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Univariate modeling of the rainfall distribution

Let Y denote the rainfall measurement at a given site.

Generalized Pareto Distribution (GPD) [START_REF] Coles | An introduction to statistical modeling of extreme values[END_REF] for rainfall excesses above a high threshold u

Y -u | Y > u ∼ H ξ , where H ξ y σ = 1 -1 + ξ y σ -1/ξ + si ξ ̸ = 0 , 1 -e -y σ si ξ = 0 ,
where a + = max(a, 0), σ > 0, ξ ∈ R and y > 0.

Extended Generalized Pareto Distribution (EGPD) [START_REF] Naveau | Modeling jointly low, moderate, and heavy rainfall intensities without a threshold selection[END_REF] for the entire distribution

The cumulative distribution function (cdf) of the EGPD is given by

F Y (y) = G H ξ y σ ,
with G(x) = x κ , κ > 0.

CNRS Polytech

EGPD fit with κ = 0.56, σ = 0.26 and ξ = 0.51

Spatio-temporal dependence modeling [4]

Let X = {X(s, t) , (s, t) ∈ S × [0, ∞)} be a strictly stationary isotropic Brown-Resnick process. For a spatial lag v ≥ 0 and a temporal lag h ≥ 0, the extremogram of X is given by

χ(v, h) = 2 1 -ϕ 1 2 δ(v, h)
with ϕ the standard normal distribution function and δ a stationary and isotropic variogram.

Assumption of additive separability:

δ(v,h) 2 = θ 1 v α 1 + θ 2 h α 2 , 0 < α 1 , α 2 ≤ 2 , θ 1 , θ 2 > 0

Spatial extremogram

For all spatial lags v = k × ∆v, k = 1, 2, . . ., we define

N (v) = (s i , s j ) ∥s i -s j ∥ ∈ ]v -∆v, v]
For ∆v = 100 meters For fixed t and for any (s i , s j ) ∈ N (v)

χ (t)
ij,q (v, 0) = P X(s i , t) > q, X(s j , t) > q P (X(s i , t) > q) Estimator:

χ (t) q (v, 0) = 1 |N (v)| i,j | (s i ,s j )∈N (v) 1 { X(s i ,t)>q ,X(s j ,t)>q } 1 |S| |S| i=1 1 {X(s i ,t)>q}
with q a high quantile (99.8%). 

WLSE

Empirical variogram

Spatial

δ(v, 0) = 2 θ 1 v α 1 Temporal δ(0, h) = 2 θ 2 h α 2 Spatio-temporal χ(v, h) = 2 1 -ϕ 1 2 δ(v, h) Spatial η (χ(v, 0)) = log θ 1 + α 1 log v , v > 0 := c 1 + α 1 x v Temporal η (χ(0, h)) = log θ 2 + α 2 log h , h > 0 := c 2 + α 2 x h Transformation: η(χ) = 2 log ϕ -1 1 -1 2 χ
Weighted Least Squares Estimation (WLSE)

c i α i = argmin c i ,α i x w x (η ( χ) -(c i + α i x)) 2

Temporal extremogram

For a site s and for any t χ (s)

t,q (0, h) = P (X(s, t) > q, X(s, t + h) > q) P (X(s, t) > q)

Estimator:

χ (s) q (0, h) = 1 T -h T -h k=1 1 {X(s,t k )
>q ,X(s,t k +h)>q} 1 T T k=1 1 {X(s,t k )>q} with q a high quantile (99.8%) and t k ∈ {t 1 , . . . , t T }. 

Data [ 1 ]

 1 S = {17 rain gauges} ▶ Period: [2019, 2022] ▶ High temporal resolution: Every minute 5-minute aggregation ▶ High spatial resolution: Interdistance ∈ [77, 1531] meters

Estimate Std. Error c 1

 1 -3.465 * * * 0.605 α 1 0.242 * 0.093 * p-value< 0.05; * * * p-value< 0.001

  With ∆h = 5 minutes WLSE Estimate Std. Error c 2 -1.252 * * * 0.023 α 2 0.702 * * * 0.012
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