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ABSTRACT
Clustering multivariate time series is a critical task in many real-
world applications involving multiple signals and sensors. Existing
systems aim to maximize effectiveness, efficiency and scalability,
but fail to guarantee the interpretability of the results. This hinders
their application in critical real scenarios where human compre-
hension of algorithmic behavior is required. This paper introduces
Time2Feat, an end-to-end machine learning system for multivariate
time series (MTS) clustering. The system relies on inter-signal and
intra-signal interpretable features extracted from the time series.
Then, a dimensionality reduction technique is applied to select a
subset of features that retain most of the information, thus enhanc-
ing the interpretability of the results. In addition, domain experts
can semi-supervise the process, by providing a small amount of
MTS with a target cluster. This process further improves both accu-
racy and interpretability, narrowing down the number of features
used by the clustering process. We demonstrate the effectiveness,
interpretability, efficiency, and robustness of Time2Feat through
experiments on eighteen benchmarking time series datasets, com-
paring them with state-of-the-art MTS clustering methods.
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1 INTRODUCTION
Time is a dimension that affects many aspects of real-world and
digital-world phenomena. Physical environments, industrial ma-
chineries, healthcare monitoring, and economic and financial activ-
ities are a few examples of scenarios whose elements are regulated
and evolve over time. Multivariate time series (MTS), i.e., datasets
with more than one time-dependent signal, are widely used data
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artifacts for encoding collections of sequential observations over
the temporal axis. MTS analytics includes supervised and unsuper-
vised tasks, ranging from classification and clustering, to pattern
discovery, forecasting, and exploration. Cluster analysis recently
gained momentum in many applications and use cases where sen-
sors collect massive amounts of data points.

Research on clustering time series has mainly focused on uni-
variate time series (UTS), i.e., datasets with a single time-dependent
variable, addressing issues related to the development of similarity
measures to cluster the data (e.g., Dynamic Time Warping –DTW
[11, 14, 22], K-Shape [30]). By opposite, research on MTS is still at
an early stage. Proposals adapt clustering approaches designed for
UTS to MTS after applying dimensionality reduction techniques.
Examples of such techniques (CSPCA [19] and𝑀𝐶2𝑃𝐶𝐴 [18]) are
based on the Principal Component Analysis (PCA), which enables
the conversion of a set of correlated features in the high dimen-
sional space into a set of uncorrelated features in the low dimen-
sional space. Nevertheless, the resulting clusters suffer from poor
explainability as the original dimensions are lost. More recently,
approaches based on Deep Neural Networks (DNNs) [49], and in
particular Variational Autoencoders [13, 23] have been used to gen-
erate MTS encodings before applying clustering methods. Although
these solutions might exhibit high performance, the resulting clus-
ters are based on latent dimensions that remain unexplainable to
the end-users. Limited interpretability can hamper the adoption of
a clustering technique in critical real-world scenarios, when experts
are asked to provide detailed and trustable explanations of their
algorithms’ recommendations [4, 27, 32, 35, 37, 40].

We introduce Time2Feat, an open-source system for MTS clus-
tering that adopts an end-to-end semi-supervised feature-based
pipeline. Features are automatically extracted from the signals com-
posing theMTS.We exploit both intra-signal features characterizing
the single signals of MTS, and inter-signal features measuring pair-
wise relatedness (in terms of similarity and correlation) of multiple
signals by employing interpretable metrics. For the extraction of the
intra-signal features, we rely on the tsfresh library [6, 7], which
generates features describing the MTS signals according to statis-
tical perspectives (Distribution, Correlation, Information Theory,
etc.). Two dataset-dependent techniques are then introduced to se-
lect themost important features among the ones describing theMTS.
The unsupervised mode is an entirely automatic approach based on
Principal Features Analysis (PFA) [21]. The semi-supervised mode
relies on user’s annotations on small dataset samples to improve
the selection process. Our extensive experimental analysis shows
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that the number of features is reduced by two orders of magnitude
while preserving the accuracy of the results. Finally, a clustering
technique is applied to group the MTS.

Time2Feat is scalable: it computes efficiently clusters regardless
of the main dimensions of the problem (i.e., number of MTS in the
dataset, number of generated clusters, number of signals composing
the MTS and length of the time series) as the experiments in Section
5.3.1 demonstrate. Time2Feat provides interpretable features for the
cluster representations. The meaning and the properties associated
to interpretable features have not been clearly agreed upon by the
literature. As many other approaches, we state that the features
are interpretable if humans can understand what they refer to [52],
and we consider conciseness as one of the main properties to be
satisfied by a set of interpretable features [16, 29, 31]. In Time2Feat,
we rely on PFA [21] to select a concise number of features among
the ones computed by tsfresh. These measures can be interpreted
by experts who know the statistical measures used to summarize
the time series values. Leveraging interpretable features, users can
conduct an in-depth analysis to understand why MTS share the
same cluster. They could, for instance, measure the value similarities
among the features for MTS in the same cluster or apply techniques
for evaluating feature importance during clustering generation.
The key contributions of this paper are summarized as follows:
An interpretable and efficient end-to-end clustering system
for multivariate time series. Time2Feat provides a suite of clus-
tering pipelines that leverages the MTS features to make the user
aware of the results and internals of the clustering process while at
the same time preserving the efficiency of the process.
Ahuman-in-the-loop clustering systemallowing for learning-
based annotations. Time2Feat allows domain experts to provide
small and controllable amounts of labels as input to the process in
order to improve the accuracy of the clusters and tame the sizes
of extracted feature sets. The feature reduction process allows en-
hancing the scalability and interpretability of the system further.
A comprehensive evaluation. We evaluate Time2Feat by bench-
marking our pipeline against 8 state-of-the-art MTS clustering
systems spanning a collection of 18 underlying datasets [3] and
reporting their quality and computational performance.

The paper is organized as follows. Section 2 presents amotivating
real-world scenario of the usage of the Time2Feat system. Section
3 describes the steps of our clustering pipeline, while Section 4
presents the implementation of Time2Feat. Section 5 presents our
experimental setup on real-life and benchmarking data. Section 6
discusses the related work. Finally, Section 7 concludes our work.

2 MOTIVATING REAL-WORLD SCENARIO
The BasicMotions dataset is a real-world dataset belonging to the
UEA multivariate time series classification archive [3]. This dataset
describes four kinds of activity (i.e., playing badminton, running,
standing, and walking) performed by students through two sensors
(an accelerometer and a gyroscope) installed in their smartwatches.
The sensors gather data in a three-dimensional space, thus produc-
ing three different signals (X, Y, Z). The overall dataset comprises
80 MTS, and each signal includes 100 recordings.

Suppose we are asked to analyze the dataset and no detail on
the activities that MTS describes are provided to us. This lack of

Intra-Signal Inter-Signal
AccX AccY AccZ GirX AccX-AccY AccX-AccZ

AccX ... PACF 9 ... ... ... 𝐿1 dist. Chebyshev 𝐿1 dist.
𝑀𝑇𝑆𝑅 80.12 ... 0.16 ... ... ... 981.78 49.56 1115.71
𝑀𝑇𝑆𝐵 139.75 ... 0.26 ... ... ... 1121.45 30.71 1423.28
𝑀𝑇𝑆𝑆 0.09 ... -0.23 ... ... ... 85.05 1.93 35.60
𝑀𝑇𝑆𝑊 2.26 ... 0.14 ... ... ... 301.46 8.45 174.99

... ... ... ... ... ... ... ... ... ...

(a) Excerpt of the features (46) extracted in the unsupervised mode.

Intra-Signal Inter-Signal
AccX GirX AccY-AccZ

Variance Quantile 0.3 𝐿1 dist.
𝑀𝑇𝑆𝑅 80.12 -0.94 764.99
𝑀𝑇𝑆𝐵 139.75 -3.57 1083.85
𝑀𝑇𝑆𝑆 0.09 -0.14 97.05
𝑀𝑇𝑆𝑊 2.26 -1.02 325.82

... ... ... ...

