Belemnite standard for carbon and atmospheric N2 for

nitrogen using the formula:
6X(%o0) = [(R sample/R standard) — 1] x 1000

where X is *C or '°N, and R is the ratio of 3C:'2C or ’N:'*N.

2.8 Data analysis

2.8.1 Statistical analysis

We first tested the hypothesis that potential sources and prey for fish had significantly
different isotopic compositions along the salinity gradient, and then that compositions at sites
inside vs. outside of the estuary differed significantly. For all samples, two-way ANOVAs
were performed separately for each ratio, factors are sites and seasons (after verifying that the
assumptions of parametric tests were met). ANOVA was used to test differences in §'3C and
5!°N in the POM from the water sources, considering site and season effects. Biplots of §'°C
vs. 8N were used to represent graphically means and standard deviations of isotopic
compositions of all compartments of the entire food web in each habitat. Besides, we
performed a Kruskal-Wallis test to test for fish species length homogeneity between sites and

seasons.

2.8.2 Layman metrics

We assessed isotopic niches of fish by calculating the three Layman metrics (Layman et al.,
2007): nitrogen range (NR), carbon range (CR) and total area (TA). We used a Bayesian
approach based on multivariate ellipse-based metrics (Jackson et al., 2011), in which the
location of the centroid represents the centre of the trophic niche in isotopic space. To

describe the spread of data points, we calculated the parameters developed by Layman et al.



230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256

(2007). We constructed convex hulls to estimate the smallest TA that contained all individuals
in the isotopic space. The TA can be interpreted as a measure of the total isotopic niche of a
population (Layman et al., 2007). We estimated the niche width in each season using
multivariate ellipse-based metrics (Jackson et al., 2011). The analysis generates standard
ellipse areas (SEA), which are bivariate equivalents of standard deviations in univariate

analyses.

3. Results

3.1 Benthic communities and biomass

The upstream site was too muddy to sample benthic organisms. Among the five sites sampled
in spring, we identified 1288 individuals that belonged to 51 taxa (Table 1). Mean
macrobenthic species richness, abundance and biomass were higher outside than inside the
estuary (Wilcoxon test, p < 0.0001). Species richness was lowest in the middle of the estuary
(6 species) but higher at the downstream site (16), Sainte Cécile beach (13), Le Touquet beach
(11) and the subtidal site (32). The main species observed in the middle of the estuary were
the polychaetes Hedistes diversicolor (326 ind.m?; 2011 mgm?) and the bivalve
Scorbicularia plana (565 mg.m?). The polychaete Scolelepis squamata (823 ind.m?; 3 445
mg.m?) and the bivalves Limecola balthica (1 282 mg.m?) and Cerastoderma edule (640
mg.m?) dominated the downstream site. The two surf zone sites (Le Touquet and Sainte
Cécile) were characterized by the polychaetes S. squamata (48-300 ind.m?; 145-835 mg.m™),
Nephtys cirrosa (124-160 ind.m; 559-831 mg.m) and Lanice conchylega (1 022 mg.m? at
Sainte Cécile) and the bivalves M. balthica (153-1336 mg.m?), C. edule (693 mg.m? at
Sainte Cécile) and Fabulina fabula (706 mg.m? at Le Touquet). More diverse taxa (N = 32)
and huge benthic biomass were observed at the subtidal site, which was dominated mainly by
the bivalves D. vittatus (516 ind.m?; 108 035 mg.m™), F. fabula (412 ind.m%; 12 906 mg.m)
and Ensis leei (36 ind.m™; 9 064 mg.m™).
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3.2 Fish sampled for stable isotope analyses

Nine fish species (eight in spring and six in fall) were collected for SIA: Buglossidium luteum,
Dicentrarchus labrax, Limanda limanda, Platichthys flesus, Pleuronectes platessa, Solea
solea, Sprattus sprattus, Pomatoschistus microps and Pomatoschistus minutus (Table 2).
Most individuals were GO juveniles, except P. microps, P. minutus, S. solea and P. platessa
(at the subtidal site in spring) and P. flesus (at Sainte Cécile beach in spring). S. solea, L.
limanda and B. luteum were collected only outside the Canche estuary.

