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Abstract

This article is devoted to the development of a machine learning statis-
tical framework to drive company’s objectives. To this end, their sales data
are used to target efficiently the issues or opportunities by a ranking. We
implement a permutation based model using generalized Mallows models
dealing with quantitative values, considering that a ranking is a permuta-
tion. The advantage of the generalized version is the possibility to differen-
tiate the cost to move each element in the permutation. In our model, we
differentiate the cost of an inversion in the permutation by using the gap
value between the two elements. We propose model parameters estimators
and we illustrate our estimation procedure on simulated data and on a real
application.

Keywords : Computational statistics, Generalized Mallows models, Kemeny
consensus, Kendall distance, Machine learning, Mallows models, Permutations.

1 Introduction

In this paper, we are interested in the development of a machine learning statistical
framework to drive company’s objectives. The defined approach helps the decision
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makers choices using the company’s sales data. We have to learn what is important
to know from the decision makers point of view to efficiently help them to target
the issues or opportunities.

To explain the objectives and for the sake of example, we study a company
selling fishing products worldwide. This company sells a large number of different
products like fish hooks, fishing nets, lures, fishing rods and more. We may have
variations of each of those products in size, weight, material, color or even package,
multiplying the total number of unique references to evaluate and analyze by
the company. As this company makes profits worldwide, it sells each of those
references in a bunch of stores, located in many countries with different climates.
For example, this company can sell fishing products in France, Iceland, Mexico and
Australia. In every country, we can also make a distinction between each selling
region. For instance in France, we can sell in Brittany, New Aquitaine, Normandy,
which are coastal regions but also in Great East as you can also fish in lakes or
rivers. Depending on your responsibilities in the company, you are interested in a
set of references in a geographical area. For example, the sales director of Brittany
is interested in products sold in Brittany and is not interested if the company
makes profit selling fishing rods in Australia.

For every product in stores, we can have information on a lot of indicators.
For example, the revenue of the product, the selling price, the expected revenue
leading to information on seasonality and many other information. Each criterion
has to be taken into account to target the best interest of the user. For instance,
the Normandy sales director is not interested to analyze the lure sales for salmons
in the Channel during the winter as we can only fish them in spring and summer.
Even with the deletion of the uninterested products, there is still a wide range of
potentially interesting products. It would be really expensive, in money or time, to
analyze every one of them at once. So, it is important to rank all of the references
in a customized importance order. It is mandatory to prioritize the elements with
the best potential for our Normandy sales director, but also every other sales
director. For example, in September, it is more important for the Normandy sales
director to analyze an important gap between the expected and the real revenue in
the lures for cuttlefish than a huge gap between the expected and the real revenue
in the lures for salmons. Indeed, as it is the beginning of the fishing season of
cuttlefish and the end of the fishing season of salmons, a smaller gap may lead
to a more important future profit. Once every sales director is provided with the
indicator of his own importance order, he can study the elements in the decreasing
order, and makes a plan for each one to increase their benefits. If our Normandy
sales director has the time after analyzing the cuttlefish’s lures sales, he may then
study the salmon’s lures sales.

Our objective is then to create a statistical and computational framework or-
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dering every reference to match the user’s preferences. This method uses the
indicators given for all the products at every geographical level. However, this is
not an easy supervised learning as we do not have any truth about the potential
of the product. To help us with this, we use an information given by the user
by reinforcement learning. First, our Normandy sales director, the user, have a
ranking of his references; the ranking begins with the cuttlefish’s lures, followed
by the salmon’s lures, and so on. He then analyzes the first references, the most
as he can in the resources allowed to this task. Then, he returns an evaluation
of his interest for every analyzed reference. Based on the user returns, we adjust
the statistical model to fit the user preferences. This process iterates, month after
month, to find the perfect ranking for the user.

As it is impossible for the user to give the perfect ranking of several hundreds
of references or even to quantify the difference of two references, we will only ask
for a value on a one to five ladder based on his interest. We then need to use a
method able to deal with criteria composed of numerical continuous values, like the
revenue where a difference of 10 euros is not the same as a difference of 100 euros,
as well as ranking only criterion, like the partial ranking of the user preferences.
To this end, we develop a permutation based procedure using generalized Mallows
models. We consider here that a ranking is a permutation. The advantage of the
generalized version it to be able to differentiate the cost to move each element
in the permutation. However, we need to be able to differentiate the cost of an
inversion in the permutation, for example by using the gap value between the two
elements.

As we have seen in our example, the sales director of New Aquitaine where
the fishermen fish the mackerel in the Bay of Biscay does not have the same
kind of interest in the different criteria as the sales director of Great East. The
seasonality of the mackerel is not as important as the salmon’s seasonality in
the large mountain rivers. Maybe, if you are the world sales director, the large
amount of different climates and latitudes will smooth all the seasonality. It is
then important to have a method able to be generic, to fit to every possible desire
of the user. Each profile must be able to have its own set of parameters. We
must also be able to compare each set of parameters between the different user to
understand the differences between them.

This paper is organized as followed. In Section 2, we define the Mallows models,
its generalization and limitations in our case. Section 3 deals with the parametric
estimation of the model parameters. Section 4 introduces our modifications to
integrate the cost of an inversion. Section 5 deals with the study of our procedure
on simulated data while section 6 is devoted to real data application.
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2 Mallows model and its generalization

2.1 Mallows model

The Mallows model [7] is based on the distances between the permutations of a set
of n items to order. A permutations is a one to one application from {1, ..., n} to
itself. The set of all the permutations of n items is denoted by Sn. We write π(i)
the position associated to the item i in the permutation named π for i ∈ {1, ..., n}
and π−1(i) the item associated to the ith position of the permutation named π for
i ∈ {1, ..., n}. The cardinal of Sn is equal to n!.

In this framework, we consider the permutation π as the perfect theoretical
ranking for the user. The Mallows model is then defined as the probability to
select randomly a permutation σ, in the set of all the permutations Sn, based on
the permutation π with a dispersion parameter θ. We have

Pθ(σ) =
exp(−θ d(σ, π))

Z(θ)
(1)

with θ ≥ 0, d(., .) a right invariant distance between two permutations of Sn and

Z(θ) =
∑
σ∈Sn

exp(−θ d(σ, π)), (2)

the normalization term which is not influenced by π, thanks to the right invariant
property. A distance d(., .) is right invariant [4] if d(π, σ) = d(πτ, στ) for every π
and σ in Sn. The normalization term Z(θ) only varies with θ. This normalization
term is then easy to compute in a time of order O(n). Moreover, in the Mallows we
tries as much as possible to avoid computing this value. As we can see in Section
3, we do not need it to estimate our parameters.

When θ = 0, then each permutation σ of Sn has the same probability. The
larger θ, the larger the density of σ around the modal permutation π. The distance
is right invariant, meaning that a change of the labels in the permutations does
not change the distance. To continue with our fishing example, if our permutation
σ is first the mackerels fishing nets, then the salmon’s lures and finally the fishing
rods, and our permutation π is first the fishing rods, then the mackerels fishing
nets and finally the salmon’s lures, then renaming the mackerels fishing nets to 1,
the salmon’s lures to 2 and the fishing rods to 3 will gave the same distance as
renaming the fishing rods to 1, the mackerels fishing nets to 2 and the salmon’s
lures to 3.