(b) The features (3) extracted in the
semi-supervised mode.

(c) Clusters generated with
the unsupervised mode.

Figure 1: Time2Feat on the BasicMotion dataset.

information frequently happens in business scenarios where trade
secrets or simply the costs for labeling make it necessary to work
with unlabeled datasets. Clustering is one of the main exploration
techniques we can apply on unlabeled data.

Generating clusters for MTS is a non-trivial task. From a data
structure perspective, they are third-order tensors, i.e., a dataset
includes many MTS, each one containing multiple signals, and
each signal is composed of several timestamps. From a numerical
perspective, it is frequent to work with datasets composed of thou-
sands of MTS and tens of signals with thousands of records (see, for
example, the datasets used in the experiments in Section 5). This
problem gives rise to a first challenge to address: (C1): Analyzing
MTS datasets requires the application of scalable techniques capable
of dealing with the high dimensionality of the data.

We address this challenge by proposing Time2Feat, which com-
putes the clusters based on features extracted from the signals of
the MTS. This operation allows us to reduce the problem’s dimen-
sionality: from the many timestamps constituting the time series
to the single values of the features. We rely on external specialized
software libraries to extract intra and inter-signal interpretable fea-
tures from the MTS. The former describes particular properties of
the signals in isolation (e.g., the mean value, the autocorrelation,
etc.). The latter evaluates pairwise the signals measuring for exam-
ple distances, and correlations. Feature extraction can give rise to a
large number of features describing the same MTS under different
(but also possibly close) perspectives. For example, this operation
overall generates 4842 features in the BasicMotion Dataset. The
high dimensionality could both be the cause of inefficiencies in
the generation of clusters and could lead to the creation of clusters
difficult to interpret by the users. The large amount of features
would make them non-interpretable by humans who would not
understand what clusters they represent and the reasons why the
data points were grouped together in the same clusters. This prob-
lem introduces a second challenge: (C2): providing an interpretable
clustering technique is of paramount importance for data analysis.
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Figure 2: The Time2Feat pipeline.

State-of-the-art approaches for MTS clustering [13, 18, 19] suffer
from low interpretability. Time2Feat addresses this problem by
relying on a reduced number of interpretable features. In particular,
Time2Feat adopts a mechanism for feature selections based on the
PFA, that ranks the features according to their importance in the
process and selects only the meaningful ones. Figure 1a shows the
features reduced by PFA to 46 from the 4842 initially extracted.

Although Time2Feat does not rely on a specific clustering tech-
nique, the number of clusters to generate is another critical param-
eter to select. We adopt the well-known Elbow Method to automat-
ically compute the number that better fits the computed statistical
measures. The application of the Elbow method to BasicMotion
generates 4 clusters, as shown in Figure 1c in blue circles (t-SNE
[48] was applied to reduce the dimensionality). We point out that
this result is obtained through a completely automatic unsupervised
procedure where the pipeline starts with the BasicMotion dataset
and generates 4 clusters based on 46 features. Data analytics pro-
cesses are typically the result of several iterations where users gain
more and more insights from the data that enable them the appli-
cation of deeper analytical functions. This intuition is the third
challenge to address: (C3): clustering techniques for data analytics
need to put the human in the loop.

Time2Feat addresses this challenge by supporting a semi-super-
vised procedure allowing users to select samples of elements repre-
sentative of the clusters they want to generate. Our experiments
demonstrate that selecting (i.e. labeling) a few elements per cluster
improves the accuracy and significantly reduces the number of
features adopted by the clustering technique, thus improving their
interpretability. Going back to our example, suppose that a user
decides to manually provide four elements per cluster. For instance,
the user can analyze some elements from the top-right cluster of
Figure 1c and observe that they refer to people playing badminton.
Indeed, the high variance of the acceleration recorded for the clus-
ter elements (as shown in Figure 1a), caused by the sudden and
irregular movements in badminton can clearly support the decision.
The user can also observe the values of the acceleration variance for
the elements from the second top-right cluster, and decide that the
cluster refers to people doing running. Through a similar analysis,
the user can notice that the variance of the other clusters suggests
less intensive activities, typical of walking and standing people.
Time2Feat exploits the user annotations by further reducing the
number of features used for the clustering (from 46 down to 3), as
shown in Figure 1b, and improving the accuracy of the clusters.

Finally, we would like to point out that cluster analysis offered
by Time2Feat is exceptionally flexible and facilitates precise and
fruitful data explorations. For instance, in case the user would like

to obtain two clusters instead of four, Time2Feat would derive a
first cluster with elements from the first two clusters represent-
ing badminton and running activities and a second cluster with
elements representing standing and walking activities.

3 CLUSTERING MULTIVARIATE TIME SERIES
Figure 2 depicts themain components of ourMTS clustering pipeline.
The pipeline can be formally defined as follow.

Definition 3.1 (Multivariate Time Series). A multivariate time
seriesM is a set of univariate time series (a.k.a. signals). In particular,
𝑀 = (𝑢1, 𝑢2, . . . , 𝑢𝑆 ), where 𝑆 is the number of signals, and 𝑢 𝑗 =
(𝑡1𝑗 , 𝑡2𝑗 , . . . , 𝑡𝑁 𝑗 ) is a time series of length 𝑁 . More generally, a
multivariate time series can be represented as a matrixR𝑁𝑥𝑆 , where
the signals are described as column vectors.

Definition 3.2 (Multivariate Time Series Dataset). A dataset D of
multivariate time series is a set of V multivariate time series 𝐷 =

(𝑀1, 𝑀2, . . . , 𝑀𝑉 ). A dataset is represented as a tensor R𝑉𝑥𝑁𝑥𝑆 .

In the pipeline, we consider both intra-signal features F , describ-
ing the signal constituting the MTS in isolation, and inter-signal
F ′, describing pairs of signals, as defined below.

Definition 3.3 (Set of intra-signal features). Given a multivari-
ate time series 𝑀 , composed of 𝑆 signals, 𝑀 = (𝑢1, 𝑢2, . . . , 𝑢𝑆 )
and a set of functions for intra-signal feature extraction F =

(𝑓1, 𝑓2, ...𝑓𝐹 ), a set of intra-signal feature is the set of values re-
sulting from the application of the functions to the signals. 𝐹𝑖𝑛𝑡𝑟𝑎 =

(𝑒11, ..., 𝑒1𝐹 , ..., 𝑒𝑆1, ..., 𝑒𝑆𝐹 ), where 𝑒𝑖 𝑗 = 𝑓𝑗 (𝑢𝑖 ).
Definition 3.4 (Set of inter-signal features). Given a multivari-

ate time series 𝑀 , composed of 𝑆 signals, 𝑀 = (𝑢1, 𝑢2, . . . , 𝑢𝑆 )
and a set of functions for inter-signal feature extraction F ′ =

(𝑓 ′1 , 𝑓
′
2 , ...𝑓

′
𝐹 ′ ), a set of inter-signal feature is the set of values result-

ing from the application of the functions to pairs of signals. 𝐹𝑖𝑛𝑡𝑒𝑟 =
(𝑒 (1,2)1, ..., 𝑒 (1,𝑆 )𝐹 ′ , ..., 𝑒 (𝑆−1,𝑆 )𝐹 ′ ), where 𝑒 (𝑖, 𝑗 )𝑘 = 𝑓 ′

𝐾
(𝑢𝑖 , 𝑢 𝑗 ).

Given the large scale of feature sets, the feature selection step is
devoted to pruning features with null values or low variance and
ranking the remaining ones in order only to keep the meaningful
ones for the clustering step. This leads to obtaining significant
and semantically rich features, thus achieving interpretability and
scalability. Contrarily to raw data points, features are interpretable
and understandable for end-users. The third pipeline step then
executes clustering as defined below.