In the fall, fish of the same species did not differ significantly in size among sites, except P.
flesus (p = 0.020,) and S. sprattus (p = 0.006), which were smaller in the middle of the estuary
than upstream or downstream. In spring, P. platessa were significantly longer at the subtidal
site (p < 0.0001). P. flesus were also significantly longer at Sainte Cécile than at the other
sites (p = 0.003). Inside the estuary, fish size varied between the two seasons for the four
species caught in both spring and fall (D. labrax, P. flesus, S. sprattus and P. platessa; p <
0.0001).

12
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3.3 Results of stable isotope analyses
3.3.1 Food sources

The stable isotope composition of POM ranged from -29.70%o to -20.15%o for 6'°C and 5.20-
7.30%0 for §'N (Table 3). POM §'3C differed significantly among sites (F = 9.536; p <
0.0001, ANOVA)) and between seasons (F = 9.448; p < 0.0001, ANOVA). In spring, mean
POM §'3C was significantly lower inside the estuary (F = 9.536; P < 0.0001) and higher at the
subtidal site (-20.89 =+ 0.10%o) (Table 3). Mean §'°N also differed significantly among sites (F
= 3.745; P < 0.0001) and between seasons (F = 3.762; P < 0.0001). POM &N was
significantly higher at Le Touquet beach (7.30 = 0.01%o P = 0.144, Kruskal-Wallis) (Table 3).
The stable isotope composition of SOM ranged from -24.18%o to -19.62%o for 5'3C and 4.67-
7.19%o for 8'°N (Table 3) and differed significantly among sites and between seasons for both
813C and 8'°N. The ANOVA revealed a site effect on §'°N, as well as a season effect, with the
lowest values in spring, and a significant effect of the site x season interaction (F = 10.548, p
<0.0001). SOM 8'3C showed significant enrichment from upstream to downstream along the
estuary in both spring (F = 9.352, p < 0.0001) and fall (F=4.531, p < 0.0001) (Table 3). The
MBP had the most depleted §'°N ratios of the food sources sampled. The stable isotope
composition of MPB ranged from -17.1%o to -13.1%o for 8'*C and 3.66-6.44%o for §"°N
(Table 3). MBP §'3C and §"°N did not differ significantly among sites or between seasons.
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3.3.2 Isotopic compositions of benthic communities

Inside the estuary, the benthic invertebrate community followed the same isotopic trend in
both seasons. The bivalve Scrobicularia plana and polychaetes H. diversicolor and N. cirrosa
had the lowest 8'3C values (-20%o to -18%o), while the crustaceans Carcinus maenas and
Crangon crangon had the highest 8'*C values (-16%o to -15%o) (Figures 2 and 3). The
suspension feeder L. balthica (7.9-9.9%0) and the deposit feeders S. squamata (8.2-10.2%o)
and S. plana (8.4-9.2%o) had the lowest §'°N values, while the crustaceans C. crangon and C.
maenas (11.3-12.6%o) had the highest §!°N values (Appendix 1, Appendix 2).

Outside the estuary, S. squamata (-18.8%o), L. conchylega (-18.6+0.4%0) and E. pulchra
(-20.440.9%o) had the lowest 8'3C values, while the predatory C. maenas, C. crangon and N.
cirrosa (-17.1%o to -15.2%0) had the highest 8'°C values (Appendix 1). The suspension
feeders D. vittatus, L. balthica and L. conchylega had the lowest §'°N values (7.1-9.6%o),
while the predatory shrimp C. crangon had the highest 8'°N values (13.6%o) (Appendix 1).