In the Figure 1, every node represents a permutation and every link represents
a distance of 1 between 2 permutations. Here, we take the black node as π. Then,
the probability of the black permutation, π which is at a distance of 0 is exp(0)

Z(θ)
.
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Figure 1: Permutohedron of order 4 for the Kendall Distance.

The probabilities of the red permutations are exp(−θ)
Z(θ)

and the probabilities of the

orange permutations are exp(−2θ)
Z(θ)

.

2.2 Generalized Mallows model

The generalized Mallows model [5] is an extension of the Mallows model based on
a decomposition of a right invariant distance. If we have

d(σ, π) =

p∑
k=1

Sk(σπ
−1, e), (3)

with e the identity permutation obtained by ππ−1, then, the parameter θ can be
replaced by θk for k = 1, . . . , p. We obtain

Pθ(σ) =
1

Z(θ)
exp

(
p∑

k=1

−θk Sk(σπ
−1, e)

)
(4)

where

Z(θ) =
∑
π∈Sn

exp

(
p∑

k=1

−θk Sk(σπ
−1, e)

)
(5)
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corresponds to the normalization term not influenced by π. The Mallows model is
a particular case of the generalized Mallows model with θ = θk, k = 1, . . . , p when
all θk are the same.

We decide here to use the Kendall distance [6]. The Kendall distance represents
the minimal number of adjacent transpositions to transform a permutation σ into
a permutation π, both from the set of permutations Sn :

dk(π, σ) =
n−1∑
i=1

∑
j>i

1 ((π(i) > π(j) ∩ σ(i) < σ(j)) ∪ (π(i) < π(j) ∩ σ(i) > σ(j)))

(6)
where 1(P) takes the value 1 or 0 depending on whether the condition P is satisfied
or not. This distance is right invariant.

Using our fishing example, the Kendall distance between our permutation σ,
the mackerels fishing nets (A), the salmon’s lures (B) and the fishing rods (C),
and our permutation π, the fishing rods (C), the mackerels fishing nets (A) and
the salmon’s lures (B), is 2 as the mackerels fishing nets (A) is inverted with the
fishing rods (C) and the salmon’s lures (B) is inverted with the fishing rods (C).

With the Kendall discrepancy function, we can determine for k = 1, . . . , n −
1, Sk(σπ

−1, e). The minimum number of adjacent inversion to assign the first
item of e in the first position of σπ−1 is S1. We then remove this item from
both permutations to compute S2 which will be the minimum number of adjacent
inversion to assign the remaining first item in the remaining first position. We
repeat this process until there is not any remaining item. We have

Sk(σπ
−1, e) =

∑
l>k

1((σπ−1)−1(k) > (σπ−1)−1(l)). (7)

With this distance, we assume that each item of π has its own parameter θk,
depending on its position in π, to move and does not depend on the elements
inverted with this item. However, in our problem, for some criteria, it may be
important to make a difference between each inversion, and we want to determine
a new parameter associated to each element inversion.

3 Estimation of the model parameters

We assume that the permutations σj are known and represent the ranking of the
J criteria, each of them picked according to a Mallows model with the same modal
permutation π but with different dispersion parameters θj for j ∈ {1, . . . , J}. We
want to estimate π and every θj. Each θj is invariant through time, meaning that
each month the criteria keep the same importance for the user. The permutation π
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changes each month however, due to the variation of important products according
to the criteria. So, each month, we have J permutations picked from the Mallows
models, with still the same θj but a different π. In this Section, the Kendall
distance is considered.

3.1 Estimations of π

Knowing, for j ∈ {1, . . . , J}, all the σj and their associated dispersion parameter
θj for a month, we can estimate the permutation π associated to this month. We
use the maximum likelihood estimator method. The likelihood function is given
using (1) by

L(π|σ,θ) =
J∏

j=1

exp(−θj d(σj, π))

Z(θj)
. (8)

As Z(θj) does not depend on π and the exponential function is monotonous, the
maximum likelihood estimator π̂ is given by

π̂ = argmax
π∈Sn

J∑
j=1

−θj d(σj, π) (9)

where Sn is the set of every possible n items permutations.
We use a method based on Blin idea [2], to find the median of J permutations.

First, we need to initialize π̂. We use for this initialization the permutation σj as-
sociated with the biggest θj. Then, we compute the matrix of discrepancy between
π̂ and σj, that we name Gπ̂,σj

. The matrix Gπ̂,σj
is a n×n symmetric matrix with

0 on the diagonal since an item cannot be inverted with itself. Each item of this
discrepancy matrix between π̂ and σj, Gπ̂,σj ,a,b equal 1 if items a and b are in a
different ordered between π̂ and σj and 0 otherwise. We create each discrepancy
matrix in the same order as the initialization of π̂ in order to sum them. Finally,
this matrix is multiplied by θj.

Each item of our discrepancy matrix G =
∑J

j=1Gπ̂,σj
takes its value x between

0 and
∑J

j=1 θj. Furthermore, if we invert two elements of our permutation π, then
the new value of the element in our discrepancy function xnew, is

xnew =
J∑

j=1

θj − x. (10)

While an inversion of two items can diminish the sum of elements of G, we
move items in π̂. When there is no more possible moves, we stop and return π̂,
the estimation of π.
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With this method, we face a few issues. First, we can have a lot of permutations
maximizing the likelihood function. But the main issue appears if our parameters
θj are too different from each other. If there is j such as

∑J
i=1,i ̸=j θi− θj < 0 then,

the maximum likelihood is given for the permutation π = σj. So, we cannot have
any compromise. To solve this issue, we can introduce, to estimate π the following
minimization problem

π̂ = argmin
π∈Sn

J∑
j=1

(θj d(σj, π))
2. (11)

Using (11), we need to modify our algorithm. To this end, we use the matrix
Gπ̂,σj

and modify π̂ while we can reduce
∑J

j=1(θj d(σj, π̂))
2 where d(σj, π̂) is the

sum of each element of Gπ̂,σj
, corresponding to the distance between π̂ and σj.

We can also use the Borda [3] method to find the permutation π. In this
method, we compute a weighted sum of each element position and sort the results
in the ascending order. For our example with the same weight to each permutation,
the best compromise between, the mackerels fishing nets, the salmon’s lures and
the fishing rods permutation and the fishing rods, the mackerels fishing nets and
the salmon’s lures permutation, is the mackerels fishing nets (1+2), the fishing
rods (3+1) and finally the salmon’s lures (2+3) permutation. This method is
significantly faster than the previous ones. A lot of different algorithms were
presented and tested in [1].