Definition 3.5 (Clustering MTS). Given a multivariate time series
dataset 𝐷 and a set of clusters𝐶 with cardinality 𝑘 , the goal of MTS
clustering is to map a cluster to each series in 𝐷 . This corresponds
to define a surjective function𝑚 : 𝐷 −→ 𝐶 that maps each time
series𝑀 ∈ 𝐷 into a cluster 𝑘 ∈ 𝐶 .

4 THE TIME2FEAT SYSTEM
Time2Feat implements the components of the data analysis pipeline
as illustrated in Figure 2. Time2Feat takes a MTS dataset 𝐷 as input
and the number of clusters to generate (provided by the user or via
some heuristic). It can run under unsupervised mode, i.e., no further
input is required, and under semi-supervised mode, i.e., the users
specify a subset of clustered samples. The three steps of the pipeline



Algorithm 1: feature_extraction
Input :𝐷 ∈ R𝑉𝑥𝑁𝑥𝑆 Multivariate time series dataset.
Output :𝐹 ∈ R𝑉𝑥𝐸 Matrix of extracted features.

// Extracting intra-signal features

1 𝐹 [ ] ← 0; // list of extracted features

2 foreach𝑉 ∈ 𝐷 ; // For each MTS in the dataset

3 do
4 foreach 𝑆𝑖 ∈ 𝑉 ; // For each signal in the MTS

5 do
6 𝐹 ← 𝑖𝑛𝑡𝑟𝑎_𝑓 𝑒𝑎𝑡𝑢𝑟𝑒_𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 (𝑆𝑖 )

// Extracting inter-signal features

7 foreach𝑉 ∈ 𝐷 do
8 foreach 𝑆𝑖 ∈ 𝑉 do
9 𝑉 = 𝑉 − 𝑆𝑖 ;

10 foreach 𝑆 𝑗 ∈ 𝑉 ; // For pairs of signals in the MTS

11 do
12 𝐹 ← 𝑖𝑛𝑡𝑒𝑟_𝑓 𝑒𝑎𝑡𝑢𝑟𝑒_𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 (𝑆𝑖 , 𝑆 𝑗 )

13 return 𝐹 ;

Algorithm 2: feature_selection
Input :𝐹 ∈ R𝑉𝑥𝐸 Matrix of extracted features.

labels Optional labels
Output :𝑡 ∈ R𝑉𝑥𝐹 Matrix of signals and top features.

// Remove features with constant, null and/or infinite values

1 𝑇 ← 𝑐𝑙𝑒𝑎𝑛 (𝐹 ) ;
// Semi-supervised step if the user labels some records

2 if labels then
3 𝑇 ← 𝑎𝑢𝑡𝑜_𝑎𝑛𝑜𝑣𝑎_𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 (𝑇, 𝑙𝑎𝑏𝑒𝑙𝑠 ) ;
4 𝑇 ← 𝑝𝑓 𝑎 (𝑇 ) ; // Extract best feature with PFA

5 return𝑇 ;

are implemented by the feature_extraction function (described in
Section 4.1), the feature_selection function (in Section 4.2) and the
cluster function (in Section 4.3).

4.1 Feature Extraction
The goal is to generate an exhaustive representation of an MTS
dataset via a large spectrum of features, each describing the MTS
signals (in isolation or pairs).
Intra-signal Features Extraction. The computation of statistical
features describing the signals of the MTS relies on the library
tsfresh [6, 7], already in many time series analysis tasks [36, 38,
50]. Each of the 700+ features computed by tsfresh encodes the
signal description from the perspective offered by a specific analysis
method, such as Distribution Analysis, Statistical Analysis, etc. In
this way, the features are interpretable for users who know how
the statistical measure summarizes the time series values. Lines 2-6
of Algorithm 1 shows a simplified procedure where a nested for-
cycle iterates over the MTS and the intra_feature_extraction
function generates the features for each composing signal. In the
actual implementation, we leverage the efficient parallelization
of the feature extraction function provided by tsfresh that can
compute features in batches of univariate series.
Inter-signal Features Extraction Many works [20, 42] highlight
the importance of inter-signal relationships in the analysis of time

series. Nevertheless, they typically extract the features employ-
ing neural network architectures, obtaining uninterpretable de-
scriptions. We adopt a straightforward approach by conceiving
inter-signal features as the measure of the relatedness (in terms of
similarity and correlation) between pairs of signals that we mea-
sure through 8 metrics (e.g., correlation, Euclidean distance, etc.).
The pipeline firstly generates the pairs of signals per time series
(lines 7-10 of Algorithm 1), then applies (line 12 of Algorithm 1) the
function inter_feature_extraction in charge of the extraction.

4.2 Feature Selection
The feature extraction procedure generates a large number of fea-
tures per dataset. Reducing the dimensionality of such representa-
tion improves the interpretability and increases (as the experiments
in Section 5.1 show) the performance of the clustering procedure.

As a first operation, in line 1 of Algorithm 2, we clean the
matrix of the features by removing all zero-variance features and
the features that have missing or infinite values (they would be
useless for the cluster generation). If Time2Feat is running with
the semi-supervised mode, the available labels are used to rank
the relevance of the features for identifying a subset capable of
generating clusters. We rely on the Analysis of Variance (ANOVA)
[44] for computing the p-value associated with each feature and
quantifying its significance. Then, we apply a grid search analysis
identifying the subset of features that maximizes the quality of the
generated clusters. To evaluate the quality, we use the Homogeneity
Score [34], the Adjusted Mutual Information (AMI) [28] and Ad-
justed Rand Index [45] which are specific measures evaluating the
agreement and similarity of pairs of cluster elements. The joint
application of the ANOVA and grid search analysis is referred to
auto_anova_selection in line 3 of Algorithm 2. Finally, both in
the presence and in the absence of labels, we apply the PFA tech-
nique to select the most meaningful features. We observe that the
PFA technique not only guarantees conciseness but also diversity1

of the features by choosing “the principal features which retain
most of the information in the sense of maximum variability of the
features in the lower dimensional space" [21].

4.3 Clustering
Time2Feat can work with any clustering algorithm. In Section 5,
we show that among the experimented approaches, the hierarchical
technique achieved the best accuracy. Concerning the number of
clusters, the Time2Feat system leverages state-of-the-art heuristics
(e.g., applying the well-known Elbow method) or user preferences.
Finally, the clustering operation includes a normalization step that
avoids the dominance of features due to large-scale domain ranges.

5 EXPERIMENTAL EVALUATION
The evaluation addresses four main research questions:
RQ1 How effective is Time2Feat in solving MTS clustering tasks

(Section 5.1);
RQ2 To what extent the representations of the generated clusters

are interpretable (Section 5.2);
RQ3 How efficient is the cluster computation (Section 5.3);

1Diversity is another properties of interpretable features as reported in [16, 29, 31]



Table 1: The datasets evaluated in the experiments. 𝑉 is the
number of MTS, 𝑆 the number of signals, 𝑁 the length of
the series, 𝐶 the number of classes in the ground truth, 𝐸𝑂
the number of elements per dataset and 𝐸𝑀 the number of
elements per MTS.