In spring, the mean §'*C values for C. crangon and C. maenas were significantly lower inside
the estuary (C. crangon: -18.3+0.9%0 at the upstream site to -15.5+0.7%o at Sainte Cécile
beach; C. maenas: -17.4+0.5%o at the upstream site to -15.2+0.2%o at the intertidal site).

3.3.3 Isotopic composition of fish

Inside the estuary in both seasons, P. flesus had the lowest §'3C values (-24.2%o to -16.8%o),
while in the fall, P. microps had the highest 8'3C values (-15.9%o to -14.8%o). Inside the
estuary in the fall, all 8"°N values exceeded 13%o, except for P. flesus (12.5+0.6%o0) and P.
plastessa (12.4+0.2%o), both downstream. Fish 8"°N was lower in spring (11.5-13.1%o),
except for D. labrax (ca. 14%o). Thus, inside the estuary we observed enrichment of
organisms from upstream to downstream (Figure 2). Outside the estuary in spring, carbon
ratios displayed the same patterns, with 8!°C values lowest for P. flesus (-20.7%o to -17.2%o)
and highest for P. microps (-15.6£0.3%o). Fish had a wider range of 8N (10.2-13.8%o)

outside the estuary than inside.

3.3.4 Fish isotopic niches

Inside the estuary, isotopic niches overlapped strongly in fall, except for P. platessa, which
occupied a distinct isotopic space (Figure 4A). All niches overlapped in spring, except for two

pelagic fish (S. sprattus and D. labrax), which had distinct isotopic niches (Figure 4B). Inside
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329  the estuary, total fish SEAc (corrected SEA) were larger in spring (21.79%) than in fall

330  (13.96%). In spring, fish isotopic niches were smaller outside the estuary than inside.

331  Table 5. The core isotopic niche area (SEAc, %), carbon range (CR) and nitrogen range (NR)

332 for fish species sampled inside and outside the Canche estuary in fall and spring.

Fall Spring
Inside Inside Outside
Species SEAc CR NR SEAc CR NR SEAc CR NR
Pomatoschistus minutus 17.58 9.01 2.63
Platichthys flesus 16.41 7.67 3.59 2349 850 474 12.79 4.77 3.95
Pomatoschistus microps 14.74 7.62 3.10
Dicentrarchus labrax 13.28 7.19 2.68 17.60 730  4.17
Pleuronectes platessa 5.45 6.99 2.86 25.04 8.86 4.67 14.65 6.50 3.59
Pomatoschistus sp 20.05 795 456
Sprattus sprattus 1892 843 3.89
Buglossidium luteum 12.95 5.26 3.84
Limanda limanda 12.44 5.06 3.99
Solea solea 14.14 5.09 4.29
Total 13.96 8.00 2.39 21.79 834 442 12.75 541 355
333
334
335
336
337
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4. Discussion

4.1 Origin of and variability in organic matter in the Canche estuary

As estuaries are complex and changing ecosystems, it is challenging to distinguish the sources
of organic matter at the base of food webs (Pasquaud et al., 2008; Selleslagh and Amara,
2015). Organic matter is a major component of suspended particles and fine sediment
particles that determine many biogeochemical processes in marine environments (Bernasconi
et al,, 1997; Chen et al.,, 2012). Two natural sources of organic matter are generally
considered in coastal ecosystems: allochthonous inputs and autochthonous production
(Antonio and Richoux, 2014; Luo et al., 2016). Major sources of autochthonous organic
matter include phytoplankton and aquatic macrophytes (Dalu and Froneman, 2016; Pearson et
al., 2015). In estuarine ecosystems, organic matter of terrestrial origin is a major contributor
to allochthonous organic matter (Duan et al., 2014; Lu et al., 2013). Analysis of the carbon
and nitrogen stable isotopic compositions of estuarine organic matter can identify their
contributions to the food web (Darnaude et al., 2004; Evans et al., 2019). Generally, POM in
estuaries is composed of river POM (mixture of terrestrial POM and freshwater
phytoplankton),  estuarine-produced  and  marine  phytoplankton,  resuspended
microphytobenthos and diverse detritus (e.g. faeces, macrophytes), which can make
interpretation difficult (Kang et al., 2006).