Algorithm 1 Estimate π

Require: σ1, . . . , σJ ∈ SJ
n and θ1, . . . , θJ ∈ RJ

π̂ ← σj where j = argmaxj∈1,...,J θj
for {j ∈ 1, . . . , J} do
for {i ∈ 1, . . . , n} do
for {k ∈ i, . . . , n} do
if (π̂(i) > π̂(k) ∩ σj(i) < σj(k)) ∪ (π̂(i) < π̂(k) ∩ σj(i) > σj(k)) then
Gπ̂,σj ,i,k ← θj

else
Gπ̂,σj ,i,k ← 0

end if
end for

end for
end for
G←

∑
j∈J Gπ̂,σj

Gnew is an actualization of G with one element moved in π̂,
∑

Gnew ≤
∑

G
We stop the algorithm when there is no more

∑
Gnew ≤

∑
G
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3.2 Estimation of θ

The estimator of θ is discussed in Fligner and Verducci [5], among others. To
estimate the θ parameter in the Mallows model, we use the moment generative
function of the random variable D(π, σ), the distance between π and σ, in the
uniform case, when θ = 0.

Theorem 1. Let Pθ(σ) defined by (1) be the distribution of σ, with π the modal
permutation parameter and θ the dispersion parameter, and let D(π, σ) the random
variable of the right invariant distance d(π, σ) between π and σ. Then the expected
mean of the random variable D(π, σ) for t = −θ is given by

Eθ(D) =
∂

∂t
log(MD,0(t)), (12)

and the theoretical variance of the random variable D(π, σ) for t = −θ is

V arθ(D) =
∂2

∂t2
log(MD,0(t)). (13)

Proof of Theorem 1. In the sequel, we use D instead of D(π, σ). The moment
generative function of D for θ = 0 is given by

MD,0(t) =
∑
σ∈Sn

exp(t d(σ, π))P0(σ), (14)

Where Pθ(σ) is defined by (1) and corresponds to the probability to select σ.
As given in Section 2.1, every permutation has the same probability when θ = 0.
We obtain

MD,0(t) =
∑
σ∈Sn

exp(t d(σ, π))
1

n!
. (15)

The normalization term Z(θ) given in (2) can be written using the moment
generative function of D for θ = 0 and t = −θ:

Z(θ) = n! MD,0(−θ). (16)

Finally, we express the moment generative function of D in θ by

MD,θ(t) =
∑
σ∈Sn

exp(t d(σ, π))Pθ(σ). (17)

The probability of σ knowing θ is given by (1) and using (16) on

MD,θ(t) =
∑
σ∈Sn

exp(t d(σ, π))
exp(−θ d(σ, π))

Z(θ)
=
∑
σ∈Sn

exp((t− θ) d(σ, π))

Z(θ)
, (18)
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we obtain

MD,θ(t) =
∑
σ∈Sn

exp((t− θ) d(σ, π))

n! MD,0(−θ)
=

1

MD,0(−θ)
∑
σ∈Sn

exp((t− θ) d(σ, π))

n!
(19)

where we recognize the expression (15) with t = t− θ. Finally, we have

MD,θ(t) =
MD,0(t− θ)

MD,0(−θ)
. (20)

The moment generative function properties allow us to calculate the mathemat-
ical expectation and the theoretical variance of D by a simple derivative. The
mathematical expectation knowing θ of D(π, σ) is given for t = 0 by

Eθ(D) =
∂

∂t
MD,θ(t). (21)

We know with (20) the link between the moment generative function with θ ̸= 0
and the moment generative function where θ = 0, the case where every permuta-
tion σ has the same probability. We can then replace MD,θ(t) by its equivalent
with MD,0(t) in t = −θ

Eθ(D) =
1

MD,0(−θ)
∂

∂t
MD,0(t). (22)

We recognize in the mathematical expectation Eθ(D) that the numerator is the
derivative of the denominator and thus for t = −θ we obtain (12)

Eθ(D) =
∂

∂t
log(MD,0(t)).

The variance is given in t = 0 by

V arθ(D) =
∂2

∂t2
MD,θ(t)−

(
∂

∂t
MD,θ(t)

)2

. (23)

Using (20), we have in t = −θ

V arθ(D) =

∂2

∂t2
MD,0(t)

MD,0(−θ)
−

 ∂

∂t
MD,0(t)

MD,0(−θ)


2

=

MD,0(−θ)
∂2

∂t2
MD,0(t)−

(
∂

∂t
MD,0(t)

)2

MD,0(−θ)2
.

(24)
We recognize here the second derivative of the logarithm. Then for t = −θ, we
obtain (13)

V arθ(D) =
∂2

∂t2
log(MD,0(t)).
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However, even with those simplifications with θ = 0, the calculations of the
mathematical expectation and the theoretical variance are still time consuming
due to the sum of n! terms. As previously, we use the Kendall distance. This
distance helps us to simplify the calculations of the mathematical expectation and
the theoretical variance of D(π, σ).

Theorem 2. Under the same assumptions of Theorem 1 with d(π, σ) the Kendall
distance. Then the expected mean of the random variable D(π, σ) is given by

Eθ(D) =
n exp(−θ)
1− exp(−θ)

−
n∑

j=1

j exp(−jθ)
1− exp(−jθ)

, (25)

and the theoretical variance of the random variable D(π, σ) is

V arθ(D) =
n exp(−θ)

(1− exp(−θ))2
−

n∑
j=1

j2 exp(−jθ)
(1− exp(−jθ))2

. (26)

Proof of Theorem 2. If we can rewrite the random variable D(σ, π) as

p∑
j=1

Sj(σπ
−1, e), (27)

where each Sj(σπ
−1, e) is independent for θ = 0, then we have the following

property between MSj ,0(t), the moment generative functions of Sj(σπ
−1, e), and

MD,0(t), the moment generative function of D(σ, π):

MD,0(t) =
∏
j

MSj ,0(t). (28)

The Kendall distance (6), as shown in Section 2.2, can be rewritten by d(σ, π)
=
∑n−1

j=1 Sj(σπ
−1, e) where each Sj(σπ

−1, e) is independent from the others. As
the Kendall distance is right invariant, we can use π = e where e is the identity
permutation. The product of the moment generative functions Sj(σ, e) is given by

n−1∏
j=1

MSj ,0(t) =
n−1∏
j=1

1

n!