Dataset 𝑉 𝑆 𝑁 𝐶
𝐸𝑂

(𝑉𝑥𝑆𝑥𝑁 )
𝐸𝑀
(𝑆𝑥𝑁 )

Li — Libras 360 2 45 15 32400 90
AF – AtrialFibrillation 30 2 640 3 38400 1280
BM – BasicMotions 80 6 100 4 48000 600
RS – RacketSports 303 6 30 4 54540 180
ER – ERing 300 4 65 6 78000 260
Ep – Epilepsy 275 3 206 4 169950 618
PD – PenDigits 10992 2 8 10 175872 16
SW – StandWalkJump 27 4 2500 3 270000 10000
UW – UWaveGestureLibrary 440 3 315 8 415800 945
Ha – Handwriting 1000 3 152 26 456000 456
AW – ArticularyWordRecognition 575 9 144 25 745200 1296
HM – HandMovementDirection 234 10 400 4 936000 4000
LS – LSST 4925 6 36 14 1063800 216
Cr – Cricket 180 6 1197 12 1292760 718
EC – EthanolConcentration 524 3 1751 4 2752572 5253
S1 – SelfRegulationSCP1 561 6 896 2 3015936 5376
S2 – SelfRegulationSCP2 380 7 1152 2 3064320 8064
PS – PhonemeSpectra 6668 11 217 39 15916516 2387

RQ4 How robust is the pipeline, i.e. to what extent do the com-
ponents in the pipeline contribute to the task. (Section 5.4)

Baselines.We selected 18 benchmark datasets from the UEA multi-
variate time series classification archive [3]. For each dataset, Table
1 reports the number of MTS (𝑉 ), the number of signals (𝑆), the
length (𝑁 ) of the series, and the clusters (𝐶), where the MTS can
be grouped according to the baselines. In addition, we computed
the overall number of elements in the dataset (𝐸𝑂 ) that provides
a yardstick for measuring the scalability of the approach. Finally,
we estimate the complexity of generating the clusters by comput-
ing the number of elements per MTS (𝐸𝑀 ). Intuitively, the lower
the value, the lower the ability to extract descriptive features. The
datasets represent different scenarios as their overall number of
elements 𝐸𝑂 spans over three orders of magnitudes, and 𝐸𝑀 ranges
from 16 elements for the PD dataset to 10000 for SW.

We compared Time2Feat with eight approaches: Hierarchical,
KMeans, and Spectral are straightforward applications of these clas-
sical clustering techniques to MTS datasets. CSPCA and𝑀𝐶2𝑃𝐶𝐴
introduce a PCA-based mechanism to reduce the data dimensional-
ity before the clustering. DETSEC and IT-TSC leverage neural net-
works 2: the former by creating embeddings for the series through
autoencoders, the latter by combining a multi-path neural network
with variable association graphs to determine the importance of the
signals for each cluster. Finally, we created a variant of the KMeans
clustering technique by introducing DTW to measure the similarity
between two temporal sequences. We refer the reader to Section 6
for an extensive discussion of these baselines.
Setup. The experiments are executed on a machine with a 12 cores
Intel Xeon Processor, 64GB of RAM, and 324GB of local (SSD) stor-
age. The machine runs Ubuntu version 18.04. All experiments have
been executed ten times, and the average result plus standard devi-
ation is reported (whenever significant).

2Our technical report [2] includes experiments with other neural network techniques.

5.1 Effectiveness
We evaluated the effectiveness of Time2Feat by adopting the AMI
[28] to measure the accuracy of the generated clusters with respect
to the baselines. The AMI evaluates to 1 when the two clusterings
are identical, and to roughly 0 (negative values are allowed) in case
of random partitions. Table 2 shows the results of this experiment.
Time2Feat has been evaluated by executing the unsupervised mode
(column T2F0) and by simulating the semi-supervised mode through
stratified random samples composed of 20% (column T2F2), 40%
(column T2F4), 50% (column T2F5) of labels per cluster from the
baseline datasets. The remaining columns show the competing
approaches (discussed in Section 6). Among them, Hierarchical,
KMeans, and Spectral can be considered as reference baselines for
their simplicity3.
Discussion. The experiment results clearly show that Time2Feat out-
performs its competitors. In particular, in the unsupervised mode,
the accuracy of the clusters generated by Time2Feat is higher than
the other approaches in 11 out of 18 datasets. Among them, in 3
datasets, it obtains the best accuracy score. By providing 20% la-
bels per cluster, Time2Feat outperforms the other approaches in
13 datasets (obtaining in 2 datasets the best accuracy score). The
performances generally improve by adding more labels, as in the
configuration T2F5, where Time2Feat outperforms the other ap-
proaches in 15 out of 18 datasets (showing the best accuracy value in
9 out of 18 datasets). This experiment helped us derive the following
insights: (1) Time2Feat’s pipeline is highly efficient as at least one
configuration of Time2Feat outperforms the other approaches in all
datasets, except in the UW dataset, where it performs slightly worse
than some competing approaches. The reason is that UW describes
trajectories. One kind of trajectory is the composition of two other
trajectories. The features extracted by Time2Feat cannot recognize
these three different movements. (2) Time2Feat is highly scalable as
it obtains high accuracy results both for small (the ones at the top
of Table 2) and for large datasets (the ones at the bottom of Table 2).
These results do not hold for the competitors, where the accuracy
drops as the number of elements in the dataset increases (and in
some cases, marked 𝑁 /𝐴 in the Table 2, no cluster is generated
due to timeout or memory exceptions). (3) The semi-supervised
procedure improves the accuracy. By labeling a small number of
elements per dataset, the accuracy steadily increases.

5.2 Interpretability
We provide a measure of the interpretability of the clusters by
analyzing the number of features that Time2Feat uses for their
computation. A limited number of features facilitating human com-
prehension and conciseness is one of the main properties of inter-
pretable features (see Section 6). The column All in Table 3 shows
the overall amount of features extracted after the feature extraction
step of the pipeline (Section 4.1). The other columns report the
number of features retained with the unsupervised mode (column
T2F0) and with increasing levels of supervision as in the previous
experiment. The values represent the average number of features
across ten runs of each experiment.

3We rely on the sklearn implementations of these algorithms with default parameters.



Table 2: Effectiveness (AMI). In bold, the best value per dataset. ↑ shows Time2Feat settings overcoming all competing approaches.

Dataset Semi-supervised Unsupervised Competing approaches
T2F2 T2F4 T2F5 T2F0 Hierarchical KMeans Spectral DTW CSPCA DETSEC MC2PCA IT-TSC

Li 0.728±0.02↑ 0.722 ± 0.016↑ 0.730±0.020 0.716±0.012↑ 0.563 0.545 0.492 0.503 0.311 0.416 0.069 0.483
AF 0.028±0.046 0.123 ± 0.066↑ 0.238±0.059 0.038±0.027↑ -0.002 -0.002 -0.002 0.005 -0.07 -0.001 -0.056 -0.06
BM 0.977±0.034↑ 1.000 ± 0.000 1.000±0.000 1.000±0.000 0.347 0.23 0.002 0.832 0.7 1.000 0.189 0.676
RS 0.559±0.038↑ 0.666 ± 0.049↑ 0.710±0.047 0.35±0.006 0.192 0.194 0.0 0.215 0.221 0.224 0.094 0.41
ER 0.801±0.016 0.823 ± 0.014 0.826±0.023 0.921±0.011 0.859 0.91 0.0 0.775 0.5 0.646 0.115 0.315
Ep 0.896±0.025↑ 0.913 ± 0.019 0.882±0.007↑ 0.792±0.04↑ 0.135 0.167 -0.001 0.25 0.258 0.213 0.08 0.68
PD 0.752±0.022↑ 0.771 ± 0.028↑ 0.784±0.013 0.437±0.02 0.728 0.682 𝑁 /𝐴 0.6 𝑁 /𝐴 0.431 0.065 0.716
SW 0.038±0.036 0.101 ± 0.01 0.23±0.046 0.048±0.079 0.131 -0.002 0.0 -0.005 -0.072 -0.097 0.045 -0.02
UW 0.555±0.026 0.554 ± 0.036 0.59±0.035 0.587±0.055 0.752 0.712 0.0 0.611 0.236 0.414 0.111 0.749
Ha 0.325±0.023↑ 0.353 ± 0.019 0.349±0.009↑ 0.161±0.006 0.226 0.193 0.0 0.235 0.165 0.271 -0.004 N/A
AW 0.921±0.007 0.931 ± 0.01↑ 0.927±0.005↑ 0.963±0.007 0.926 0.902 0.0 0.781 0.716 0.794 0.182 0.752
HM 0.021±0.011↑ 0.045 ± 0.007 0.07±0.012 0.015±0.008 -0.006 -0.002 0.001 0.01 0.002 -0.004 0.018 -0.01
LS 0.293±0.013↑ 0.317 ± 0.011↑ 0.333±0.002 0.156±0.009↑ 0.028 0.018 0.001 𝑁 /𝐴 0.047 0.152 0.048 N/A
Cr 0.984±0.021 0.975 ± 0.018↑ 0.974±0.021↑ 0.946±0.021↑ 0.756 0.719 0.0 𝑁 /𝐴 0.876 0.865 0.361 0.274
EC 0.065±0.017↑ 0.097 ± 0.006↑ 0.121±0.04 0.052±0.002↑ 0.009 0.01 -0.003 𝑁 /𝐴 0.013 𝑁 /𝐴 0.002 0
S1 0.397±0.047 0.374 ± 0.025↑ 0.382±0.012↑ 0.007±0.001 0.212 0.194 -0.001 𝑁 /𝐴 𝑁 /𝐴 0.18 0.022 0.08
S2 0.008±0.003↑ 0.015 ± 0.004 0.015±0.006 0.003±0.001 ↑ -0.002 -0.001 0.01 𝑁 /𝐴 0.001 0.007 0.005 0.002
PS 0.2±0.006↑ 0.202 ± 0.002 0.201±0.002↑ 0.121±0.007↑ 0.093 0.096 0.0 𝑁 /𝐴 𝑁 /𝐴 𝑁 /𝐴 0.058 N/A