In the Canche estuary, the POM stable isotopic signatures indicated a mixed organic matter
composition that included freshwater/estuarine phytoplankton (3'°C ranging from -29%o
to -20%o), with a clear increase in POM §'°C values from fresh to marine waters, similar to
previous estuarine studies in the Bay of Marennes-Oléron (Riera and Richard, 1996), the
Vilaine estuary (Kostecki et al., 2010) and the Gironde estuary (Selleslagh et al., 2015). In the
Canche estuary, salinity exhibits short-term changes, with a large amplitude from 0-35 due to
the small size of the estuary, tide conditions, season and weather conditions (Amara et al.,
2009; Selleslagh and Amara, 2008). MPB that live in intertidal flats in estuaries can
contribute much of the total primary production in estuaries (Underwood and Kromkamp,
1999). MPB on intertidal flats is composed mainly of benthic diatoms (Méléder et al., 2007)
and several studies have emphasised its key role in sustaining intertidal food webs
(Christianen et al., 2017; Herman et al., 2000; Thrush et al., 2012). In the Canche estuary, the
MPB is one of the main primary producers and could therefore be an important source of
organic matter for benthic invertebrates. As in other European estuaries, the Canche MPB had
the highest enriched carbon ratios (-17%o to -15%0) among food sources, which allowed it to

be traced in its consumers (Moens et al., 2002; Moncreiff and Sullivan, 2001; Riera and
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Richard, 1996). SOM is a mixture of benthic and deposited pelagic microalgae, bacteria,
aquatic and terrestrial plant debris and meiofauna. In the Canche estuary, SOM and POM
313C followed the same trend, with the lowest values upstream and highest values
downstream due to the presence of freshwater phytoplankton, as measured in other nearby
estuaries (Lambert et al., 2017; Middelburg and Nieuwenhuize, 1998).

In estuaries, variations in amounts and origins of nutrients such as nitrogen are common along
salinity gradients, with a decrease in concentrations from fresh to marine waters due to
mixing, which can be traced in food webs (Baeta et al., 2009; Connolly et al., 2013). The
extent of nutrient mixing in estuaries varies spatially according to estuary size, and temporally
at the seasonal and daily scales due to changing tides, wind, precipitation and temperature
(Baeta et al., 2009; Hoeinghaus et al., 2011; Lautenschlager et al., 2014). §'N can be an
accurate tracer for nitrogen inputs that originate from untreated domestic, industrial and/or
agricultural activities that are incorporated in the food web through assimilation by primary
producers (Fry, 2002). In the Canche estuary, POM, SOM and MPB §'°N were similar along
the salinity gradient during the same season, highlighting the relatively low nitrogen input
from the watershed (Guelinckx et al., 2006) due to the short length of the Canche river and

the low human modification of its catchment (Amara et al., 2007; Durou et al., 2007).

4.2 Structure of invertebrate communities

Two benthic communities were found in the Canche estuary: i) S. squamata/E.
pulchra/Bathyporeia spp. (EUNIS A2.223), which corresponds to estuarine mid-shore
medium-fine sand, and ii) H. diversicolor/S. plana on the upper shore mud banks (EUNIS
A2.24; Rolet et al., 2015). Outside the estuary, Sainte Cécile and Le Touquet beaches were
characterized by a low-shore fine sand N. cirrosal/S. squamata community (EUNIS A2.23),
while the subtidal site had a muddy fine sand Abra alba/D. vittatus/F. fabula community
(Desroy et al., 2003; Rolet et al., 2015). This distribution of benthic invertebrate communities
is also present in the nearby estuaries of the Authie and Somme Rivers (Rolet et al., 2015).
Biomasses inside the estuary and on adjacent beaches were lower (2.6-6.0 g AFDW.m™) than
in the subtidal 4. alba community (150 g AFDW.m™%) dominated by the bivalve D. vittatus. In
the EEC, benthic biomass within the 4. alba community is heterogeneous, with a mean of 8.1
g AFDW.m? (Desroy et al., 2003), and a higher biomass ranging from 23.5-27.5 g AFDW.m"
2 in the Seine Bay (Thiébaut et al., 1997) and from 45-3 000 g AFDW.m™ in Gravelines
(Desroy et al., 2003; Dewarumez et al., 1992; Ghertsos et al., 2000). This high subtidal
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biomass of potential flatfish prey (mainly bivalves) outside the estuary created a major
feeding ground for flatfish species.