∑
σ∈Sn

exp(t Sj(σ, e)). (29)

No matter the permutation σ ∈ Sn, Sj(σ, e), the minimum number of inversion
to assign the jth element in the first remaining position of σ, takes its values
in {0, . . . , n − j}. As we are in the case where each permutation has the same
probability, we need to count all the possibilities for each value of Sj(σ, e). Each
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value of Sj(σ, e) is obtained by the same number of permutations n!
n−j+1

. Then, we
can write

n−1∏
j=1

MSj ,0(t) =
n−1∏
j=1

1

n− j + 1

n−j∑
i=0

exp(t i). (30)

As we can calculate easily the sum of the geometric sequence
∑n−j

i=0 exp(t i) and
using (30), the derivative of Eθ(D) given in (12) in t = −θ is

∂

∂t
log(MD,0(t)) =

∂

∂t
log

(
n−1∏
j=1

1

n− j + 1

1− exp((n− j + 1) t)

1− exp(t)

)
. (31)

Calculating our derivative, we have with t = −θ

∂

∂t
log(MD,0(t)) =

(n− 1) exp(t)

1− exp(t)
−

n−1∑
j=1

(n− j + 1) exp((n− j + 1) t)

1− exp((n− j + 1) t)
. (32)

We can rewrite (32) as

∂

∂t
log(MD,0(t)) =

(n− 1) exp(t)

1− exp(t)
−

n∑
j=2

j exp(jt)

1− exp(jt)
. (33)

Finally, for j = 1, both parts of the equation are the same and we obtain (25)

Eθ(D) =
n exp(−θ)
1− exp(−θ)

−
n∑

j=1

j exp(−jθ)
1− exp(−jθ)

However, this last equation is not defined for θ = 0, which can induce some
difficulties during the optimization process. To stop those issues, we can keep the
sum of exponential. In this case, we have

Eθ(D) =
n−1∑
j=1

n−j∑
i=0

i exp(−iθ)

n−j∑
i=0

exp(−iθ)

. (34)

To calculate the variance of D(σ, π) in θ, we determine the derivative of (25)
for t = −θ

∂

∂t
E−t(D) =

∂2

∂t2

(
n exp(t)

1− exp(t)
−

n∑
j=1

j exp(jt)

1− exp(jt)

)
. (35)
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So with

∂2

∂t2
n exp(t)

1− exp(t)
= n

exp(t)(1− exp(t))− exp(t)(− exp(t))

(1− exp(t))2
=

n exp(t)

(1− exp(t))2
(36)

and

∂2

∂t2
j exp(jt)

1− exp(jt)
=

j2 exp(jt)(1− exp(jt))− j exp(jt)(−j exp(jt))
(1− exp(jt))2

=
j2 exp(jt)

(1− exp(jt))2
,

(37)
we obtain (26)

V arθ(D) =
n exp(−θ)

(1− exp(−θ))2
−

n∑
j=1

j2 exp(−jθ)
(1− exp(−jθ))2

.

For a number of months M , we have all the σm, for m ∈ {1, . . . ,M}, each one
of them selected according to a Mallows model with a known modal permutation
πm, not necessarily the same each month, and an unknown dispersion parameter
θ, always the same, that we want to find. We then estimate θ by the maximum
likelihood method. We have the following log-likelihood function for θ

log(L(σ|θ, π)) =
M∑

m=1

log(Pθ(σm)) =
M∑

m=1

log

(
exp(−θ d(σm, π))

Z(θ)

)
(38)

and so

log(L(σ|θ, π)) =
M∑

m=1

(−θ d(σm, π)− log(Z(θ))) . (39)

Using (16), we obtain

log(L(σ|θ, π)) =
M∑

m=1

(
−θ d(σm, π)−

n∑
i=1

log(i)− log(MD,0(−θ))

)
. (40)

To maximize the likelihood over the parameter θ, we differentiate the log-
likelihood with respect to θ

∂

∂θ
log(L(σ|θ, π)) =

M∑
m=1

(
d(σm, π)−

∂

∂θ
log(MD,0(−θ))

)
. (41)
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Then, the maximum likelihood estimator θ̂ of θ is solution of

∂

∂θ
log(MD,0(−θ)) =

1

M

M∑
m=1

d(σm, π). (42)

Using the Kendall distance, with (12) and (25), we have the maximum likeli-
hood estimator θ̂ of θ the solution of the following equation :

n exp(−θ̂)
1− exp(−θ̂)

−
n∑

j=1

j exp(−jθ̂)
1− exp(−jθ̂)

=
1

M

M∑
m=1

d(σm, π) (43)

The Fisher information of the θ parameter is obtained differentiating (42) with
respect to θ

I(θ) = E

(
∂2

∂θ2
log(L(σ|θ, π))

)
= E

(
∂2

∂θ2
MD,0(−θ)

)
. (44)

With the Kendall distance, we use (13) and (26), and obtain

I(θ) =
n exp(−θ)

(1− exp(−θ))2
−

n∑
j=1

j2 exp(−jθ)
(1− exp(−jθ))2

. (45)

This second derivative does not depend on the observations σm form ∈ {1, . . . ,M}.
The asymptotic behavior of the maximum likelihood estimator θ̂ of θ is given by
the central limit theorem.

Theorem 3. Under regularity conditions, we have when M tend to infinity :

√
M
(
θ̂ − θ

)
D−→ N

(
0, I(θ)−1

)
(46)

where I(θ) is the Fisher information of θ given in (45).

As said in the introduction however, the real permutation π is really difficult
to obtain. Our best option can give us a partial permutation on a smaller set of
element. The formulas (25) and (26) only stands in the case π is a permutation,
a ranking without any tie. In a case of partial rankings, one needs to adapt its
distance to take the ties into account.

4 New method

When we use a criterion based on a numerical continuous value, we need to use
the difference between two values to determine the cost of an inversion so a trans-
formation of the difference is applied. For example, if our Normandy sales director
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has a reference of lures for the trout with a difference between the expected and
the real revenue of 1 euro and a reference for the salmon’s lures with a difference
between the expected and the real revenue of 101 euros, then our Normandy sales
director will clearly be more interested to analyze the salmon’s lures reference than
the trout’s lures reference. However, if the difference between the expected rev-
enue and the real revenue for the trout’s lures is 1000 euros and the difference for
the salmon’s lures reference is 1100 euros, the Normandy sales director will only
be slightly more interested to analyze the salmon’s lures reference. So in the first
case, the cost, for this criterion, of the inversion between the two references must
be higher than the cost of the inversion of the two references in the second case.

As it is really difficult to have labeled data, non parametric statistical method
is difficult to use. Moreover, all the information we have are on the final result :
“Is this reference interesting or not?” based on the user’s opinion. This function’s
parameters and the Mallows model dispersion parameters θ need to be computed at
the same moment. As a consequence, a logit transformation is used and we assign
the weight of an inversion at the value of the difference between two references after
this transformation. With this transformation, the Mallows model corresponds to
the special case where each weight is the same.

We still use the same formalism as before but we do not assume that σj for
j ∈ 1, . . . , J , with J the number of criteria used, is selected randomly based on the
the modal permutation π, the theoretical best ranking for the user. We determine
the probability that π is the best ranking for the user. We have the values of each
σj, the ranking obtained for the criterion j and its associated vector xj ∈ Rn where
n is the number of items to order. Then, we give the probability of a permutation π
based on a modal permutation σj and the matrix of inversions costs θj associated
to the criterion j with

Pσj ,θj
(π) =

exp(−dp(σ, π))
Z(σj,θj)

(47)

where dp(., .) is a weighted distance between two permutations of Sn and

Z(σj,θj) =
∑
τ∈Sn

exp(−dp(σj, τ)), (48)

the normalization term influenced by σj due to a change of values for each inversion
and θj but does not depend on π.