Table 3: Number of intra-signal / inter-signal features.

Dataset All T2F0 T2F2 T2F4 T2F5
Li 1574/8 55/1 7.17/0 8.33/0 9.4/0
AF 1574/8 21/0 2.83/0.17 5.67/0 5.67/0
BM 4722/120 44.33/1.67 2.33/1.5 2.0/0.67 2/0.17
RS 4722/120 141.2/9.8 12.8/2.6 15.4/3.4 21/4.2
ER 3148/48 125.83/3.17 7/1.67 6.83/1.33 7.17/1.17
Ep 2361/24 163.33/3.67 12.67/1.83 15.67/1.17 15.33/1.33
PD 1574/8 98/1 16.4/0.6 13.8/0.6 18.8/0.8
SW 3148/48 20/0 1.8/0.4 3.4/0 6.4/0
UW 2361/24 124/3 4.4/0.2 4.4/0.2 4.4/0
Ha 2361/24 309.83/3.17 23.83/1.5 25/2.17 30.83/2.67
AW 7083/288 283.67/30.33 10/5 9.5/4 10.5/4
HM 7870/360 167/11 15.17/1 28.17/1.33 24.83/2.17
LS 4722/120 217/5 6.6/3.6 9.4/3.2 12.8/4.4
Cr 4722/120 113.17/3.83 4.5/3.83 4.17/4.17 4.17/4
EC 2361/24 122.83/5.17 9.33/0.33 8.5/0 3/0
S1 4722/120 222.2/1.8 2/0.2 2/0 3/0.2
S2 5509/168 183/3 26.4/0.4 20.8/0.4 20.2/0
PS 8657/440 293/8 4/0 4.4/0 4.2/0

Table 4: Runtime execution , in seconds ( - timeout exception
fixed in 10 hours, ×memory exception).

Dst. T2F0 Hier. KMeans Spec. DTW CSPCA 𝑀𝐶2𝑃𝐶𝐴 DETSEC IT-TSC
Li 20.31 0.2 0.28 0.37 366 2 0.53 500 31
AF 31.01 0.04 0.06 0.31 350 0.01 0.12 876 57
BM 58.45 0.09 0.16 0.23 175 0.03 209 260 31
RS 50.11 0.2 0.39 0.39 474 0.317 356 270 60
ER 34.2 0.18 0.24 5.27 914 0.21 559 555 85
Ep 47.95 0.24 0.42 7.71 3667 0.31 682 1673 173
PD 198.03 9.0 3.0 × 24713 50 6 3395 7410
SW 559.69 0.16 0.25 0.34 10768 0.01 1 10142 255
UW 58.42 0.45 0.74 15.6 20639 0.47 3063 4229 600
Ha 44.74 0.86 2.0 7.19 27018 0.19 25 4301 -
AW 135.18 1.0 1.0 1.35 23611 1 18811 220 57
HM 220.78 0.83 1.0 0.89 30251 0.62 3162 3175 783
LS 300.23 6.0 3.0 6.49 - 0.35 16591 4666 -
Cr 737.61 0.8 1.0 0.91 - 0.14 13642 12145 2478
EC 876.3 2.0 2.0 2.01 - 0.26 9708 - 2865
S1 727.37 2.0 2.0 2.37 - - 12 19317 1831
S2 952.58 2.0 2.0 2.22 - 0.36 11 20898 1831
PS 1219.88 1.0 1.0 34.73 - × × - -
Avg 348.49 1.50 1.14 5.19 11912.17 3.52 3931.69 5537.88 1390.73

Discussion. The feature extraction generates a large number of fea-
tures that increases as the number of elements per dataset 𝐸𝑂 (the
Pearson correlation coefficient – Pcc is 0.61) and the number of

elements per MTS 𝐸𝑀 (Pcc = 0.39) increases. The unsupervised
approach drastically reduces the selected features while maintain-
ing a strong correlation (Pcc = 0.51) with the overall number of
features. Not always an increase in the supervision corresponds to
a reduction in the features. We explain this as a sort of “overfitting”
that forces better accuracy results by adding features. However,
we observe the small number of features (they can be managed by
humans) retained in all semi-supervised settings. Finally, the exper-
iment shows the importance of the inter-signal features. Despite
the low number, the extracted inter-signal features are preserved
in almost all Time2Feat settings, thus showing their importance in
the clustering process.

5.3 Efficiency
We evaluate the efficiency of our approach by computing the overall
time required to complete the pipeline (Section 5.3.1), evaluating the
time breakdown (Section 5.3.2) and introducing a simple heuristic
to optimize the parallelism of the feature extraction (Section 5.3.3).

5.3.1 Time Performance. Table 4 shows the maximum time to com-
plete the cluster computations for all the datasets in the 10 repeti-
tions of the experiment. We show only the time measured in the
unsupervised mode (T2F0): the semi-supervision does not change
the value significantly. The last row shows the average time com-
puted on all datasets (excluding the ones raising the exceptions).
Discussion. The clustering techniques that reach the best time per-
formance are KMeans and Hierarchical, which finish the pipelines
in a few seconds. However, this comes at the cost of accuracy and in-
terpretability loss. CSPCA also shows a low time performance, but
the algorithm cannot handle large datasets, where time andmemory
exceptions occur and the accuracy is poor. The other approaches
report an average time greater than Time2Feat of at least an order
of magnitude and, in some cases, time and memory exceptions.
Finally, we observe that Time2Feat’s execution time ranges from a
few seconds to a few thousands of seconds, having the performance
correlated with the overall number of elements (Pcc=0.75).