One objective of the study was to assess the origin of the food source consumed by potential
prey throughout the estuary, from the intertidal zone upstream of the Canche estuary, with
low benthic species diversity and biomass, to the subtidal zone outside the estuary, with
higher species diversity and biomass. In the Canche estuary, suspension and deposit feeders
dominated the benthic invertebrate biomass. Their feeding activity is an important connection
between suspended and sedimented organic matter originating from POM, SOM or MPB
(Little, 2000; Mann and Wetzel, 2000). However, it is often difficult to distinguish food
sources of macrozoobenthos in estuaries due to spatio-temporal variability in the isotopic
compositions of food sources along the salinity gradient, and because macrofauna feed on
different food sources and have plastic feeding behaviour depending on the environmental
conditions (Daggers et al., 2020; Herman et al., 2000). Nevertheless, benthic primary
consumers had higher d'3C (around — 20 to -16%o) than fresh water POM (around -30%o),
revealing the latter’s low contribution to the trophic functioning of the estuary. This finding,
even in the upstream of the estuary, may be dueto the relatively weak flow of the Canche
River and consequently the small amount of organic matter that it carries (Selleslagh and
Amara, 2008). Thus, we can hypothesize that the marine POM, SOM and MPB which d'*C
composition are around —22 to -15%o are the main food sources for the benthic community
inside the estuary. However, it may be difficult to distinguish suspension and deposit feeders
isotopically as their feeding behaviour does not provide information about the origin of their
food; for example, suspension feeders can consume resuspended MPB, while deposit feeders

can consume sediment POM (Kang et al., 2015).

4.3 Fish structure and seasonal variations

Two fish assemblages were observed, one inside the Canche estuary (P. minutus, P. microps
and D. Labrax juveniles) and the other outside the estuary (B. luteum, S. solea and L. limanda
juveniles). P. flesus and P. platessa juveniles occurred in both assemblages (Selleslagh and
Amara, 2008). In both seasons in upstream Canche, P. flesus juveniles had the lowest §'*C
values, 5 to 8% away from that of the freshwater POM, revealing a slight contribution of
organic matter from freshwater. This could be due to the diet of P. flesus juveniles, which is
composed of meiofauna (nematodes, harpacticoides and ostracods (Aarnio et al., 1996;
Selleslagh and Amara, 2015)) that may consume SOM. Conversely, P. microps had the

highest §'*C values, which were similar to those of MPB, revealing the contribution of MPB
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to the feeding of P. microps prey. Previous studies indicated that P. microps feeds mainly on
amphipods, polychaetes and meiofauna (Leclerc et al., 2014; Selleslagh and Amara, 2015).
MPB production is high on the intertidal mud banks of the Canche estuary and provides food
for the potential prey of P. microps. Inside the estuary, the other fish species (e.g. D. labrax,
P. minutus or S. sprattus) had §'3C values from -19 to -17%o upstream to — 16%o downstream,
close to those of marine POM (around -20%o0) and MPB (-16%o) revealing a food source
originating from both marine POM and MPB.