We use as dp(., .) a variation of the Kendall distance given by

dpk(π, σ) =
n−1∑
i=1

∑
k>i

θjik 1 ((π(i) > π(k) ∩ σ(i) < σ(k)) ∪ (π(i) < π(k) ∩ σ(i) > σ(k)))

(49)
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where θjik is the difference of the transformations

θjik = f(xj(i))− f(xj(k)). (50)

The value of the item i for the criterion j is given by xj(i). Here, we use the logit
function for the transformation

f(xj(i)) =
α

1 + exp(r(a− xj(i)))
+ β, (51)

with β the minimum value after the transformation, α + β the maximum value
after the transformation, r the velocity parameter to go from the minimum to the
maximum and a the symmetrical point. These 4 parameters α, β, r and a fully
determine all the θjik. Learning them give the matrix θj.

4.1 Estimation of π

To choose π, assuming that all the criteria are independent. We maximize the
function

Ψ(σ,θj, π) =
J∏

j=1

Pσj ,θj
(π), (52)

where Pσj ,θj
(π) is defined in (47). Then, taking the logarithm of Ψ(σ,θj, π), we

have

log(Ψ(σ,θj, π)) =
J∑

j=1

−dp(π, σj)−
J∑

j=1

log

(∑
τ∈Sn

exp(−dp(τ, σj)

)
. (53)

As the second part of the equation (53) does not depend on π, we can ignore
it and maximize

log(Ψ(σ,θj, π)) =
J∑

j=1

−dp(π, σj). (54)

To maximize this value, we use the method described in Section 3.1 to maximize
(9). In this variation, we can reinitialize Gπ̂,σj ,ik with

Gπ̂,σj ,ik = θjik 1 ((π(i) > π(k) ∩ σ(i) < σ(k)) ∪ (π(i) < π(k) ∩ σ(i) > σ(k))) .
(55)
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4.2 Estimation of θ

We assume independence between all the criteria. With this independence, max-
imizing the probability Pσj ,θj

(π), for any j ∈ 1, . . . , J , maximize the function
Ψ(σ,θj, π). Figure 2 gives a graphical representation of what we want to do. In
this representation, we want to minimize the cost of the red links and maximize
the cost of the black links. Thus, we can estimate the parameter θj for any cri-
terion j independently of the others. We have, for a number of months M , πm,
the wanted permutation considering the criteria. This permutation is the best for
the user for the month m. We also know the real permutations σjm, associated
to their real values xjm for each month m ∈ {1, . . . ,M}. Also, θj is the same for
each month. As θj is defined with f , we need to obtain the parameters α, β, r and
a. To determine those values, we use the maximum likelihood estimators. The
likelihood function is given by :

L(xj,σj,π; a, α, β, r) =
M∏

m=1

exp(−dpk(σjm, πm))

Z(a, α, β, r, xj, σjm)
, (56)

where dpk(., .) is defined in (49). Thus, the log likelihood function is given by

log(L(xj,σj,π; a, α, β, r)) =
M∑

m=1

−dpk(σjm, πm)−
M∑

m=1

log(Z(a, α, β, r, xj, σjm)).

(57)
In this case, not as before, the time complexity of Z(a, α, β, r, xj, σjm) cannot

be reduced in O(n). It is really expensive to compute as the time complexity is
in O(n!). For this reason, it is necessary to approximate Z(a, α, β, r, xj, σjm). We
know how to determine this function with the generalized Mallows model, when all
the inversions of the first element with its followings are the same cost, the second
with its followings are the same cost as well and so on. To approximate, we can
bound the value of Z(a, α, β, r, xj, σjm) by using the minimum and maximum value
of the transposition cost of an element with its followings. A central value of this
bounding, as the mean, is often a satisfying approximation of Z(a, α, β, r, xj, σjm).

In the case of the Kendall distance, we have the possibility to separate the
distance in a sum of independent distances dk(π, σ) =

∑n−1
i=1 Sk(π, σ) as described

in (7).
Using this decomposition, we have for an approximation of Z(θj, σjm) using a

unique value of the inversion cost of an element with its followings

Zapprox(θj, σjm) =
∑
τ∈Sn

exp

(
n−1∑
k=1

−θk Sk(τ, σjm)

)
, (58)
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Figure 2: Permutohedron of order 4 for the Kendall Distance.

where θk is the cost to invert the kth element with its followings. As the Sk(τ, σjm)
are independent, we can, for every permutation of Sn, combine every possible
number of inversion of the first element, with every possible number of inversion
of the second element, with every possible number of inversion of every other
element. We obtain

Zapprox(θj, σjm) =
n−1∏
k=1

n−k∑
i=0

exp(−i θk). (59)

Finally, the logarithm of the approximation of the normalization term is given
by

log(Zapprox(θj, σjm)) =
n−1∑
k=1

log(1− exp(−(n− k) θk))− log(1− exp(−θk)). (60)

5 Simulation studies

The estimators of π in the Mallows model are studied through simulation. The
estimators considered are described in Section 3.1. The real parameter θj for each
permutation σj, for j ∈ 1, . . . , J is fixed. Each σj is selected following the Mallows
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model with the parameters π and θj. We evaluate π̂, the estimator of π, using two
different criteria: the distance between π̂ and π must be the lowest as possible and
the estimator π̂ must be a compromise of every σj, for j ∈ 1, . . . , J . We consider
different combinations of θj to describe the behavior of the estimators. The real
value of π is not important to know as it doesn’t affect the results due to the right
invariant property of the distance used. In this simulation, the Kendall distance
(6) is used.

For the results, we denote the estimator of π by MLE the Maximum Likelihood
Estimator method given in (9), by QUAD the QUADratic sum of the distances
method given in (11) and by BORDA the BORDA method [3].

The simulation results given in Table 1 compare the three methods for 50 σj,
permutations with n = 30 items, each one associated to the same θ over 3000
realizations. The Kendall distance distance between π̂ and π is considered and the
means and standard deviations results on the distance are given. This distance is
between 0, the minimum value, and n(n−1)

2
, the maximum value. The best results

are for a distance of 0 meaning that the two permutations on n items are the same,
and a distance of n(n−1)

2
as π̂ is the unique exact inverse permutation of π. The

worst distance value is n(n−1)
4

corresponding to an uninformative random noise.
For n = 30, the maximum value for the Kendall distance is 435 and the worst
value is 217.5.

In Table 1, we observe that the BORDA method gives the best estimation
results for π considering the distance to π criterion for the lowest θ parameters. The
lowest θ parameters values, the less information contains the criteria associated
to the permutations σj. The BORDA method gives in our simulations, the best
results in the sense of the minimum variance comparing to the MLE and QUAD
methods for the lowest parameters θ. The maximum likelihood estimator method
is better than the BORDA method when θ ≥ 0.1 and the difference with the
BORDA method for the distance to π is more important when θ increases. For
the standard deviation, the maximum likelihood estimator has a smaller value than
the BORDA method when θ ≥ 0.25. Finally, the QUAD estimator is only slightly
worst, less than 1 adjacent inversion, than the MLE one but the gap between the
two never really change too much.

In Table 2, we consider the same simulation data but we study a compromise
of every σj, for j ∈ 1, . . . , J . To evaluate this information, the Kendall distance
between each σj and the estimator π̂ is considered. The standard deviations of
those distances reflect the harmony between the use of all σj in the decision of a
compromise π̂. The lower this value, the best our estimators for compromises.