5.3.2 Time breakdown. We analyze the breakdown of the compu-
tation time (Figure 3a) into the main pipeline components (feature
extraction, feature selection, and cluster generation).
Discussion. The time required for extracting the features dominates
the other components: it takes between 88% and 99% of the over-
all time needed for completing the pipeline. The average time to
complete the feature extraction is around 337 seconds, and the one
to complete features selection is 9 seconds, whereas, for clustering,
it amounts to 1 second. The correlation between the time spent in
clustering and 𝑉 is strong (Pcc=0.99). This is why in three datasets
(PD, LS, and PS, the ones with the largest 𝑉 ), the clustering time
takes more than 1 second but less than 8 seconds. The feature ex-
traction and selection show a different behavior: they are correlated
with the overall number of elements in the datasets 𝐸𝑂 (the Pcc is
more than 0.95 for both the tasks). In order to further confirm these
trends, we have also used 27 synthetic datasets generated by vary-
ing the number of MTS𝑉 ∈ (100, 1000, 2500), the number of signals
𝑆 ∈ (2, 8, 16) and the length of the series 𝑁 ∈ (100, 1000, 2000) by
means of GRATIS tool [15]. The results (omitted for space reasons
and reported in [2]) show that by fixing𝑉 and varying 𝑆 and 𝑁 , the
only time that increases is the time due to feature extraction, while
the other times (feature selection and clustering) remain constant.
As a conclusion, despite the increase, the approach remains overall
scalable for several datasets, whereas for larger ones alternative
strategies can be devised, as shown in the next experiment.

5.3.3 Workload balancing. We evaluate a straightforward heuristic
to improve the time performance by optimizing the computational
workload on the processors. Feature extraction performs the com-
putation using batches of time series, which are not balanced by
default. Time2Feat allows to balance the workload by customizing
the number of batches per dataset by dividing the total number of
MTS (V) by the number of available processors, rounding for excess
to the upper integer. Figure 3b shows the time reduction obtained.
Discussion. By balancing the workload on the processors, the time
performance essentially improves in almost all datasets (the average
time computed on all datasets decreases from 348 to 242 seconds.
In 5 datasets (AF, BM, Ep, SW, and HM), the time reduction is more
than 60%. In only two cases (PD and LS), the heuristic does not
affect the time performance, and the time slightly increases.

5.4 Robustness
This Section assesses the robustness of the pipeline components
by evaluating: the importance of feature selection (Section 5.4.1);
alternative options to the hierarchical algorithm for performing
the final cluster computations (Section 5.4.2); the importance of the
features in the clustering task (Section 5.4.3).

5.4.1 Importance of feature selection. We evaluate how the accu-
racy (AMI) in Figure 4a, the interpretability (number of features)
in Figure 4b, and the efficiency in Figure 4c vary with and without
feature selection along the pipeline.
Discussion. The experiment shows that the removal generally has a
large impact on the accuracy and interpretability. The AMI largely
decreases in almost all datasets when the clusters are computed
with all features. Moreover, feature selection reduces the number of
features of two orders of magnitude. Finally, the time required for

Table 5: Accuracy (AMI) varying the clustering techniques.
In bold, the best result per dataset.

Dataset T2F0 T2F2 T2F5
Hier. KMeans Spec. Hier. KMeans Spec. Hier. KMeans Spec.

Li 0.716 0.711 0.627 0.728 0.691 0.709 0.73 0.722 0.705
AF 0.038 0.007 -0.001 0.028 0.047 0.047 0.238 0.192 0.188
BM 1 1 0.992 0.977 0.961 0.902 1 1 0.993
RS 0.35 0.359 0.371 0.559 0.578 0.612 0.71 0.649 0.663
ER 0.921 0.955 0.925 0.801 0.819 0.79 0.826 0.824 0.804
Ep 0.792 0.874 0.528 0.896 0.839 0.8 0.882 0.867 0.793
PD 0.437 0.639 0.377 0.752 0.727 0.651 0.784 0.715 0.688
SW 0.048 0.071 -0.004 0.038 0.074 0.167 0.231 0.327 0.256
UW 0.587 0.566 0.454 0.555 0.541 0.511 0.59 0.539 0.537
HM 0.161 0.153 0.014 0.325 0.302 0.277 0.349 0.325 0.289
AW 0.963 0.945 0.807 0.921 0.918 0.89 0.927 0.903 0.899
HM 0.015 0.011 0.005 0.021 0.048 0.037 0.069 0.089 0.062
LS 0.156 0.146 0.041 0.293 0.315 0.037 0.333 0.332 0.051
Cr 0.946 0.907 0.787 0.984 0.956 0.95 0.974 0.96 0.967
Ec 0.052 0.056 0.049 0.065 0.066 0.06 0.121 0.094 0.106
S1 0.007 0.019 0.002 0.397 0.419 0.387 0.382 0.391 0.379
S2 0.003 0 0 0.008 0.015 0.021 0.015 0.024 0.035
PS 0.121 0.143 0.143 0.2 0.211 0.211 0.201 0.208 0.208
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Figure 3: Efficiency analysis.
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Figure 4: Removing the Features Selection from the pipeline.

performing the feature selection is negligible, especially compared
to the feature extraction step as shown in Figure 3a. In summary,
the feature selection improves the accuracy and the interpretability,
and only slightly affects the time efficiency of the pipeline.

5.4.2 Importance of the clustering technique. We experimented
with 3 techniques (Hierarchical,KMeans, Spectral) for generating the
clusters, as shown in Table 5. For each technique, we computed the
AMI of the clusters obtained with three settings: the unsupervised
procedure (T2F0), the semi-supervised procedure with 20% and 50%
labeled elements per cluster (T2F2 and T2F5, respectively).



Discussion. The results show that Hierarchical clustering obtains
the best performance. The KMeans technique has similar accuracy.
The Spectral clustering is competitive only for the largest datasets
when it achieves the best results, but inline with other approaches.

5.4.3 Importance of the features in the clustering task. This exper-
iment evaluates whether a feature-based clustering approach is
more effective than an approach based on raw data. To this end, we
run Time2Feat in the unsupervised mode by performing the clus-
tering computation with the same techniques used in the previous
experiment (Hierarchical, KMeans, and Spectral), and we compare
the accuracy obtained (in terms of AMI) with the one obtained by
the application of the same clustering technique to the raw datasets.
Discussion. The results of the experiment reported in the technical
report [2] show that the feature-based clustering approach usually
obtains the best performance. Only in three datasets (PD, UW, and
S1) the approach based on raw data performs slightly better.

5.5 Lessons Learned
We conclude by pinpointing how our feature-based clustering
pipeline addresses the aforementioned questions.
(RQ1) Thanks to the features, we gain in effectiveness. The experiment
in Section 5.1 demonstrates that Time2Feat provides more accurate
clusters than its competitors. The ablation test in Section 5.4.3
further confirms that feature-based clustering techniques generate
more effective results than techniques using raw data.
(RQ2) The cluster representations are concise. The experiment in
Section 5.2 shows that Time2Feat relies on a small number of fea-
tures for generating the clusters, and shows the importance of
inter-signal features retained during cluster generation.
(RQ3) Feature-based clustering achieves a trade-off between accuracy
and performance. Time2Feat achieves the best accuracy in the ma-
jority of the datasets along with good performance. The approach
is among the fastest ones and performs in seconds, thus making
it efficiently usable for batch analyses (Section 5.3). The studied
time breakdown of the pipeline components shows that the feature
extraction phase is the most expensive (Section 5.3.2). Nevertheless,
heuristics for optimizing the workload balance, e.g., concerning the
available processors (Section 5.3.3), can be quickly developed to
reduce the overall time execution considerably.
(RQ4) The pipeline is robust and scalable. The pipeline is highly mod-
ular and then scalable concerning the specificities of real-world
environments. Our robustness analysis shows the importance of
all pipeline components. Feature selection (Section 5.4.1) improves
both accuracy and interpretability. The comparison of clustering
techniques shows the adaptativeness of the pipeline, allowing for
striking a balance between accurate results in small and large
datasets depending on the use case at hand (Section 5.4.2).

