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Modélisation statistique de précipitations urbaines à fine échelle spatio-temporelle

▶ Situation géographique :

Bassin versant du Verdanson, affluent du Lez, situé en zone urbaine 

Generalized Pareto Distribution

H ξ y σ = 1 + ξ y σ -1/ξ + si ξ ̸ = 0 , e -y σ si ξ = 0 ,

Generalized Pareto Distribution

Extended GPD 1 

H ξ y σ = 1 + ξ y σ -1/ξ + si ξ ̸ = 0 , e -y σ si ξ = 0 , où a + = max(a, 0), ξ ∈ R, σ > 0 et y > 0 ▶ Modélise les pluies extrêmes ▶ Dépend d'un choix de seuil F Y (y) = G H ξ y σ , avec G(x) = x κ , κ > 0 ▶ Modélise

Extrémogramme spatio-temporel d'un processus de Brown-Resnick

Soient h ≥ 0 un lag spatial et τ ≥ 0 un lag temporel. On a

χ(h, τ ) = 2 1 -ϕ 1 2 δ(h, τ )
avec ϕ la f.d.r. d'une loi normale centrée-réduite et δ le variogramme associé.

2 = θ 1 h α1 + θ 2 τ α2 , 0 < α1, α2 ≤ 2 , θ1, θ2 > 0 Spatio-temporel χ(h, τ ) = 2 1 -ϕ 1 2 δ(h, τ ) Spatial η (χ(h, 0)) = log θ1 + α1 log h , h > 0 Temporel η (χ(0, τ )) = log θ2 + α2 log τ , τ > 0 Transformation : η(χ) = 2 log ϕ -1 1 -1 2 χ = θ 1 h α1 + θ 2 τ α2 , 0 < α1, α2 ≤ 2 , θ1, θ2 > 0 Spatio-temporel χ(h, τ ) = 2 1 -ϕ 1 2 δ(h, τ ) Spatial η (χ(h, 0)) := c1 + α1x h , h > 0 Temporel η (χ(0, τ )) := c2 + α2xτ , τ > 0 Transformation : η(χ) = 2 log ϕ -1 1 -1 2 χ
Modèle linéaire pondéré [START_REF] Buhl | Semiparametric estimation for isotropic max-stable space-time processes[END_REF] Extrémogramme spatial

Pour tout temps t et pour tout (si, sj) ∈ N(h),

χ (t)
ij,q (h, 0) = P Xs i ,t > q, Xs j ,t > q P (Xs i ,t > q)

Estimateur :

χ (t) q (h, 0) = 1 |N(h)| i,j | (s i ,s j )∈N(h) 1 X s i ,t >q ,X s j ,t >q 1 |S| |S| i=1 1 {Xs i ,t >q}
avec q un quantile assez grand.

Modèle linéaire pondéré spatial Estimation des paramètres 

c1 α1 = argmin c 1 ,α 1 h w h (η ( χ(h, 0)) -(c1 + α1x h )) 2

Résultats

▶

  Fine échelle temporelle : À la minute avec agrégation à 5 minutes ▶ Fine échelle spatiale : Inter-distance entre 77 et 1531 mètres

▶

  où a + = max(a, 0), ξ ∈ R, σ > 0 et y > 0 Modélise les pluies extrêmes ▶ Dépend d'un choix de seuil

  ( χ(0, τ )) -(c2 + α2xτ )) 0) = 2 θ 1 h α 1 Temporel δ(0, τ ) = 2 θ 2 τ α 2 ▶ déplacement horizontal des masses d'air ▶ vecteur de vélocité V ▶ direction fixéeModélisation de la dépendanceDans le référentiel Lagrangien, on aδL(h, τ ) = δ(h -τ V, τ ) avec h ∈ R 2 , τ ∈ R et V ∈ R 2 2 Inspiration : Fritsche 1999Cycle hydrologique 2

  = {X s,t , (s, t) ∈ S × [0, ∞)} un processus max-stable de Brown-Resnick, strictement stationnaire et isotrope[START_REF] Buhl | Semiparametric estimation for isotropic max-stable space-time processes[END_REF]).

les pluies hautes et modérées ▶ Évite le choix d'un seuil 1 Naveau et al. 2016

Cadre : X

Finaud-Guyot et al. 

σ = 1, ξ = 0.5

( κ = 0.56, σ = 0.26 et ξ = 0.51)

* * p-value<0.01; * * * p-value<0.001

Mesure de dépendance extrémale

Soient U ∼ U(0, 1) et V ∼ U(0, 1). On définit

Considération de rayons autour de chaque site

Chaque lag h représente un rayon. L'ensemble des paires de même lag spatial h est q (0, τ ) = P (Xs,t > q, Xs,t+τ > q) P (Xs,t > q)

Estimateur :

avec q un quantile assez grand et t k ∈ {t1, . . . , tT}.

Perspectives

▶ Structure des décalages spatiaux ▶ Cas de non séparabilité avec variogrammes plus complexes ▶ Structure anisotrope et advection ▶ Modélisation multi-échelle