In Table 2, we observe that the QUAD method is clearly the best for this
simulation. The QUAD method is better than the maximum likelihood estimator
no matter the value of θ and better than the BORDA method until θ = 0.5 when
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Choice of θ BORDA MLE QUAD

0.01 166.19± 26.269 168.03± 26.491 168.447± 26.287
0.05 63.08± 10.843 64.61± 11.530 65.09± 11.590
0.1 31.13± 6.050 30.65± 6.456 31.05± 6.525
0.15 19.43± 4.298 18.10± 4.505 18.41± 4.610
0.2 13.36± 3.410 11.55± 3.439 11.80± 3.538
0.25 9.53± 2.769 7.77± 2.722 8.02± 2.739
0.3 7.16± 2.351 5.30± 2.234 5.52± 2.281
0.35 5.35± 2.054 3.70± 1.851 3.80± 1.879
0.4 4.025± 1.785 2.54± 1.557 2.70± 1.608
0.45 3.08± 1.569 1.79± 1.269 1.89± 1.295
0.5 2.22± 1.367 1.18± 1.045 1.30± 1.089
0.55 1.65± 1.189 0.79± 0.876 0.87± 0.898
0.6 1.23± 1.060 0.54± 0.712 0.62± 0.779

Table 1: Means ± standard deviations of Kendall distances between π and π̂ for
50 σj, permutations with n = 30 items, with the same θ and the same π over 3000
realizations.

the average values are close in values. However, as seen previously in Table 1 for
θ ≥ 0.5, the QUAD method give better results than the BORDA method with a
lower distance between π̂ and π.

For this criterion however, the results of the maximum likelihood estimator,
even though they are the worst, are the most similar to the results obtained with
the real value of π instead of any of its estimators (results not shown).

We show in Figure 3 the proximity to π criterion, when the number of criteria
used is reduce to 5, still keeping the same value for all θ. We do not observe a
significant difference in the distances with the 50 criteria simulation. The BORDA
method is better than the maximum likelihood estimator method when θ ≤ 0.35
and the differences between every estimator are lower than 3 adjacent inversions. It
is really interesting however to study the differences on the compromise criterion.

In Table 3, we observe the value of the compromise criterion for the different
estimators. We observe that the maximum likelihood estimator is clearly outplayed
by the others and that the QUAD estimator is clearly better than the others. When
we reduce the number of permutations σj, for j ∈ {1, . . . , J}, taken into account,
it is obvious that the maximum likelihood estimator cannot match the QUAD
estimator performance on this criterion as we approach the tyranny described in
the end of Section 3.1.

In Table 4 and Figure 4, the mean and the standard deviations of the Kendall
distance between π and π̂ are given for different values of J , the number of cri-
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Choice of θ BORDA MLE QUAD

0.01 27.40± 2.785 27.86± 2.801 25.21± 2.571
0.05 26.17± 2.616 26.64± 2.646 25.13± 2.492
0.1 23.95± 2.449 24.38± 2.491 23.46± 2.388
0.15 21.15± 2.180 21.55± 2.210 20.90± 2.158
0.2 18.46± 1.929 18.79± 1.972 18.31± 1.918
0.25 16.17± 1.686 16.42± 1.707 16.07± 1.668
0.3 14.21± 1.509 14.41± 1.532 14.15± 1.505
0.35 12.67± 1.331 12.83± 1.350 12.63± 1.329
0.4 11.38± 1.196 11.51± 1.210 11.35± 1.195
0.45 10.31± 1.116 10.42± 1.118 10.30± 1.108
0.5 9.43± 0.999 9.52± 1.005 9.42± 0.994
0.55 8.65± 0.920 8.72± 0.927 8.65± 0.920
0.6 8.02± 0.847 8.07± 0.848 8.02± 0.844

Table 2: Mean ± standard deviation of the standard deviation of the Kendall
distances between σ and π̂ for 50 σj, permutations of n = 30 items, with the same
θ and the same π over 3000 realizations.

Figure 3: Boxplot of the Kendall distances between π̂ and π for 5 σj, permutations
of n = 30 items, with the same θ and the same π over 3000 realizations.
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Choice of θ BORDA MLE QUAD

0.01 21.43± 7.759 27.08± 9.761 16.76± 6.101
0.05 20.07± 7.318 25.20± 8.963 16.32± 6.013
0.1 17.42± 6.425 22.04± 8.096 15.05± 5.618
0.15 15.23± 5.623 19.43± 7.126 13.79± 5.096
0.2 13.00± 4.823 16.75± 6.070 12.30± 4.554
0.25 11.38± 4.322 14.47± 5.468 10.92± 4.170
0.3 9.89± 3.721 12.57± 4.702 9.57± 3.674
0.35 8.86± 3.315 11.12± 4.144 8.63± 3.226
0.4 8.00± 2.924 9.98± 3.616 7.91± 2.909
0.45 7.29± 2.745 9.04± 3.338 7.25± 2.647
0.5 6.63± 2.417 8.13± 3.009 6.61± 2.403
0.55 6.21± 2.281 7.58± 2.762 6.23± 2.175
0.6 5.77± 2.117 7.00± 2.573 5.79± 2.011

Table 3: Mean ± standard deviation of the standard deviation of the Kendall
distances between σ and π̂ for 5 σj, permutations of n = 30 items, with the same
θ and the same π over 3000 realizations.

teria used. All the criteria have the same importance. The value of θ and n are
respectively 0.3 and 30. The BORDA method is better than the two others in
the simulation, for less than 7 permutations to use. We observe that the maxi-
mum likelihood estimator is the worst when we only have two permutations. In
this particular case, we are in the tyranny due to the limitations of the method.
However, the maximum likelihood estimator become the best as the number of
permutations used increases. Concerning the QUAD estimator, the results are
only slightly worst than the maximum likelihood estimator on the proximity to π
criterion.

The Table 5 represents the compromise criterion for the same set of parameters
than the Table 4. The tyranny of the maximum likelihood estimator when we
only have two permutations to take a decision, is also shown by this criterion.
Here, we observe also the perfect compromise with the QUAD estimator, which
does not necessarily lead to the best result as it is 12 adjacent inversions away in
average from the BORDA method for the proximity to π criterion. We also notice
that all the methods tend to the same level of compromise when the number of
permutations used to find π̂ is increased. For less than 10 permutations however,
the QUAD estimator is better, especially when J is even. When J is odd, the
compromise is not as good.