6 RELATEDWORK
Clustering of multivariate time series. Dimensionality reduc-
tion is one of the research questions addressed by previous work
on MTS clustering. Principal component analysis (PCA) [5, 17, 39,
41, 43] has been adopted to transform MTS into a new dimensional
space to find the most critical features representative of the original
MTS. Among the approaches, we recall the Covariance Sequence-
based Principal Component Analysis (CSPCA) [19] that builds a

matrix representing the pairwise covariance of the MTS. Then, a
PCA-based transformation is applied to the matrix to reduce the
dimensions, followed by clustering techniques.𝑀𝐶2𝑃𝐶𝐴 [18] is a
similar technique, that applies a cycle of feature transformation
based on an internal component, the Common Principal Analysis
(CPCA) or clustering (based on KMeans) until the reconstruction
error is small. The main problem of PCA-based approaches is the
poor explainability of the generated clusters building on latent
space dimensions with no semantics for the end-users.

Building time series representations (embeddings) based on Neu-
ral Networks is another line of research to generate clusters [1, 9].
DETSEC [13] is a state-of-the-art embedded solution, based on an
encoder-decoder architecture built with GRU components. IT-TSC
[49] is an approach based on neural networks to build variable as-
sociation graphs for clusters creation. Approaches based on Neural
Networks have shown high performance for detecting the clusters,
but they suffer from poor interpretability. Moreover, a large body of
work has been devoted to UTS clustering (such as Dynamic Time
Warping (DTW) [26], KShape [30] and FeatTS [46, 47]). All these
methods are not directly applicable to MTS clustering due to the in-
herent differences between univariate and multivariate time series,
leading to poor scalability.

Interpreting the clusters. Providing insights for cluster mem-
bership is a real need in many scenarios [4, 32, 37, 40]. Explainable
AI (XAI) is one of the current hottest topics [8, 24], usually ap-
proached in two ways [10, 51]: 1) by exploiting post-hoc analysis or
2) by designing intrinsically explainable systems. Time2Feat falls
into the second category, being based on interpretable features.
More specifically, interpretability of the clustering techniques is
typically addressed: (1) by applying dimensionality reduction tech-
niques (e.g., PCA) to be able to visualize clusters through two or
three dimensions; (2) by identifying the centroid or a selected set
of points to represent the cluster [33]; and (3) by relying on an
interpretable model (usually a decision tree) that learns how to clas-
sify the generated clusters [4, 12, 32, 37]. In our work, we mainly
deal with interpretable representations, that can support users in
understanding cluster’s contents. Whereas there is no consensus in
the literature on the meaning of interpretable features [52] and on
what properties interpretable features should satisfy [25], several
approaches indicate conciseness as one of the key properties for
interpreting algorithm behaviors [16, 29, 31].

7 CONCLUSION
We have presented an end-to-end feature-based clustering pipeline
for multivariate time series, leveraging state-of-the-art machine
learning components and making them interact with each other.
We have empirically studied Time2Feat under the lenses of its
effectiveness, interpretability, efficiency, and robustness, compar-
ing it with existing clustering methods on several real-world and
benchmarking datasets. The results show that the combination of
interpretable features and weakly labeled MTS lead to better quality
and explainability of the obtained clusters.

ACKNOWLEDGMENTS
This work was partially supported by ANR (grant nr. 18-CE23-0002
QualiHealth).



REFERENCES
[1] Ali Alqahtani, Mohammed Ali, Xianghua Xie, and Mark W Jones. 2021. Deep

Time-Series Clustering: A Review. Electronics 10, 23 (2021), 3001.
[2] Angela Bonifati, Francesco Del Buono, Francesco Guerra, Donato Tiano. 2022.

Time2Feat: Evaluation (Technical report). https://github.com/softlab-unimore/
time2feat. Technical Report.

[3] Anthony J. Bagnall, Hoang Anh Dau, Jason Lines, Michael Flynn, James Large,
Aaron Bostrom, Paul Southam, and Eamonn J. Keogh. 2018. The UEAmultivariate
time series classification archive, 2018. CoRR abs/1811.00075 (2018).

[4] Dimitris Bertsimas, Agni Orfanoudaki, and Holly M. Wiberg. 2021. Interpretable
clustering: an optimization approach. Mach. Learn. 110, 1 (2021), 89–138.

[5] Lianfang Cai, Nina F Thornhill, Stefanie Kuenzel, and Bikash C Pal. 2018. Wide-
area monitoring of power systems using principal component analysis and
𝑘-nearest neighbor analysis. IEEE Transactions on Power Systems 33, 5 (2018),
4913–4923.

[6] Maximilian Christ, Nils Braun, Julius Neuffer, and Andreas W. Kempa-Liehr. 2018.
Time Series FeatuRe Extraction on basis of Scalable Hypothesis tests (tsfresh - A
Python package). Neurocomputing 307 (2018), 72–77.

[7] Maximilian Christ, Andreas W. Kempa-Liehr, and Michael Feindt. 2016. Dis-
tributed and parallel time series feature extraction for industrial big data appli-
cations. CoRR abs/1610.07717 (2016).

[8] Roberto Confalonieri, Ludovik Coba, Benedikt Wagner, and Tarek R Besold.
2021. A historical perspective of explainable Artificial Intelligence. Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery 11, 1 (2021),
e1391.

[9] Francesco Del Buono, Francesca Calabrese, Andrea Baraldi, Matteo Paganelli,
and Francesco Guerra. 2022. Novelty Detection with Autoencoders for System
Health Monitoring in Industrial Environments. Applied Sciences 12, 10 (2022).
https://doi.org/10.3390/app12104931

[10] Mengnan Du, Ninghao Liu, and Xia Hu. 2020. Techniques for interpretable
machine learning. Commun. ACM 63, 1 (2020), 68–77.

[11] Duarte Folgado, Marília Barandas, Ricardo Matias, Rodrigo Martins, Miguel
Carvalho, and Hugo Gamboa. 2018. Time Alignment Measurement for Time
Series. Pattern Recognition 81 (2018), 268–279. https://doi.org/10.1016/j.patcog.
2018.04.003

[12] Ricardo Fraiman, Badih Ghattas, andMarcela Svarc. 2013. Interpretable clustering
using unsupervised binary trees. Adv. Data Anal. Classif. 7, 2 (2013), 125–145.

[13] Dino Ienco and Roberto Interdonato. 2020. Deep Multivariate Time Series
Embedding Clustering via Attentive-Gated Autoencoder. In PAKDD 2020 - 24th
Pacific-Asia Conference on Knowledge Discovery and Data Mining (Advances in
Knowledge Discovery and Data Mining). Singapore, Singapore. https://hal.inrae.
fr/hal-02923636

[14] Gaoxia Jiang, WenjianWang, andWenkai Zhang. 2019. A novel distance measure
for time series: Maximum shifting correlation distance. Pattern Recognition Letters
117 (2019), 58–65.

[15] Yanfei Kang, Rob J. Hyndman, and Feng Li. 2020. GRATIS: GeneRAting TIme
Series with diverse and controllable characteristics. Stat. Anal. Data Min. 13, 4
(2020), 354–376.

[16] Thai Le, SuhangWang, and Dongwon Lee. 2020. GRACE: Generating Concise and
Informative Contrastive Sample to Explain Neural Network Model’s Prediction.
In KDD. ACM, 238–248.

[17] Hailin Li. 2014. Asynchronism-based principal component analysis for time
series data mining. Expert systems with applications 41, 6 (2014), 2842–2850.

[18] Hailin Li. 2019. Multivariate time series clustering based on common principal
component analysis. Neurocomputing 349 (2019), 239–247.

[19] Hailin Li, Chunpei Lin, XiaojiWan, and Zhengxin Li. 2019. Feature representation
and similarity measure based on covariance sequence for multivariate time series.
IEEE Access 7 (2019), 67018–67026.

[20] Zhihan Li, Youjian Zhao, Jiaqi Han, Ya Su, Rui Jiao, Xidao Wen, and Dan Pei.
2021. Multivariate Time Series Anomaly Detection and Interpretation using
Hierarchical Inter-Metric and Temporal Embedding. In KDD. ACM, 3220–3230.