The seasonal comparison of fish SEA in the Canche estuary is informative, as the isotopic
space occupied is smaller in spring than in fall. Thus, a wider range of prey appears to be
consumed in the fall. This could be due to the higher biomass and diversity of coastal benthic
invertebrates at the end of summer compared to the lower benthic biomass in spring (Rauch
and Denis, 2008). In the fall, SEA of the two Pomatoschistus sp. did not overlap, unlike
Platichthys flesus and Pleuronectes platessa that inhabit the Canche estuary, which confirms
that their diet may differ (Salgado et al., 2004; Selleslagh and Amara, 2015). Conversely, the
SEA of P. flesus and P. platessa overlapped in spring, perhaps due to the smaller amount of
available prey (Pape and Bonhommeau, 2015).

Outside the estuary, the §!°C values of flatfish juveniles (B. luteum, S. solea, L. limanda) were
ca. -16%o, revealing MPB and POM to be a major basic food source, except for P. platessa,
which had much lower §'*C values, similar to those found in the estuary. This suggests that P.
platessa individuals caught outside the Canche estuary did not feed exclusively in the habitat
in which they were collected, which indicates that this species has high mobility and habitat
connectivity.

Flatfish SEA indicates a slight isotopic niche overlap of S. solea, B. luteum and L. limanda,
which suggests trophic segregation of the three species. Conversely, the SEA of P. flesus
completely overlapped those of juveniles of these flatfish species, which indicates that P.
flesus consumes a wider range of prey and may have trophic competition with the three other
flatfish species. Juvenile fish in estuaries usually follow an opportunistic feeding strategy,
which is driven by intra- and inter-specific competition (Brown et al., 2019; Post et al., 1999)

and prey availability.
5. Conclusion

We showed a significant difference in invertebrate biomass between subtidal and intertidal

sites, which influences the quality of the feeding ground for juvenile fish. This is a classic
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situation in European estuaries (Dubois et al., 2014). This result provides a new vision of the
Canche estuary, which has been considered an important feeding ground for marine fish.

Our study revealed that these continental inputs have a minor role in the functioning of the
Canche estuary and that fish species might visit the estuary for reasons other than feeding,
such as to avoid predation or because they are carried by the tide. We highlighted the need to
take into account the whole small macrotidal estuary and adjacent ecosystems to better
describe the flatfish nursery. This work demonstrated that potential prey and feeding sources
for fish had habitat-specific compositions, which confirms the suitability of SIA for tracing
fish movements, fidelity and connectivity inside and outside the Canche estuary for sites less
than 10 km apart. Estuarine nursery feeding grounds, even in small estuaries, appear to be
complex due to the mosaic of benthic communities (potential prey), which are related to the
habitat (e.g. sediment type, foreshore position, salinity fluctuations) and to trophic

competition and predation.
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Figure 1. Map of the Canche estuary showing the sampling sites (stars) inside the estuary
(upstream, middle, and downstream) and outside the estuary (surf zone (Sainte Cécile and Le

Touquet beaches) and subtidal site).
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534  Appendix 2. Macrobenthic carbon and nitrogen stable isotope compositions (mean =+ standard
535  error, %), and the number of individuals analysed (N) in the fall
Upstream Middle Downstream
Tro'p'h ' Species
position
N 315N 38C N 315N 38C N 35N 38C
Scrobicularia plana (S pla) 5 9.1+02 -197+02 3 87402 -16.6+0.1
Hediste diversicolor (H div) 10 103+05 -18.7+0.6
rimar .
cf:nsumeyrs Scolelepis squamata (S squ) 4 102+07 -167+£0.6
Limecola balthica (L bal) 5 99+03 -16.1+05
Cerastoderma edule (C edu) 7 89+0.1 -169+03
Crangon crangon (C cra) 10 12607 -167+1.0 9 12505 -160+12 8 12409 -146=04
Carcinus maenas (C mae) 5 127+04 -209+19 6 121+07 -169+2 7 123+08 -156%1.0
secondal . .
consum:rys Nephtys cirrosa (N cir) 5 103£04 -188+05 3 123+1.1 -145+12
Eteone longa (E lon) 2 13.9 -15.9
Eurydice pulchra (E pul) 4 11.0+03 -158+02
536
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