We are now interested to evaluate the performances of the three methods with
different associations of parameters to find witch one is the more robust to every
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Choice of J BORDA MLE QUAD

2 51.52± 10.300 69.13± 14.736 63.59± 12.554
3 42.51± 8.530 43.76± 9.118 43.83± 9.074
4 37.00± 7.409 39.49± 8.238 38.81± 7.908
5 32.73± 6.766 32.91± 7.222 33.10± 7.117
6 29.97± 6.166 30.65± 6.768 30.40± 6.661
7 27.42± 5.642 26.66± 5.921 26.94± 5.929
8 25.37± 5.320 25.20± 5.752 25.27± 5.797
9 23.77± 5.037 22.79± 5.371 23.12± 5.307
10 22.07± 4.728 21.45± 5.157 21.53± 5.137
15 17.33± 3.992 15.79± 4.178 16.25± 4.244
20 14.29± 3.588 12.78± 3.635 13.02± 3.648
25 12.23± 3.255 10.46± 3.398 10.82± 3.314
30 10.66± 3.055 8.95± 2.976 9.15± 3.044
40 8.57± 2.655 6.82± 2.504 7.05± 2.570
50 7.07± 2.431 5.29± 2.204 5.49± 2.242

Table 4: Means ± standard deviations of Kendall distances between π and π̂ for
2 to 50 σj, permutations of n = 30 items, with the same θ = 0.3 and the same π
over 3000 realizations.

possibilities. We determine the effect of adding low informative criteria into the
decision. We are still comparing on two different objectives. The distance between
π̂ and π does not need any change to adapt for this kind of tests but the compromise
criterion cannot be taken the same way as before. Obviously, the distance between
π̂ and σ strongly depends on θ. As θ increases, we have lower distances between
π̂ and σ. Then, we adapt the criterion using the expected distance between π
and σ knowing θ given for the Kendall distance with (25). We then have, for the
compromise criterion, to study

C2 =
√
V ar(d(π̂, σ)− Eθ(σ)). (61)

We want to study what happen when we use a different mix of very informative
criteria, with θ = 0.6, and low informative criteria with θ = 0.05. In Table 6, we
study the Kendall distance between π̂ and π for those cases, with n = 30. We notice
that for two parameters θ = 0.6, the set of parameters P3, the BORDA method
is clearly the best and the maximum likelihood estimator is the worst due to the
tyranny problem. We observe particularly for the set of parameters P5 that adding
a lot of low informative criteria strengthen the results for the maximum likelihood
estimator. However, the BORDA and QUAD method decrease the quality of the
estimation while adding low informative criteria. The set of parameters P4 shows
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Figure 4: Kendall Distance between π̂ and π for different numbers of σj, permuta-
tions of n = 30 items, with the same θ = 0.3 and the same π over 3000 realizations.

that adding only a small amount of low informative criteria has the same effect as
adding a lot of low informative criteria, like in the set of parameters P5, for the
BORDA method and the maximum likelihood estimator. This set of parameters
P4 also shows better results for the QUAD estimator than only very informative
criteria in the set of parameters P3. A mix with a lot of low informative criteria can
have better results for the maximum likelihood estimator than the others methods
but using only very informative criteria with the BORDA method can show a
better precision in the estimation of π.

We need to be careful when we have a lot of very informative criteria. With the
set of parameters P6 and P7, we witness that with 25 criteria having a parameter
θ = 0.6, adding 25 criteria with a parameter θ = 0.05 does not increase the
results, even with the maximum likelihood estimator. However, for the maximum
likelihood estimator, the loss in precision is not really a problem as it is only 0.02
more adjacent inversions in average to reach π and this estimator is better than
the BORDA and QUAD methods on this criterion anyway.

We use for the Table 7 the same sets of parameters than in the Table 6 but
for the compromise criterion using (61). With this criterion, we cannot compare
the different lines as different values of θ will also change the variance around the
expected value of the distance, as it is well shown in Figure 5. This Figure, for the
set of parameter P4 shows also the main difference between the QUAD method
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Choice of J BORDA MLE QUAD

2 2.40± 1.845 50.24± 8.921 0.25± 0.250
3 7.01± 3.675 11.74± 6.181 7.55± 4.217
4 8.81± 3.824 13.38± 5.848 5.09± 3.924
5 9.92± 3.670 12.63± 4.659 9.66± 3.640
6 10.73± 3.554 13.64± 4.446 8.89± 3.733
7 11.25± 3.440 13.10± 3.899 10.93± 3.208
8 11.74± 3.224 13.47± 3.670 10.56± 3.262
9 12.16± 3.221 13.57± 3.581 11.77± 2.949
10 12.22± 3.083 13.57± 3.408 11.38± 3.116
15 13.16± 2.575 13.95± 2.724 12.83± 2.448
20 13.58± 2.233 14.16± 2.331 13.28± 2.204
25 13.77± 2.054 14.23± 2.127 13.57± 2.016
30 13.84± 1.867 14.21± 1.930 13.69± 1.855
40 14.07± 1.618 14.33± 1.658 13.97± 1.609
50 14.22± 1.482 14.41± 1.498 14.14± 1.480

Table 5: Mean ± standard deviations of the standard deviation of the Kendall
distances between σ and π̂ for 2 to 50 σj, permutations of n = 30 items, with the
same θ and the same π over 3000 realizations.

Choice of θ BORDA MLE QUAD

P1 63.08± 10.843 64.61± 11.530 65.09± 11.590
P2 1.23± 1.060 0.54± 0.712 0.62± 0.779
P3 22.83± 5.811 32.67± 8.107 30.90± 7.436
P4 25.20± 5.661 27.38± 6.716 29.76± 6.395
P5 26.94± 5.456 22.74± 5.631 33.13± 6.380
P6 3.32± 1.625 2.04± 1.374 2.25± 1.437
P7 3.51± 1.664 2.06± 1.372 2.70± 1.564

Table 6: Mean ± standard deviations of Kendall distances between π and π̂ for
a set of parameters θ : P1 : 50 parameters at 0.05 ; P2 : 50 parameters at 0.6 ;
P3 : 2 parameters at 0.6 ; P4 : 2 parameters at 0.6 and 5 parameters at 0.05 ; P5

: 2 parameters at 0.6 and 48 parameters at 0.05 ; P6 : 25 parameters at 0.6 ; P7 :
25 parameters at 0.6 and 25 parameters at 0.05. The permutations are of n = 30
items.

and the two others. The QUAD method tends to favor low informative criteria
more than high informative criteria in comparison with the BORDA method and
obviously the maximum likelihood estimator. When coming to the compromise
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criterion, the QUAD method gives the best results. However, in the sets of pa-
rameters tested here and excepting the special case P3, the difference between the
three methods is not statistically significant.

Parameters θ BORDA MLE QUAD

P1 26.17± 2.616 26.64± 2.646 25.13± 2.492
P2 8.02± 0.847 8.07± 0.848 8.02± 0.844
P3 1.73± 1.344 25.12± 5.053 0.25± 0.25
P4 20.36± 6.735 20.97± 6.689 19.53± 6.405
P5 25.99± 2.639 26.20± 2.657 25.45± 2.570
P6 7.76± 1.187 7.91± 1.209 7.70± 1.177
P7 19.62± 2.511 19.66± 2.507 19.58± 2.505

Table 7: Mean ± standard deviations of the standard deviation of the Kendall
distances between σ and π̂ for a set of parameters θ : P1 : 50 parameters at 0.05
; P2 : 50 parameters at 0.6 ; P3 : 2 parameters at 0.6 ; P4 : 2 parameters at 0.6
and 5 parameters at 0.05 ; P5 : 2 parameters at 0.6 and 48 parameters at 0.05 ;
P6 : 25 parameters at 0.6 ; P7 : 25 parameters at 0.6 and 25 parameters at 0.05.
The permutations are of n = 30 items.