[21] Yijuan Lu, Ira Cohen, Xiang Sean Zhou, and Qi Tian. 2007. Feature Selection
Using Principal Feature Analysis. In Proceedings of the 15th ACM International
Conference on Multimedia (Augsburg, Germany) (MM ’07). Association for Com-
putingMachinery, NewYork, NY, USA, 301–304. https://doi.org/10.1145/1291233.
1291297

[22] RuizheMa and Rafal Angryk. 2017. Distance and density clustering for time series
data. In 2017 IEEE international conference on data mining workshops (ICDMW).
IEEE, 25–32.

[23] Laura Manduchi, Matthias Hüser, Julia Vogt, Gunnar Rätsch, and Vincent Fortuin.
2019. DPSOM: Deep probabilistic clustering with self-organizing maps. arXiv
preprint arXiv:1910.01590 (2019).

[24] Tim Miller. 2019. Explanation in artificial intelligence: Insights from the social
sciences. Artificial intelligence 267 (2019), 1–38.

[25] Christoph Molnar. 2019. Interpretable Machine Learning. https://christophm.
github.io/interpretable-ml-book/.

[26] Meinard Müller. 2007. Dynamic time warping. Information retrieval for music
and motion (2007), 69–84.

[27] W James Murdoch, Chandan Singh, Karl Kumbier, Reza Abbasi-Asl, and Bin Yu.
2019. Definitions, methods, and applications in interpretable machine learning.
Proceedings of the National Academy of Sciences 116, 44 (2019), 22071–22080.

[28] Xuan Vinh Nguyen, Julien Epps, and James Bailey. 2009. Information theoretic
measures for clusterings comparison: is a correction for chance necessary?. In
ICML (ACM International Conference Proceeding Series), Vol. 382. ACM, 1073–
1080.

[29] Matteo Paganelli, Paolo Sottovia, Antonio Maccioni, Matteo Interlandi, and
Francesco Guerra. 2020. Explaining data with descriptions. Inf. Syst. 92 (2020),
101549.

[30] John Paparrizos and Luis Gravano. 2015. k-shape: Efficient and accurate clus-
tering of time series. In Proceedings of the 2015 ACM SIGMOD international
conference on management of data. 1855–1870.

[31] Jayneel Parekh, Pavlo Mozharovskyi, and Florence d’Alché-Buc. 2021. A Frame-
work to Learn with Interpretation. In NeurIPS. 24273–24285.

[32] Claudia Plant and Christian Böhm. 2011. INCONCO: interpretable clustering of
numerical and categorical objects. In KDD. ACM, 1127–1135.

[33] Dragomir R. Radev, Hongyan Jing, Magorzata Sty, and Daniel Tam. 2004.
Centroid-based summarization of multiple documents. Inf. Process. Manag. 40, 6
(2004), 919–938.

[34] Andrew Rosenberg and Julia Hirschberg. 2007. V-Measure: A Conditional
Entropy-Based External Cluster Evaluation Measure. In EMNLP-CoNLL. ACL,
410–420.

[35] Cynthia Rudin. 2019. Stop explaining black box machine learning models for
high stakes decisions and use interpretable models instead. Nature Machine
Intelligence 1, 5 (2019), 206–215.

[36] Martin Rätz, Amir Pasha Javadi, Marc Baranski, Konstantin Finkbeiner, and Dirk
Müller. 2019. Automated data-driven modeling of building energy systems via
machine learning algorithms. Energy and Buildings 202 (2019), 109384.

[37] Sandhya Saisubramanian, Sainyam Galhotra, and Shlomo Zilberstein. 2020. Bal-
ancing the Tradeoff Between Clustering Value and Interpretability. In AIES. ACM,
351–357.

[38] Davi Alberto Sala, Azarakhsh Jalalvand, Andy Van Yperen-De Deyne, and Erik
Mannens. 2018. Multivariate Time Series for Data-Driven Endpoint Prediction in
the Basic Oxygen Furnace. In 2018 17th IEEE International Conference on Machine
Learning and Applications (ICMLA). 1419–1426. https://doi.org/10.1109/ICMLA.
2018.00231

[39] S Yaser Samadi, Lynne Billard, MR Meshkani, and A Khodadadi. 2017. Canonical
correlation for principal components of time series. Computational Statistics 32,
3 (2017), 1191–1212.

[40] Mattia Setzu, Riccardo Guidotti, Anna Monreale, Franco Turini, Dino Pedreschi,
and Fosca Giannotti. 2021. GLocalX - From Local to Global Explanations of Black
Box AI Models. Artif. Intell. 294 (2021), 103457.

[41] Han Lin Shang. 2014. A survey of functional principal component analysis. AStA
Advances in Statistical Analysis 98, 2 (2014), 121–142.

[42] Shun-Yao Shih, Fan-Keng Sun, andHung-Yi Lee. 2019. Temporal pattern attention
for multivariate time series forecasting. Mach. Learn. 108, 8-9 (2019), 1421–1441.

[43] Ashish Singhal and Dale E Seborg. 2005. Clustering multivariate time-series
data. Journal of Chemometrics: A Journal of the Chemometrics Society 19, 8 (2005),
427–438.

[44] Lars Stahle and Svante Wold. 1989. Analysis of variance (ANOVA). Chemometrics
and Intelligent Laboratory Systems 6, 4 (1989), 259–272.

[45] Douglas Steinley. 2004. Properties of the Hubert-Arable Adjusted Rand Index.
Psychological methods 9, 3 (2004), 386.

[46] Donato Tiano, Angela Bonifati, and Raymond Ng. 2021. FeatTS: Feature-based
Time Series Clustering. In SIGMOD 2021. 2784–2788.

[47] Donato Tiano, Angela Bonifati, and Raymond Ng. 2021. Feature-driven Time
Series Clustering.. In EDBT. 349–354.

[48] Laurens van der Maaten and Geoffrey E. Hinton. 2008. Visualizing High-
Dimensional Data Using t-SNE. Journal of Machine Learning Research 9 (2008),
2579–2605.

[49] Chenxiao Xu, Hao Huang, and Shinjae Yoo. 2021. A Deep Neural Network for
Multivariate Time Series Clustering with Result Interpretation. In IJCNN. IEEE,
1–8.

[50] Wei Zhang, Xiaowei Dong, Huaibao Li, Jin Xu, and Dan Wang. 2020. Unsu-
pervised Detection of Abnormal Electricity Consumption Behavior Based on
Feature Engineering. IEEE Access 8 (2020), 55483–55500.

[51] Zijian Zhang, Koustav Rudra, and Avishek Anand. 2021. Explain and Predict,
and then Predict Again. In WSDM. ACM, 418–426.

[52] Alexandra Zytek, Ignacio Arnaldo, Dongyu Liu, Laure Berti-Équille, and Kalyan
Veeramachaneni. 2022. The Need for Interpretable Features: Motivation and
Taxonomy. SIGKDD Explor. 24, 1 (2022), 1–13.

https://github.com/softlab-unimore/time2feat
https://github.com/softlab-unimore/time2feat
https://doi.org/10.3390/app12104931
https://doi.org/10.1016/j.patcog.2018.04.003
https://doi.org/10.1016/j.patcog.2018.04.003
https://hal.inrae.fr/hal-02923636
https://hal.inrae.fr/hal-02923636
https://doi.org/10.1145/1291233.1291297
https://doi.org/10.1145/1291233.1291297
https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/
https://doi.org/10.1109/ICMLA.2018.00231
https://doi.org/10.1109/ICMLA.2018.00231

	Abstract
	1 Introduction
	2 Motivating Real-World Scenario
	3 Clustering Multivariate Time series
	4 The Time2Feat system
	4.1 Feature Extraction
	4.2 Feature Selection
	4.3 Clustering

	5 Experimental evaluation
	5.1 Effectiveness
	5.2 Interpretability
	5.3 Efficiency
	5.4 Robustness
	5.5 Lessons Learned 

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