Figure 5: Boxplot of the Kendall distance between π̂ and σ for n = 30, in the set
of parameters P4.

26



The behavior of our different estimators is studied in two cases: all different
values of θ and with a big value of θ equalized by a sum of small values of θ. Those
two cases are shown in Table 8, for the criterion of the distance between π̂ and π,
and are denoted respectively by P8 and P9. We can see that for this criterion and
the set of parameters P8, the maximum likelihood estimator, as expected, is the
best. The surprising part of this Table is with the set of parameters P9. We would
have expected the maximum likelihood estimator to be the worst as with the set
of parameters P3 due to the tyranny. The results for the maximum likelihood
estimator are the same as P3. However, it is by far the best, meaning that the
confusion induced by the low informative criteria with θ = 0.1 confuses the two
other methods and more significantly the QUAD method.

Choice of θ BORDA MLE QUAD

P8 23.95± 5.075 21.78± 5.368 24.74± 5.531
P9 38.01± 7.309 32.66± 7.921 45.98± 8.356

Table 8: Mean ± standard deviations of the standard deviation of the Kendall
distances between σ and π̂ for a set of parameters θ : P8 : 8 different parameters,
θ1 = 0.1, θ2 = 0.15, θ3 = 0.2, θ4 = 0.25, θ5 = 0.3, θ6 = 0.35, θ7 = 0.4 and θ8 = 0.6 ;
P9 : 1 parameters at 0.6 and 6 parameters at 0.1. The permutations are of n = 30
items.

The Figures 6 and 7 represent, for respectively the sets of parameters P8 and
P9, the distances between π̂ and σ. We can see in Figure 6 that for the set of
parameters P8, the maximum likelihood estimator over-valuate the criterion with
the highest value and under-valuate the others. This is the exact opposite as the
QUAD method which tends to under-valuate the criterion with the highest value
and over-valuate the others. Here, only the BORDA method seems to respect the
importance of every criterion. For the Figure 7, it is essentially the same problems
than Figure 6 at a higher level. Here, the maximum likelihood estimator uses the
ranking of the criterion associated to the θ with a value of 0.6 as π̂ without any
compromise. This is a tyranny.

6 Application on real data

Now, we want to compare the different models on real data. The data set is
composed of items to order for 4 consecutive months. Each month has a different
number of items. The first month has 325 items, the second 328 items, the third
331 items and the last 340 items. Those items have to be ordered with respect to
7 different criteria. The 7 criteria are not developed here as this is not important

27



Figure 6: Boxplot of the Kendall distance between π̂ and σ for n = 30, in the set
of parameters P8.

Figure 7: Boxplot of the Kendall distance between π̂ and σ for n = 30, in the set
of parameters P9.
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to understand the results. Due to the complexity to get the real value of π, in
this experiment, we first use a Mallows model with values of θ given by the user
as a first intuition. Considering the results, the user evaluates the 40 best items
obtained by this Mallows model considering the maximum likelihood estimator
(9) used to find π̂. The user gives to the 40 items a notation between 0 and 9,
where 0 correspond to the best notation, a very interesting product to study and
9 correspond to the worst notation, a useless product to study. Based on these
notations, we make a partial ranking of π for those 40 items. So, we learn the
parameters θj for the Mallows Model (1), denoted as MM, and a, α, β, r for the
model given in (47) which uses the real values of each criteria, considering different
approximations of log(Z(a, α, β, r, xj, σjm)) in the likelihood (57).

As an approximation of log(Z(a, α, β, r, xj, σjm)), we use 3 possibilities. The
MEDian, denoted as MED, the MEAN denoted as MEAN, and MINMAX, the
mean of the MINimum and MAXimum values of the logarithm. For the 4 models,
we also use the MLE and QUAD estimators of π̂ to compare the results.

All these models are compared over the 40 evaluated items of each month with
the π̂ obtained and the one given by the user. We compare also the order of the
40 items when we rank only those 40 items and when we rank every item of the
month. For 40 items, the maximum Kendall distance is 780.

Month MM + MLE MM + QUAD MINMAX + MLE MINMAX + QUAD

1 160 181 189 183
2 91 147 121 137
3 128 135 168 168
4 137 173 182 198

Month MED + MLE MED + QUAD MEAN + MLE MEAN + QUAD

1 135 136 128 133
2 106 106 97 97
3 125 132 123 125
4 132 132 135 134

Table 9
Kendall distance between π and π̂ when we rank only the 40 evaluated items.

In the Table 9, we compare for every model with the 2 different estimators of π
the Kendall distance between π and π̂. Here, we observe that using the real values,
the results are better. The MEAN estimator of the logarithm of the normalization
term is the best. Concerning the estimator of π for the MEAN model, both QUAD
estimator and Maximum Likelihood estimator give similar results.

An interesting property for a prioritization is the indifference of irrelevant al-
ternative, meaning that if we add an element to rank, then the order found without
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this element has to be the same than the order of the same items found with this
element. This property does not stand in the case of Mallows models. However, it
can be interesting to have a proximity in the orders given for the full ranking and
the orders given with the 40 items.

Month MM + MLE MM + QUAD MEAN + MLE MEAN + QUAD

1 0 40 0 7
2 0 111 0 0
3 0 82 0 0
4 0 108 0 13

Table 10
Kendall distance between π̂ ranked over every items and π̂ ranked over the 40

evaluated items, on the 40 evaluated items.

In Table 10, we observe for the 4 most interesting models, the Kendall distance
between π̂ ranked over every items and π̂ ranked over the 40 evaluated items,
on the 40 evaluated items. A distance of 0 may seems interesting but with the
Maximum Likelihood Estimator, we have the possibility of a tyranny, which in
the case of the Mallows Model case is the tyranny of the third criterion. For the
MEAN model with the Maximum Likelihood Estimator, it is not exactly the case
as we have a close proximity to the first and third criteria but we do not have the
exact same permutation. Having a so close proximity between the 2 different π̂
with the MEAN model and the QUAD estimator is good.

7 Conclusions

In this article, we focus on a permutation based method to find the best ranking
of items to study. We choose the permutation space to use information given in
rankings and explain our method to include other types of information given in
the value of the variable.

An estimation of the dispersion parameters of the model is given and we propose
different algorithms to find the best compromise for the ranking to study, according
to the estimation of those parameters. For each estimation of the compromise
ranking, the expected advantages and limitations of our choices is explained.

The limitations and the benefits of the three algorithms for the Mallows model
is studied on simulated data. The behavior of the estimation of the compromise
is studied with respect to the number of ranking to take into account and their
dispersion parameter.

Finally, we apply our new model on a real data set and describe our procedure
idea to find the dispersion parameters and the best compromise for the user with
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a minimal time investment of the user. The results are promising, even though
those models use the independence assumption.
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